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COMPUTATION OF STARK-TAMAGAWA UNITS

W. BLEY

Abstract. Let K be a totally real number field and let l denote an odd
prime number. We design an algorithm which computes strong numerical
evidence for the validity of the “Equivariant Tamagawa Number Conjecture”
for the Q[G]-equivariant motive h0(Spec(L)), where L/K is a cyclic extension
of degree l and group G. This conjecture is a very deep refinement of the
classical analytic class number formula. In the course of the algorithm, we
compute a set of special units which must be considered as a generalization
of the (conjecturally existing) Stark units associated to first order vanishing
Dirichlet L-functions.

1. Introduction

Let L/K denote a finite Galois extension of number fields of group G. In this pa-
per we provide numerical evidence for the so-called “Equivariant Tamagawa Num-
ber Conjecture” for the Q[G]-equivariant motive h0(Spec(L)) formulated in [3] and
[6]. Our approach is based on the results of [2], where for a large class of abelian
extensions L/K the conjectural vanishing of the Tamagawa number TΩ(L/K) of
h0(Spec(L)) is interpreted in terms of the existence of S-units satisfying a variety
of explicit conditions.

These conditions are in the same spirit as the conditions studied by Rubin in [16]
and Popescu in [14], but are in general much finer. Indeed, recent work of Burns
[5] shows that in the context of this paper the “Equivariant Tamagawa Number
Conjecture” implies a certain natural refinement of the conjectures of Rubin and
Popescu. In turn, their conjectures are generalizations of the well-known refined
Stark conjecture “over Z” for first order vanishing Dirichlet L-functions (cf. [18,
Chap. IV]). Therefore our examples also provide new evidence in favour of these
Stark-type conjectures.

The article is organized in the following way: in Section 2 we recall the main re-
sult of [2]. In Section 3 we describe an algorithm which verifies the above mentioned
conjecture (up to the precision of the computation) for cyclic extensions L of odd
prime degree of a totally real number field K, and Section 4 contains a worked-out
example.

2. The equivariant Tamagawa number conjecture

We fix a Galois extension L/K of number fields and set G = Gal(L/K). Let
K0(Z[G],R) denote the Grothendieck group of the fibre category of the functor
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⊗Z R from the category of finitely generated projective left Z[G]-modules to the
category of finitely generated left R[G]-modules. If G is abelian (which is the case
we will be concerned with), this group is canonically isomorphic to the group of
invertible Z[G]-sublattices of R[G] (cf. [1, Lem. 2.6(i)]).

In [4] Burns used complexes arising from étale cohomology to define a canonical
element TΩ(L/K) ∈ K0(Z[G],R). For a precise definition in the general case
the reader is referred to loc.cit.; an easier accessible version in the abelian case
is contained in [1]. In [4] it is shown that the Stark conjecture [18, Ch.I, 5.1]
is equivalent to asserting TΩ(L/K) ∈ K0(Z[G],Q), the Strong Stark conjecture
[8, Conj. 2.2] is equivalent to the containement TΩ(L/K) ∈ K0(Z[G],Q)tor, and
finally, the “equivariant Tamagawa number conjecture” (for short, ETNC) of [4],
[6] for the special motive h0(Spec(L)) is equivalent to the equality TΩ(L/K) = 0.

Very recently, Burns and Greither [7] have proven ETNCfor all abelian extensions
L/Q of odd conductor, but beyond this, very little concerning ETNC is known so
far.

From now on we assume that G is abelian and fix the following notation. For any
finite set S of places of K which contains the set S∞ of archimedian places, we write
S(L) for the set of places of L lying above places in S, OS for the S(L)-integers of
L, clS for the S(L)-class group, and we set hS := |clS|. We let US denote the S(L)-
units of L, µL the torsion subgroup of US , and we set ES := US/µL. Analogously
we write UK,S and EK,S for the corresponding groups on the base field level. We
let YS denote the free abelian group on the set S(L) and write XS for the kernel
of the homomorphism YS → Z which sends each element of S(L) to 1. For later
reference we recall that if (hS , |G|) = 1, then there exists an exact sequence of
finitely generated G-modules

(1) 0 −→ US −→ A −→ B −→ XS −→ 0

with A,B of finite projective dimension. (This is shown in [17] under the assumption
hS = 1, but the same argument works with our slightly weaker hypothesis.)

