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INVERSE INEQUALITIES ON NON-QUASI-UNIFORM MESHES
AND APPLICATION TO THE MORTAR ELEMENT METHOD

W. DAHMEN, B. FAERMANN, I. G. GRAHAM, W. HACKBUSCH, AND S. A. SAUTER

Abstract. We present a range of mesh-dependent inequalities for piecewise
constant and continuous piecewise linear finite element functions u defined on
locally refined shape-regular (but possibly non-quasi-uniform) meshes. These
inequalities involve norms of the form ‖hαu‖Ws,p(Ω) for positive and nega-

tive s and α, where h is a function which reflects the local mesh diameter
in an appropriate way. The only global parameter involved is N , the total

number of degrees of freedom in the finite element space, and we avoid esti-
mates involving either the global maximum or minimum mesh diameter. Our
inequalities include new variants of inverse inequalities as well as trace and
extension theorems. They can be used in several areas of finite element anal-
ysis to extend results—previously known only for quasi-uniform meshes—to
the locally refined case. Here we describe applications to (i) the theory of
nonlinear approximation and (ii) the stability of the mortar element method
for locally refined meshes.

1. Introduction

Many classical a priori estimates for the error in a finite element approxima-
tion u to a solution v of an operator equation take the form ‖v − u‖Ht(Ω) ≤
C(hmax)s−t ‖v‖Hs(Ω), for some s > t, where hmax is the global maximum mesh
diameter and Hs(Ω) is the usual Sobolev space of index s on a domain Ω . Since
modern applications produce meshes with significant local variation of mesh size,
many authors avoid the introduction of hmax and use instead localised estimates,
such as

(1.1) ‖v − u‖Ht(Ω) ≤ C
{∑
τ∈T

h2(s−t)
τ ‖v‖2Hs(τ)

}1/2

,

with τ denoting a typical element of the mesh T and hτ denoting the diameter of
τ . Other authors work with estimates of the form

(1.2)
∥∥∥h−(s−t)(v − u)

∥∥∥
Ht(Ω)

≤ C ‖v‖Hs(Ω) ,

where h(x) is some positive “mesh-size” function, designed to reflect the local mesh
diameter near each point x. Estimates such as these allow quite general mesh
refinement procedures including some produced by adaptive algorithms (e.g., [21]).
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Some finite element error analyses require, as an additional ingredient, certain
fundamental inequalities which have to be satisfied by the finite element func-
tions. Examples are inverse estimates, which bound the Sobolev norm of a finite
element function in terms of its Sobolev norm of lower index, multiplied by a
mesh-dependent constant. These are used in many classical analyses, for example
uniform norm error estimates for finite elements ([8]) and stiffness matrix condi-
tioning analysis in boundary elements (e.g., [24]). More recently, inverse estimates
have appeared also in the analysis of the mortar element method for PDEs, where
negative index spaces on lower dimensional manifolds appear naturally ([5]).

Classical inverse estimates (like classical a priori error estimates) are usually
global: The mesh-dependent constant in the bound grows as an inverse power of
hmin (the global minimum mesh diameter). If the mesh is strongly locally refined,
this bound is large and may not be useful. Thus analyses which make use of inverse
estimates often make the additional mesh assumption of global quasi-uniformity
(i.e., hmin ∼ hmax), and so most interesting adaptive procedures are then ruled out.

In this paper we prove a range of inequalities, including localised inverse esti-
mates which apply to both piecewise constant and continuous piecewise linear func-
tions defined with respect to meshes of simplices on domains in Rd. The meshes
are assumed shape-regular but need not be quasi-uniform. Our results include
estimates of the form

(1.3) ‖hαu‖W s,p(Ω) ≤ C‖hα−su‖Lp(Ω), for a range of nonnegative s

and

(1.4) ‖hs+αu‖Lq(Ω) ≤ C‖hαu‖W−s,q(Ω), for all nonnegative s,

where α ∈ R and h is the mesh-size function mentioned above. If the mesh is quasi-
uniform, then h is bounded above and below in terms of either hmin or hmax and
these bounds reduce to standard inverse estimates. In the locally refined case they
represent localised inverse inequalities which may be considerably less pessimistic
than the classical ones.

While some particular localised inverse estimates have been developed in the
literature in connection with special applications (e.g., [1] proved special cases of
(1.3) and [18] proved special cases of (1.4)), we know of no source in the literature
for the general inequalities presented here. In fact (1.3) and (1.4) are only examples
of a range of inequalities which we prove. Some of these are elementary and others
depend on a rather more delicate analysis. A recurring elementary tool throughout
the analysis is the use of mesh-size dependent discrete `p norms defined on the
degrees of freedom of the finite element functions. Preliminary manipulations using
such `2 norms can be found in [18].

A more sophisticated tool which we need is the scale of Besov spaces Bsq(L
p(Ω))

of smoothness s and primary index p, in which are embedded the Sobolev spaces
W s,p(Ω). In fact we prove (1.3) by obtaining its more general analogue in the Besov
scale, which allows even p < 1 and a range of s up to the regularity limit of u. On
the other hand, (1.4) is proved using a separate and nonstandard duality argument
and holds for all negative s and all 1 < q ≤ ∞.

A range of elementary inequalities (involving relations between different Lp and
`p norms) are given in Sections 2, and 3, while the inverse estimates (1.3), (1.4) are
proved in Section 4. In Section 5 we give localised versions of trace and extension
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theorems for finite element functions using the same Lp norm on the ambient space
and on the lower-dimension manifold.

The rest of the paper is devoted to applications of these inequalities. As men-
tioned above, one application (in particular of (1.4)) is in the analysis of boundary
element methods for operators on negative order spaces. Since this is described in
some detail in [18, 19], here we restrict ourselves instead to describing two other
applications.

Our first application is to the Jackson and Bernstein inequalities which arise in
the theory of adaptive finite element approximation. Recall that in a quasi-uniform
mesh we have hτ ∼ N−1/d, where N is the number of degrees of freedom in the
finite element space. The estimate (1.1) then reads (e.g., in the case t = 0):

(1.5) ‖v − u‖L2(Ω) ≤ CN−s/d ‖v‖Hs(Ω) .

When v fails to be in Hs(Ω), but still possesses enough Besov regularity, then
it is known (e.g., [13]) that adaptive processes exist which ensure that the rate
of convergence N−s/d of best finite element approximation to v is still attained,
but with ‖v‖Hs(Ω) on the right-hand side of the error estimate replaced by the
weaker smoothness measure ‖v‖Bsr(Lr(Ω)) with 1/r < s/d+ 1/2. This variant of the
classical “Jackson-type” approximation estimate is described in Section 6 (in fact
for primary index 2 replaced by general p). The Jackson inequality is classically
accompanied by the “Bernstein-type” inverse inequality:

‖u‖Bsq(Lp(Ω)) ≤ CNs/d‖u‖Lp(Ω), for finite element functions u.

This is proved as the first application of our inverse inequalities in Section 6.
Our second application (Section 7) concerns the stability of the mortar element

method in the case of non-quasi-uniform meshes on the subdomains. The mortar
method seems to be particularly well suited for problems with strong jumps in
coefficients. Since one therefore expects to deal with possibly irregular solutions,
the use of nonuniform meshes appears to be very desirable. The so-called dual
basis mortar method has indeed recently been shown in [22] to lead to stable and
accurate discretisations for the much more flexible class of shape-regular meshes
provided that a certain weak matching condition on adjacent meshes holds along
interface boundaries. Our objective here is to establish stability for this version
of the mortar method without requiring this matching condition. Aside from the
inverse estimates from Section 3 we also make essential use of the extension theorem
in Section 5.

Acknowledgements. This work was supported in part by British Council/DAAD
ARC Grant 869 and in part by the Max-Planck-Institut Mathematik in den Natur-
wissenschaften, Leipzig through a visiting position for I. G. Graham. This support
is gratefully acknowledged.

2. Preliminaries

2.1. Meshes and finite elements. Throughout this paper Ω denotes either an
open Lipschitz polyhedron or (a connected subset of) the surface of a Lipschitz
polyhedron. In both cases, the dimension/surface dimension of Ω is denoted by
d ∈ N. Although most of our results extend to general dimension d, we give the
proofs for the cases d ∈ {1, 2, 3}.



1110 W. DAHMEN ET AL.

A mesh T on Ω is a decomposition

Ω =
⋃
{τ : τ ∈ T },

where the elements τ are either intervals, triangles or tetrahedra. The elements
have nodes and edges and also (when they are tetrahedra) they have faces. For
convenience we will always consider the elements to be closed sets. We assume
throughout that our meshes are conforming, i.e., if σ, τ ∈ T , with σ 6= τ , then
σ ∩ τ is either empty or a vertex, an edge or a face. We identify two sets of points
in Ω which are useful as index sets.

Let N0 denote the set of centroids of elements of T . We identify cj ∈ N0 with
its counting index j and we write j ∈ N0 as well as cj ∈ N0. The sets T and N0

are in one-one correspondence and for j ∈ N0, we denote the element of T which
contains cj by τj .

Also we let N1 denote the set of nodal points of T . Similarly, we write i ∈ N1

as well as xi ∈ N1.
Each element τ has a diameter denoted hτ and a volume |τ | =

∫
τ
dx.

We are concerned with inequalities for piecewise polynomial functions on T in
the two most important cases:

S0(T ) =
{
v : Ω→ R : v|int(τ) is constant, τ ∈ T

}
,(2.1)

S1(T ) = {u : Ω→ R : u is continuous and u|τ is affine, τ ∈ T } .(2.2)

For each j ∈ N0, let χj ∈ S0(T ) denote the characteristic function of τj and for
each i ∈ N1, we define φi ∈ S1(T ) to be the “hat” function with values φi(xj) = δi,j ,
for i, j ∈ N1. Each u ∈ Sk(T ) then has the familiar expansion:

u =
∑
j∈N0

ujχj , with uj = u(cj), u ∈ S0(T ),(2.3)

u =
∑
i∈N1

uiφi, with ui = u(xi), u ∈ S1(T ).(2.4)

If Ω is a d-dimensional surface in Rd+1, the surface derivatives of a sufficiently
smooth function u : Ω → R on (plane) surface elements τ ∈ T are defined by
introducing local (d + 1)-dimensional Cartesian coordinates so that the first d co-
ordinates lie in the tangential plane through τ . Let κτ denote the mapping from
local to global coordinates and put ûτ := u ◦ κτ . Then, for any α ∈ Nd0, we define

∂αu|τ := (∂αûτ ) ◦ κ−1
τ : τ → R.

Similarly, we put
∇u := (∇ûτ ) ◦ κ−1

τ : τ → Rd.
Note that, by using this definition, Leibniz’ rule for differentiation of products of
functions holds as usual. At various places in the text, we consider polynomials on
elements τ ∈ T . In the case of surfaces this notation always has to be understood
in the sense that the function, in local coordinates, is a polynomial.

2.2. Mesh regularity.

Definition 2.1. Two vertices xi, xj are called neighbouring if there is an element
τ ∈ T such that xi, xj ∈ τ (i.e., xi and xj are connected by an edge of the mesh).
Two elements τ, σ ∈ T are called neighbouring if τ ∩ σ 6= ∅.
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We shall consider classes of meshes which satisfy the following weak regularity
assumptions.

Definition 2.2. For K ≥ 1 and ε > 0, MK,ε denotes the class of meshes T which
satisfy

hτ ≤ Khσ, for all neighbouring elements τ, σ ∈ T(2.5)

and

|τ | ≥ εhdτ , for all τ ∈ T .(2.6)

When d ≥ 2, it may be shown that for the conforming meshes considered here,
the “shape-regularity” assumption (2.6) implies the “local quasi-uniformity” or “K-
mesh” condition (2.5), and so in this case the meshes could be characterised by the
single parameter ε. However in other situations it is of interest to consider locally
quasi-uniform meshes which are not shape regular, and so we choose to keep the
parameters K and ε separate in our analysis.

