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DATA-SPARSE APPROXIMATION
TO THE OPERATOR-VALUED FUNCTIONS

OF ELLIPTIC OPERATOR

IVAN P. GAVRILYUK, WOLFGANG HACKBUSCH, AND BORIS N. KHOROMSKIJ

Abstract. In previous papers the arithmetic of hierarchical matrices has been
described, which allows us to compute the inverse, for instance, of finite ele-
ment stiffness matrices discretising an elliptic operator L. The required com-
puting time is up to logarithmic factors linear in the dimension of the matrix.
In particular, this technique can be used for the computation of the discrete
analogue of a resolvent (zI −L)−1 , z ∈ C.

In the present paper, we consider various operator functions, the operator
exponential e−tL, negative fractional powers L−α, the cosine operator func-
tion cos(t

√
L)L−k and, finally, the solution operator of the Lyapunov equation.

Using the Dunford-Cauchy representation, we get integrals which can be dis-
cretised by a quadrature formula which involves the resolvents (zkI − L)−1

mentioned above. We give error estimates which are partly exponentially,

partly polynomially decreasing.

1. Introduction

This paper deals with the representation and approximation of operator-valued
functions. In particular, we consider the four functions

F1(L) := e−tL,
F2(L) := L−α for α > 1,
F3,k(L) := cos(t

√
L)L−k for k ∈ N,

F4(L) :=
∫∞

0 etL
>
GetLdt

of an elliptic operator L representing four different types of problems. The functions
F1 and F3,k are of interest for parabolic (the operator exponential) and hyperbolic
(the cosine operator) problems. However, for the practical application it is indis-
pensable to realise (the application of) these operators in an efficient way.

Since we do not exclude finitely dimensional spaces, matrices are special exam-
ples of L. In the matrix case, the most commonly used algorithms for approximating
the action of the matrix exponential are based on Krylov subspace methods (see
[20, 17]). The Dunford integral has previously been used in [23] (see also §4.6 of [22])
to achieve efficient inversions of differential operators, in particular, a method was
derived and applied in [24] for solution of Burgers’ equation. Although a different
procedure was used in these references than those of the present paper, the above
metioned results would be interesting for further comparisons of efficiency of the
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methods. Methods with a polynomial convergence based on a Dunford-Cauchy inte-
gral for symmetric and positive definite operators are proposed in [21]. Concerning
the second order evolution problems and the cosine operator, new discretisation ap-
proaches have been recently proposed in [6] in the framework of strongly P-positive
operators.

The purpose of this paper is to approximate the operator function in a first step
by a sum

(1.1)
N∑

k=−N
γk(t)(zkI − L)−1

involving 2N + 1 resolvents (zkI −L)−1 (see (3.25)). It is important to notice that
the possible dependence on t (in the case of F1 and F3,k) is described by the scalar
coefficients γk(t) only, while the values zk in (1.1) are independent of t.

Of course, the representation (1.1) is only semi-discrete, since L may still belong
to an infinite-dimensional Banach space. In that case, L is to be replaced by a
discretisation (say Galerkin matrix Lh). The matrix resolvent (zkI −Lh)−1 can be
computed by the approximate inversion procedure offered by the hierarchical matrix
technique (see [14], [15], [16], [4]). Here, we make use of the fact that L is assumed
to be an elliptic operator and that the paper [2] ensures that (zkI − Lh)−1 has
the required hierarchical matrix property. The cost for the approximate inversion
amounts to O(n logq n) for an n × n matrix Lh. Note that in the special case of
constant coefficients the direct approximation to the elliptic inverse by hierarchical
matrices has been addressed in [18].

In order to reach the representation (1.1), we apply in §2 the Dunford-Cauchy
representation1 of the operator-valued function. The arising integral is discretised
by means of the Sinc-quadrature. In the case of the operator exponential (F1) one
gets an expression (1.1) which converges exponentially as N →∞. The exponential
convergence makes it possible to obtain an accurate approximation with N being
rather small.

Similarly, we can show in §4 that the corresponding quadrature result for F2(L) =
L−α is exponentially convergent, too.

The approximation of the cosine operator F3 in §6 turns out to be harder.
Here, the approximation of the form (1.1) converges polynomially depending on
the smoothness of the function the operator is applied to.

Since the cost for the matrix exponential F1 is only O(n logq n), the available
exponential may be used for further applications. In §5 we consider F4(L) =∫∞

0
etL
>
GetLdt, which represents the solution to the Lyanunov equation. After

a Sinc-quadrature applied to the integral over [0,∞), we obtain an exponentially
convergent quadrature rule involving the operator etkL

>
GetkL. Using the approxi-

mations to F1, we reach again a representation (1.1).