For each place w of L we let | · |w denote the absolute value of w, which is
normalised as in [18, Chap. 0, 0.2]. We let RS : US ⊗Z R −→ XS ⊗Z R denote the
R[G]-equivariant isomorphism given by

RS(u) = −
∑

w∈S(L)

log | u |w ·w

for each u ∈ US .
We let G∗ denote the group of abelian characters of G. For each χ ∈ G∗ we

write LS(s, χ) for the associated S-truncated Dirichlet L-function and eχ for the
primitive idempotent |G|−1

∑
g∈G χ(g)g−1. In this way we obtain a C[G]-valued

function of the complex variable s by setting

LS(s) :=
∑
χ∈G∗

LS(s, χ−1)eχ.

We let L∗S(0, χ) denote the leading coefficient in the Taylor expansion of LS(s, χ) at
s = 0, and set L∗S(0) :=

∑
χ∈G∗ L

∗
S(0, χ−1)eχ. Roughly speaking, ETNC predicts

a conjectural formula for the Z[G]-sublattice of R[G] which is generated by L∗S(0)
(note that LS(s, χ̄) = LS(s, χ) for s ∈ R implies L∗S(0) ∈ R[G]).

Let E be the field generated over Q by the values of elements of G∗, and write O
for its ring of algebraic integers. For any commutative ring R and each R-module
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M we write FittR(M) for the (first) Fitting ideal of M . (We refer the reader to [11,
App.] or [13, Sec. 1.4] for the basic properties of Fitting ideals.) If M is any finite
G-module with (|M |, |G|) = 1, then each eχ acts naturally on O ⊗ZM , and we set

Fittχ(M) := FittO(eχ(O ⊗ZM)).

Note that Fittχ(M) coincides with the usual O-order ideal of the finitely generated
O-torsion module eχ(O ⊗ZM).

We now introduce a natural simplifying hypothesis on the extension L/K under
which ETNCcan be interpreted as asserting the existence of special units in L. For
each place v of K we write Gv for the decomposition subgroup in G.

Hypothesis (S). There exists a finite set S of places of K which satisfies all of
the following conditions: S contains all archimedean places and all places which
ramify in L/K; (|G|, hS) = 1; there exists a place v0 ∈ S for which Gv0 = G; and
for each place v ∈ S0 := S \ {v0}, the group Gv is cyclic.

Assuming that S is as described in Hypothesis (S), we fix a generator gv of Gv
for each v ∈ S0. We let w0 denote the (unique) place of L lying above v0, and for
each v ∈ S0 we choose a place wv of L lying above v. For each v ∈ S0, and each
place w ∈ S(L) \ {w0}, we define δv,w to be 1 if w = wv and to be 0 otherwise. If
w ∈ S(L), we write v(w) for the unique place in S defined by w. For each χ ∈ G∗
we let Sχ denote the set {v ∈ S0 : χ(gv) = 1}, and we define Sχ := S0 \ Sχ.

If N/M is a finite abelian extension of p-adic fields, we write (−, N/M) for the
associated Artin map M× −→ Gal(N/M). If U is a subgroup of Gal(N/M), then
NU denotes the subfield of N fixed by U .

The next two theorems are just reformulations of [2, Th. 3.2].

Theorem 2.1. Assume that (|µL|, |G|) = 1 and in addition that S is as described
in Hypothesis (S). Then there exist elements εv ∈ ULGv ,S for each v ∈ S0 such that

(i) the index of ES := 〈εv : v ∈ S0〉Z[G] in US is finite and coprime to |G|, and
(ii) for each place v ∈ S0 and each place w of S(L) \ {w0} one has

(εv, Lw/L
Gv∩Gv(w)
w ) = gδv,wv .

Proof. This is immediate from [2, Prop. 2.1] and the first part of the proof of [2,
Th. 3.2]. �

Theorem 2.2. Assume the notation of Theorem 2.1. Then TΩ(L/K) = 0 if and
only if for each χ ∈ G∗ there exists an element aχ of E× such that

(i)
∏
v∈Sχ

(χ(gv)− 1) ·
∧

v∈Sχ

1
|Gv|RS(eχ(εv)) = aχL

∗
S(0, χ−1) ·

∧
v∈Sχ

eχ(wv − w0),

(ii) aχO = Fittχ(US/ES)Fittχ(clS)−1, and
(iii) hSa ∈ Z[G], where a :=

∑
χ∈G∗

aχeχ.