Notation 2.3. Throughout the paper, if A(T ) and B(T ) are two mesh-dependent
properties, then the inequality

A (T ) . B(T )

will mean that there is a constant C depending on K and ε such that

A(T ) ≤ CB(T ), for all T ∈ MK,ε.

Also the notation
A(T ) ∼ B(T )

will mean that A(T ) . B(T ) and B(T ) . A(T ).
In some situations we will be considering other parameters as well. If the con-

stants in the estimates are independent of another parameter, say α ∈ [α, α],
we shall write explicitly, “A(T ) . B(T ) uniformly in α ∈ [α, α]” or “A(T ) ∼
B(T ) uniformly in α ∈ [α, α]”, as appropriate. This means that the equivalence
constants may depend on α and α but not on α ∈ [α, α].

For our later estimates we need to introduce a mesh-dependent function h on Ω,
such that the value of h on any τ ∈ T is proportional to the size of elements of T
near τ . To this end, for i ∈ N1, we introduce the subsets of T :

(2.7) T (xi) := {τ ∈ T : τ has a corner at xi}.
Then we set

hi := max{hτ : τ ∈ T (xi)},
and we define h ∈ S1(T ) to be the interpolant of these values, i.e.,

(2.8) h =
∑
i∈N1

hiφi.

Our aim in this paper is to create methods of analysis which are relevant to locally
refined meshes and to exploit them in several applications. To this end, information
about the mesh being used will be contained in the function h defined above and
this plays a key role in most of our estimates. In some situations we also need to
include a global mesh parameter. For this we avoid using the maximum or minimum
mesh diameters, given by hmax = max{hτ : τ ∈ T } and hmin = min{hτ : τ ∈ T },
but choose instead to use the cardinality of the mesh N := #N1. Note that
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asymptotically it is unimportant whether N is defined as the number of nodes or
elements since it follows from the conformity of the meshes that

(2.9) #N0 ∼ #N1.

Since adaptive techniques try to construct a good approximation for a minimal N ,
estimates involving N are more natural in the context of adaptivity than those
involving hmin or hmax.

Remark 2.4. Since minx∈Ω h(x) = mini∈N1 hi > 0, any power hs is well defined for
s ∈ R.

Throughout the paper we will frequently use the estimates in the following propo-
sition without further reference.

Proposition 2.5. Let T ∈ MK,ε. Then
(a) hτ ≤ hi ≤ Khτ for all τ ∈ T (xi), i ∈ N1.
(b) K−1hi′ ≤ hi ≤ Khi′ , for all pairs of neighbouring vertices xi and xi′ ∈ N1.
(c) For all j ∈ N0,

hτj ≤ min
i∈τj∩N1

hi ≤ h(cj) ≤ max
i∈τj∩N1

hi ≤ Khτj .

(d) For all j ∈ N0,

εhdτj ≤ |τj | ≤ h
d
τj .

(e) For any two points x, y ∈ Ω, let |Λ (x, y)| denote the length of the minimal
path in Ω connecting x and y and let CΩ denote the minimal constant such that,
for all x, y ∈ Ω, |Λ (x, y)| ≤ CΩ |x− y|. The function h is Lipschitz continuous with
Lipschitz constant satisfying

L ≤ C (K − 1) /ε,

where C depends only on CΩ and d.

Proof. The proofs of (a)–(d) are trivial. To obtain (e), first observe that by the
definition of h we have, for any j ∈ N0 and any x ∈ τj ,

∇h(x) = ∇h(cj) = ∇(h− h(cj))(cj) =
∑

i∈τj∩N1

(hi − h(cj))∇φi(cj).

Now using the shape-regularity property (2.6), it follows that |∇φi(cj)| ≤ C(εhτj )−1

where C only depends on d. Also, for i ∈ τj ∩N1, we have

(1−K)hτj ≤ min
i∈τj∩N1

hi − max
i∈τj∩N1

hi ≤ hi − h(cj)

≤ max
i∈τj∩N1

hi − min
i∈τj∩N1

hi ≤ (K − 1)hτj ,

and thus

‖∇h‖L∞(Ω) ≤ C(K − 1)/ε.

Now take any x, y ∈ Ω and recall that Ω is as specified at the beginning of Sec-
tion 2.1. Let Λ denote a shortest path in Ω connecting x and y. Since the elements
in T are simplices, the restriction of Λ to any τ is either empty or a straight line
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(possibly degenerated to a single point). Choose a minimal sequence (τi)
m
i=1 in T

such that τi ∩ Λ =: AiAi+1 for 1 ≤ i ≤ m− 1 and A1 = x, Am = y. Then,

|h (x)− h (y)| ≤
m−1∑
i=1

|h (Ai)− h (Ai+1)|

≤
m−1∑
i=1

‖∇h‖L∞(τi)
|Ai −Ai+1| ≤ ‖∇h‖L∞(Ω) |Λ|

≤ CΩ ‖∇h‖L∞(Ω) |x− y| ≤ CCΩ
K − 1
ε
|x− y| . �

2.3. The Sobolev norms. For 1 ≤ p ≤ ∞, we introduce the usual space Lp(Ω)
with norm ‖ · ‖Lp(Ω). Extending this definition to 0 < p < 1, we obtain a quasi-
norm which satisfies the modified triangle inequality ‖u+ v‖Lp(Ω) ≤ C[‖u‖Lp(Ω) +
‖v‖Lp(Ω)] with C := 21/p−1. For further details on Lp spaces with p < 1, see [13, 14]
and the references therein. The case p < 1 will become important in Section 6.

We introduce the usual Sobolev spaces W s,p(Ω) and we note that for s ∈ (0, 1),
these are equivalently defined using the Slobodeckij norm :

‖v‖W s,p(Ω) :=

‖v‖pLp(Ω) +
∫ ∫
Ω×Ω

|v(x) − v(y)|p
|x− y|d+ps

dxdy


1/p

(see, e.g., [20, Section 6.2.4]). In the special case p = 2, we write ‖·‖Hs(Ω) :=
‖·‖W s,2(Ω). For negative −s, W−s,q(Ω) is the dual space W−s,q(Ω) := (W s,p(Ω))′

with 1
p + 1

q = 1, p < ∞, endowed with the dual norm. The norms can also be
used when Ω is a d-dimensional manifold in Rd+1, d = 1, 2 (see, e.g., [18], [19]).
Throughout the paper we restrict the range of Sobolev indices in the case of only
piecewise smooth surfaces to s ∈ [−1, 1].

2.4. The `p norms. Let v = (vi)i∈I ∈ RI be a vector with I denoting its index
set. Then, as usual, we write

‖v‖`p(I) =
(∑

i∈I
|vi|p

)1/p

for p ∈ (0,∞), and ‖v‖`∞(I) = max{|vi| : i ∈ I}.

If w = (wi)i∈I , then we define the `2 inner product and the pointwise product,
respectively, by

(v,w)`2(I) =
∑
i∈I

viwi, vw = (viwi)i∈I .

If f is any function on Ω, we introduce the discrete norm of f on N0 and on N1

defined by

‖f‖`p(Nk) =

{ {∑
i∈N0

|f(ci)|p
}1/p where f = (f(ci))i∈N0

, when k = 0,{∑
i∈N1

|f(xi)|p
}1/p where f = (f(xi))i∈N1

, when k = 1,

when these quantities are well defined.
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3. Estimates in `p and Lp norms

3.1. Relations between discrete and continuous norms.

Proposition 3.1. Let p0 > 0 and α < α be given. Then, for i = 0 or 1,
(3.1)
‖hαu‖Lp(Ω) ∼ ‖h

α+d/pu‖`p(Ni), uniformly in u∈Si(T ), p∈ [p0,∞] and α ∈ [α, α].

Proof. Throughout this proof the relations . and ∼ will hold uniformly in p ∈
[p0,∞] and α ∈ [α, α]. First consider p0 ≤ p < ∞, and observe that for any
f ∈ Lp(Ω), we can write

(3.2) ‖hαf‖Lp(Ω) ∼

∑
j∈N0

hαpτj

∫
τj

|f |p


1/p

.

Thus if we consider any u ∈ S0(T ), we have,

‖hαu‖Lp(Ω) ∼

∑
j∈N0

hαpτj |τj | |u(cj)|p


1/p

∼

∑
j∈N0

h(cj)αp+d|u(cj)|p


1/p

= ‖hα+d/pu‖`p(N0).

This estimate is uniform in u ∈ S0(T ), p ∈ [p0,∞) and α ∈ [α, α].
On the other hand, suppose u ∈ S1(T ). Since, for all j ∈ N0, u|τj is a polynomial

of degree 1, it follows by a scaling argument that
(3.3)

|τj |−1/p

{∫
τj

|u(x)|pdx
}1/p

∼

 ∑
i∈τj∩N1

|u(xi)|p


1/p

, uniformly in j, p ∈ [p0,∞).

More precisely, the equivalence (3.3) is obtained by first transferring the left-hand
side to a unit simplex τ̂ (with nodes x̂j), via the usual affine map [10]. This
yields equivalence to ‖û‖Lp(τ), where û is the pullback of u onto τ̂ . Since the map
(û, p) 7→ ‖û‖Lp(τ) is continuous on the compact set

{(û, p) : û is affine on τ̂ ,
d∑
j=1

|û(x̂j)|p = 1, and p ∈ [p0, 1]},

the assertion (3.3) follows for p ∈ [p0, 1]. An easier argument based on the Riesz-
Thorin interpolation theorem for Lp spaces establishes it for the full range of p.

Hence, inserting (3.3) in (3.2), we get, uniformly in u ∈ S1(T ) and p ∈ [p0,∞),

‖hαu‖Lp(Ω) ∼

∑
j∈N0

hαpτj |τj |
∑

i∈τj∩N1

|u(xi)|p


1/p

∼
{∑
i∈N1

hαp+di |u(xi)|p
}1/p

= ‖hα+d/pu‖`p(N1),

as required. (In the second to the last step we have used the fact that the mesh is
conforming and shape regular and so the number of elements attached to any given
node is bounded over all meshes in the class MK,ε.)

The remaining case of p =∞ follows by similar arguments. �
The following corollary identifies two simple special cases of Proposition 3.1.
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Corollary 3.2. It holds that∑
j∈N0

h(cj)d ∼
∑
i∈N1

hdi ∼ 1,∥∥∥h−d/p∥∥∥
Lp(Ω)

∼ N1/p, uniformly in p ∈ [p0,∞).

Remark 3.3. The special case α = 0, p = 2 of (3.1) states that the mass matrix
M (defined by 〈Mu,v〉`2(N1) = 〈u, v〉L2(Ω)) is spectrally equivalent to the diagonal
matrix D = diag{hd}. Hence D is an optimal preconditioner to M (whose condition
number is bounded above by max{hdi /hdj : i, j ∈ N1}).

3.2. Estimates between different `p norms. First we recall some inequalities
satisfied by `p norms.

Proposition 3.4. (a) Let 0 < p ≤ p′ ≤ ∞. Then, for any index set I,

(3.4) ‖u‖`p′(I) ≤ ‖u‖`p(I) .

(b) Let 0 < α ≤ β ≤ ∞ and α ≤ p ≤ β. Then
(3.5)

‖u‖`p(I) ≤ ‖u‖
γ
`α(I) ‖u‖

1−γ
`β(I) with γ =

{
α
p
β−p
β−α = 1− β

p
p−α
β−α if β <∞,

α/p if β =∞.

