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ALL FIRST-ORDER AVERAGING TECHNIQUES
FOR A POSTERIORI FINITE ELEMENT ERROR CONTROL

ON UNSTRUCTURED GRIDS
ARE EFFICIENT AND RELIABLE

C. CARSTENSEN

Abstract. All first-order averaging or gradient-recovery operators for lowest-
order finite element methods are shown to allow for an efficient a posteriori
error estimation in an isotropic, elliptic model problem in a bounded Lipschitz
domain Ω in Rd. Given a piecewise constant discrete flux ph ∈ Ph (that is
the gradient of a discrete displacement) as an approximation to the unknown
exact flux p (that is the gradient of the exact displacement), recent results
verify efficiency and reliability of

ηM := min{‖ph − qh‖L2(Ω) : qh ∈ Qh}
in the sense that ηM is a lower and upper bound of the flux error ‖p−ph‖L2(Ω)

up to multiplicative constants and higher-order terms. The averaging space
Qh consists of piecewise polynomial and globally continuous finite element
functions in d components with carefully designed boundary conditions. The
minimal value ηM is frequently replaced by some averaging operator A : Ph →
Qh applied within a simple post-processing to ph. The result qh := Aph ∈ Qh
provides a reliable error bound with ηM ≤ ηA := ‖ph − Aph‖L2(Ω).

This paper establishes ηA ≤ Ceff ηM and so equivalence of ηM and ηA. This
implies efficiency of ηA for a large class of patchwise averaging techniques
which includes the ZZ-gradient-recovery technique. The bound Ceff ≤ 3.88

established for tetrahedral P1 finite elements appears striking in that the shape
of the elements does not enter: The equivalence ηA ≈ ηM is robust with respect
to anisotropic meshes. The main arguments in the proof are Ascoli’s lemma, a
strengthened Cauchy inequality, and elementary calculations with mass matri-
ces.

1. Introduction

Suppose ph is the discrete flux obtained from a conforming, nonconforming, or
mixed low-order finite element method (FEM) based on a regular triangulation T of
the domain Ω. That is, ph is the piecewise polynomial but globally discontinuous
elementwise gradient of the finite element displacement approximations uh or a
discrete flux variable (for a mixed FEM) that approximates the unknown exact
flux p. It is the aim of a posteriori error control to bound the error ‖p− ph‖L2(Ω)

from above and below by computable estimators [AO, BS, V]. It has recently been
proven for several examples [CB, BC1, CF3, CF4] that the error ‖p− ph‖L2(Ω) in
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second-order elliptic boundary value problems is bounded by ‖ph−qh‖L2(Ω) for any
continuous and piecewise polynomial qh in the sense that

‖p− ph‖L2(Ω) ≤ Crel‖ph − qh‖L2(Ω) + h.o.t.

The boundary values are included in the set Qh of possible averages qh. The
surprising aspect is that all averaging techniques which, given ph, compute qh ∈ Qh
are reliable in the sense that

‖p− ph‖L2(Ω) ≤ CrelηM + h.o.t. for ηM := min
qh∈Qh

‖ph − qh‖L2(Ω).

The minimum ηM is frequently replaced by an upper bound ηA,

ηM ≤ ηA := ‖ph −Aph‖L2(Ω),

where Aph ∈ Qh is computed with some local averaging operator A. One striking
feature of ηM is its immediate efficiency,

ηM = min
q∈Qh

‖ph − p+ p− qh‖L2(Ω)

≤ ‖p− ph‖L2(Ω) + min
qh∈Qh

‖p− qh‖L2(Ω)

= ‖p− ph‖L2(Ω) + h.o.t.

This follows from a simple triangle inequality plus some considerations of the min-
imal ‖p− qh‖L2(Ω). The latter argument requires smoothness of p and the correct
treatment of boundary conditions that restrict the set Qh. Note that the multi-
plicative constant in the efficiency estimate

(1.1) ηM ≤ ‖p− ph‖+ h.o.t.

is one; i.e. ηM is a lower bound up to higher-order terms. This is, in general, untrue
for its upper bound ηA. The possible overestimation of the error ‖p− ph‖L2(Ω) by
CrelηA might be very large. In [CB, BC1] a local (edge-oriented) averaging is
suggested and shown to be equivalent to ηM (cf. Theorem 3.2 in [CB]). In this
paper we analyse a different and more popular averaging operator defined by

(Aph)(z) = Az(ph|ωz) ∈ Rd for each node z

and its patch ωz (cf. Section 2 for notation). Here, Az := πz ◦ Mz for some
continuous averaging Mz that is exact for constants and the orthogonal projection
πz onto an affine subspace Az ⊂ Rd that carries proper boundary conditions. The
main result, Theorem 4.1, reads

(1.2) ηM ≤ ηA ≤ Ceff ηM .

It is remarkable that the constant Ceff depends only on the norm of Az and so it
holds for any unstructured grid as well as for a quite large class of averaging and
finite element schemes. For the popular choice of integral means

(1.3) Mz(ph) :=
∫
ωz

ph dx/|ωz|

for any node z with patch ωz of area or volume |ωz| we establish in Corollary 5.3
for P1 finite elements the estimates

(1.4) 1 ≤ Ceff ≤
√

10 for d = 2 and 1 ≤ Ceff ≤
√

15 for d = 3.