Proof. This is proved in the second part of the proof of [2, Th. 3.2]. �

Remarks 2.3. a) Equality (i) in Theorem 2.2 is an equality in the one-dimensional
C-vector space

∧
v∈Sχ eχ(C⊗ZXS) and therefore uniquely determines complex num-

bers aχ for each χ ∈ G∗. Stark’s conjecture for all characters χ ∈ G∗ is equivalent
to the assertion a ∈ Q[G]. If we assume Stark’s conjecture, then equality (ii) holds
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if and only if the Strong Stark conjecture is true. Finally, (ii) and (iii) together
imply

aZ[G] = FittZ[G](US/ES)FittZ[G](clS)−1.

This statement in turn is equivalent to the equality TΩ(L/K) = 0.
Very recently, Burns and Greither have proven ETNC for any abelian extension

L/Q of odd conductor. Furthermore, ETNC is known to be valid for a natural
family of non-abelian extensions L/Q for which G is isomorphic to the quaternion
group of order 8 (cf. [12]). Apart from these extensions and their subextensions,
we are not aware of any other abelian extensions L/K for which ETNC is known
to be true. In fact, the extensions we will consider in the next section are not even
known to validate Stark’s conjecture or the Strong Stark conjecture.

b) If we assume in addition to Hypothesis (S) that S contains precisely r places
that split completely in L/K, then the (r−1)-st derivative L(r−1)

S (0, χ) equals 0 for
all χ ∈ G∗ (cf. [18, Chap. I, Prop. 3.4]). Therefore L(r)

S (0, χ) is of particular interest,
and Rubin in [16], and subsequently Popescu in [14], conjectured certain natural
integrality properties for the r-th derivative L(r)

S (0) of LS(s). Their conjectures
generalize the refined conjecture “over Z” formulated by Stark in the case r = 1
(cf. [18, Chap. IV]).

If µL is cohomologically trivial, then Rubin’s and Popescu’s conjecture are equiv-
alent as a consequence of [14, Th. 5.5.1]. In addition, the main result of [5, Sec. 3.2]
shows that under our hypothesis ETNC implies a strong refinement of Popescu’s
conjecture (cf. [5, Rem. 3.3(iv)]).

For a brief discussion about what is known about these Stark-type conjectures
of Rubin and Popescu, we recommend the interested reader to consult [14, §6].

3. An algorithm

Let K denote a totally real number field of degree n. We fix an odd prime number
l and let L/K denote a cyclic extension of number fields of degree l. Note that for
each such extension there exists a set S such that the assumptions of Theorems 2.1
and 2.2 are satisfied. Our aim is to use these results to develop an algorithm to
check the validity of ETNCfor L/K up to the precision of the computation.

We assume that L/K is given by class field theoretic data as described in [9,
Chap. 3 and 4]. In particular, we let f = fL/K denote the conductor of L/K and
write clf(K) for the ray class group modulo f. Let H ≤ clf(K) denote the sub-
group of index l corresponding to the given extension L. Then recently developed
algorithms due to Cohen and Roblot (cf. [9, Chap. 6] or [15]) allow us to compute
defining polynomials for L. Based on this, we further assume that we are able to
compute all basic invariants of L, such as the ring of algebraic integers, the ideal
class group and a system of fundamental units (and also the S-versions of these
objects).

In the following we write S∞ = {∞1, . . . ,∞n}, Sram = {p0, . . . , pr} = {p : p | f}
and choose a set S′ = {q1, . . . , qs} of primes which split completely in L/K and
such that for S = S∞∪Sram∪S′ one has l - hS . We will use p0 as the distinguished
place v0 of Hypothesis (S). Then

(2) XS =
n⊕
i=1

Z[G](∞̂i − p̂0)⊕
s⊕
i=1

Z[G](q̂i − p̂0)⊕
r⊕
i=1

Z(p̂i − p̂0),
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where for each place p ∈ S we choose a place p̂ of L above p.
The Z-rank of US is then given by m := l(n+s)+r, and we let δ1, . . . , δm denote

a system of fundamental S(L)-units. Finally we assume that the representation of
G induced by its action on ES and this choice of fundamental units is explicitly
known: for g ∈ G we denote by D(g) the corresponding matrices. Each element
u =

∏m
i=1 δ

xi
i of ES is then represented by the vector x := (x1, . . . , xm)t, and the

action of g ∈ G on u is translated into the matrix multiplication D(g)x. We will
perform all our computations in US,Q := US ⊗Z Q and thus represent each u ∈ ES
by a vector x ∈ Qm.