2. Integral representation to operator-valued functions

Before we describe the integral representation in §2.2, we formulate a condition
ensuring a fast convergent quadrature.

1We remark that another approach can be based on the Cayley transform (cf. [6], [7], [10]).
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2.1. Operators of (fS , fR)-type. Let A : X → X be a linear densely defined
closed operator in X with the spectral set sp(A). Given a curve Γ enveloping the
spectrum of A, the behaviour of the resolvent (zI − L)−1 as a function of z ∈ Γ
contains important information about the operator A and allows us to develop
a calculus of functions of A (cf. [6, 8, 9, 12]). Strongly P-positive operators were
introduced in [6] and play an important role in the theory of second order difference
equations, evolution differential equations as well as the cosine operator family (see
[6]). Using this class of operators, the solution operators for parabolic (the operator
exponential) and elliptic (the normalised hyperbolic sine operator family) equations
are introduced, studied and sparsely approximated in [8, 9]. These discretisations
have the remarkable property that their convergence rate is exponential. Due to
the application of H-matrices to represent the elliptic resolvents, we arrive at a
linear-logarithmic cost of the resultant discrete representations.

An exponentially convergent discretisation for the cosine operator generated by
a strongly P-positive operator remains to be an open question. In this paper, we
restrict ourselves to a class of operators of (fS , fR)-type to be defined below. In
that case, we are able to construct polynomially convergent approximations.

Let ΓS be a curve in the complex plane z = ξ + iη defined by the equation
ξ = fS(η) in the coordinates ξ, η. We denote by

(2.1) ΩΓS := {z = ξ + iη : ξ > fS(η)}

the domain inside of ΓS . In what follows, we suppose that this curve lies in the
right half-plane of the complex plane and contains sp(A), i.e., sp(A) ⊂ C\ΩΓS .
Now, we are in the position to give the following definition.

Definition 2.1. Given an operator A : X → X , let fS(η) and fR(z) be functions
such that

(2.2) ‖(zI −A)−1‖X→X ≤ fR(z) for all z ∈ C\ΩΓS .

Note that ΓS is defined by means of fS (cf. (2.1)). Then we say that the operator
A : X → X is of (fS , fR)-type.

Note that a strongly P-positive operator (defined in [6]) is also an operator of
(fS , fR)-type with the special choice

(2.3) fS(η) = aη2 + γ0, fR(z) = M/(1 +
√
|z|), a > 0, γ0 > 0, M > 0.

In particular, strongly elliptic partial differential operators are strongly P-positive.
In order to get exponentially convergent discretisations, we are interested in oper-

ators of (fS , fR)-type with an exponentially increasing function fS . Some examples
of such operators are given in the appendix.

2.2. Integral representation to operators of (fS , fR)-type. Let L be a linear,
densely defined, closed operator of (fS , fR)-type in a Banach space X . We choose
an integration curve ΓI := {z = fI(η)+iη} enveloping the so-called “spectral curve”
ξ = fS(η) (see Figure 1). Let F (z) be a complex-valued function that is analytic
inside of the integration curve ΓI . The next simple theorem offers conditions under
which one can define a bounded operator F (L).
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Figure 1. The spectral curve ΓS and the integration curve ΓI .

Theorem 2.2. Let ξ = fI(η) be an even function and assume that the improper
integral

(2.4)
∫ ∞
−∞
|Φ1(η)|fR(fI(η) − iη)dη with Φ1(η) = F (fI(η)− iη) [f ′I(η)− i]

converges. Then the Dunford-Cauchy integral

F (L) =
1

2πi

∫
ΓI

F (z)(zI − L)−1dz = − 1
2πi

∫ ∞
−∞

Φ1(η)[(fI(η)− iη)I − L]−1dη

defines a bounded operator F (L).

Proof. Using the Dunford-Cauchy integral, we represent F (L) by

1
2πi

∫
ΓI

F (z)(zI − L)−1dz.