This is surprisingly sharp and does not depend on any detail of the regular trian-
gulation with (possibly) degenerating triangles or tetrahedra.
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Remark 1.1. The averaging technique (1.3) is our interpretation of the ZZ-estimator
[ZZ, V] for which reliability and efficiency have been observed before [R1, R2, N, BR]
(without treatment of mixed boundary conditions).

Remark 1.2. The averaging estimator ηA can be shown to be equivalent to the edge
contributions

ηE := (
∑
E∈E

hE‖[ph]|E‖2L2(E))
1/2,

where [ph]|E denotes the jump of ph across the edge E ∈ E (with proper modifica-
tions on the boundary). Thus our qualitative results (partly) follow from reliability
and efficiency of ηE as well [C, CV, R1, V].

Remark 1.3. The above estimates on Ceff yield lower bounds C−1
eff ≤ Crel on the

reliability constant (up to higher-order terms). Upper bounds on Crel for related
estimators with a best value around 1 can be found in [CF1, CF2].

Remark 1.4. As important corollaries of ηM ≈ ηA and (1.1) we obtain efficiency

(1.5) ηA ≤ Ceff ‖p− ph‖+ h.o.t.

of the reliable error estimation by ηA in [CA, CB, BC1, CF3, CF4].

The remaining part of the paper is organised as follows. Section 2 presents the
necessary technical notation. The preliminaries of Section 3 include Ascoli’s lemma,
the strengthened Cauchy inequality, and eigenvalues of mass matrices. The main
result (1.2) is stated as Theorem 4.1 in Section 4 with a proof. An analysis of Ceff

in a model situation of Section 5 leads to (1.4) shown in Corollary 5.3.

2. Assumptions

2.1. Regular triangulation. The bounded Lipschitz domain Ω ⊂ Rd, d = 1, 2, 3,
with piecewise affine boundary Γ is exactly covered by a triangulation T ,

⋃
T = Ω.

Each element T ∈ T is a compact interval T = conv{a, b} if d = 1, a triangle
T = conv{a, b, c} if d = 2, or a tetrahedron T = conv{a, b, c, d} if d = 3. The
element’s vertices a, . . . , d are called nodes; N denotes the set of all nodes. Each flat
boundary E of an element T ∈ T is either a point E = {a}, an edge E = conv{a, b},
or a face E = conv{a, b, c}; E denotes the set of all such E; EΩ denotes the interior
edges or faces and EΓ := {E ∈ E : E ⊂ Γ} = E\EΩ denotes the boundary edges.
Analogous notation apply to parallelograms (d = 2) or parallelepipeds (d = 3)
which are possible elements in T as well. Intersecting distinct elements share either
one vertex, an edge, or a common face. Hanging nodes are excluded for simplicity.
For each node z ∈ N let Ez := {E ∈ E : z ∈ E ∩N} and the patch ωz := int(

⋃
Tz),

Tz := {T ∈ T : z ∈ T ∩ N}. Each edge or face E is associated to a unit normal
vector νE with fixed orientation; if E ⊆ ∂Ω, set νE = ν, the outer unit normal
along ∂Ω. The length and area of E ∈ E is denoted by hE = diam(E) and |E| =
Ld−1(E), respectively; Ln denotes the n-dimensional Lebesgue measure along any
affine subspace of Rd. Similarly the length and volume of T ∈ T is denoted by
hT = diam(T ) and |T | = Ld(T ), respectively.
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2.2. Boundary data. The boundary Γ =
⋃
EΓ is split into a relatively closed part

ΓD and a remaining part ΓN := Γ\ΓD such that any edge E ∈ EΓ belongs either
to ΓD or to ΓN . Two disjoint subsets ED and EN of EΓ are supposed to satisfy

ED = ∅ or ED = {E ∈ EΓ : E ⊂ ΓD},
EN = ∅ or EN = {E ∈ EΓ : E ⊂ ΓN}.

Given ED and EN , the boundary data g ∈ L2(ΓN ) and uD ∈ H1/2(ΓD) ∩ C(ΓD)
(i.e. uD is continuous on ΓD and can be extended to a function in H1(Ω)) satisfy
g ∈ C(ED) and uD ∈ C1(EN ); i.e.

g|E ∈ C(E) for all E ∈ EN and uD|E ∈ C1(E) for all E ∈ ED.

On each E ∈ ED, let τ (j)
E denote a tangential unit vector for j = 1, . . . , d − 1 such

that (νE , τ
(1)
E , . . . , τ

(d−1)
E ) is a Cartesian basis of Rd. Then, ∇EuD denotes the

tangential derivative and, given a ∈ Rd, (a)E denotes the vector of all components
of a in (τ (j)

E )d−1
j=1 , e.g. (a)E = (τ (1)

E ·a, τ
(2)
E ·a) for d = 3; ∇EuD = (∇uD)E = ∂uD/∂s

for d = 2.
The Dirichlet and Neumann boundary conditions on the gradient p = ∇u are

asserted at each boundary node z ∈ N by p(z) ∈ Az for the affine subspace

(2.1) Az := {a ∈ Rd : ∀E ∈ Ez ∩ EN , g(z) = a · νE
and ∀E ∈ Ez ∩ ED,∇EuD(z) = (a)E}

of Rd. Set Az = Rd for z ∈ N ∩ Ω and suppose Az 6= ∅ for all z ∈ N . Finally, let
πz : Rd → Rd denote the orthogonal projection onto Az,

Az = πz(0) + Vz,

where Vz is a linear subspace of Rd. The (nonlinear) orthogonal projection πz is
Lipschitz continuous with Lip(πz) ≤ 1 and, for each a ∈ Rd, a− πz(a)⊥Vz.