We will simply view this data as input for our algorithm. Its actual computation
is, of course, a very hard problem on its own. It is remarkable that the PARI system
provides almost all routines to compute this input, at least for small degrees l and
small conductors.

Let ζ denote a primitive l-th root of unity and set E = Q(ζ). We fix a generator
g0 of G and define a character χ ∈ G∗ by χ(g0) = ζ. Thus G∗ = 〈χ〉. We
also write χ0 for the trivial character of G, e0 = 1

l

∑
g∈G g and e1 = 1− e0 for the

primitive idempotents of Q[G], and note that the map λ 7→ (χ0(λ), χ(λ)), λ ∈ Q[G],
defines a natural identification of Q[G] and Q ⊕ E. Without further mention we
will henceforth identify Q[G] and Q⊕E. The lattice e1ES ⊆ US,Q is then naturally
endowed with the structure of an O-module.

3.1. Computation of ES. In this subsection we explain how to compute a Z[G]-
sublattice ES of US such that the assertions of Theorem 2.1 are satisfied. Concretely,
we have to exhibit S-units ε∞1 , . . . , ε∞n , εq1 , . . . , εqs ∈ US and εp1 , . . . , εpr ∈ UK,S.
To simplify our notation we write ε1, . . . , εn+s, resp. η1, . . . , ηr, for ε∞1 , . . . , ε∞n ,
εq1 , . . . , εqs , resp. εp1 , . . . , εpr .

Lemma 3.1. Suppose that A = 〈ε1, . . . , εn+s〉Z[G] ⊆ US satisfies l - [e1ES : e1A].
Then there exist S-units η1, . . . , ηr ∈ UK,S such that l - [UK,S : 〈le0A, η1, . . . , ηr〉Z].
In addition, if one sets ES := 〈ε1, . . . , εn+s, η1, . . . , ηr〉Z[G], then l - [US : ES ].

Proof. For any finitely generated Z-module M we write Ml := M ⊗Z Zl for its
l-completion. By [2, Prop. 2.1] we know there exist ω1, . . . ωn+s ∈ US , ν1, . . . , νr ∈
UK,S such that US,l = 〈ω1, . . . , ωn+s, ν1, . . . , νr〉Zl[G]. This will be the key observa-
tion in the proof of Lemma 3.1.

The short exact sequence 0 → EK,S → ES → e1ES → 0 together with our
assumption l - [e1ES : e1A] implies

(3) US,l = 〈ε1, . . . , εn+s, UK,S〉Zl[G] = 〈ω1, . . . , ωn+s, UK,S〉Zl[G].

We let Ol denote the localization of O with respect to the unique prime of E above
l, and recall that the maximal Zl-order in Ql[G] is isomorphic to Zl ⊕Ol. Via this
identification one has Zl[G] = {(a, α) ∈ Zl ⊕Ol | a ≡ α(mod (1− ζ))}.

Let A ∈ Gln+s(Ol) denote the matrix such that

(e1ε1, . . . , e1εn+s) = (e1ω1, . . . , e1ωn+s)A,

and choose a matrix A1 ∈ Matn+s,n+s(Zl) such that A ≡ A1(mod (1 − ζ)), where
here and in the following congruences of matrices are meant componentwise. Then
A+A1 ∈Matn+s,n+s(Zl[G]), det(A1) ∈ Z×l and

(4) (e0ε1, . . . , e0εn+s) ≡ (e0ω1, . . . , e0ωn+s)A1(mod UK,S,l).
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We write Hi for the Tate cohomology groups and let NG denote the norm op-
erator. From (1) and (2) we obtain UK,S/NGUS = H0(G,US) = H0(G,XS) =⊕r

i=1 Z/lZ. Since rkZ(UK,S) = n + s + r we conclude that e0ωi 6∈ UK,S for
i = 1, . . . , n+ s, and UK,S,l = 〈le0ω1, . . . , le0ωn+s, ν1, . . . , νr〉Zl .