Proof. To prove (3.5), we use Hölder’s inequality to obtain (for finite β):

‖u‖p`p(I) = (|u|α
β−p
β−α , |u|β

p−α
β−α )`2(I) ≤ ‖|u|α

β−p
β−α ‖

`
β−α
β−p (I)

‖|u|β
p−α
β−α ‖

`
β−α
p−α (I)

.

On the other hand, if β =∞, we can write

(3.6) ‖u‖`p(I) ≤ ‖u‖
α/p
`α(I) ‖u‖

1−α/p
`∞(I) ,

and together these two estimates prove (3.5).
It can be easily checked that ‖u‖`∞(I) ≤ ‖u‖`α(I) for any 0 < α ≤ ∞. Inserting

this inequality into (3.6), one obtains ‖u‖`p(I) ≤ ‖u‖`α(I) and hence (3.4) follows.
�

The next two propositions contain inverses of inequality (3.4). These can only be
obtained at a cost of either an N -dependent factor (Proposition 3.5) or a weighting
by a negative power of h (Proposition 3.6). The exponent p′−p

pp′ appearing below
should be understood as 1/p, if p′ =∞.

Proposition 3.5. Let 0 < p ≤ p′ ≤ ∞. Then, if i = 0 or 1,

(3.7) ‖u‖`p(Ni) ≤ N
p′−p
pp′ ‖u‖`p′(Ni).

Proof. Recalling (2.9), we have

‖u‖p`p(Ni) = (1, |u|p)`2(Ni) ≤ ‖1‖
`
p′
p′−p (Ni)

‖|u|p‖
`
p′
p (Ni)

= N
p′−p
p′ ‖u‖p

`p′(Ni)
. �

Proposition 3.6. For i = 0, 1,

‖u‖`p(Ni) . ‖h
−d(p′−p)

pp′ u‖`p′(Ni), uniformly in u ∈ RNi and p0 ≤ p ≤ p′ ≤ ∞.

(3.8)
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Proof. We give the proof for i = 0. The case i = 1 is analogous. Take any
u ∈ RN0 and define u ∈ S0(T ) by requiring u(cj) = uj, j ∈ N0. Then, by Propo-
sition 3.8 below, we have ‖u‖Lp(Ω) . ‖u‖Lp′(Ω). Using Proposition 3.1, we obtain
‖hd/pu‖`p(N0) . ‖hd/p

′
u‖`p′(N0). Then (3.8) follows by replacing u by h−d/pu. �

From this we have the immediate corollary:

Corollary 3.7.

‖hαu‖`p(Ni) . ‖h
α− d(p′−p)

pp′ u‖`p′(Ni),
uniformly in u ∈ RNi , α ∈ R and p0 ≤ p ≤ p′ ≤ ∞.

3.3. Estimates between different Lp norms. The following result is obtained
directly from Hölder’s inequality.

Proposition 3.8.

(3.9) ‖u‖Lp(Ω) . ‖u‖Lp′(Ω), uniformly in p0 ≤ p ≤ p′ ≤ ∞ and u ∈ Lp′(Ω).

In the following generalisation of Proposition 3.8, we balance powers of h inside
the right-hand norm with an appropriate power of the global parameter N outside.

Proposition 3.9. For i = 0, 1 and α < α the estimate

‖hαu‖Lp(Ω) . Nθ‖hα+dθu‖Lp′(Ω)

holds uniformly in u ∈ Si(T ), p0 ≤ p ≤ p′ ≤ ∞, α ∈ [α, α] and 0 ≤ θ ≤ p′−p
pp′ .

Proof. We give the proof for i = 0. The case i = 1 is very similar.
(a) Let u ∈ S0(T ). Then using (3.7) with i = 0 and with u replaced by hα+d/pu

and then (3.1), we obtain the required result in the case θ = p′−p
pp′ .

(b) More generally, consider 0 ≤ θ < p′−p
pp′ . Then we can choose p′′ ∈ (p, p′] such

that θ = p′−p′′
p′′p′ . Then by (3.9) and part (a), we have ‖hαu‖Lp(Ω) . ‖hαu‖Lp′′(Ω) ≤

Nθ‖hα+dθu‖Lp′(Ω), as required. �

Finally we obtain an inverse to the inequality in Proposition 3.9. As in Propo-
sition 3.6, we pay the penalty of a negative power of h on the right-hand side.

Proposition 3.10. For i = 0, 1 the estimates

‖hαu‖Lp′(Ω) .
∥∥∥∥hα− d(p′−p)

pp′ u

∥∥∥∥
Lp(Ω)

hold uniformly in u ∈ Si(T ), α ∈ [α, α] and p0 ≤ p ≤ p′ ≤ ∞.

Proof. Combine (3.1) and (3.4). �

4. Inverse estimates in Sobolev norms

In this section we prove two types of inverse estimate in Sobolev norms. The
first two subsections concern upper bounds for the W s,p norm of a function (s > 0)
in Si(T ), i = 0, 1, in terms of the Lp norm of an appropriately weighted function.
The range of s is naturally restricted by the regularity of the spaces Si(T ). In the
case of S1(T ) our results are a generalisation of those already given in [18].
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In this section we restrict to inverse estimates in Sobolev norms, where p ≥ 1. A
more general result in Besov spaces—which also allows p < 1 —is given in Theorem
A.1, and includes Theorems 4.1 and 4.2 as special cases. However, since the inverse
estimates in Sobolev spaces are those which are mostly used by the numerical
analysis community, we include, in this section, Besov-free proofs of these in order
to maximise the usefulness of the paper. With this motivation we also restrict to
p = 2 in Theorem 4.2.

In the third subsection we obtain lower bounds for the W−s,q norm (for s > 0) of
a function in Si(T ) in terms of the Lq norm of an appropriately weighted function.
These are obtained by direct estimation of negative norms. The range of negative
−s which can be reached is unlimited and again the argument generalises that in
[18], in which only the cases u ∈ S1(T ) and 0 ≤ s ≤ 1 were covered.

4.1. Inverse estimates for u ∈ S1(T ) in W s,p(Ω), s ≥ 0.

Theorem 4.1. Suppose that 1 ≤ p ≤ ∞ and that 0 ≤ s < 1 + 1/p. Then the
estimate

(4.1) ‖hαu‖W s,p(Ω) .
∥∥hα−su∥∥

Lp(Ω)

holds uniformly in u ∈ S1(T ), α ∈ [α, α] and 1 ≤ p ≤ ∞.

Proof. Throughout this proof the inequality . will be uniform in u ∈ S1(T ), α ∈
[α, α] and 1 ≤ p ≤ ∞. We give the proof only for 0 ≤ s ≤ 1 here, since it can be
based on elementary arguments. The proof for the missing range of s is given in
the proof of Theorem A.1 of the Appendix.

Suppose s = 1 and τ ∈ T . The product rule yields ∇ (hαu) = αhα−1u∇h +
hα∇u on τ . Since Proposition 2.5(e) shows that | (∇h)|τ | . 1, it follows that∥∥αhα−1u∇h

∥∥
Lp(τ)

.
∥∥hα−1u

∥∥
Lp(τ)

. Moreover a simple scaling argument shows

that ‖hα∇u‖Lp(τ) . h−1
τ ‖hαu‖Lp(τ) .

∥∥hα−1u
∥∥
Lp(τ)

. Summing the pth powers of
these inequalities over all τ ∈ T and taking the pth root, we obtain

(4.2) ‖hαu‖W 1,p(Ω) .
∥∥hα−1u

∥∥
Lp(Ω)

.

Interpolating this result with the trivial estimate ‖hαu‖Lp(Ω) . ‖hαu‖Lp(Ω) (for
s = 0), we obtain (4.1) for general s ∈ [0, 1]. (Note that here we have used the fact
that the norm interpolating ‖hα−1u‖Lp(Ω) and ‖hαu‖Lp(Ω) is ‖hα−su‖Lp(Ω) (see
Triebel [23, (1.15.2/4)]). �

4.2. Inverse estimates for u ∈ S0(T ) in W s,p(Ω), s > 0. Analogously to Theo-
rem 4.1, we have the following estimate for piecewise constant functions.

Theorem 4.2. Suppose that 1 ≤ p ≤ ∞ and 0 ≤ s < 1/p. Then

(4.3) ‖hαu‖W s,p(Ω) . ‖hα−su‖Lp(Ω),

uniformly in u ∈ S0(T ), α ∈ [α, α], and 1 ≤ p ≤ ∞.

It is a corollary of Theorem 4.2 that S0(T ) ⊂ W s,p(Ω) for all p and s in the
ranges specified in the assumptions. Thus S0(T ) ⊂ W 1/2−ε,2(Ω) for ε > 0. The
stated range of s is maximal, since, as is well known, S0(T ) 6⊂W 1/2,2(Ω).

We give the proof for p = 2 only since it can be based on the localisation of the
Slobodeckij norm given in the following lemma.
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Lemma 4.3. Let Ω ⊆ Rd be a bounded domain and let T be any conforming mesh
on Ω . Any function v ∈ Hs(Ω), s ∈ (0, 1), satisfies

(4.4) ‖v‖2Hs(Ω) ≤
∑
τ∈T

[
c δ−2s
τ ‖v‖2L2(τ) +

∑
τ′∈T
τ′∩τ 6=∅

∫
τ

∫
τ ′

|v(x)− v(y)|2
|x− y|d+2s

dx dy
]
,

where δτ := dist(τ,Dτ ) and Dτ :=
⋃
{τ ′ ∈ T : τ ′ ∩ τ = ∅} . For a domain

Ω ⊂ Rd , the constant c is explicitly given by c = 1 + 4
s for d = 1 and by

c = 1 + 4π
s for d ∈ {2, 3}, provided that δτ ≤ 1. The constant c is more involved

for a d-dimensional surface Ω , but still independent of v, T ,K, ε .

The proof of Lemma 4.3 can be found in [16] for d = 1 and in [17] for d = 2. The
3-dimensional case can be shown analogously to the 2-dimensional case. Note that
(4.4) holds for any conforming triangulation and the requirement that T ∈ MK,ε

is not needed for Lemma 4.3.

Proof of Theorem 4.2 (restricted case). As mentioned above, we restrict to the case
p = 2. In addition we describe here only the case d = 2. The proofs for d = 1 and
d = 3 are similar. So, let u ∈ S0(T ). Since we are considering meshes from the
classMK,ε, (4.4) implies that
(4.5)

‖hαu‖2Hs(Ω) . ‖hα−su‖2L2(Ω) +
∑

j,j′∈N0
τ
j′ ∩τj 6=∅

∫
τj

∫
τj′

|(hαu)(x)− (hαu)(y)|2
|x− y|2+2s

dxdy.

Observe that by elementary arguments |(hαu) (y)| . hατj |u (cj)|, for y ∈ τj . Using
this in (4.5), we obtain

‖hαu‖2Hs(Ω) . ‖hα−su‖2L2(Ω) +
∑

j,j′∈N0,j 6=j′
τ
j′ ∩τj 6=∅

{
h2α
τj′
|u(cj′)|2 + h2α

τj |u(cj)|2
}
Jτj ,τj′

(4.6)

+
∑
j∈N0

|u (cj)|2Hτj

with
(4.7)

Jτ,τ ′ :=
∫
τ

∫
τ ′
|x− y|−2−2s dx dy and Hτ :=

∫
τ

∫
τ

|hα (x)− hα (y)|2

|x− y|2+2s dxdy.