Remark 2.1. As an intersection of hyperplanes, Az is an affine subspace of Rd. The
condition Az 6= ∅ is essentially a consistency condition on the boundary data: If
u ∈ C1(ωz) satisfies u = uD on ΓD =

⋃
ED and ∂u/∂ν = g on ΓN =

⋃
EN , then

∇u(z) ∈ Az.

Remark 2.2. The condition (a)E = ∇EuD(z) in (2.1) is equivalent to

a · τE = ∂uD(z)/∂τE for all vectors τE ∈ Rd with τE⊥νE.

This is a Dirichlet boundary condition u = uD on E in terms of a = p(z) = ∇u(z)
at z.

Remark 2.3. In case ED ∩Ez = ∅, the condition p ∈ Az asserts Neumann boundary
conditions at the node z with respect to all normals on neighbouring Ez∩EN . (Here,
p is assumed to be a flux and not necessarily a gradient.)

Remark 2.4. The condition p(z) ∈ Az with simultaneous Dirichlet and Neumann
conditions, i.e. with Ez ∩ EN 6= ∅ 6= Ez ∩ ED, is based on the interpretation of p
as both a flux and a gradient. Hence, the model example is the Laplace equation
with mixed boundary conditions. Nonconforming finite element methods require
the case ED 6= ∅ [CB, CBJ].
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Remark 2.5. It is by no means obvious that averaging concerns the fluxes and the
gradients simultaneously. The positive examples in [CBJ, CF3, CF4, BC2, CA]
may be seen as exceptions. In general, the flux and the gradient approximations
may be averaged separately. In the latter case we encounter EN = ∅ or ED = ∅.

2.3. Discrete spaces. On each element there exists a set of shape functions,
namely, P(k)(T ) := Pk(T ) if T is triangular and P(k)(T ) := Qk(T ) if T is rect-
angular; Pk(T ) and Qk(T ) denote algebraic polynomials on T ⊆ Rd of total and
partial degree ≤ k, respectively. Furthermore, for each T ∈ T let P (T ) satisfy
P(0)(T ) ⊂ P (T ) ⊂ P(1)(T ). Then, set

Lk(T ) := {vh ∈ L∞(Ω) : ∀T ∈ T , vh|T ∈ P(k)(T )} for k = 0, 1,

S1(T ) := L1(T ) ∩ C(Ω) = span{ϕz : z ∈ N},
Ph := P (T ) := {ph ∈ L∞(Ω)d : ∀T ∈ T , ph|T ∈ P (T )} ⊆ L1(T )d,

Qh := {qh ∈ S1(T )d : ∀z ∈ N ∩ Γ, qh(z) ∈ Az}.

The nodal basis functions (ϕz : z ∈ N ) are defined by ϕz ∈ S1(T ) with ϕz(z) = 1
and ϕz(x) = 0 for all z, x ∈ N with x 6= z. Without further explicit notice, we
shall make frequent use of

0 ≤ ϕz ≤ 1, suppϕz = ωz, and
∑
z∈Nϕz = 1.

2.4. Averaging operators. Given ph ∈ Ph (not necessarily globally continuous),
the operator A : Ph → Qh is supposed to average ph on each patch ωz and adopt
to boundary conditions. Therefore,

Aph :=
∑
z∈N

Az(ph|ωz)ϕz and Az := πz ◦Mz : L1(Tz)d → Rd.

Recall that L1(Tz) denotes the Tz piecewise polynomials of degree ≤ 1 and that
ph|ωz belongs to L1(Tz). The local operator Az is the composition of an averaging
process Mz : L1(Tz)d → Rd and the orthogonal projection πz : Rd → Rd onto the
affine subspace Az ⊂ Rd.

The operator Mz is supposed to be linear and exact on continuous functions in
P(Tz) := {ph ∈ L∞(ωz)d : ∀T ∈ Tz , ph|T ∈ P (T )}; i.e.

(2.2) Mz(f) = f(z) for all f ∈ P(Tz) ∩C(ωz)d and z ∈ N .
The master example for Mz reads

(2.3) Mz(f) :=
∑
T∈Tz

λz,T (f |T )(z) for all f ∈ P(Tz), z ∈ N .

A necessary condition for (2.2) on the real coefficients (λz,T : T ∈ Tz) in (2.3) reads∑
T∈Tz λz,T = 1.

For a practical realization of Az and for numerical examples we refer to [CB,
CF3, CF4].

2.5. Estimators. Given the spaces Ph and Qh of subsection 2.3 and the averaging
operator A : Ph → Qh of subsection 2.4, we define, for any fixed ph ∈ Ph, the
averaging estimators

ηM := min
rh∈Qh

‖ph − rh‖L2(Ω) ≤ ηA := ‖ph −Aph‖L2(Ω).
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3. Preliminaries

This section establishes some tools in an abstract frame to clarify the arguments
below. Attention is on the arising constants: In contrast to earlier work based on a
compactness arguments which led to unknown constants, we aim to quantify Ceff.