If we let u1, . . . , un+r+s denote a system of fundamental units of UK,S , then there
exists an invertible matrix B ∈ Gln+r+s(Zl) such that

(le0ω1, . . . , le0ωn+s, ν1, . . . , νr) = (u1, . . . , un+r+s)B.

Writing B = (B1 | B2) with B1 ∈ Matn+r+s,n+s(Zl), B2 ∈ Matn+r+s,r(Zl), it
follows that B1 has an invertible (n+ s)× (n+ s) minor.

From (4) we deduce

(5) (e0ε1, . . . , e0εn+s) = (e0ω1, . . . , e0ωn+s)A1 + (v1, . . . , vn+s)

with v1, . . . , vn+s ∈ UK,S,l, and furthermore

(le0ε1, . . . , le0εn+s) = (u1, . . . , un+r+s)B1A1 + l(v1, . . . , vn+s)
= (u1, . . . , un+r+s)H

with a matrix H ∈ Matn+r+s,n+s(Zl). Since B1A1 ≡ H(mod l) and det(A1) ∈ Z×l ,
the matrix H also contains an invertible (n+ s)× (n+ s) minor. Therefore we can
complement le0ε1, . . . , le0εn+s with η1, . . . , ηr to obtain a basis of UK,S,l, and it is
now obvious from (3) that US,l = 〈ε1, . . . , εn+s, η1, . . . , ηr〉Zl[G]. �

Given the result of Lemma 3.1, we achieve the computation of ES in three steps.
Step 1: Computation of A := 〈ε1, . . . , εn+s〉Z[G] ⊆ US such that l - [e1ES : e1A].
Step 2: Computation of η′1, . . . , η′r ∈ UK,S such that

l - [EK,S : 〈le0A, η′1, . . . , η′r〉Z].

Step 3: Adaption of η′1, . . . , η′r such that part (ii) of Theorem 2.1 is satisfied.
We begin with the description of Step 1. Recall that we always identify e1Q[G]

and E. Inductively we construct an E-basis ξ1, . . . , ξn+s of e1US,Q: suppose that
ξ1, . . . , ξi−1 are already computed. Then we choose δ ∈ {δ1, . . . , δm} such that
e1δ ∈ e1US,Q \ 〈ξ1, . . . , ξi−1〉e1Q[G] (a condition which is easily checked by solving a
system of linear equations) and set ξi = e1δ.

Next we compute the (n+ s)×m matrix A with coefficients in E such that

(e1δ1, . . . , e1δm) = (ξ1, . . . , ξn+s)A.

We will use the Hermite normal form algorithm in Dedekind domains (cf. [9,
Th. 1.4.6 and Alg. 1.4.7]) and also stick to the notation of loc.cit. In this way we
obtain a matrix U ∈ Glm(E) and nonzero fractional O-ideals c1, . . . , cn+s such that

e1US = c1ω1 ⊕ . . .⊕ cn+sωn+s

with
ωi = (e1δ1, . . . , e1δm)vi, i = 1, . . . , n+ s,

where vi is the (m − n − s + i)-th column of U . For i = 1, . . . , n + s we choose
integral ideals c′i such that (l, c′i) = 1 and cic

′
i = (ci), ci ∈ E. We then define the

e1-component of εi by

e1εi := ciωi, i = 1, . . . , n+ s.
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By [9, Th. 1.4.6(1)] civi has coefficients in c′i ⊆ O. Hence we may choose a vector
wi ∈ Zm such that civi ≡ wi(mod (1− ζ)). Then the element

εi := (e1δ1, . . . , e1δm)civi + (e0δ1, . . . , e0δm)wi
is actually an S-unit with e1-component ciωi. By construction we have

[e1ES : e1A]O =
n+s∏
i=1

ci
ci

=
n+s∏
i=1

c′i =: c′,

which is prime to l, as desired.
To accomplish Step 2 we compute the matrix H ∈ Matn+r+s,n+s(Z) such that

(le0ε1, . . . , le0εn+s) = (u1, . . . , un+r+s)H , where u1, . . . , un+r+s denotes a system
of fundamental units for UK,S. As shown at the end of the proof of Lemma 3.1,
there exists an (n + s) × (n + s) minor H1 of H with (det(H1), l) = 1. Without

loss of generality we may assume H =
(
∗
H1

)
, so that we can take η′i = ui for

i = 1, . . . , r.
Note that by now we have constructed a sublattice E ′S of US generated over Z[G]

by ε1, . . . , εn+s, η
′
1, . . . , η

′
r with the following property:

[e1US : e1E ′S ] = NE/Q(c′), [e0US : e0E ′S] = 2| det(H1)|.
For j = 0, . . . , r we let Lj/Kj denote the completion of L/K at the totally

ramified prime pj . In the final Step 3 we will compute a matrix C ∈Matr,r(Z) and
set (η1, . . . , ηr) = (η′1, . . . , η

′
r)C. The matrix C will be chosen such that l - det(C)

and (ηi, Lj/Kj) = g
δij
0 Kronecker delta purpose we consider the matrix D = (dij) ∈

Matr,r(Z/lZ) defined by
(η′i, Lj/Kj) = g

dij
0 .

Lemma 3.2. D ∈ Glr(Z/lZ).

Proof. By [2, Prop. 2.1] we know that there exist ω1, . . . , ωn+s ∈ US and ν1, . . . , νr ∈
UK,S such that

US,l = 〈ω1, . . . , ωn+s, ν1, . . . , νr〉Zl[G] and (νi, Lj/Kj) = g
δij
0 , 1 ≤ i, j ≤ r.

The proof of Lemma 3.1 shows that there exists a matrix X =
(
P Q
R S

)
∈

Gln+r+s(Zl) such that

(le0ε1, . . . , le0εn+s, η
′
1, . . . , η

′
r) = (le0ω1, . . . , le0ωn+s, ν1, . . . , νr)X.

Moreover, it follows from (5) that R ≡ 0(mod l) and therefore S ∈ Glr(Zl). We
now conclude that

(η′i, Lj/Kj) =
n+s∏
k=1

(le0ωk, Lj/Kj)qki
r∏
l=1

(νl, Lj/Kj)sli =
r∏
l=1

(νl, Lj/Kj)sli = g
sji
0 ,

where Q = (qkl), S = (skl) and all exponents are read in Z/lZ. Hence D ≡
St(mod l). �

Now let C ∈ Matr,r(Z) such that C ≡ D−1(mod l), and define η1, . . . , ηr by the
equality (η1, . . . , ηr) = (η′1, . . . , η

′
r)C.

Remark 3.3. Lemmas 3.1 and 3.2 should be considered as very explicit versions of
the main results of Holland (cf. [10, Th. 3.1]) applied to our very special situation.
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For the computation of D it remains to show how to determine the local Artin
symbols (η′i, Lj/Kj). We let vj = vpj denote the pj-valuation of K for j = 0, . . . , r.
Set eij = vj(η′i) and choose an element πj ∈ OK such that vi(πj) = δij (Kronecker
delta). Let f =

∏r
k=0 p

sk
k be the prime ideal factorization of the conductor f. If we

let ξij ∈ OK denote a solution of the simultanous congruences

ξij ≡ π
eij
j (mod p

sk
k ), k = 0, . . . , r, k 6= j,

ξij ≡ π
eij
j /η′i(mod p

sj
j ),

then class field theory shows that (η′i, Lpj/Kj) = (cij , L/K), where

cij = ξij
∏

p|πj,p 6=pj

p−eijvp(πj).

Recall that L/K is given by clf(K) and a subgroup H of index l. Assume that the
integral ideal c0 corresponds to g0 via the global reciprocity isomorphism. Using [9,
Alg. 4.3.2], it is then easy to compute dij ∈ Z/lZ such that cij = c

dij
0 in clf(K)/H.

3.2. Computation of aχ. We assume that we have computed a sublattice ES =
〈εv : v ∈ S0〉Z[G] of US satisfying the assumptions of Theorem 2.1. In this sub-
section we show how to compute complex approximations to the elements aχ, χ ∈
G∗, which are uniquely determined by part (i) of Theorem 2.2. Writing S1 =
{∞1, . . . ,∞n, q1, . . . , qs} and S2 = {p1, . . . , ps}, we have

(6) RS(ε) = −
∑
v∈S1

∑
g∈G

log |ε|gwvg(wv − w0)−
∑
v∈S2

log |ε|wv (wv − w0)

for any ε ∈ US . Considering the trivial character χ0, we have Sχ0 = S0, S
χ0 = ∅,

and from (6) we conclude that

RS(eχ0ε) = −
∑
v∈S1

∑
g∈G

log |g−1ε|wveχ0(wv − w0)−
∑
v∈S2

log |ε|wveχ0(wv − w0).