After the parametrisation z = fI(η) + iη, η ∈ (−∞,∞), we get

(2.5) F (L) =
1

2πi

∫ ∞
−∞

Φ(η;L)dη

with Φ(η;L) = Φ1(η)[fI(η) − iη − L]−1, Φ1(η) = F (fI(η) − iη)[f ′I(η) − i]. Due to
the fact that L is an operator of (fS , fR)-type, we further get the estimate

‖F (L)‖ ≤
∫ ∞
−∞
|Φ1(η)|fR(fI(η)− iη)dη <∞,

which yields the existence of the bounded operator F (L). �
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3. Approximation to the operator exponential

In §§3.2–3.4, we consider the Sinc-quadrature based on the representation (2.5).
Finally in §§3.5–3.6, we apply this approach to the operator exponential. Because
of the new integration path, the result is different from a previous one used in [8]
and recalled in §3.1.

The quadrature result for the exponential will be used later in §5, where we
consider the solution operator F4(L) =

∫∞
0 etL

>
GetLdt to the Lyapunov equation.

3.1. Previous approach. Exponentially convergent quadrature rules for the func-
tion F1 generated by a strongly P-positive elliptic operator are analysed in [8]. In
fact, for an integration parabola

Γb(k) = {z = fI(η) + iη : η ∈ (−∞,∞)}, fI(η) := ãη2 + b(k),

with given k > 1, ã = a/k, b(k) = γ0 − (k − 1)/(4a), k > 1, the quadrature

(3.1) expL(−L) :=
L∑

p=−L
cpe
−zp(zpI − L)−1

with the parameters zp = fI(ph) + iph, h = 3
√

2πdk/(L2a), d = (1 − 1/
√
k)k/(2a)

involves 2L + 1 terms. For cp see [8, Algorithm 2.5]. It yields an approximation
which converges exponentially as L→∞:

‖ exp(−L)− expL(−L)‖ ≤ C
[

2
√
k exp(−L2/3)√

at(1− exp(−sL2/3))
+
k exp(−tsL2/3)
√
πt

3
√

2πdka2L

]
,

where s = 3
√

(2πd)2a/k and C is a positive constant.
Based on (3.1), an efficient parallel algorithm of almost linear complexity to

compute the matrix exponential has been proposed and analysed in [8]. Since in
the present paper we deal with a more restricted class of operators, we introduce a
better algorithm based on Lemma 3.2 below.

3.2. A new representation of the operator exponential. Let L be a linear,
densely defined, closed operator of (fS , fR)-type in a Banach space X, where

(3.2) fS(η) = γ0 cosh (aη) with γ0 > 0, fR(z) = 1/|=m z| if <e z > γ0.

The function fS (η) corresponds to the spectral curve

(3.3) ΓS = {z = ξ + iη : ξ = γ0 cosh (aη)},
containing the spectrum sp(L) of the operator L.

Definition 3.1. The class of (fS , fR)-type operators specified by fS , fR from (3.2)
is denoted by ES,R.

For the sake of simplicity, in what follows, we consider operators with real spec-
tra2 that are bounded from below by γ0 (cf. (3.2)).

In the following, we use the infinite strip

(3.4) Dd := {z ∈ C : −∞ < <e z <∞, |=mz| < d}
as well as the finite rectangles Dd(ε) defined for 0 < ε < 1 by

Dd(ε) = {z ∈ C : |<e z| < 1/ε, |=mz| < d(1 − ε)}.

2Analogously, one can consider operators with spectra in a half-strip Sµ (see (5.5)) where the

resolvent is bounded by fR(z) = dist−1(z, Sµ), z ∈ C\Sµ.
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Figure 2. Calculation of the width of the analyticity strip.

For 1 ≤ p ≤ ∞, introduce the family Hp(Dd) of all operator-valued functions
which are analytic in Dd, such that for each F ∈ Hp(Dd) it holds that ‖F‖Hp(Dd) <
∞ with

(3.5) ‖F‖Hp(Dd) :=

limε→0

(∫
∂Dd(ε)

‖F(z)‖p|dz|
)1/p

if 1 ≤ p <∞,
limε→0 supz∈Dd(ε) ‖F(z)‖ if p =∞.

In the following, we consider an integral representation for e−tL with L ∈ ES,R,
where the integrand is proved to be in the class Hp(Dd). The proper choice of
the parameter d > 0 will be determined in the sequel. We choose a parameter
b ∈ (0, γ0), where γ0 is defined in (3.2), and we consider the equation

(3.6) ϕ(ν) := b cos (aν)− ν = γ0, 0 < b < γ0, a > 0.

Let d1 be the minimal positive solution (if existing), and let −d2 be the maximal
negative solution (d2 > 0). Then d = min{d1, d2} is the desired parameter (see
Figure 2).