3.1. Ascoli’s lemma. Given a linear and bounded map L : H → Rn in a (real)
Hilbert space H with norm ‖ · ‖, there holds, for f ∈ H ,

(3.1) |L(f)| ≤ ‖L‖ dist(f ; kerL).

Here, dist(f ; kerL) := min{‖f − g‖ : g ∈ kerL} is the distance to the (closed)
kernel kerL of L and

(3.2) ‖L‖ := sup
g∈X\{0}

|L(g)|/‖g‖

is the operator norm of L; | · | is the Euclidean norm in Rn. The proof of (3.1) is
by definition of ‖L‖,

|L(f)| = |L(f − g)| ≤ ‖L‖ ‖f − g‖ for all g ∈ kerL.

In case n = 1, i.e. L ∈ H∗, there even holds equality in (3.1), which is known
as Ascoli’s lemma. A simple proof for the converse inequality of (3.1) follows for
g ∈ H with ‖g‖ = 1, L(g) = ‖L‖ and so with f − g L(f)/‖L‖ ∈ kerL from

dist(f ; kerL) ≤ ‖f −
(
f − g L(f)/‖L‖

)
‖ = |L(f)|/‖L‖.

Suppose n ≥ 1 again, let ej be the jth canonical unit vector in Rn, and set Lj :=
ej · L. Then there holds

|Lj(f)| = ‖Lj‖ dist(f ; kerLj).

The sum over all j = 1, . . . , n squared components shows

(3.3) |L(f)|2 =
∑n
j=1 ‖Lj‖2 dist(f ; kerLj)2 for all f ∈ H.

Compared with (3.1), the operator norm ‖Lj‖ in (3.3) is smaller than ‖L‖ while
the kernel of Lj is larger than kerL ⊆ ker(Lj).

3.2. Strengthened Cauchy inequality. Let H be a (real) Hilbert space with
inner product 〈·, ·〉 and norm ‖ · ‖ and let V and W be closed subspaces of H .
Owing to the Cauchy inequality, the constant γV,W ,

(3.4) γV,W := sup
v∈V \{0}

sup
w∈W\{0}

〈v, w〉 /(‖v‖ ‖w‖) ≤ 1,

defines the angle ∠(v, w) between v and w by 0 ≤ cos(∠(v, w)) = γV,W ≤ 1. The
spaces V and W satisfy a strengthened Cauchy inequality if γV,W < 1, that is, if
∠(V,W ) is positive.

Lemma 3.1 ([B]). For a constant c with 0 < c < 1 and γV,W from (3.4), the
following assertions (a), (b), and (c) are pairwise equivalent.

(a) γV,W ≤ c;
(b) ∀v ∈ V,

√
1− c2‖v‖ ≤ dist(v;W );

(c) ∀v ∈ V ∀w ∈W,
√

(1− c2)/2(‖v‖+ ‖w‖) ≤ ‖v + w‖. �

We are particularly interested in (a)⇔(b) also considered in [AO].
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Lemma 3.2. Let X and Y be closed linear subspaces of a Hilbert space H with
scalar product 〈·, ·〉 and norm ‖ · ‖. Set

(3.5) V := {x ∈ X : ∀a ∈ X ∩ Y, 〈x, a〉 = 0} = X ∩ (X ∩ Y )⊥

and suppose that V and Y are nontrivial and that V has positive finite dimension.
Set

(3.6) γV,Y := sup
v∈V \{0}

sup
y∈Y \{0}

〈v, y〉 /(‖v‖ ‖y‖).

Then 0 ≤ γV,Y < 1 and γV,Y = 〈v, y〉 for some v ∈ V and y ∈ Y with ‖v‖ = 1 = ‖y‖.
Moreover,

(3.7) dist(x;X ∩ Y ) ≤ (1− γ2
V,Y )−1/2 dist(x;Y ) for all x ∈ X

and the factor (1− γ2
V,Y )−1/2 is optimal in the sense that (3.7) fails to hold for any

smaller constant.

Proof. Owing to the definition in (3.6) there exist sequences (xj) and (yj) in V and
Y , respectively, with ‖xj‖ = 1 = ‖yj‖ and

lim
j→∞

〈xj , yj〉 = γV,Y .

Since (xj) and (yj) are bounded in a Hilbert space, there exists a subsequence (not
relabeled) with (xj)→ x and (yj) ⇀ y in H . The strong convergence of (xj) follows
from the finite dimension of V . Hence, ‖x‖ = 1 ≥ ‖y‖ and limj→∞ 〈xj , yj〉 = 〈x, y〉.
If y 6= 0, we have

γV,Y = 〈x, y〉 ≤ 〈x, y〉 /(‖x‖ ‖y‖) ≤ γV,Y .

(The last inequality follows from (3.6) and x ∈ V , y ∈ Y .) Hence we have γV,Y =
〈x/‖x‖, y/‖y‖〉 for some x/‖x‖ ∈ V and y/‖y‖ ∈ Y with norm 1 if 0 < γV,Y <∞.