Hence aχ0 is given by

(7)
1
lr
· det(Rχ0(ES))

L∗S(0, χ0)
,

where Rχ0(ES) denotes the matrix (rst)s,t∈S0 with

rst =

{
−
∑
g∈G log |g−1εs|wt , if t ∈ S1,

− log |εs|wt , if t ∈ S2.

If χ is non-trivial, then Sχ = S1, S
χ = S2 and

RS(eχε) = −
∑
v∈S1

∑
g∈G

log |g−1ε|wveχ(wv − w0).

Thus aχ is given by

(8) aχ = (χ(g0)− 1)r · det(Rχ(ES))
L∗S(0, χ−1)

,

where Rχ(ES) is given by

Rχ(ES) =

−∑
g∈G

log |g−1εs|wtχ(g)


s,t∈S1

.
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In conclusion, the complex approximations to Rχ(ES), χ ∈ G∗, can easily be com-
puted provided that we know how to evaluate |α|w for α ∈ L and a place w of L.
This is straightforward and left to the reader. An algorithm for the computation
of complex approximations of the L-values is already implemented in the PARI
system and explained in [9, Ch. 6].

3.3. Numerical verification of ETNC. This subsection is devoted to the veri-
fication (up to the precision of the computation) of the conjectural assertions

hsa ∈ Z[G] and aχO = Fittχ(US/ES)/Fittχ(clS).

We first describe how to compute the relevant Fitting ideals. Since (l, |US/ES |) = 1,
one easily shows that eχ(O⊗ZUS)/eχ(O⊗ZES) ' eχ(O⊗ZUS/ES) for each χ ∈ G∗.
By construction we have

Fittχ0(US/ES) = FittZ(e0US/e0ES)O = 2|det(H1)det(C)|O.

If, in addition, hE = 1, then our algorithm produces a sublattice ES such that
e1US = e1ES , and hence Fittχ(US/ES) = O for each χ 6= χ0. In general, we observe
that eχε1, . . . , eχεn+s constitutes an E-basis of eχUS. We compute the matrix
A ∈Matm,n+s(E) such that

(eχδ1, . . . , eχδm) = (eχε1, . . . , eχεn+s)A.

Applying the HNF algorithm of [9, Alg. 1.4.7] to A, we obtain fractional O-ideals

c1, . . . , cn+s such that Fittχ(US/ES) =
(∏n+s

i=1 ci

)−1

.
For the computation of Fittχ(clS) we assume that the S-class group clS is given

by a direct product of cyclic subgroups 〈[g1]〉 × . . . × 〈[gk]〉, where for an integral
OL-ideal g we write [g] for its class in clS . Let ni denote the order of [gi]. We
further assume that the action of G on clS is known and given by g ([g1], . . . , [gk]) =
([g1], . . . , [gk])T (g) with T (g) ∈Matk,k(Z). Then eχ[gi] is represented by a column
vector vi ∈ Ek. We write ei for the i-th unit vector and let A denote the matrix
with columns v1, . . . , vk, n1e1, . . . , nkek. Again applying the HNF algorithm for
Dedekind domains, we compute ideals c1, . . . , ck such that

Fittχ(clS) =
hS

(
∏k
i=1 ci)

.

At this stage of the algorithm we already have approximations to the complex
numbers aχ for all χ ∈ G∗, so that it remains to identify aχ, χ ∈ G∗, as elements of
E×. By Stark’s conjecture hSaχ0 should be a rational integer. If this is confirmed
by our computations, we round hSaχ0 to the nearest integer and consider aχ0 as a
rational number.

The elements hSaχ are conjecturally (again by Stark) conjugated integral num-
bers of E, so that the polynomial

f(x) =
∏
χ6=χ0

(x− hsaχ)

should have coefficients in Z. If this is true up to the precision of the computation,
we again round the coefficients of f and factor f , f =

∏s
i=1 f

ai
i . Each of the

irreducible polynomials fi is expected to define a subextension of E, and if this is
true, we can identify the aχ as elements of E.
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Finally, after checking the equality aχO = Fittχ(US/ES)/Fittχ(clS), we need to
test whether hSaχ ≡ hSaχ0(mod (1− ζ)) for all χ 6= χ0. If these congruences hold,
then hsa ∈ Z[G], and the numerical confirmation of ETNCis complete.