Since the summand in (4.6) is symmetric with respect to j, j′, we may write
(4.8)
‖hαu‖2Hs(Ω) . ‖hα−su‖2L2(Ω) +

∑
j∈N0

h2α
τj |u(cj)|2

∑
j′∈N0,j 6=j′
τ
j′ ∩τj 6=∅

Jτj,τj′+
∑
j∈N0

|u (cj)|2Hτj .

We begin with the estimate

Hτ ≤ ‖∇ (hα)‖2L∞(Ω)

∫
τ

∫
τ

|x− y|−2s
dxdy.

Now, using polar coordinates with respect to y ∈ τ , it follows that
∫
τ |x− y|

−2s
dx .

h2−2s
τ . This, together with ‖∇ (hα)‖L∞(τ) . hα−1

τ yields Hτ . h
2(α−s)
τ |τ | and the
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p1

p2

p3=p0

p

p

q

τ2

τj

pj−1 pj

τ1

τ3

Figure 1. Subdivision of τ into τj , j = 1, 2, 3

last term in (4.8) satisfies∑
j∈N0

|u (cj)|2Hτj . ‖hα−su‖2L2(Ω).

We finish the argument by showing that

(4.9) Jτ,τ ′ . h−2s
τ |τ | , for all τ, τ ′ ∈ T with τ ∩ τ ′ 6= ∅ and τ 6= τ ′.

If (4.9) holds, then, since the number of triangles τ ′ with τ ′ ∩ τ 6= ∅ is bounded
independently of h, (4.8) implies that

‖hαu‖2Hs(Ω) . ‖hα−su‖2L2(Ω) +
∑
j∈N0

h2α−2s
τj |u(cj)|2 |τj |

. ‖hα−su‖2L2(Ω) + ‖hα−s+1u‖2`2(N0) ∼ ‖hα−su‖2L2(Ω),

by Proposition 3.1, yielding the required result.
It remains to show (4.9). Let y be an interior point of τ. Then τ ′ ⊆ R2 \Br(y)

with r := dist(y, ∂τ) > 0 . Using polar coordinates with respect to y shows∫
τ ′
|x− y|−2−2s dx ≤

∫
R2\Br(y)

|x− y|−2−2s dx =
π

s
r−2s =

π

s
dist(y, ∂τ)−2s ,

hence

(4.10) Jτ,τ ′ .
∫
τ

dist(y, ∂τ)−2s dy, τ, τ ′ ∈ T with τ ∩ τ ′ 6= ∅ and τ 6= τ ′.

Let pj , j = 1, 2, 3, be the vertices of τ and let p be the centre of the largest
circle inscribed inside τ . This circle has radius ρτ which, by the nondegeneracy
condition (2.6), satisfies ρτ ∼ hτ . Also, each of the sides of τ are tangent to this
circle. For the further estimation of Jτ,τ ′ , we split τ as in Figure 1 (top) into three
triangles τj , j = 1, 2, 3, with vertices pj−1, pj and p . Then there is one and only
one q ∈ [pj−1, pj] (here [pj−1, pj ] is the line connecting pj−1 and pj ) satisfying
|p− q| = %τ and p− q ⊥ pj − pj−1 (see Figure 1 (bottom)). For y ∈ τj , we have
dist(y, ∂τ) = fj(y) with the function fj(y) := dist(y, [pj−1, pj ]) , i.e., dist(y, ∂τ)
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is constant on the level lines parallel to [pj−1, pj] . Therefore, we introduce the
following transformation of coordinates

T (η) := pj−1 + η1(p− q) + η2(pj − pj−1) for η = (η1, η2) ∈ [0, 1]2 .

Since p− q ⊥ pj − pj−1 , we get for η ∈ [0, 1]2 that

fj(T (η)) = dist(T (η), [pj−1, pj]) = η1 |p− q| = η1 %τ

and

| det(T ′(η))| = | det(p− q pj − pj−1)| = |p− q| |pj − pj−1| = 2 |τj | .
Since dist(·, ∂τ) = fj on τj and τj ⊆ T ([0, 1]2) , we obtain∫
τj

dist(y, ∂τ)−2s dy ≤
∫
T ([0,1]2)

fj(y)−2s dy =
∫

[0,1]2
fj(T (η))−2s | det(T ′(η))| dη

= 2 |τj | %−2s
τ

∫ 1

0

η−2s
1 dη1 =

2
1− 2s

%−2s
τ |τj | .

Hence, substituting this in (4.10), we obtain

Jτ,τ ′ .
3∑
j=1

∫
τj

dist(y, ∂τ)−2s dy . %−2s
τ |τ | ,

which, by the nondegeneracy assumption, yields the estimate (4.9). �

4.3. Inverse estimates in W−s,q, s > 0. In this section we extend the estimates
of Sections 4.1 and 4.2 to negative norms. Our main result is Theorem 4.6, which,
for example, can be used to estimate the W−s,q norm of a finite element function
u from below by the Lq norm of hsu. Unlike the previous section, where p < 1 was
allowed, the argument in this section is restricted to 1 < q ≤ ∞.

Our result in this section is a generalisation of one obtained in [18], where we
considered only the case q = 2, −s ∈ [−1, 0] and u ∈ S1(T ). For our proof in [18]
we used a duality argument, with test functions chosen to be suitably weighted
functions from S1(T ). The range of negative −s which can be reached using this
argument is restricted. As we shall see, such restrictions are artificial and we can
obtain our inverse estimates for−s indefinitely negative and for functions u ∈ S0(T )
as well as u ∈ S1(T ). The key to the proof is to consider more general test functions
in the duality argument. These are built from the “bubble functions” introduced
in the following preliminary lemma.

Lemma 4.4. Let t be any closed simplex in Ω, not necessarily an element of the
mesh T . Let ht denote its diameter and |t| denote its volume. Then, for any s ≥ 0,
there exists a function Ps,t on Ω with the following properties:

(a) Ps,t ≥ 0 on Ω.
(b) suppPs,t = t.
(c) There exist constants C1, C2 such that, for all 1 ≤ p ≤ ∞,

C1 |t|1/p ≤ ‖Ps,t‖Lp(t) ≤ C2 |t|1/p .
(d) There exists a constant C3 such that, for all 1 ≤ p ≤ ∞, 0 ≤ s′ ≤ s,

‖Ps,t‖W s′,p(t) ≤ C3‖h−s
′

t Ps,t‖Lp(t).

The constants C1, C2, C3 are independent of p and C1 and C2 are also independent
of t. Moreover C3 can be chosen independent of t (but dependent on ε), provided
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t is restricted to the set of all simplices satisfying the shape-regularity assumption
(2.6) for some ε > 0 .

Remark 4.5. Note that putting p = 1 in (c) and using (a) implies

C1 |t| ≤
∫
t

Ps,t ≤ C2 |t| .

Proof of Lemma 4.4. The proof employs the Bernstein representation of polynomi-
als. Let i0, i1, . . . , id denote the vertices of t and introduce the barycentric coordi-
nates λ = λ (x, t) = (λ0, λ1, . . . , λd) defined by

x =
∑d

j=0
λji

j ,
∑d

j=0
λj = 1.

It is clear that each λj(x, t) is a polynomial of total degree 1 in x. Also, since t
is the convex hull of the points i0, i1, . . . , id, it follows that

(4.11) λj(x, t) ≥ 0 , x ∈ t.
Now, for given s > 0, let r denote the smallest integer satisfying r ≥ s and define

the multi-index β ∈ Nd+1 by βj = r + 1, j = 0, . . . , d. Then define

Ps,t(x) =
{
λβ(x, t) x ∈ t,
0 x ∈ Rd\t.

(Here we have used the usual multi-index notation, i.e., λβ = λβ0
0 λβ1

1 · · ·λ
βd
d .)

Property (a) now follows from (4.11) and, since t is closed, property (b) is triv-
ial. Properties (c) and (d) follow from standard scaling arguments (see, e.g., [10,
Theorems 3.1.2 and 3.2.6]). �

Now we have the main theorem of this section.

Theorem 4.6. Let s ≥ 0 be given. Then

(4.12)
∥∥hs+αu∥∥

Lq(Ω)
. ‖hαu‖W−s,q(Ω)

holds uniformly for u ∈ Si(T ), i = 0, 1 , 1 < q ≤ ∞ and α ∈ [α, α] .

Proof. (Recall that the range of Sobolev indices is restricted to s ∈ [−1, 1] in the
case of piecewise smooth surfaces; see Section 2.3.) The result is clear for s = 0.
So, let s > 0, let 1 < q ≤ ∞ and let p denote the conjugate index of q. We will
consider meshes T ∈ MK,ε and throughout the proof the constant involved in the
relations . and ∼ may depend on d, s and α, α as well as on K and ε (see Notation
2.3), but it will always be independent of q and u ∈ Si(T ), i = 0, 1.

For any τ ∈ T , define

(4.13) ζτ =
∥∥hs+αu∥∥

L∞(τ)
.

Then, simple geometric considerations show that it is always possible to construct
a simplex t = t(τ) ⊂ τ with the properties

(A) u does not change sign on t(τ).
(B) There exists a constant δ ∈ (0, 1) depending only on d, s, α, α and ε such

that

(4.14) min
x∈t(τ)

∣∣(hs+αu) (x)
∣∣ ≥ δζτ ,

and

(4.15) |t(τ)| ≥ δ |τ | .
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Note that (4.15), together with T ∈ MK,ε, implies

(4.16) hdt(τ) ≥ |t(τ)| ≥ δ |τ | ≥ δεhdτ ≥ δεhdt(τ).

Now first consider q in the range q ≤ qmax <∞, so that p ≥ qmax/(qmax − 1) > 1.
Then define coefficients bτ ∈ R by

(4.17) bτ = sign(u|t(τ))
{

min
x∈t(τ)

∣∣(hs+αu) (x)
∣∣}q/p ,

and then set (with Ps,t(τ) as defined in Lemma 4.4)

(4.18) w =
∑
τ∈T

bτh
sPs,t(τ).

We shall use w as a test function to estimate the negative norm of hαu, i.e., we
write

(4.19) ‖hαu‖W−s,q(Ω) ≥
|(hαu,w)|
‖w‖W s,p(Ω)

.

Now, to estimate the numerator in (4.19), we use Lemma 4.4(a), (4.17) and Remark
4.5 to obtain

|(hαu,w)| =
∣∣(hs+αu, h−sw)∣∣

=

∣∣∣∣∣∑
τ∈T

∫
t(τ)

hs+αu bτPs,t(τ)

∣∣∣∣∣ &∑
τ∈T

{
min
x∈t(τ)

∣∣(hs+αu) (x)
∣∣}q |t(τ)| ,

and combining this with (4.14) and (4.15), we obtain

(4.20) |(hαu,w)| & δq+1
∑
τ∈T

ζqτ |τ | & δq+1‖hs+αu‖qLq(Ω).

Turning to the denominator in (4.19), we first establish that

(4.21) ‖w‖W s,p(Ω) . ‖h−sw‖Lp(Ω).

To obtain this, first consider integer s and, for α ∈ Nd0, let ∂α := ∂α1
1 ∂α2

2 . . . ∂αdd .
Then,

(4.22) |w|pW s,p(Ω) :=
∑
α∈Nd0
|α|=s

‖∂αw‖pLp(Ω) =
∑
τ∈T
|bτ |p

∣∣hsPs,t(τ)

∣∣p
W s,p(t(τ))

.