Lemma 3.2. Let L be an operator of the class ES,R. Choose a curve (integration
curve) ΓI = {z = ξ + iη : ξ = b cosh (a1η)} with a1 < a, b ∈ (0, γ0). Then
the operator exponential I(t;L) = e−tL can be represented by the Dunford-Cauchy
integral

(3.7) I(t;L) =
1

2πi

∫
ΓI

e−zt(zI − L)−1dz = − 1
2πi

∫ ∞
−∞

F1(η, t)dη
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(cf. [5]), where the integrand
(3.8)
F1(η, t) = e−zt(ba1 cosh (a1η) + i)(zI − L)−1 with z = b cosh (a1η) + iη, η ∈ R,

can be estimated on the real axis by

‖F1(η, t)‖ ≤ Cba1(1 + |η|)−1ea1|η|−bt cosh(a1η) for η ∈ R.
Moreover, F1(·, t) can be analytically extended into the strip Dd of the width d > 0
constructed above and it belongs to the class Hp(Dd) for all p ∈ [1,∞].

Proof. Since the operator L is of (fS , fR)-type with fS , fR given by (3.2), we can
choose

(3.9) fI(η) = b cosh (a1η), a1 < a, b ∈ (0, γ0).

After parametrisation of the path ΓI we get

(3.10) I(t) :=
1

2πi

∫
ΓI

e−zt(zI − L)−1dz =
1

2πi

∫ ∞
−∞

F1(η, t)dη

with
(3.11)

F1(η, t) = F11(η, t)(zI − L)−1 and
{
F11(η, t) = e−zt(ba1 sinh (a1η) + i),
z = b cosh (a1η) + iη.

Since the operator L is of (fS , fR)-type with fS , fR given by (3.2), we can choose
the integration path in accordance with (3.9) and get for |η| → ∞
(3.12) |Φ1(η)| = |F11(fI(η)− iη)[f ′I(η)− i]| ≤ C exp(a1|η|−bt cosh (a1η)).

Furthermore, there exists a constant MF1 such that

|fR(fI(η)− iη)| ≤MF1/(1 + |η|).
Thus, all assumptions of Theorem 2.2 are fulfilled and the integral (3.10) converges
for all t > 0.

Replacing in F1(η, t) the real variable η by z = η + iν, |ν| < d and using the
estimate for the resolvent, we get in the strip Dd = {z = (η, ν) : η ∈ (−∞,∞),
|ν| < d}

F1(η + iν, t) = O((1 + |η|)−1 exp(−btea1|η| cos (a1ν) + ba1|η|))(3.13)

+ iO((1 + η)−1 exp(−btea1|η| cos (a1ν) + a1η)).

Analyticity of the integrand can be violated only if b cosh (a1(η + iν))− ν + iη = 0
or if the set

Z = {b cosh (a1(η + iν))− ν + iη : η ∈ (−∞,∞), |ν| < d}
= {b cos (a1ν) cosh (a1η)− ν + i (b sin (a1ν) sinh (a1η) + η)

: η ∈ (−∞,∞), |ν| < d}
intersects the part of the real axis η > γ0 where the spectrum of L is situated
(in this case the resolvent is unbounded). The intersection of Z with the real axis
is {z ∈ Z : =mz = 0} = {b cos (a1ν) − ν : |ν| < d}. Now, we need the following
condition to be valid:

ϕ(ν) = b cos (a1ν)− ν < γ0.

Let d1,−d2 be defined as the solutions of equation (3.6) as above. Then the width
of the strip in which F1 can be extended analytically is d = min{d1, d2} (see also
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Figure 2). It follows from (3.13) that the integrand belongs to the class Hp(Dd)
for all p ∈ [0,∞). �

3.3. The Sinc-quadrature. Following [22, 12, 8], we construct a quadrature rule
for the integral in (3.7) by using the Sinc approximation. Let

S(k, h)(x) =
sin [π(x − kh)/h]
π(x − kh)/h

(k ∈ Z, h > 0, x ∈ R)

be the kth Sinc function with step size h, evaluated at x. Given f ∈ Hp(Dd), h > 0,
and N ∈ N, we use the notation

I(f) =
∫
R
f(ξ)dξ,(3.14)

T (f, h) = h

∞∑
k=−∞

f(kh), TN (f, h) = h

N∑
k=−N

f(kh),(3.15)

C(f, h) =
∞∑

k=−∞
f(kh)S(k, h), E(f, h) = f − C(f, h),(3.16)

η(f, h) = I(f)− T (f, h), ηN (f, h) = I(f)− TN(f, h)

(I: integral, T : trapezoidal rule, C: cardinal series representation, E: its error,
η, ηN : quadrature errors). Note that C(f, h) is a function of x ∈ R. Furthermore,
we need the notation of one-sided limits:

f(ξ ± id−) = lim
δ→d;δ<d

f(ξ ± iδ) for ξ, d ∈ R.