4. An example

The algorithm described in Section 3 was implemented under PARI-GP, Version
2.0.20. We describe an explicit example. All computations were done with a real
precision of 28 significant digits. Let K = Q(

√
5) and set ω = (1 +

√
5)/2. We let

f = p0p1p2 with

p0 = (19,−10 + 2ω), p1 = (31,−7 + 2ω), p2 = (61,−27 + 2ω).

The PARI function bnrinit computes the the ray class group clf(K), which is of
order 90, generated by two elements [g1], [g2], where g1 = (15191), g2 = (−15+42ω)
and ord([g1]) = 30, ord([g1]) = 3. There is precisely one subgroup H of clf(K) of
index l = 3 such that the corresponding class field has conductor f. Explicitly, H
is generated by 3[g1] and 2[g1] + [g2]. We let L denote the extension corresponding
to H und use the PARI-routine bnrstark to compute the defining polynomial

h(x) = x6 − x5 − 127x4 + 182x3 + 4192x2 − 8472x− 17776.

Let α denote a root of h so that L = Q(α).
By applying bnfinit we obtain the ring of integers, the ideal class group and

a system of fundamental units for L. The class number of L is 3, and it is easily
checked that the ideal class group is generated by the ramified primes. Therefore
we may use {∞1,∞2, p0, p1, p2} as our set S.

We let c0 = g0 be a fixed representative of clf(K)/H and use nfgaloisconj to
compute G = Gal(L/K). It is absolutely essential for the subsequent computations
that we choose g0 ∈ G such that (c0, L/K) = g0. In this specific example g0 is
given by the substitution

x← 19
7616

x5 +
223
7616

x4 − 2579
7616

x3 − 69
28
x2 +

2353
238

x+
23999
952

.

If we carry out the algorithm of Section 3 we obtain the special units

ε1 =
−53
1904

α5 − 869
1904

α4 +
8665
1904

α3 +
1011
28

α2 − 20142
119

α− 66125
238

,

ε2 =
47

7616
α5 − 565

7616
α4 − 2543

7616
α3 +

139
28

α2 +
571
119

α− 77493
952

,

η1 =
7
2
ω +

123
2
,

η2 =
11
2
ω +

19
2
.

We have Fittχ0(US/ES) = 16O and Fittχ(US/ES) = O, χ 6= χ0. We let χ be the
character determined by χ(g0) = exp(2πi/l). For the extensions ∞̂1 and ∞̂2 we
choose the embeddings uniquely determined by

∞̂1 : α 7→ −8.179796812075983731456745607,
∞̂2 : α 7→ −7.947029995151366546855650171.
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Then the computation of the regulator matrices and its determinants leads to

det(Rχ0(ES)) = −1440.138197903160150434022976,
det(Rχ(ES)) = −27.50768822513241632074447034

+25.64332412284744888482277685i,
det(Rχ̄(ES)) = −27.50768822513241632074447034

−25.64332412284744888482277685i.

We use the routine bnrL1 to compute approximations to the L-values, and obtain

L∗S(0, χ0) = −10.00095970766083437801404838,
L∗S(0, χ) = 25.36177804589396922323489622

−109.9320565913114212256075217i,
L∗S(0, χ̄) = 25.36177804589396922323489611

+109.9320565913114212256075220i.

Putting everything together, approximations of the complex numbers aχ (defined
in (7) and (8)) are given by

aχ0 ≈ 16.00000000000000000000000010,
aχ ≈ 0.9999999999999999999999999258

−0.000000000000000000000000106i,
aχ̄ ≈ 0.9999999999999999999999999237

+0.000000000000000000000000108i,

This suggests that aχ0 = 16, aχ = aχ̄ = 1 and hence a = 6 + 5g0 + 5g2
0. Altogether

these numerical results confirm the validity of ETNC in this example.
The algorithm has been applied to a lot more examples, each time establishing

the validity of ETNC. These numerical results can be found under

http://www.math.uni-augsburg.de/~ bley.
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