Now recalling Proposition 2.5(e), which shows (∇h)|τ is constant and |∇h| . 1,
and applying the Leibniz formula, it is easy to show that∣∣hsPs,t(τ)

∣∣p
W s,p(t(τ))

. sup
j=0,1,...,s

hjpτ
∣∣Ps,t(τ)

∣∣p
W j,p(t(τ))

,

where the hidden constant only depends on s and |∇h|. By Lemma 4.4 and (4.16)
this supremum may be bounded by

∥∥Ps,t(τ)

∥∥p
Lp(t(τ))

and substituting in (4.22), we
obtain (4.21). Arguing as in the proof of Theorem 4.1, we obtain (4.21) for all
s ∈ R≥0 by interpolation.
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Furthermore, by definition of w and by Lemma 4.4(c), we have

∥∥h−sw∥∥
Lp(Ω)

≤
{∑
τ∈T
|bτ |p ‖Ps,t(τ)‖pLp(t(τ))

}1/p

.
{∑
τ∈T
|bτ |p |t(τ)|

}1/p

=

{∑
τ∈T
| min
x∈t(τ)

(hs+αu)(x)|q |t(τ)|
}1/p

≤
{∑
τ∈T
‖hs+αu‖qLq(t(τ))

}1/p

≤ ‖hs+αu‖q/pLq(Ω).(4.23)

Combining (4.20), (4.21) and (4.23) in (4.19), we obtain the required result (4.12)
when q ≤ qmax < ∞. (Note that this argument fails if qmax = ∞ since the dual of
L∞ is not L1.)

To complete the proof, we consider the case q = ∞, p = 1. Let τ0 ∈ T satisfy
ζτ0 = maxτ∈T ζτ . Then with the simplex t(τ0) as defined above (and satisfying
properties (A) and (B)), we define w = sign(u|t(τ0))hsPs,t(τ0). Then, using analo-
gous arguments to those above, we obtain

|(hαu,w)| = |(hs+αu, h−sw)|

≥ min
x∈t(τ0)

|(hs+αu)(x)|
∫
t(τ0)

Ps,t(τ0) &
∥∥hs+αu∥∥

L∞(Ω)

∫
t(τ0)

Ps,t(τ0).

On the other hand, one can easily check that (4.21) remains true for p = 1, and so

‖w‖W s,1(Ω) . ‖h−sw‖L1(Ω) =
∫
τ0
Ps,t(τ0).

These last two estimates imply the result (4.12) for q = ∞. The result for q ∈
[qmax,∞] follows by interpolation. �

5. Traces and extensions

Suppose that Ω is a (d+ 1)-dimensional domain (d = 1, 2) which is triangulated
with a mesh T ∈ MK,ε and that Ω̃ is a d-dimensional surface consisting of boundary
faces of elements in T . Thus, the restriction of T to Ω̃ defines a mesh T̃ on Ω̃.
Then T̃ ∈ MK̃,ε̃ with K̃ ∼ K and ε̃ ∼ ε. We can define the function h ∈ S1(T )
exactly as in (2.8). Analogously we can define h̃ ∈ S1(T̃ ). The mesh regularity
implies the estimate

h (x) . h̃ (x) ≤ h (x) ∀x ∈ Ω̃.

Suppose that the index sets of the elements and nodes of the meshes T and T̃ are
denoted, respectively, by Ni, Ñi, i = 0, 1.

5.1. Traces. Every function u ∈ S1(T ) has an obvious restriction ũ ∈ S1(T̃ ),
defined by requiring the nodal values of ũ to coincide with those of u on the surface
Ω̃, i.e., ũ is just the trace of u. For discontinuous functions u ∈ S0(T ) we can define
a restriction ũ by requiring that the values of ũ on each element of τ̃ ∈ T̃ should
be the average of the values of u over each τ ∈ T with τ̃ ⊂ τ . In each case, using
Proposition 3.1 (twice), we obtain

Lemma 5.1. For i = 0, 1, the estimates

(5.1) ‖h̃αũ‖Lp(Ω̃) ∼ ‖h̃
α+ d

p ũ‖`p(Ñi) . ‖h
α+ d

pu‖`p(Ni) ∼ ‖h
α− 1

p u‖Lp(Ω)

hold uniformly in u ∈ Si(T ), p ∈ [p0,∞] and α ∈ [α, α].
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Note also that the constants in (5.1) are not dependent on the d-dimensional
measure of Ω̃.

5.2. Extensions. With the same notation as above, suppose that ũ ∈ S1(T̃ ) is
given. We can again define the obvious extension u ∈ S1(T ) by defining u to be
zero at nodes of T \T̃ . For ũ ∈ S0(T̃ ), a suitable extension would be to define u|τ ,
for each τ ∈ T , to be the average of the value(s) of ũ on the elements of T̃ which
intersect τ and zero if there are no such intersections. Then, analogously to (5.1),
we have

Lemma 5.2. For i = 0, 1, the estimates∥∥∥hα− 1
pu
∥∥∥
Lp(Ω)

∼
∥∥∥hα+ d

pu
∥∥∥
`p(Ni)

∼
∥∥∥h̃α+ d

p ũ
∥∥∥
`p(Ñi)

∼
∥∥∥h̃αũ∥∥∥

Lp(Ω̃)

hold uniformly in u ∈ Si (T ), p ∈ [p0,∞] and α ∈ [α, α].

Notation 5.3. For future reference, we denote the extension operator from S1(T̃ )
to S1(T ) described above by Φ0.

6. Mixed norm estimates

It is well known that when mth order (i.e., degree m − 1) finite elements u are
used to approximate the solution v (of some differential equation, say) then, on
quasi-uniform meshes Th of maximum mesh diameter hmax, we obtain estimates of
the form ‖v − u‖Lp(Ω) . hsmax‖v‖W s,p(Ω), for 0 ≤ s ≤ m and v ∈ W s,p(Ω). In the
quasi-uniform case we have hmax ∼ N−1/d (where N is the number of nodes in the
mesh) and so we have the “Jackson estimate”

(6.1) ‖v − u‖Lp(Ω) . N−s/d‖v‖W s,p(Ω),

which measures the accuracy in terms of the number of degrees of freedom used in
the approximation. The Jackson estimate often is accompanied by its companion
“Bernstein estimate”

(6.2) ‖u‖W s,p(Ω) . Ns/d‖u‖Lp(Ω),

an inverse estimate holding for all u in the relevant finite element space.
To see under which circumstances non-quasi-uniform meshes offer better approx-

imation rates relating the achieved accuracy to the number of degrees of freedom,
one has to abandon measuring error and smoothness in the same Lp metric. This
is the point of view taken in the field of nonlinear or best N -term approximation:
See [13] for a recent excellent survey of relevant concepts. The formulation of such
results involves the Besov spaces Bsq(Lr(Ω)), consisting of functions with smooth-
ness s measured in Lr(Ω) (see, for example, [13, p. 92]). The third index q is of
secondary importance and permits further fine distinctions. A definition of these
spaces will be given in the Appendix below. Here we mention only that for s 6∈ N
and r ≥ 1, one has Bsr(Lr(Ω)) = W s,r(Ω). The following result for i = 1 is a
special case of the Jackson estimates from [3]. The case i = 0 is given in [15]. Such
estimates for one-dimensional problems can be found in [13, p. 102]. For further
comments on the following result, see [12].

Theorem 6.1. Let 0 < p <∞, d = 2, i ∈ {0, 1} and 0 < s ≤ 2. Assume that

(6.3)
1
r
<
s

2
+

1
p
.



INVERSE INEQUALITIES ON NON-QUASI-UNIFORM MESHES 1125

Then, for any v ∈ Bsr(Lr(Ω)) one has

(6.4) inf
u∈Si(T ), T ∈MK,ε, #T ≤N

‖v − u‖Lp(Ω) . N−s/2‖v‖Bsr(Lr(Ω)),

where the constant depends on the mesh-regularity parameters, the measure of Ω
and the discrepancy δ := s/2 + 1/p− 1/r.

Note that by the Sobolev embedding theorem, Bsr(Lr(Ω)) is compactly embed-
ded in Lp(Ω) when (6.3) holds. Obviously, the smaller r is, the larger the space
Bsr(L

r(Ω)) for fixed smoothness index s and it permits singularities which are pro-
hibited in W s,p(Ω). Thus the loss of regularity, encountered when decreasing r for
fixed s up to the critical embedding line defined (for arbitrary spatial dimension d)
by

(6.5)
1
r

=
s

d
+

1
p
,

can be compensated by the use of non-quasi-uniform meshes so as to retain the
same approximation rate O(N−s/2). Moreover, whenever for s, r satisfying (6.3)

(6.6) sup {s : v ∈W s,p(Ω)} < sup {s : v ∈ Bsr(Lr(Ω))},

appropriate non-quasi-uniform meshes provide asymptotically strictly better ap-
proximation rates for v than quasi-uniform meshes with a comparable number of
triangles. In fact, it has been shown in [11] that (6.6) holds generally for solutions
of second order elliptic boundary value problems on Lipschitz domains for suitable
r < p = 2.

The main reason for including the above Jackson estimate here explicitly is to
motivate the use of the inverse estimates developed in the earlier sections of this
paper to prove the companion Bernstein estimate for (6.4), i.e., the analogy of (6.2).
This is given in the following theorem.

Theorem 6.2. Let 1 ≤ p ≤ ∞, and assume that p, r, s satisfy (6.5) and in addition
that for i ∈ {0, 1} one has 0 ≤ s < i+ 1/r. Then

(6.7) ‖u‖Bsr(Lr(Ω)) . Ns/d‖u‖Lp(Ω),

uniformly in u ∈ Si(T ), p and r.

Proof. By Theorem A.1 and Proposition 3.9 (with α, p, p′, θ replaced by−s, r, p, s/d),
one has

(6.8) ‖u‖Bsr(Lr(Ω)) . ‖h−su‖Lr(Ω) . Ns/d‖u‖Lp(Ω),

where we have used that, because of (6.5), p−r
rp = s

d = θ lies in the range required
in Proposition 3.9. �

Remark 6.3. (i) The Besov norm on the left-hand side of (6.7) may be replaced
by the Sobolev norm ‖u‖W s,r(Ω), when r ≥ 1. The proof is analogous, but uses
Theorems 4.1 and 4.2 instead of Theorem A.1.

(ii) In the proof we have made use of various results from Section 3 in the norms
in `r and Lr. Here the importance that these results hold for r < 1 becomes
apparent.
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Let us finally obtain a Bernstein companion to the “almost optimal” Jackson
estimate (6.4). Choose p′ > p such that 1

r′ = s
d + 1

p′ . Then (6.7) combined with
Proposition 3.10 provides
(6.9)

‖u‖Bs
r′(L

r′ (Ω)) . Ns/d‖u‖Lp′(Ω) . Ns/d‖h−
d(p′−p)
pp′ u‖Lp(Ω) = Ns/d‖hs

′−su‖Lp(Ω),

where 1
r′ = s′

d + 1
p .

7. Application to non-quasi-uniform mortar elements

In this section we shall apply the inequalities derived above in the context of
the mortar finite element method ; see, e.g., [2, 6, 7, 25]. The mortar method seems
to be particularly well suited for problems with strong jumps in coefficients. Since
one therefore expects to deal with possibly irregular solutions, the use of highly
nonuniform meshes appears to be very desirable. When dealing with quasi-uniform
meshes, certain mesh-dependent norms provide a convenient basis for the stability
and accuracy analysis. Thus our main objective here is to extend the stability anal-
ysis for the mortar method to the much more flexible classMK,ε introduced above
where appropriate mesh-dependent norms now involve mesh functions. Specifically,
we will focus on the dual basis mortar method [22, 26] which has been shown in [22]
to yield stable and accurate discretisations in the 3-dimensional case also provided
that certain weak matching conditions along the boundary of interfaces between
adjacent subdomains hold. Here we employ concepts from the previous sections to
establish stability without any such matching conditions.