3.4. Convergence analysis. Adapting the ideas of [22, 12, 8], one can prove the
following approximation results for functions from H1(Dd), describing the accuracy
of T (f, h) and TN(f, h).

Lemma 3.3. For any operator-valued function f ∈ H1(Dd), it holds that

(3.17) η(f, h) =
i

2

∫
R

{
f(ξ − id−)e−π(d+iξ)/h

sin[π(ξ − id)/h]
− f(ξ + id−)e−π(d−iξ)/h

sin [π(ξ + d)/h]

}
dξ

providing the estimate

(3.18) ‖η(f, h)‖ ≤ e−πd/h

2 sinh(πd/h)
‖f‖H1(Dd).

If, in addition, f satisfies on R the condition

(3.19) ‖f(ξ)‖ < c(1 + |ξ|)−1 exp(a|ξ| − bea|ξ|), a, b, c > 0,

then

(3.20) ‖ηN (f, h)‖ ≤ 2c
ab

[
e−be−2πd/h

1− e−2πd/h
+

2
1 +Nh

exp(−beahN)
]

with the constant d from H1(Dd).

Proof. Let E(f, h) be the error from (3.16). Analogously to [22, Thm. 3.1.2],
E(f, h)(z) equals

sin (πz/h)
2πi

∫
R

{
f(ξ − id)

(ξ − z − id) sin[π(ξ − id)/h]
− f(ξ + id)

(ξ − z + id) sin[π(ξ + id)/h]

}
dξ
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and after replacing z by x, we have

η(f, h) =
∫
R
E(f, h)(x)dx

because of
∫
R S(k, h)(x)dx = h. After interchanging the order of integration and

using
1

2πi

∫
R

sin(πx/h)
±(ξ − x)− iddx =

i

2
e−π(d±iξ)/h,

we obtain (3.17). Using the estimate sinh (πd/h) ≤ | sin[π(ξ± id)/h]| ≤ cosh(πd/h)
(see [22, p. 133]), the assumption f ∈ H1(Dd) and identity (3.17), we obtain the
desired bound (3.18). The assumption (3.19) now implies

‖ηN (f, h)‖ ≤ ‖η(f, h)‖+ h
∑
|k|>N

‖f(kh)‖

≤ exp(−πd/h)
2 sinh(πd/h)

‖f‖H1(Dd) + c h
∑

k: |k|>N
(1 + kh)−1 exp(a|kh| − bea|kh|).(3.21)

For the last sum we use the simple estimate∑
k: |k|>N

(1 + |kh|)−1 exp(a|kh| − bea|kh|)

= 2
∞∑

k=N+1

(1 + kh)−1 exp(a|kh| − bea|kh|)

≤ 2
1 +Nh

∫ ∞
N

exp(a|kh| − bea|kh|)dx =
2

abh(1 +Nh)
exp(−beahN).(3.22)

It follows from (3.19) that

‖f‖H1(Dd) ≤ 2c
∫ ∞
−∞

ea|x| exp (− bea|x|)dx ≤ 4c
ab
e−b,

which together with (3.21) and (3.22) implies

‖ηN (f, h)‖ ≤ 2c
ab

[
exp(−b− πd/h)

sinh (πd/h)
+

1
(1 +Nh)

exp(−beahN)
]
,

completing the proof. �

3.5. Application to the exponential. The operator exponential I(t;L) = e−tL

is represented as the integral according to Lemma 3.2. Applying the quadrature
rule TN to the operator-valued function f(η) := − h

2πiF1(η, t), where F1(η, t) is
given by (3.8), we obtain for the operator family {I(t) ≡ I(t;L) : t > 0} (cf. (3.14))
that

(3.23) I(t) ≈ TN(t) ≡ TN (f, h) = − h

2πi

N∑
k=−N

F1(kh, t).

The error analysis is given by the following theorem.
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Theorem 3.4. Given the spectral curve ΓS from (3.3) associated with fS(η) =
γ0 cosh (aη), choose the integration curve {z = fI(η) + iη : η ∈ R} with fI(η) :=
b cosh (a1η) , b ∈ (0, γ0), a1 < a} and set h = logN

a1N
. Then

(3.24) ‖I(t)− TN (t)‖ ≤ C 1
t

(
e−bt−2πdN/ logN +

e−btN

1 + (logN) /a1

)
.

