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A MONTE CARLO ALGORITHM FOR WEIGHTED
INTEGRATION OVER Rd

PIOTR GAJDA, YOUMING LI, LESZEK PLASKOTA,
AND GRZEGORZ W. WASILKOWSKI

Abstract. We present and analyze a new randomized algorithm for numer-
ical computation of weighted integrals over the unbounded domain Rd. The
algorithm and its desirable theoretical properties are derived based on cer-
tain stochastic assumptions about the integrands. It is easy to implement,
enjoys O(n−1/2) convergence rate, and uses only standard random number
generators. Numerical results are also included.

1. Introduction

Numerical multiple integration has been extensively studied and there is a huge
volume of theoretical results as well as algorithms in case the integration domain
D is bounded, say D = [0, 1]d is the unit cube. Much less is known for integration
over unbounded domains such as D = Rd. This is in spite of the fact that weighted
integrals of the form

(1) Iρ(f) =
∫
Rd
f(x) ρ(x) dx

appear in a number of important applications including mathematical finance,
physics, and scientific computing.

The unbounded domain D adds some extra layers of difficulty to the integration
problem, as compared to D = [0, 1]d. We now list a few of them.

1. Algorithms that are efficient for unweighted integration over [0, 1]d can be
formally used, by a change of variables, for weighted integration over Rd. However,
such a procedure transforms, as a rule, a class of smooth functions to a class of
functions with singularities, which makes the theoretical results for [0, 1]d not ap-
plicable for Rd. One could also use a truncation of the domain to a bounded cube,
but then the size of the resulting domain has to very much depend on the specific
integrand which makes it difficult to obtain a general purpose algorithm.

2. Uniform distribution on D, that is commonly utilized in Monte Carlo al-
gorithms for D = [0, 1]d, does not exist for D = Rd. Hence, the question arises
of how to select random samples from Rd. One could obviously select x1, . . . ,xn

according to density proportional to the weight ρ. However, for the errors to be at
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least proportional to n−1/2, one has to assume that

(2)
∫
Rd
f2(x) ρ(x) dx <∞

which need not be the case and actually is not needed (see explanation below).
Moreover, for complicated weights ρ, generating the corresponding i.i.d. samples xi

could be very difficult and expensive.
3. There are few very good (deterministic or randomized) algorithms for un-

bounded domains, such as stochastic spherical-radial rules or algorithms using low-
discrepancy sequences; see, e.g., [1, 6, 9, 11, 12]. However, they either work for
specific weights ρ like, e.g., Gaussian weight, and for specific integrands like those
describing the value of mortgage-backed securities, or they require complicated ran-
dom number generators and have a significant overhead cost. For some of these
methods, there are no theoretical error bounds known. For other methods only a
posteriori error bounds are available since, due to their complication, any a priori
error bounds for large classes of integrands are extremely difficult to obtain.

The aim of the present paper is to propose a randomized algorithm that is free of
the problems mentioned above, that is, an algorithm that is in a way universal: very
easy to implement, requires only uniform random number generator, has desirable
theoretical properties for a large class of weight functions ρ and a large class of
integrands f .

For that end, we made certain stochastic assumptions on the integrands f that
allow us to analyze average case errors (as opposed to the worst case errors)1 of the
algorithm. We stress that these stochastic assumptions served only to guide us in
developing the algorithm, and we believe that it could/should be used in a much
more general framework. Indeed, to maximize its potential applicability, we have
chosen a relatively nonrestrictive assumption (only Hölder continuity). Moreover,
as can also be shown, the error of our algorithm converges to zero with n for any
(a.e.) continuous f with finite Iρ(f).