7.1. The continuous problem. Consider the second order elliptic boundary value
problem

(7.1)
− div a(x) gradu(x) = f(x) in Ω,

u = 0 on ΓD,
a(x)∂u/∂n (x) = g(x) on ΓN := Γ \ ΓD,

where a(x) is a uniformly positive definite matrix with coefficients in L∞ (Ω), the
domain Ω ⊂ Rd is bounded, ΓD is a subset of the boundary Γ := ∂Ω of Ω (with
positive measure relative to Γ). H1

0,D(Ω) denotes the closure in H1(Ω) = W 1,2 (Ω)
of all C∞-functions vanishing on ΓD.

Suppose that Ω is decomposed into nonoverlapping subdomains Ωk, k = 1, . . . ,
kmax, i.e.,

(7.2) Ω̄ =
kmax⋃
k=1

Ω̄k, Ωk ∩ Ωl = ∅ for k 6= l.

For simplicity we will assume throughout the rest of the paper that the domain
Ω ⊂ Rd and that the subdomains Ωk in (7.2) are polyhedral. If Ωk and Ωl share a
common interface, we define Γkl to be the relative interior of Ω̄k ∩ Ω̄l. The interior
faces form the skeleton

S :=
⋃
k,l

Γkl.

Γkl, ΓN , and ΓD will always be assumed to be the union of polyhedral subsets of
the boundaries of the Ωk.
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The mortar method is based on a variational formulation of (7.1) with respect
to the product space

XΠ := {v ∈ L2(Ω) : v|Ωk ∈ H1(Ωk), k = 1, . . . , kmax, v|ΓD = 0},
endowed with the norm

‖v‖1,Π :=
(∑kmax

k=1
‖v‖2H1(Ωk)

)1/2

.

The space H1
0,D(Ω) is characterised as a subspace of XΠ determined by appro-

priate constraints on jumps across interfaces.
This suggests the following weak formulation of (7.1): For a suitable pair of

spaces X,M, find (u, λ) ∈ X ×M such that

(7.3)
a(u, v) + b(v, λ) = (f, v)0,Ω + (g, v)0,ΓN for all v ∈ X,
b(u, µ) = 0 for all µ ∈M,

where (u, v)0,Ω and (g, v)0,ΓN denote the L2 inner products on Ω and ΓN , respec-
tively and

a(u, v) :=
∑
k

∫
Ωk

(a(x)∇u(x)) · ∇v(x)dx,
b(v, µ) :=

∑
Γkl⊂S(µ, [v])0,Γkl .

The jump [v] of a function v ∈ X is defined on S by

[v] := v|Ωk − v|Ωl on Γkl

(see [6] for further background information). It is important to note that therefore
each interface Γkl appears only once1 in the sum over S.

7.2. Discretisation. In order to describe next the mortar method as a discrete
version of (7.3), we choose for each subdomain Ωk a family of (conforming) simplicial
meshes Tk independently of the neighbouring subdomains. This means that the
nodes in Tk which belong to Γkl need not match with the nodes of Tl. Throughout
the rest of this section each family Tk will be assumed to lie in the class MK,ε,
for some fixed K and ε. (Note that the mesh sizes in the adjacent subdomains are
not required to satisfy any compatibility condition.) The corresponding spaces of
piecewise linear finite elements on Tk are denoted as before by S1(Tk). We set

(7.4) Xh := XΠ ∩
kmax∏
k=1

S1(Tk),

where the index h is used to signify the mesh dependence. The crucial step is to
fix the Lagrange multipliers for each Γkl (i.e., the discrete analogue of the space
M in (7.3)). The corresponding domain Ωk is called the nonmortar side, while Ωl
is the mortar side. It is important to stress here the following implicit notational
convention to be used throughout the rest of the section. The indexing of the
interface Γkl (as opposed to Γlk) always expresses that Ωk has been chosen as the
nonmortar side. We also emphasise that the choice of the mortar side is actually
arbitrary.

A common strategy is to choose the Lagrange multipliers also as continuous
piecewise linear finite elements to keep them as close as possible to the traces on
the nonmortar side. Here we consider an interesting alternative that has been

1Note that the indices k, l in Γkl have a different meaning. The first index will refer to the
nonmortar side, as explained later.
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recently proposed in [26] for the case d = 2 and in [22] for d = 3. In these papers
the Lagrange multipliers are allowed to be discontinuous in favour of an additional
practically very desirable feature, namely the fact that the Lagrange multiplier
spaces are spanned by a basis which is dual to those of the corresponding trace
spaces on the nonmortar sides. Let us briefly recall the construction from [22] for
d = 3 and refer to [26] for d = 2. Define the space

S0
kl := S1(T̃kl) ∩H1

0 (Γkl),

where H1
0 (Γkl) is the space of all functions in H1(Γkl) with zero trace on the

boundary ∂Γkl, and T̃kl denotes the restriction of the mesh Tk on the nonmortar
side to Γkl. The corresponding multiplier space Mkl is most conveniently defined
with the aid of the following mapping Fkl. Let τ be any triangle in T̃kl and, for any
v ∈ S0

kl, let the values of v at the nodes xi of τ be denoted by vi. Then Fklv = w

is defined as the unique piecewise linear function on T̃kl whose restriction to τ is
determined by its nodal values wi as follows:

(i) wi := 3vi − vr − vs for all pairwise different vertices xi, xr , xs of τ when
none of these vertices belongs to ∂Γkl.

(ii) If exactly one vertex, say xi, lies on ∂Γkl, set wi := (vr + vs)/2, wr :=
(5vr − 3vs)/2, ws := (5vs − 3vr)/2.

(iii) If exactly two vertices xr, xs belong to ∂Γkl, let wi = wr = ws := vi.
(iv) If all vertices of τ belong to ∂Γkl, set wi = wr = ws = vq where xq is a

nearest interior node to τ .
Of course, since w = Fklv is generally discontinuous, the nodal values wi are to

be understood as limit values obtained when approaching the respective node from
the interior of the triangle under consideration.

Let Nkl denote the set of interior nodes of T̃kl and let φi denote the standard
piecewise linear basis for S0

kl normalised by φi (xr) = δi,r for xr ∈ Nkl. Defining

ψi := Fklφi, xi ∈ Nkl,
it is not hard to show that

(7.5) (φi, ψj)0,Γkl = 0, i 6= j, (φi, ψi)0,τ =
|τ |
3
,

holds for all τ ∈ T̃kl and xi ∈ τ . Hence setting Mkl := span {ψi : xi ∈ Nkl}, it
follows that

(7.6) dimMkl = dimS0
kl.

The following further facts will be needed later. Given any µ ∈ Mkl, it has a
unique representation µ =

∑
xi∈Nkl µiψi and it follows from (7.5) that

(7.7)
‖µ‖2L2(τ)∼hd−1

τ

∑
xj∈τ

µ2
j , τ ∈ T̃kl, ‖µ‖2L2(Γkl)

∼
∑

xi∈Nkl

hd−1
i µ2

i =‖h d2− 1
2µ‖2`2(Nkl).

Clearly the second estimate follows from the first one which has been established
in [22, Eq. (4.2)]. Moreover, as a consequence one has (cf. [22, Eq. (4.3)])

(7.8) ‖v‖L2(Γkl) ∼ ‖Fklv‖L2(Γkl), v ∈ S0
kl.

The space of discrete multipliers is now defined as

(7.9) Mh :=
∏

Γkl⊂S
Mkl,

where, again, the index h indicates mesh dependence.
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Viewing the mortar method as a nonconforming discretisation, the above dual
basis variant has been shown in [22] to be stable for d = 3 even for shape regular
locally quasi-uniform meshes provided that the meshes on adjacent subdomains
match on the boundary ∂Γkl of the respective interface; see condition (M.1) in [22].
This assumption allows us to establish the stability of the mortar element method
without employing mesh-depending norms.

The objective of this section is to establish stability of the above dual basis
mortar discretisation for any locally quasi-uniform meshes also, i.e., for meshes in
the classMK,ε for arbitrary parametersK, ε, but without any additional constraints
across the interfaces, thus retaining full mortar flexibility.

Here we follow the lines in [6, 5, 25] and adopt the above formulation as a mixed
method. Thus the central issue is now to see under which circumstances

(7.10)
a(uh, vh) + b(vh, λh) = (f, vh)0,Ω + (g, vh)0,ΓN , vh ∈ Xh,
b(uh, µh) = 0, µh ∈Mh,

is a stable discretisation of (7.3). In other words, one has to show that the operator

(7.11) Lh :=
(
Ah Bᵀh
Bh 0

)
: Xh ×Mh → X ′h ×M ′h

induced by (7.10) is uniformly bounded and has uniformly bounded inverses with
respect to the underlying meshes. Of course, this depends on the norms for Xh and
Mh which have yet to be specified. At first glance, ‖ · ‖1,Π seems to be a natural
choice for Xh while Mh should be endowed with some sort of an H1/2 norm on the
skeleton S. However, this turns out to be inappropriate and we refer to [6] for the
details.

7.3. Stability. Our findings from the previous sections, in particular the inverse
estimates, allow us to handle mesh-dependent norms that are suitable for the class
of meshes MK,ε. To define these norms, one should note first that the mesh size
function h is defined separately for each subdomain Ωk. More precisely, define
h(k) ∈ S1 (Tk) by (2.8) with T replaced by Tk. Also define h(kl) ∈ S1(T̃kl) in an
analogous way. Since Tk belongs to the class MK,ε, the trace mesh T̃kl belongs
to the class MK̃,ε̃ with K̃ ∼ K and ε̃ ∼ ε. The superscripts k, kl in h will be
suppressed whenever the reference of h to an interface or subdomain is clear from
the context.

Guided by [6, 5], we introduce the norms

‖w‖1/2,h,Γkl := ‖h−1/2w‖L2(Γkl), ‖w‖−1/2,h,Γkl := ‖h1/2w‖L2(Γkl),

where the mesh function h = h(kl) is induced by the nonmortar side. Moreover, for
any vh ∈ Xh define
(7.12)
‖vh‖21,h := ‖vh‖21,Π +

∑
Γkl⊂S

‖[vh]‖21/2,h,Γkl = ‖vh‖21,Π +
∑

Γkl⊂S
‖h−1/2[vh]‖2L2(Γkl)

,

and finally, for µ ∈Mh,

(7.13) ‖µ‖2−1/2,h :=
∑

Γkl⊂S
‖µ‖2−1/2,h,Γkl

=
∑

Γkl⊂S
‖h1/2µ‖2L2(Γkl)

.
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Let us address first the continuity of the bilinear forms a(·, ·), b(·, ·) with respect
to these norms. Since

|(v, µ)0,Γkl | = |(h−1/2v, h1/2µ)0,Γkl | ≤ ‖v‖1/2,h,Γkl‖µ‖−1/2,h,Γkl ,

one has, in view of (7.12) and (7.13), for all u, v ∈ Xh and µ ∈Mh,

(7.14) |a(u, v)| . ‖u‖1,h‖v‖1,h, |b(v, µ)| . ‖v‖1,h‖µ‖−1/2,h.

The next step towards confirming stability of the discretisation is to confirm the
ellipticity of the bilinear form a(·, ·) on

(7.15) Vh := {v ∈ Xh : b(v, µ) = 0 for µ ∈Mh}.

Proposition 7.1. The bilinear form a(·, ·) is elliptic on Vh, i.e.,

(7.16) a(v, v) & ‖v‖21,h for all v ∈ Vh.