If y = 0, γV,Y = 0 and each v ∈ V is perpendicular to Y .
In both cases, γV,Y = 〈v, y〉 for some v ∈ V and y ∈ Y with ‖v‖ = ‖y‖ = 1. This

proves the attainment result.
A Cauchy inequality shows γV,Y ≤ 1. If γV,Y = 1 = 〈v, y〉 for v ∈ V and y ∈ Y

with ‖v‖ = 1 = ‖y‖, we have equality in the Cauchy inequality and hence v = y.
Thus, v ∈ V ∩Y ⊆ X ∩Y and so ‖v‖2 = 0 owing to (3.5). This contradicts ‖v‖ = 1
and proves γV,Y 6= 1.

It remains to apply Lemma 3.1 for V and W := Y . Then γV,Y in (3.4) and (3.6)
coincide and the equivalence (a)⇔(b) of Lemma 3.1 proves, first,

(3.8) ‖v‖ ≤ (1− γ2
V,Y )−1/2 dist(v;Y ) for all v ∈ V

and, second, that the constant factor (1− γ2
V,Y )−1/2 in (3.8) cannot be smaller.

Given x ∈ X and the closed subspace X ∩ Y of X , there exists an orthogonal
decomposition

x = v + w with v ∈ V and w ∈ X ∩ Y.

Moreover, dist(x;X ∩ Y ) = ‖v‖ and dist(v;Y ) = dist(v + w;w + Y ) = dist(x;Y ).
This and (3.8) conclude the proof. �
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Table 1. Mass matrices M(T ) (scaled with |T |−1) for some ele-
ments T and their eigenvalues λ1 . . . , λm and λ(T ) of Lemma 3.3

pT M(T ) Eigenvalues λ(T )

interval 1/6
[

2 1
1 2

]
1, 3 1

triangle 1/12

 2 1 1
1 2 1
1 1 2

 1/12, 1/12, 1/4 12

parallelogram 1/36


4 2 1 2
2 4 2 1
1 2 4 2
2 1 2 4

 1/36, 1/12, 1/12, 1/4 36

tetrahedron 1/20


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

 1/20, 1/20, 1/20, 1/5 20

3.3. Eigenvalues of mass matrices. This subsection summarises a few inequali-
ties and the constants therein. For each element T ∈ T with volume |T | = Ld(T ) we
associate m := card(N ∩T ) nodal basis functions ϕ1, . . . , ϕm called shape functions
with

(3.9)
∫
T

ϕj dx = |T |/m for j = 1, . . . ,m

(as
∑m

j=1 ϕj = 1 and the forms of ϕ1, . . . , ϕm are identical). Scaled with |T |−1, the
mass matrix reads

(3.10) M(T ) := (
∫
T

ϕjϕk dx/|T | : j, k = 1, . . . ,m).

Table 1 displays some mass matrices and their eigenvalues λ1, . . . , λm.

Lemma 3.3. Suppose T ∈ T and f ∈ P(1)(T )d. Then

(3.11) |T |
∑

z∈N∩T
|f(z)|2 ≤ λ(T )‖f‖2L2(T )

where λ(T ) = 1/λ1 for the minimal eigenvalue λ1 of the matrix (3.10) displayed in
Table 1.

Proof. Let fj := ej · f be the jth component of f and let {z1, . . . , zm} = N ∩ T
denote the vertices of T . With the m components ξk := fj(zk) of ξ ∈ Rm and a
standard estimation of the Rayleigh quotient there holds

λ1

∑
z∈N∩T

fj(z)2 = λ1|ξ|2 ≤ ξ ·M(T )ξ = |T |−1‖fj‖2L2(T ).

The sum over all components j = 1, . . . , d verifies assertion (3.11). �
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4. Equivalence of ηM and ηA

This section is devoted to the proof of the equivalence of ηM and ηA under
the present assumptions. A discussion of the constant Ceff follows in Section 5.
Theorem 4.1 covers efficiency (1.5) for conforming, nonconforming, and mixed finite
element methods [CB].

Theorem 4.1. There exists a mesh-size independent positive constant Ceff with

ηM ≤ ηA ≤ Ceff ηM .

Proof. The first inequality is obvious and the proof concerns the second. Through-
out the first step and main part of the proof let T denote a fixed element. Set

ph|T =
∑

z∈N∩T
pzϕz |T and qh := Aph =

∑
z∈N

qzϕz for qz := Az(ph|ωz).

(Notice that the representation of ph is local on the fixed element T ; ph may be
discontinuous on Ω and so has different coefficients on different elements.) A Cauchy
inequality in Rm, m = card(N ∩ T ), shows, pointwise on T ,

|ph − qh|2 = |
∑

z∈N∩T
ϕz(pz − qz)|2

≤ (
∑

z∈N∩T
ϕz)(

∑
z∈N∩T

ϕz |pz − qz |2)

=
∑

z∈N∩T
ϕz |pz − qz|2.

(4.1)

Since qz = πz(mz) for mz := Mz(ph|ωz ) and pz − πz(pz)⊥Vz in Rd, there holds

|pz − qz|2 = |pz − πz(pz)|2 + |πz(pz)− πz(mz)|2.
With any rz ∈ Az = πz(0) + Vz and Lip(πz) ≤ 1, this yields

(4.2) |pz − qz|2 ≤ |pz − rz |2 + |pz −mz |2.
The combination of (4.1)-(4.2) is integrated over the fixed T and shows

‖ph − qh‖2L2(T ) ≤
∑

z∈N∩T
|pz − rz |2

∫
T

ϕz dx +
∑

z∈N∩T
|pz −mz|2

∫
T

ϕz dx.