More specifically, we consider approximating integrals Iρ of the form (1) for a
given (but arbitrary) weight ρ of the isotropic form,

(3) ρ(x) = ω(‖x‖).
Here and elsewhere ‖ · ‖ denotes the Euclidean norm. The space of integrands
f is equipped with a Gaussian measure or, equivalently, f is a Gaussian random
process, so that average case errors of algorithms and average case complexity of
the problem can be investigated. The average case complexity of this problem has
recently been studied in [13] and the current paper can be viewed as a continuation
of that publication. Among others, the following is shown in [13]. Let the process
f be r-times differentiable, and let the rth derivative be Hölder continuous (in
the mean square sense) with the exponent β. Then there exists an algorithm
using n values of f whose expected error does not exceed n−1/2−(r+β)/d. A special
randomized algorithm that achieves this rate of convergence has been exhibited
there. However, the algorithm requires random points drawn from a distribution
that highly depends on the weight function ρ and the covariance of the process f .
Moreover, the combinatorial cost (i.e., the number of arithmetic operations) of the
algorithm is exponential in d, the number of variables.

1Actually, our classes of ρ and f are large so that the worst case errors are unbounded.
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In this paper, we assume that f is an isotropic fractional Wiener process with the
parameter 0 < β ≤ 1/2. This means, in particular, r = 0, i.e., no differentiability
is assumed. We also assume that

(4)
∫
Rd
‖x‖β ρ(x) dx < ∞

since this is a necessary and sufficient condition for Iρ(f) to be well defined (with
probability one); see [13]. Then our randomized (Monte Carlo) algorithm denoted
by Q∗n has the average error satisfying

lim sup
n→∞

√
n · error(Q∗n) ≤

∫
Rd
‖x‖β ρ(x) dx.

This error bound is greater than the error bound from [13] by a factor proportional
to nβ/d; however, the difference is negligible for large d.

The algorithm uses the well-known idea of stratified sampling (see, e.g., [7, 8]);
however, it is now applied to the unbounded domain Rd. That is, the domain Rd is
divided into a finite number of rings Pi centered at zero with appropriately chosen
radii (the last ring is unbounded). From each (except the last) ring Pi, a special
number ni is computed. Next, ni i.i.d. points are randomly chosen from the uniform
distribution on Pi. Such points can easily be generated at cost proportional to d ·n
by using a uniform random number generator; see, e.g., [3, 5].

We now comment on the assumption (4). As we already mentioned, it is nec-
essary for the integrals Iρ(f) to be well defined. Clearly, it is less restrictive than∫
Rd ‖x‖

2βρ(x) dx <∞ since there are weights ρ satisfying (4) with infinite integral
of ‖x‖2β ρ(x). Note, however, that the latter integral is the expected value (with
respect to f) of the integral of f2 · ρ,

E
(∫

Rd
f2(x) ρ(x) dx

)
=
∫
Rd
‖x‖2βρ(x) dx.

This means, in particular, that our algorithm preserves its convergence even if (2)
does not hold.

The algorithm was implemented and tested for different dimensions d, weights ρ,
and deterministically chosen functions f . Among others, we tested the computation
of the mortgage backed securities. This is a problem for which a number of very
specialized algorithms have recently been designed and tested; see, e.g., [2, 12]. It is
noticeable that the errors of our algorithm are comparable to that obtained by the
quasi-Monte Carlo method in [12] even though, unlike the specialized algorithms,
our method was designed and works for a large class of integrands and weights ρ.

2. The algorithm

We consider the following Monte Carlo algorithm for approximating the integral
(1).

The space Rd is divided into rings

Pi = {x ∈ Rd : ri−1 ≤ ‖x‖ < ri }, i ≥ 1,

where 0 = r0 < r1 < r2 < · · · is an infinite sequence with limi→∞ ri =∞. Given a
positive integer n, nonnegative integers ni are selected such that

n =
∞∑
i=1

ni < ∞.
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This implies, in particular, that ni > 0 for only finitely many indices i. For positive
ni, the integrals

Intiρ(f) :=
∫
Pi

f(x)ρ(x) dx

are approximated by

Qini(f) =
Vol(Pi)
ni

·
ni∑
s=1

f(ti,s) · ρ(ti,s),

where the points ti,s ∈ Pi are chosen randomly and independently according to the
uniform distribution on Pi. For ni = 0, we set Qi0(f) = 0. The approximation to
Intρ(f) is then given as

Qn(f) =
∞∑
i=1

Qini(f).