Proof. The inequality

(7.17) a(v, v) & ‖v‖21,Π for v ∈ Vh
has been used frequently in the analysis of mortar elements and, in particular, in
[22] to verify stability of the nonconforming method. It follows from a compact-
ness argument given in [2] as often found in proofs of nonstandard inequalities of
Poincaré-Friedrichs type. The argument covers a wide class of multiplier spaces
including the present version. So the desired ellipticity estimate (7.16) follows as
soon as we have also proved that

(7.18)
∑

Γkl⊂S
‖[v]‖21/2,h,Γkl . ‖v‖

2
1,Π for v ∈ Vh.

To this end, note that the quasi-interpolant

(7.19) Qklv :=
∑
i∈Nkl

(
v,

ψi
(1, ψi)0,Γkl

)
0,Γkl

ψi

takes L2(Γkl) into Mkl and is uniformly bounded with respect to the L2 norm. The
latter fact is a consequence of (7.5) and (7.8).

Moreover, Qkl reproduces constants, i.e.,

(7.20) Qkl(c) = c for all c ∈ R.
To see this, note that

Qkl (c) = c
∑
i∈Nkl

(
1,

ψi
(1, ψi)0,Γkl

)
0,Γkl

ψi = c
∑
i∈Nkl

ψi

= c
∑
i∈Nkl

Fklφi = cFkl

( ∑
i∈Nkl

φi

)
= c,

by definition of Fkl, because
∑
i∈Nkl φi takes the value one at each node i ∈ Nkl.

Furthermore, by definition of Vh, one has Qkl([v]) = 0, for v ∈ Vh. Thus, for v ∈ Vh,

(7.21) ‖[v]‖1/2,h,Γkl = ‖(id−Qkl)[v]‖1/2,h,Γkl = ‖h−1/2(id−Qkl)[v]‖L2(Γkl),

where id denotes the identity operator.
We now show that for any v ∈ H1/2(Γkl) one has

(7.22) ‖h−1/2(id−Qkl)v‖L2(Γkl) . ‖v‖H1/2(Γkl).
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To prove (7.22), consider any simplex τ in the triangulation of Γkl. Using (7.20),
the definition of Qkl and the fact that T ∈ MK,ε, it is straightforward to show
that

‖h−1/2(id−Qkl)v‖2L2(τ) . h−1
τ inf

c∈R
‖v − c‖2L2(τ̂) . ‖v‖2H1/2(τ̂),

where τ̂ :=
⋃
{τ ′ ∈ T̃kl : τ ′∩τ 6= ∅}. (Here we have combined the standard estimate

infc∈R ‖v − c‖L2(τ̂) . h
1/2
τ |v|H1/2(τ̂), valid since hτ ∼ diamτ̂ , with an interpolation

and density argument.) It remains to observe that the τ̂ overlap only a finite
number of times when τ runs through the triangulation of Γkl to conclude that∑
τ ‖v‖2H1/2(τ̂)

. ‖v‖2
H1/2(Γkl)

(see [3]) which proves (7.22).
Now we combine (7.21) and (7.22) with the trace theorem to obtain

(7.23) ‖[v]‖1/2,h,Γkl . ‖v‖H1(Ωk) + ‖v‖H1(Ωl) for v ∈ Vh,
which confirms (7.18) and proves the assertion. �

It is well known that once the continuity (7.14) and ellipticity (7.16) have been
established, it remains to verify the validity of the LBB-condition to ensure the
stability of the discretisation (7.10), i.e., the uniform bounded invertibility of the
mappings Lh in (7.11); see, e.g., [9].

Theorem 7.2. Consider the induced meshes T̃kl introduced in Section 7.2. Suppose
they all belong to MK,ε (with K, ε not depending on Γkl). Then there exists a
constant β > 0 depending only on the mesh parameters K, ε so that the pairs of
spaces Xh,Mh defined above satisfy the LBB-condition

(7.24) inf
µ∈Mh

sup
v∈Xh

b(v, µ)
‖v‖1,h‖µ‖−1/2,h

≥ β.

The core ingredient in the proof of Theorem 7.2 is the following result.

Lemma 7.3. For every µ ∈Mkl, there exists an element v ∈ S0
kl such that

(7.25) (v, µ)0,Γkl ≥ c
(
‖v‖21/2,h,Γkl + ‖µ‖2−1/2,h,Γkl

)
for some constant c > 0 independent of v and µ.

Proof. Given µ =
∑

xi∈Nkl µiψi ∈Mkl, define v =
∑
xi∈Nkl viφi by

(7.26) vi = hiµi, i ∈ Nkl.
Then, by (7.5) and (7.26),

(v, µ)0,Γkl =
∑

xi∈Nkl

h−1
i v2

i (φi, ψi)0,Γkl ∼ ‖h
d
2−1v‖2`2(Nkl)(7.27)

∼ ‖h−1/2v‖2L2(Γkl)
= ‖v‖21/2,h,Γkl ,

where we have used Proposition 3.1, applied to the (d−1)-dimensional domain Γkl.
On the other hand, by (7.7),

‖h d
2−1v‖2`2(Nkl) = ‖h d

2µ‖2`2(Nkl) ∼
∑
τ∈T̃kl

hτ‖µ‖2L2(τ) ∼ ‖h1/2µ‖2L2(Γkl)

= ‖µ‖−1/2,h,Γkl ,

which together with (7.27) completes the proof. �

We are now ready to complete the proof of Theorem 7.2.
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Proof of Theorem 7.2. Given µ ∈ Mh, let µkl denote its component corresponding
to Γkl ⊂ S. We define a suitable v ∈ Xh as follows. For each Γkl, let vkl ∈ S0

kl be
the function constructed in Lemma 7.3 (with v and µ in (7.26) replaced by vkl and
µkl) satisfying (7.25). Recall that, by our notational convention, Ωk denotes the
nonmortar side of Γkl. On any Ωk, we define a function vk ∈ S1 (Tk), first at the
nodal points x ∈ ∂Ωk by

vk (x) :=

{
vkl (x) if x ∈ Γkl for some l ∈ {1, . . . , kmax},
0 if x ∈ ∂Ωk\

(⋃kmax
l=1 Γkl

)
and then, on Ωk, by Φ0

(
vk|∂Ωk

)
, where Φ0 is the extension operator as in Notation

5.3. The global function v ∈ Xh is now defined by v|Ωk := vk, 1 ≤ k ≤ kmax. This
function v satisfies [v]|Γkl = vkl and, in view of (7.25),

b (v, µ) =
∑

Γkl⊂S
([v] , µ)0,Γkl

&
∑

Γkl⊂S

(
‖vkl‖21/2,h,Γkl + ‖µkl‖2−1/2,h,Γkl

)
=
∑

Γkl⊂S
‖vkl‖21/2,h,Γkl + ‖µ‖2−1/2,h.

To estimate the first sum in the right-hand side above, we use Theorem 4.1 and
Lemma 5.2 to obtain

‖v‖2H1(Ωk) .
∥∥h−1v

∥∥2

L2(Ωk)
=
∥∥h−1Φ0 (vk)

∥∥2

L2(Ωk)
.
∥∥∥h−1+1/2vk

∥∥∥2

L2(∂Ωk)

=
∑

l:Γkl⊂∂Ωk

∥∥∥h−1/2vkl

∥∥∥2

L2(Γkl)
=

∑
l:Γkl⊂∂Ωk

‖vkl‖21/2,h,Γkl .

Combining this estimate with the definition of the ‖·‖1,h-norm leads to

‖v‖21,h =
kmax∑
k=1

‖v‖2H1(Ωk) +
∑

Γkl⊂S
‖[v]‖21/2,h,Γkl .

∑
Γkl⊂S

‖vkl‖21/2,h,Γkl .

Thus, we end up with

b (v, µ) & ‖v‖21,h + ‖µ‖2−1/2,h & ‖v‖1,h ‖µ‖−1/2,h.

�

We conclude this section with a few remarks on error estimates. The standard
starting point is Strang’s second lemma (see, e.g., [4, pp. 102-104], [6, Proof of
Theorem 4.1]), which says that

(7.28) ‖u− uh‖1,h ≤ c
(

inf
vh∈Vh

‖u− vh‖1,h + sup
vh∈Vh

∣∣∫
S a

∂u
∂n [vh]ds

∣∣
‖vh‖1,h

)
.

The first term is referred to as the approximation error and the second one as the
consistency error. Let us for simplicity further assume that the solution u is in
H2(Ωk) for each k. Since vh ∈ Vh and hence is orthogonal to Mh in the sense of
(7.15), we may subtract an arbitrary element µh ∈Mh from the conormal derivative



INVERSE INEQUALITIES ON NON-QUASI-UNIFORM MESHES 1133

of u in the consistency error to obtain∣∣∣∣∣ ∑
Γkl⊂S

(a
∂u

∂n
, [vh])0,Γkl

∣∣∣∣∣ ≤ ∑
Γkl⊂S

‖a∂u
∂n
− µh‖−1/2,h,Γkl‖[vh]‖1/2,h,Γkl

≤
√ ∑

Γkl⊂S
‖a∂u
∂n
− µh‖2−1/2,h,Γkl

‖vh‖1,h .(7.29)

For the last estimate, we have applied a Cauchy-Schwarz inequality and the def-
inition of the ‖·‖1,h-norm (cf. (7.12)). The first factor in (7.29) can be esti-
mated by the same arguments as those used in the proof of (7.22) by employing
a∂u/∂n ∈ H1/2 (Γ), choosing µh := Qkl (a∂u/∂n) and a trace inequality for a∂u/∂n
at the end

‖a∂u
∂n
− µh‖2−1/2,h,Γkl

= ‖h1/2 (id−Qkl)
(
a
∂u

∂n

)
‖2L2(Γkl)

. h̄2
k

∥∥∥∥a∂u∂n
∥∥∥∥2

H1/2(Γkl)

. h̄2
k ‖u‖

2
H2(Ωk) .

(7.30)

Here, h̄k denotes the maximal mesh size in Tk. Combining (7.29) and (7.30) results
in the estimate of the consistency term∣∣∣∣∫

S

a
∂u

∂n
[vh]ds

∣∣∣∣ /‖vh‖1,h .
(
kmax∑
k=1

h̄2
k‖u‖2H2(Ωk)

)1/2

.

Furthermore, it is well known (cf. [4, Remark III, 4.6]) that, due to the validity
of the LBB-condition, the approximation error on the right-hand side of (7.28) can
be bounded by the best approximation in the unconstrained space Xh, i.e., the
approximation vh can be chosen independently on each subdomain. Recall that
u ∈ H2 (Ωk) and define vk := vh|Ωk ∈ S1 (Tk) as the nodal interpolant of u with
respect to the grid Tk. Then, the estimate of the first summand in the definition of
the ‖·‖1,h-norm (cf. (7.12))

inf
vh∈Vh

‖u− vh‖1,Π ≤ C
(
kmax∑
k=1

h̄2
k‖u‖2H2(Ωk)

)1/2

follows by well-known approximation results in Sobolev spaces.
It remains to discuss the second summand ‖[u− vh]‖1/2,h,Γkl . Here, we have to

assume a weak matching condition for the mesh sizes of adjacent subdomains

(7.31) h(lk) . h(kl) on Γkl.

Then employing (7.31), well-known approximation results, and the trace theorem
at the end, one obtains

‖[u− vh]‖1/2,h,Γkl = ‖(h(kl))−1/2[u− vh]‖L2(Γkl)

. ‖(h(kl))−1/2(u− vk)‖L2(Γkl) + ‖(h(lk))−1/2(u− vl)‖L2(Γkl)

. h̄(kl)‖u‖H3/2(Γkl) + h̄(lk)‖u‖H3/2(Γkl)

. h̄k‖u‖H2(Ωk) + h̄l‖u‖H2(Ωl).
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Thus, in summary, one obtains an error estimate for the discrete solution uh of
(7.10) of the familiar type

(7.32) ‖u− uh‖21,h .
kmax∑
k=1

h̄2
k‖u‖2H2(Ωk),

where the constant, however, depends on the bound in (7.31).
Assuming lower Sobolev regularity, one obtains analogous bounds with a corre-

spondingly lower power of h̄k.