Proof. Substituting in (3.20) F1 for f , a1 for a, bt for b and specifying h = logN
a1N

,

we conclude (3.24) from ‖ηN (F1, h)‖ ≤ C 1
t (e
−bt−2πdN/ logN + e−btN

1+(logN)/a1
). �

3.6. The computational scheme. The exponential convergence of our quadra-
ture rule allows us to introduce the following algorithm for the approximation of
the operator exponential with a given tolerance ε > 0. Note that the time-variable
t ∈ (0,∞) enters only the coefficients of our quadrature rule, while all resolvents
appear to be independent on t.

Proposition 3.5. (a) Let ε > 0 be given. In order to obtain ‖I(t)− TN(t)‖ ≤ C ε
t

uniformly with respect to t > 0, choose

a1 > a, b ∈ (0, γ0), N = O(| log ε|), h =
logN
a1N

,

zk = fI(kh) + ikh (k = −N, . . . , N) with fI(η) = b cosh (a1η) ,

γk(t) = e−zkt
h

2πi
(ba1 cosh (a1kh) + i) .

Then TN (t) is a linear combination of 2N + 1 resolvents with scalar weights de-
pending on t :

(3.25) TN (t) =
N∑

k=−N
γk(t)(zkI − L)−1,

so that the computation of TN(t) requires 2N + 1 = O(| log ε|) evaluations of the
resolvents (zkI − L)−1, k = −N, . . . , N.

(b) The evaluations (or approximations) of the resolvents can be performed in
parallel. Note that the shifts zk are independent of t.

(c) Having evaluated the resolvents, TN (t) can be determined in parallel for dif-
ferent t-values t1, t2, . . . .

Proof. Use (3.24) for the error estimate. Then (3.23) and (3.11) show that γk(t) =
− h

2πiF11(kh, t). �

Remark 3.6. It is also possible to ensure ‖I(t) − TN(t)‖ ≤ Cε for t > 0 by the
choice N = O(| log ε| − log t). Then, however, the quadrature points zk become
t-dependent.

4. The operator L−α, α > 1

In this section we consider the operator family L−α, α > 1 (cf. [7]). The prac-
tical significance of this class of operators is related, in particular, to the operators
L±1/2, which play an important role in the analysis of elliptic Poincaré-Steklov
operators [9] including preconditioning issues. In particular, the factorised rep-
resentation Lα = LLα−2L, 2 − α > 1, holds, indicating a constructive way to
approximate positive powers of an elliptic operator.
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4.1. The integral representation. We begin this section with a representation
theorem for negative powers of an operator of (fS , fR)-type.

Lemma 4.1. Let L be an operator from the class ES,R. Choose a curve (the
integration curve) ΓI = {z = ξ + iη : ξ = b cosh (a1η)} with a > 0, b ∈ (0, γ0).
Then the operator L−α, α > 1, can be represented by the Dunford-Cauchy integral

(4.1) L−α =
1

2πi

∫
ΓI

z−α(zI − L)−1dz = − 1
2πi

∫ ∞
−∞

F2(η, t)dη,

where the integrand

(4.2) F2(η, t) = z−α(ba1 sinh (a1η) + i)(z − L)−1, z = b cosh (a1η) + iη, η ∈ R,

can be estimated on the real axis by

(4.3) ‖F2(η, t)‖ ≤ Ca1b
1−α(1 + |η|)−1e−a1(α−1)|η|.

Moreover, F2(·, t) can be analytically extended into a strip Dd of width d > 0
(defined as in the proof of Lemma 3.2) and it belongs to the class Hp(Dd) for all
p ∈ [1,∞].

Proof. For the sake of simplicity we consider again the case when the spectrum of
L is situated on the real axis. After parametrisation of the path ΓI , we get

L−α =
1

2πi

∫
ΓI

z−α(zI − L)−1dz

=
1

2πi

∫ 0

∞
(b cosh (a1η) + iη)−α(ba1 sinh (a1η) + i)(b cosh (a1η) + iη − L)−1dη

+
1

2πi

∫ −∞
0

(b cosh (a1η) + iη)−α(ba1 sinh (a1η)+i)(b cosh (a1η) + iη − L)−1dη

= − 1
2πi

∫ ∞
−∞

F2(η, t)dη

with F2(η, t) from (4.2). Since the operator L is from the class ES,R, it holds that

‖(zI − L)−1‖ ≤ 1
|=m z|

(cf. (3.2)) and we can choose the integration path by means of

fI(η) = b cosh (a1η) , a1 < a, b ∈ (0, γ0).