Note that Qn is uniquely determined by the choice of the parameters ri and ni for
i ≥ 1.

Theoretical properties of the algorithm Qn will be derived based on the assump-
tion that the integrand f : Rd → R is the isotropic fractional Wiener process
with parameter 0 < β ≤ 1/2. That is, f is the zero mean Gaussian process with
covariance kernel

K(x,y) = E (f(x)f(y)) =
1
2
(
‖x‖2β + ‖y‖2β − ‖x− y‖2β

)
.

Then, for the integration problem (1) to be well defined, we have to assume that

(5)
∫
Rd

√
K(x,x) · ρ(x) dx =

∫
Rd
‖x‖β · ρ(x) dx < ∞.

Indeed, (5) is a necessary and sufficient condition for Intρ(f) to exist and be finite
with probability one; see [13]. In the setting of this paper, (5) is equivalent to∫ ∞

0

td−1+βω(t) dt < ∞,

which follows from the fact that for t = ‖x‖ we have dx = dcdt
d−1dt with

cd =
πd/2

Γ(d/2 + 1)
.

We also make some specific assumptions on ω in (3); namely,

• ω is Riemann integrable on any finite interval,
• there is T > 0 such that ω is monotonically nonincreasing on [T,∞).

See [14] where the necessity of these assumptions is discussed.
We are interested in the expected error

error(Qn) =
(
E (Intρ(f)−Qn(f))2

)1/2

,

where the expectation is taken with respect to f and the points ti,s.
Our main result reads as follows.
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Theorem 1. For any n ≥ 1, there exists a choice of the parameters ri and ni such
that for the resulting algorithm Q∗n we have

lim sup
n→∞

√
n · error(Q∗n) ≤

∫
Rd
‖x‖β · ρ(x) dx

= d · cd ·
∫ ∞

0

td−1+β · ω(t) dt.

3. Proof

In the definition and analysis of the error of Q∗n we make use of the ideas from
the proof of Theorems 1 and 4 in [14], where deterministic algorithms in case d = 1
are considered.

That is, we first choose M > T and integer m ≥ 1. The radii ri of the rings Pi
are defined as

ri =
{

i ·M/m for 0 ≤ i ≤ m,
M · 2i−m for i ≥ m+ 1.

The choice of ni’s depends on two other nonnegative integers kL and kR as follows.
Let

ai = Vol(Pi) · rβi · ωi with ωi = sup
ri−1≤t≤ri

ω(t), i ≥ 1.

We immediately make two important observations. First, by isotropicity of ρ and
x 7→ K(x,x) = ‖x‖2β and by Riemann integrability of ω, we have

(6) lim
m→∞

m∑
i=1

ai =
∫
‖x‖≤M

‖x‖β · ρ(x) dx.

Second, since Vol(Pi) = 2d Vol(Pi−1), ri = 2ri−1, and ωi = ω(ri−1) for i ≥ m+ 1,∫
‖x‖≥M

‖x‖βρ(x) dx ≤
∞∑

i=m+1

ai(7)

≤ 2d+1 ·
∫
‖x‖≥M

‖x‖βρ(x) dx + am+1.