With (3.9) and Lemma 3.3 this gives, for rh :=
∑
z∈N rzϕz ∈ Qh,

(4.3) ‖ph − qh‖2L2(T ) ≤
λ(T )
m
‖ph − rh‖2L2(T ) +

|T |
m

∑
z∈N∩T

|pz −mz|2.

The second step focuses on the estimation of pz − mz and introduces the finite-
dimensional Hilbert space X := P (Tz) ⊆ L1(Tz)d with the inner product 〈·, ·〉,

(4.4) 〈f, g〉 :=
∫
ωz

ϕz f · g dx/|T | for f, g ∈ L2(ωz)d =: H.

Define δT,z(f) := (f |T )(z) for all f ∈ X and consider

(4.5) LT,z := δT,z −Mz : X → Rd linear

and continuous with the bound

(4.6) ‖LT,z‖ := sup
f∈P (Tz)\{0}

∣∣∣f |T (z)−Mz(f)
∣∣∣/(|T |−1/2‖ϕ1/2

z f‖L2(ωz)).
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A scaling argument shows that ‖LT,z‖ does not depend on the diameter of ωz
because of the factor |T |−1/2. (Details on the constant ‖LT,z‖ from (4.6) follow for
specific examples after the proof.) Since Mz is exact on P(Tz) ∩ C(ωz)d,

Rd ⊆ P(Tz) ∩ C(ωz)d ⊆ kerL =: Z ⊆ X and Y := S1(Tz)d.

Ascoli’s lemma (formula (3.1)) shows

|pz −mz| = |LT,z(ph)| ≤ ‖LT,z‖ dist(ph|ωz ;Z).(4.7)

Lemma 3.2 and X ∩ Y ⊆ Z prove 0 ≤ γ < 1 for the constant γ of (3.6) and

(4.8) dist(ph|ωz ;Z) ≤ dist(ph|ωz ;X ∩ Y ) ≤ (1− γ2)−1/2 dist(ph|ωz ;Y ).

(The constant (3.6) will be discussed at the end of this section for specific examples.)
Step three combines (4.3) and (4.7)-(4.8) with

dist(ph|ωz ;S1(Tz)d) ≤ |T |−1/2‖ϕ1/2
z (ph − rh)‖L2(ωz)

and (writing γz for γ) results in

‖ph − qh‖2L2(T ) ≤ λ(T )/m ‖ph − rh‖2L2(T )

+
∑

z∈N∩T
‖LT,z‖2 (1 − γ2

z )−1/m ‖ϕ1/2
z (ph − rh)‖2L2(ωz).

In step four, the sum over all elements T ∈ T and the fact∑
z∈N
‖ϕ1/2

z (ph − rh)‖2L2(ωz) = ‖ph − rh‖2L2(Ω)

show the assertion

(4.9) ηA = ‖ph − qh‖L2(Ω) ≤ Ceff ‖ph − rh‖L2(Ω) for all rh ∈ Qh.

The constant Ceff depends on m = mT , λ(T ), and ‖LT,z‖2/(1− γ2
z ) as

(4.10) C2
eff = max

T∈T

(
λ(T ) + max

z∈N∩T
‖LT,z‖2/(1− γ2

z )
)
/mT .

This concludes the proof of ηA ≤ Ceff ηM . �

5. Example

The constant Ceff and its possible dependence on mesh will be studied for the
P1 FEM with piecewise constant discrete fluxes. Recall that

X := P(Tz) ⊆ L1(Tz)d ⊂ H := L2(ωz)d

and Y = S1(Tz)d with the scalar product (4.4) on H .
The following lemma provides coarse but uniform estimates of eigenvalues which

could be computed as a function of card(Tz).

Lemma 5.1. Suppose that P(Tz) = L0(Tz)d and that Tz consists of simplices in
Rd. Then the constant γ = γz ≥ 0 from (3.5)-(3.6) satisfies

γ2 ≤ 5/6 for d = 2 and γ2 ≤ 9/10 for d = 3.



AVERAGING TECHNIQUES IN FINITE ELEMENT ERROR CONTROL 1163

Proof. Given any vh ∈ L0(Tz)d and yh ∈ S1(Tz)d, set vT := vh|T ∈ Rd and
yT =

∫
T ϕz yh dx for T ∈ Tz. Then, (3.6) reads

γ2 = max
vh,yh

(∑
T∈Tz

vT · yT

)2

/

((∑
T∈Tz

|T ||vT |2/m
)(∫

ωz

ϕz|yh|2 dx
))

where, by definition of V , vh ∈ V satisfies
∑
T∈Tz |T | vT = 0. Consequently, the

sum ∑
T∈Tz vT · yT

does not depend on an additive constant in yh which, therefore, is determined to
minimise

∫
ωz
ϕz |yh|2 dx. This results in the condition

∫
ωz
ϕz yh dx = 0; i.e.

(5.1)
∑
T∈Tz yT = 0.