Remark 7.4. The matching condition (7.31) allows meshes with possibly very dif-
ferent mesh sizes by choosing the mortar sides in an appropriate way. The stronger
condition

h(kl)(h(lk))−1 ∼ 1 on Γkl

ensures convergence without any restrictions on the choice of the mortar sides.

For highly nonuniform meshes, error estimates in terms of the number of degrees
of freedom (cf. Theorem 6.1 ) are preferable compared to estimates in terms of the
maximal step size. Here, our main focus was to prove the unconditional stability
of the dual basis Mortar method for rather general meshes (without the matching
condition (7.31)) and to derive usual convergence results under additional weak
assumptions on the meshes.

Appendix A. Besov norms and proof of Theorems 4.1 and 4.2

There are various equivalent versions of Besov norms. To introduce one which
is suitable for the present purposes, for y ∈ Rd and k ∈ N, let ∆k

yv denote the kth
order forward difference of v in the direction y and let Ωy,k := {x ∈ Ω : x + ly ∈
Ω, l ∈ N, 0 ≤ l ≤ k}. Then, for t ≥ 0, we define the kth order Lp modulus of
smoothness of v by

ωk(v, t,Ω)p := sup
|y|≤t
‖∆k

yv‖Lp(Ωy,k),

with the usual interpretation for p = ∞. Let s > 0. Then, for any k > s, the
quantity

(A.1) ‖v‖qBsq(Lp(Ω)) := ‖v‖qLp(Ω) +
∞∑
j=0

2sqjωk(v, 2−j ,Ω)qp

defines a norm for the Besov space of smoothness s in Lp(Ω). Norms for different
k > s are equivalent. Here p, q only need to satisfy 0 < p, q ≤ ∞ where as usual
for p, q = ∞ sums are replaced by sup; see, e.g., [14]. Of prime importance for us
is the fact that when p = q ≥ 1 and s 6∈ N, one has the norm equivalence

(A.2) ‖v‖W s,p(Ω) ∼ ‖v‖Bsp(Lp(Ω))

(cf. [23]). When p < 1, the classical definition of Sobolev spaces has to be modified.
In view of (A.2) it is natural to use the expression (A.1) with p = q as a definition
in this case. Therefore we will prove now the following more general statement
which covers the assertions of Theorem 4.1 (except for s = 1) and Theorem 4.2 as
special cases. (Theorem 4.1 for s = 1 was already proved in Section 4.1.)
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Theorem A.1. Suppose that 0 < p0 ≤ p ≤ ∞ and that 0 ≤ s < i+ 1/p. Then the
estimate

(A.3) ‖hαu‖Bsp(Lp(Ω)) . ‖hα−su‖Lp(Ω)

holds uniformly in u ∈ Si(T ), α ∈ [α, α], p0 ≤ p ≤ ∞ and i ∈ {0, 1}.

Proof. Let k be the smallest integer greater than or equal to i + 1/p to obtain the
required estimate for the sum on the right-hand side of (A.1).

Note first that, since we are considering meshes T ∈ MK,ε, there exists a ∈ (0, 1)
such that, for each τ ∈ T and each x ∈ τ , the ball B(x, kahτ ), centred on x with
radius kahτ satisfies

(A.4) B(x, kahτ ) ⊂
⋃
{τ ′ : τ ′ ∩ τ 6= ∅}.

For each j ∈ N0 := N ∪ {0}, let us define

Tj := {τ ∈ T : 2−j < ahτ}, Ωj :=
⋃
{τ ∈ T : τ 6∈ Tj}.

With these preliminaries we can write
∞∑
j=0

2sjpωk(hαu, 2−j,Ω)pp ≤
∞∑
j=0

2sjp sup
|y|≤2−j

‖∆k
y(hαu)‖pLp(Ωj∩Ωy,k)

+
∞∑
j=0

2sjp
∑
τ∈Tj

sup
|y|≤2−j

‖∆k
y(hαu)‖pLp(τ∩Ωy,k)

=: A1 +A2.

First we estimate A1. Note that, for each j, there exists y∗ = y∗(j) such that
|y∗| ≤ 2−j and

sup
|y|≤2−j

‖∆k
y(hαu)‖Lp(Ωj∩Ωy,k) ≤

k∑
l=0

(
k

l

)
‖hαu‖Lp(Ωj+ly∗(j)∩Ω).

Recalling that Ω + z = {x+ z : x ∈ Ω}, define

Cj :=

{
τ ∈ T : τ ∩

(
k⋃
l=0

(Ωj + ly∗(j)) ∩ Ω

)
6= ∅
}
.

Next we wish to bound the size of the elements of Cj. To this end first note that
there exists h0 = h0(Ω) > 0 and a positive constant c = c(k,K) with the following
property. For all τ ∈ T with hτ ≤ h0 we have that Bτ,k ∩ τ ′ 6= ∅ implies hτ ′ ≤ chτ ,
where Bτ,k := {y : dist (y, τ) ≤ khτ}. This expresses the fact that inflation of Ω by
offsets of width at most h0 does not change the topological genus of Ω. Now for each
τ ∈ T \Tj , we have, by definition, ahτ ≤ 2−j . Moreover, since T ∈ MK,ε, we also
know that any τ ′ in Cj must satisfy bhτ ′ ≤ 2−j, with b depending only on the mesh-
regularity parameters, on k and possibly on Ω through the constant h0 introduced
above. To see this, we distinguish two cases. Assume first that for τ ′ ∈ Cj , a closest
τ ∈ T \Tj satisfies hτ ≤ h0. Then, by the above remark, hτ ′ ≤ chτ ≤ c2−j/a so
that b := a/c has the required property. If hτ > h0, the trivial estimate hτ ′ ≤
diam(Ω)hτ/h0 ≤ 2−jdiam(Ω)/ah0 shows that b := max {a/c, ah0/diam(Ω)} does
the job. Hence with γ := max{a−1, b−1} we can write

A1 ≤ Cp
∞∑
j=0

2spj
∑
τ∈T

hτ≤γ2−j

‖hαu‖pLp(τ)
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for some constant C depending only on k. If we now define for each τ ∈ T an
integer jτ by requiring

(A.5) γ2−jτ−1 ≤ hτ ≤ γ2−jτ ,

then we have

A1 ≤ Cp
∑
τ∈T

jτ∑
j=0

2spj‖hαu‖pLp(τ) . Cp
∑
τ∈T

2spjτ ‖hαu‖pLp(τ)

≤ Cpγsp
∑
τ∈T

h−spτ ‖hαu‖pLp(τ) . Cpγsp‖hα−su‖pLp(Ω),

the pth root of which is in the appropriate form, since s is bounded above and below.
(Throughout the rest of the Appendix we use the convenient notation Ap . Bp

when we actually mean that A ≤ CB with a constant C independent of p.)
To estimate the quantity A2, consider y ∈ Rd with |y| ≤ 2−j. Then, for τ ∈ Tj

we have, by definition, |y| ≤ 2−j < ahτ . Consider the regions δy,τ := {x ∈ τ :
dist(x, ∂τ) ≤ k|y|} and set τ0 := τ \ δy,τ so that

(A.6) ‖∆k
y(hαu)‖pLp(τ) = ‖∆k

y(hαu)‖pLp(τ0) + ‖∆k
y(hαu)‖pLp(δy,τ ).

On τ0 the function hαu is smooth and we can estimate kth order differences by kth
order derivatives of hαu on τ times kth powers of the step size |y| ≤ 2−j. Taking
the linearity of h and u on τ0 into account, recalling the boundedness of ∇h and
estimating the gradient of u (which is constant) by ‖u‖L∞(τ)h

−1
τ , one obtains

‖∆k
y(hαu)‖pLp(τ0) . 2−kjph−kpτ hdτ‖hαu‖

p
L∞(τ).

Now note that

2−kjph−kpτ hdτ = 2−jp(i+
1
p )hd−ip−1

τ (2jhτ )1+ip−kp.

Our choice of k ensures that ip+ 1 − kp ≤ 0. Thus, again making use of the fact
that for τ ∈ Tj one has h−1

τ ≤ a2j , the factor in parentheses can be estimated by
apk−1−ip, whence we conclude

(A.7) ‖∆k
y(hαu)‖pLp(τ0) . 2−pj(i+1/p)hd−ip−1

τ ‖hαu‖pL∞(τ), i ∈ {0, 1}.

To estimate the second term on the right-hand side of (A.6), note that the volume
of δy,τ is of the order of 2−jhd−1

τ . When i = 0, we estimate the kth order difference
on δy,τ by a constant times absolute values which yields

(A.8) ‖∆k
y(hαu)‖pLp(δy,τ ) . 2−jhd−1

τ ‖hαu‖pL∞(τ̂),

where τ̂ is now defined to be the union of triangles τ ∈ T intersecting⋃
{δy,τ + tky : 0 ≤ t ≤ 1} .

When i = 1, the function hαu is Lipschitz continuous on the set τ̂ , with Lipschitz
constant of order h−1

τ ‖hαu‖L∞(τ̂) (cf. the proof of Proposition 2.5(e)) and (by defi-
nition (A.4)), and the points x+ ly, 0 ≤ l ≤ k, all belong to τ̂ , when x ∈ τ . Hence,
estimating this time the kth order difference by a sum of first order differences, we
have the estimate
(A.9)
‖∆k

y(hαu)‖pLp(δy,τ ) . (2−jhd−1
τ )h−pτ |y|p‖hαu‖

p
L∞(τ̂) ≤ 2−j−jphd−1−p

τ ‖hαu‖pL∞(τ̂).
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Note that (A.8) and (A.9) can be combined as
(A.10)
‖∆k

y(hαu)‖pLp(δy,τ ) . 2−jp(i+
1
p )hd−1−ip‖hαu‖pL∞(τ̂), i ∈ {0, 1}, u ∈ Si(T ),

which is valid for all τ ∈ Tj and which is exactly of the form (A.7). Combining
(A.7) and (A.10) in turn implies

A2 .
∞∑
j=0

∑
τ∈Tj

2−pj(i+1/p−s)hd−1−ip
τ ‖hαu‖pL∞(τ̂)

≤ Cp
∑
τ∈T

hd−1−ip
τ

∞∑
j=jτ

2−pj(i+1/p−s)‖hαu‖pL∞(τ̂),

(A.11)

for some constant C, where jτ is defined by (A.5), but with γ replaced by a−1.
The sum on the right-hand side of (A.11) is convergent whenever s < i + 1/p,

allowing us to write

A2 . Cp
∑
τ∈T

hd−1−ip
τ 2−jτp(i+1/p−s)‖hαu‖pL∞(τ)

≤ Cp
∑
τ∈T

hd−1−ip
τ hp(i+1/p−s)

τ ‖hαu‖pL∞(τ̂)

= Cp
∑
τ∈T

hd−psτ ‖hαu‖pL∞(τ̂).

Recalling Proposition 3.10, we obtain

A2 . Cp
∑
τ∈T

hd−psτ ‖h−d/pτ hαu‖pLp(τ̂) = Cp
∑
τ∈T
‖h−sτ hαu‖pLp(τ̂) . C

p‖hα−su‖pLp(Ω),

where we have used that, again due to the K-mesh property, the overlap of the
domains τ̂ stays controlled. This completes the proof. �
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