This implies, in particular, that
∑∞

i=m+1 ai <∞.
For simplicity of presentation, we assume that {ai}i≥m+1 is a nonincreasing

sequence. This is without any loss of generality since otherwise we would only need
to renumber the sequence. For 1 ≤ i ≤ m we set

(8) ni =
⌈

ai∑m
s=1 as

· kL
⌉
,

for m+ 1 ≤ i ≤ m+ kR we set

(9) ni =

⌈
ai∑m+kR

s=m+1 as
· kR

⌉
,

and ni = 0 for i ≥ m+ kR + 1.
It is easy to observe that the method just described uses altogether

n =
m∑
i=1

ni +
m+kR∑
i=m+1

ni ≤ m + kL + 2 · kR

random points.
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We now pass to the error analysis. Since for i with ni ≥ 1 the random variables∫
Pi

f(x)ρ(x) dx − Qini(f)

are pairwise independent, we have

E

(∫
‖x‖≤M

f(x)ρ(x) dx −
m∑
i=1

Qini(f)

)2

=
m∑
i=1

E
(
Intiρ(f)−Qini(f)

)2
.

By standard calculations,

E
(
Intiρ(f)−Qini(f)

)2 ≤ Vol(Pi)
ni

∫
Pi

K(x,x)ρ2(x) dx ≤ a2
i

ni
.

Hence, using (8),

E

(∫
‖x‖≤M

f(x)ρ(x) dx −
m∑
i=1

Qini(f)

)2

≤
m∑
i=1

a2
i

ni
≤ 1

kL

(
m∑
i=1

ai

)2

.

Thus if kL →∞, then the error on [0,M ] decreases as k−1/2
L . Furthermore, by (6)

the asymptotic constant is smaller than but, for large M and m, arbitrarily close
to
∫
Rd ‖x‖

βρ(x) dx.
For the error on [M,∞), we let

I = { i ≥ m+ 1 : ni = 0 }.

Then, for i, j ∈ I with i ≤ j we have

E
(∫

Pi

f(x)ρ(x) dx
)(∫

Pj

f(y)ρ(y) dy

)

=
∫
Pi

∫
Pj

K(x,y)ρ(x)ρ(y) dxdy

≤ M2β · Vol(Pi) ·Vol(Pj) · 22βi · ω(ri−1) · ω(rj−1)

= ai · aj · 2−β|j−i|,

where we used the inequality

K(x,y) ≤ min
(
‖x‖2β, ‖y‖2β

)
.

As in [14] (the proof of Theorem 4) we can show that

∑
i,j∈I

ai · aj · 2−β|j−i| ≤
2β − 1
2β + 1

·
∑
i∈I

a2
i .
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Observe that Intiρ(f) − Qini(f) and Intjρ(f) − Qinj (f) are zero mean and pairwise
independent whenever i 6= j and at least one of the indices is not in I. Hence,

E

(∫
‖x‖>M

f(x)ρ(x) dx −
∞∑

i=m+1

Qini(f)

)2

≤ E

(∑
i/∈I

Intiρ(f)−Qini(f)

)2

+ E

(∑
i∈I

Intiρ(f)

)2

≤ 2β + 1
2β − 1

·
∞∑

i=m+1

a2
i

max(1, ni)

≤ 2β + 1
2β − 1

·

 1
kR

(
m+kR∑
i=m+1

ai

)2

+
∞∑

i=m+kR+1

a2
i

 ,

where we also used (9). The latter sum can be estimated as follows. By monotonic-
ity of ai, for every i ≥ m+ 1 we have (i−m)ai ≤

∑i
j=m+1 aj . This implies

a2
i ≤ (i−m)−2 · Sm with Sm =

 ∞∑
j=m+1

aj

2

,

and
∞∑

i=m+kR+1

a2
i ≤ k−1

R · Sm.

(Actually,
∑∞
i=m+kR+1 a

2
i = o(k−1

R ) as kR → ∞.) This and (7) show that if kR →
∞, then the error on [M,∞) decreases as k−1/2

R , with the asymptotic constant
arbitrarily close, for large M , to zero.

The rest of the proof goes as in the proof of Theorem 4 of [14]. That is, we
increase the parameters M , m, kL, kR and combine them in such a way that for
the resulting algorithm Q∗n the error on [0,M ] dominates the error on [M,∞), and
error(Q∗n) = Cnn

−1/2 with limn→∞Cn =
∫
Rd K

1/2(x,x)ρ(x) dx.
One of the possible specific choices of the parameters is discussed in the next

section.