A Cauchy inequality yields

(5.2) γ2 = max
yh

(
m
∑
T∈T
|yT |2/|T |

)
/

∫
ωz

ϕz |yh|2 dx

and equality is indeed attained for vT = yT /|T | (compatible with vh ∈ V and
(5.1)). Given yh in S1(Tz)2 with (5.1) and nodal values y0 = yh(z), ya,T = yh(a),
yb,T = yh(b) on T = conv{z, a, b} ∈ Tz for d = 2, a straightforward calculation
shows

yT = |T |(2y0 + ya,T + yb,T )/12 for T ∈ Tz.
This and (5.1) plus a Cauchy inequality yield

12
∑
T∈Tz

|yT |2/|T | =
∑
T∈Tz

yT · (2y0 + ya,T + yb,T )

=
∑
T∈Tz

yT · (ya,T + yb,T )

≤
(∑
T∈Tz

|yT |2/|T |
)1/2(∑

T∈Tz

|T | |ya,T + yb,T |2
)1/2

and so (divide by
(∑

T∈Tz |yT |
2/|T |

)1/2 and square) leads to

(5.3) 144
∑
T∈Tz

|yT |2/|T | ≤
∑
T∈Tz

|T ||ya,T + yb,T |2.

The summand on the right-hand side is

|T | |ya,T + yb,T |2

≤ 2|T |
(
2|y0|2 + |ya,T |2 + |yb,T |2

)
= 120

∫
T

ϕz |yh|2 dx − 288|yT |2/|T |.
(5.4)

The latter equality follows with lengthy but straightforward calculation with the
well-known formula

∫
T
λα1λ

β
2λ

γ
3 dx = 2|T |α!β!γ!/(2+α+β+γ)! for the barycentric

coordinates λ1, λ2, λ3 on the triangle T . The combination of (5.3)-(5.4) verifies∑
T∈Tz

|yT |2/|T | ≤ 5/18
∫
ωz

ϕz |yh|2 dx.
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Using this in (5.2) shows γ2 ≤ 5/6. The proof for d = 3 follows with the same
arguments modified for yT = |T | (2y0 + ya,T + yb,T + yc,T )/20, etc.; the details are
omitted. �

To study ‖Lz,T‖, let Mz be given by (2.3); i.e.

Mz(f) =
∑

T∈Tz λz,T fT for f |T = fT ∈ Rd, T ∈ Tz, and f ∈ L0(Tz)d.

The real coefficients λz,T sum up to 1 =
∑

T∈Tz λz,T (some are possibly negative).
For comparison, a popular choice for the coefficient λz,T reads

(5.5) µz,T := |T |/|ωz| for T ∈ Tz .

Lemma 5.2. Suppose (4.4)-(4.6) for fixed z ∈ T ∩ N and that P(Tz) = L0(Tz)d
and that Tz consists of simplices. Then m = d+ 1 and

‖Lz,T‖2 = m

(1− λz,T )2 +
∑

K∈Tz\{T}
λ2
z,Kµz,T /µz,K

 .

Proof. Given any f ∈ L0(Tz)d (write fK := fK for each K ∈ T ),

Lz,T (f) = (1− λz,T )fT −
∑

K∈Tz\{T} λz,KfK

is independent of a global additive constant in f . To minimise ‖ϕ1/2
z f‖, this con-

stant is such that
∫
ωz
ϕz f dx = 0. Hence

(5.6)
∑

K∈Tz |K| fK = 0

and (with an argument f in L0(Tz)d\{0} with (5.6) in the supremum)

‖Lz,T‖2 = supf |T | |Lz,T (f)|2/
(∑

M∈Tz |fM |
2 |M |/m

)
.

A Cauchy inequality shows

|Lz,T (f)| ≤
(∑

M∈Tz |fM |
2|M |

)1/2 ((1 − λz,T )2/|T |+
∑
K∈Tz\{T} λ

2
z,K/|K|

)1/2

.

Equality holds for fT = (1 − λz,T )/|T | e and fK = −λK/|K| e for any other K ∈
Tz\{T } and some fixed unit vector e ∈ Rd. Since this choice of f satisfies (5.6),
there holds

‖Lz,M‖2 = m|T |
(

(1− λz,T )2/|T |+
∑
K∈Tz\{T} λ

2
z,K/|K|

)
. �

The following consequence gives an estimate for the choice (5.5) and indicates
that this choice is optimal.

Corollary 5.3. Under the assumptions of the preceding two lemmas (satisfied for
all z ∈ N ) and for µz,T = λz,T there holds

ηM ≤ ηA ≤
√

10 ηM for d = 2 and ηM ≤ ηA ≤
√

15 ηM for d = 3.

Proof. The estimates follow from Theorem 4.1 and Lemmas 5.1 and 5.2 with
‖Lz,T‖2 = m(1− µz,T ) ≤ m and λ(T ) = 12, 20 for d = 2, 3. �
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[BS] I. Babuška, T. Strouboulis: The Finite Element Method and its Reliability. Oxford Uni-
versity Press, 2001. MR 2002k:65001

[BC1] S. Bartels, C. Carstensen: Each averaging technique yields reliable a posteriori error
control in FEM on unstructured grids. Part II: Higher order FEM. Math. Comp. 71 (2002)
971-994. MR 2003e:65207

[BC2] S. Bartels, C. Carstensen: Averaging techniques yield reliable a posteriori finite element
error control for obstacle problems. Numer. Math. (2003) to appear.