It is easy to see that for F (z) = z−α, α > 1, it holds that

|Φ1(η)| = |F (fI(η)− iη)[f ′I(η)− i]| ≤ Ce−αa1|η| · ea1|η| = e−a1(α−1)|η|

(see (2.4)). Moreover, there exists a constant Mf such that

|fR(fI(η)− iη)| ≤Mf/(1 + |η|) for |η| → ∞.

Since all assumptions of Theorem 2.2 are fulfilled, the Dunford-Cauchy integral
converges and the estimate (4.3) holds. The width d of the strip of analyticity of
F2(·, t) can be estimated as in Lemma 3.2. �
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4.2. Convergence analysis and computational scheme. Adapting the ideas
of [22, 12, 8], one can prove the following approximation results for functions from
H1(Dd) (see also Lemma 3.3 above).

Lemma 4.2. Let f ∈ H1(Dd) and let f satisfy the condition

(4.4) ‖f(ξ)‖ ≤ c(1 + |ξ|)−1 exp (−a|ξ|) for all ξ ∈R and some a, c > 0.

Then, taking h =
√

2πd
aN , we obtain

(4.5) ‖ηN (f, h)‖ ≤ 2c
a

[
2e−2πd/h

1− e−2πd/h
‖f‖H1(Dd) +

1
1 +Nh

e−ahN
]
.

Proof. We recall that for any operator-valued function f ∈ H1(Dd), the error
ηN (f, h) satisfies (3.17) and (3.18) due to Lemma 3.3. Assumption (4.4) now implies

‖ηN(f, h)‖ ≤ ‖η(f, h)‖+ h
∑
|k|>N

‖f(kh)‖

≤ exp(−πd/h)
2 sinh(πd/h)

‖f‖H1(Dd) + c h
∑
|k|>N

e−a|kh|

1 + |kh| .
(4.6)

For the last sum we use the simple estimate

(4.7)
∑
|k|>N

e−a|kh|

1 + |kh| = 2
∞∑

k=N+1

e−akh

1 + kh
≤ 2

1 +Nh

∫ ∞
N

e−axhdx =
2e−ahN

ah(1 +Nh)
.

Therefore, it follows from (4.4) that f ∈ H1(Dd) and

‖f‖H1(Dd) ≤ 2c
∫ ∞
−∞

e−a|x|dx ≤ 4c
a

which together with (4.6) and (4.7) implies the desired error estimate (4.5):

‖ηN (f, h)‖ ≤ 2c
a

[
exp(−πd/h)
sinh(πd/h)

+
1

1 +Nh
e−ahN

]
.

�

Now we can replace the integral (4.1) by the Sinc-quadrature rule TN (see (3.15))
and get the approximation

L−αN = − h

2πi

N∑
k=−N

F2(kh,L).

The error analysis is given by the next theorem. Note that the class ES,R is defined
with respect to a parameter d appearing in the strip Dd.

Theorem 4.3. Given an operator from the class ES,R, choose the integration curve
ΓI = {z = b cosh (a1η) + iη : η ∈ R} with b ∈ (0, γ0), a1 > 0 and set h =√

2πd
a1(α−1)N . Then

‖L−α − L−αN ‖ ≤
2c

a(α− 1)

(
e−2πd/h +

1
1 +Nh

e−a1(α−1)Nh

)
.

Proof. In Lemma 4.2 replace f(x) by F2(x) and a by a1(α−1) (see Lemma 4.1). �
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The exponential convergence of our quadrature rule allows us to introduce the
following algorithm for the approximation of negative powers L−α with a given
tolerance ε > 0.

Proposition 4.4. (a) Let ε > 0 be given. In order to ensure ‖L−α − L−αN ‖ ≤ ε,
choose the parameters by

a1 > a, b ∈ (0, γ0), N = O(| log ε|), h =

√
2πd

a1(α − 1)N
,

zk = b cosh (a1kh) + ikh (k = −N, . . . , N).

(b) L−αN is a linear combination of 2N + 1 resolvents like (3.25) so that parts
(b) and (c) of Proposition 3.5 apply here too.