4. Numerical results

We first test our algorithm for weight functions

ρ1(x) = exp(−||x||2)

and

ρ2(x) =
1− ||x||

1− ||x||d+3
.

We use the following strategy in choosing the parameters M,kL, kR, and m for
given input n. We first let

M := dlogb(n)e ,
where b = e for ρ1 and b = 1.05 for ρ2. We have two quantities

S1 =
∫
||x||≤M

‖x‖1/2ρ(x)dx
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and

S2 =
∫
||x||≥M

‖x‖1/2ρ(x)dx,

which can be easily computed using one dimensional integrals. Then we choose

kL := n ·
⌈ √

S1√
S1 +

√
S2

⌉
and

kR := n− kL.
Finally,

m := dkzLe ,
where z = 0.9. The sample size of the algorithm is computed on the fly.

To generate points from rings, we first generate points from the uniform distribu-
tion on the unit sphere and then generate their radii. To this end, we use methods
from [3, 5]. Both steps above require a uniform generator from [0, 1]. We mainly
use:

• the generator of M. Matsumoto and T. Nishimura (see [10]);
• the maximally equidistributed combined Tausworthe generator by

P. L’Ecuyer (see [4]);
• the generator of R. M. Ziff (see [16]).

Implementations of these and many other generators can be found in the GNU
Scientific Library (GSL).2

The functions to be integrated for the Gaussian weight ρ1 are

f1(x) := cos(||x||)
and

f2(x1, . . . , xd) =
d∑
k=1

1
1 +

√
|xk|

.

For the rational weight ρ2, we test the following function

f3(x1, . . . , xd) =
d∑
k=1

|xk|.

The computations are done for dimensions d = 10, 25 and, additionally, for Gauss-
ian weight in d = 100. The results are shown in Figures 1 through 5. These are
plots of functions of relative errors of sample sizes.

The function f1 was discussed in [11], where the algorithm QMC-GF, based on
the generalized Faure sequence ([15]), was used to compute the integrals. We point
out that f1 creates essentially one dimensional cases, and our test result confirms
this. Moreover, our algorithm gives the error several times smaller than QMC-GF.

It is interesting to note that for f2, higher dimensional cases generally result in
smaller errors; see Figures 3 and 4.

We also provide results for valuation of the mortgage-backed securities; see, e.g.,
Paskov [12]. In this case, we have the normalized Gaussian weight

ρ3(x) = (2π)−d/2 exp(−||x||2/2),

2See http://sources.redhat.com/gsl/
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Figure 1. f1(x), d = 10 and 25, Gaussian weight
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Figure 2. f1(x), d = 100, Gaussian weight
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Figure 3. f2(x), d = 10 and 25, Gaussian weight
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Figure 4. f2(x), d = 100, Gaussian weight
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and the dimension is d = 360. We choose M = 25 with the other parameters as
for ρ1 and ρ2. Paskov [12] was the first to notice, for this particular problem, an
advantage of quasi-Monte Carlo computation over straightforward random Monte
Carlo. His numerical results were then improved by more sophisticated methods;
see [1, 2, 6, 11]. As in the tests from those papers, we consider nearly linear and
nonlinear cases. Results are shown in Figure 6. Observe that the convergence of
our algorithm is much better than n−1/2 and that the errors are comparable to
that obtained by Paskov for quasi-Monte Carlo. Methods specially designed for
this particular integrands/weights, like those of Caflisch and Morokoff [1] or Genz
[6], perform better3, however, not much. Indeed, we lose, more or less, 1.5 decimal
digits in the nearly linear case and 1 decimal digit in the nonlinear case. It is also
noticeable that our algorithm seems not to distinguish between the nearly linear
and nonlinear cases, although the nonlinear case was meant to be more difficult.
This agrees with the theoretical property that the algorithm is not sensitive to an
increased smoothness of the integrand (only Hölder continuity counts).
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