[BR] R. Becker, R. Rannacher: A feed-back approach to error control in finite element methods:
basic analysis and examples. East-West Journal of Numerical Mathematics 4 Number 4
(1996) 237-264. MR 98m:65185

[B] D. Braess: Enhanced assumed strain elements and locking in membrane problems, Comp.
Meths. Appl. Mech. Engrg. 165 (1998) 155-174. MR 2000j:74084

[C] C. Carstensen: Quasi-interpolation and a posteriori error analysis in finite element method.
M2AN 33 (1999) 1187–1202. MR 2001a:65135

[CA] C. Carstensen, J. Alberty: Averaging techniques for reliable a posteriori FE-error control
in elastoplasticity with hardening. Comput. Methods Appl. Mech. Engrg. 192 (2003) 1435–
1450.

[CB] C. Carstensen, S. Bartels: Each averaging technique yields reliable a posteriori error
control in FEM on unstructured grids, part I: Low order conforming, nonconforming, and
mixed FEM. Math. Comp. 71 (2002) 945-969. MR 2003e:65212

[CBJ] C. Carstensen, S. Bartels, S. Jansche: A posteriori error estimates for nonconforming
finite element methods. Numer. Math. 92 (2002) 233–256. MR

[CF1] C. Carstensen, S.A. Funken: Constants in Clément-interpolation error and residual
based a posteriori estimates in finite element methods, East-West Journal of Numerical

Analysis, 8, 3, 153–256. MR 2002a:65173
[CF2] C. Carstensen, S.A. Funken: Fully reliable localised error control in the FEM, SIAM

J. Sci. Comp., 21, 4, 1465–1484. MR 2000k:65205
[CF3] C. Carstensen, S.A. Funken: Averaging technique for FE - a posteriori error control

in elasticity. Part I: Conforming FEM. Comput. Methods Appl. Mech. Engrg. 190 (2001),
pp. 2483–2498, Part II: λ-independent estimates. Comput. Methods Appl. Mech. Engrg.
190 (2001) 4663–4675. Part III: Locking-free nonconforming FEM. Comput. Methods Appl.
Mech. Engrg. 191 (2001), no. 8-10, 861–877. MR 2002a:74114, MR 2002d:65140, MR
2002j:65106

[CF4] C. Carstensen, S.A. Funken: A posteriori error control in low-order finite element dis-
cretisations of incompressible stationary flow problems. Math. Comp. 70 (2001) 1353–1381.
MR 2002f:65157

[CV] C. Carstensen, R. Verfürth: Edge residuals dominate a posteriori error estimates for
low order finite element methods, SIAM J. Numer. Anal. 36, 5,(1999) 1571–1587. MR
2000g:65115

[N] R. Nochetto: Removing the saturation assumption in a posteriori error analysis. Rend.,
Sci. Mat. Appl., A 127, 67-82 (1994). MR 95c:65187

[R1] R. Rodriguez: Some remarks on Zienkiewicz–Zhu estimator. Int. J. Numer. Meth. in PDE
10 (1994) 625–635. MR 95e:65103

[R2] R. Rodriguez: A posteriori error analysis in the finite element method. Finite element
methods. 50 years of the Courant element. Conference held at the University of Jyvaeskylae,
Finland, 1993. Inc. Lect. Notes Pure Appl. Math. 164, 389-397 (1994). MR 95g:65158

[V] R. Verfürth: A review of a posteriori error estimation and adaptive mesh-refinement
techniques, 1996, Wiley-Teubner.

[ZZ] O.C. Zienkiewicz, J.Z. Zhu: A simple error estimator and adaptive procedure for practical
engineering analysis, Int. J. Numer. Meth. Engrg., 24 (1987) 337–357. MR 87m:73055

Institute for Applied Mathematics and Numerical Analysis, Vienna University of

Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria

E-mail address: Carsten.Carstensen@tuwien.ac.at

http://www.ams.org/mathscinet-getitem?mr=2003b:65001
http://www.ams.org/mathscinet-getitem?mr=2002k:65001
http://www.ams.org/mathscinet-getitem?mr=2003e:65207
http://www.ams.org/mathscinet-getitem?mr=98m:65185
http://www.ams.org/mathscinet-getitem?mr=2000j:74084
http://www.ams.org/mathscinet-getitem?mr=2001a:65135
http://www.ams.org/mathscinet-getitem?mr=2003e:65212
http://www.ams.org/mathscinet-getitem?mr=2002a:65173
http://www.ams.org/mathscinet-getitem?mr=2000k:65205
http://www.ams.org/mathscinet-getitem?mr=2002a:74114
http://www.ams.org/mathscinet-getitem?mr=2002d:65140
http://www.ams.org/mathscinet-getitem?mr=2002j:65106
http://www.ams.org/mathscinet-getitem?mr=2002f:65157
http://www.ams.org/mathscinet-getitem?mr=2000g:65115
http://www.ams.org/mathscinet-getitem?mr=95c:65187
http://www.ams.org/mathscinet-getitem?mr=95e:65103
http://www.ams.org/mathscinet-getitem?mr=95g:65158
http://www.ams.org/mathscinet-getitem?mr=87m:73055

	1. Introduction
	2. Assumptions
	2.1. Regular triangulation
	2.2. Boundary data
	2.3. Discrete spaces
	2.4. Averaging operators
	2.5. Estimators

	3. Preliminaries
	3.1. Ascoli's lemma
	3.2. Strengthened Cauchy inequality
	3.3. Eigenvalues of mass matrices

	4. Equivalence of M and A
	5. Example
	References