5. Application to the Lyapunov solution operator

We start with a matrix example. Let us consider the linear dynamical system of
equations

dX(t)
dt

= AX(t) +X(t)B +G, X(0) = X0,

where X(t), A,B,G ∈ Rn×n (A,B,G given constant matrices). The solution X(t)
is given by

X(t) = etAX0e
tB +

t∫
0

e(t−s)AGe(t−s)Bds.

If all eigenvalues of A, B have negative real parts, then

(5.1) X(t)→ X∞ =

∞∫
0

etAGetBdt as t→∞,

and the limit X∞ satisfies the matrix Lyapunov-Sylvester equation

(5.2) AX∞ +X∞B +G = 0.

We refer to [3] concerning the proof of (5.1) in the case of a matrix equation. The
operator case considered below can be treated similarly.

5.1. Basic example. In the following, we generalise the corresponding results from
[13] (applied to the matrix Lyapunov-Sylvester equation) to the case of the operator-
valued function G0(z,L, G). Specifically, we set A = L>, B = L in (5.2), and
we consider the solution of the operator Lyapunov equation: find a self-adjoint
continuous operator Z : L2(Ω)→ V such that

(5.3) L>Z + ZL+G = 0.

The solution Z of the operator Lyapunov equation is given by an integral repre-
sentation on Γ := [0,∞),

(5.4) Z(L) :=
∫ ∞

0

G0(t,L, G)dt,

where G0(t,L, G) is a continuous operator-valued function of t ∈ [0,∞), an elliptic
second order operator L and a self-adjoint operator G : L2(Ω)→ L2(Ω) defined by

G0(z,L, G) := ezL
>
GezL

(see [3] for the matrix case).
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Note that the continuous operators L,L> : H1
0 (Ω)→ H−1(Ω) admit continuous

extensions by L : L2(Ω) → V ′, L> : V → L2(Ω), where V := H2(Ω) ∩H1
0 (Ω). As

usual in control theory, we further assume <e sp(−L) ⊂ (λ0,∞).
For the analysis we need that −L is an elliptic operator of (fS , fR)-type with

fS, fR given by (2.3) such that

(5.5) sp(−L) ⊂ Sµ := {z ∈ C : |=m z| ≤ µ,<e z > λ0}, λ0, µ > 0.

In particular, the latter condition implies that the elliptic operator L generates a
strongly continuous semi-group etL such that

(5.6) ||etL|| ≤ C µ2

√
t
e−cλ0t for all t ∈ [0,∞) (|| · || : spectral operator norm),

with C, c > 0 independent of λ0 and t.

5.2. Cardinal series representations for analytic functions. Our goal is the
construction and analysis of exponentially convergent quadrature rules for the inte-
gral (5.4). The construction consists of two steps: First, we approximate the integral
by a sum of operators G0(tk,L, G) computed at a few quadrature points tk ∈ [0,∞),
and then we approximate each operator exponential involved in G0(tk,L, G) as in
§3.6. The resulting qudrature rule is similar to that in [13, Thm. 5] for the case
of a matrix Lyapunov equation. Contrary to [13], here we consider the integral of
an operator-valued function and therefore our proof is more technically involved;
moreover, we apply the first-level quadrature to the scaled representation (see 5.7)
and then use the new approximation scheme of §3.6.

For the operator-valued function Z(L), we further use the scaled representation
obtained by the substitution t = uα,

Z(L) =
∫ ∞

0

Gα(t,L, G)dt :=
∫ ∞

0

gα(t,L>)Ggα(t,L)dt,

where

(5.7) gα(z, λ) :=
√

1 + 2αzαez
1+2αλ, α ≥ 0,

so that (5.4) corresponds to the case α = 0.
First, we recall some auxiliary approximation results for holomorphic functions

based on the Sinc-approximation. Let the region3 Dd (see Figure 3) for a given
d ∈ (0, π/2] be defined by

(5.8) Dd := {z ∈ C : | arg(sinh z)| < d}.
We denote by H1(Dd) the family of functions that are analytic in Dd and that
satisfy

(5.9) N1(f,Dd) :=
∫
∂Dd
|f(z)||dz| <∞.

Now, for α, β ∈ (0, 1], introduce the space

Lα,β(Dd) :=
{
f ∈ H1(Dd) : |f(z)| ≤ C

(
|z|

1 + |z|

)α
e−β<e z for all z ∈ Dd

}
(cf. [22]). We set

φ(z) := log{sinh(z)},

3This is the domain called D3
d in [22]. Note that it is different from the strip Dd in (3.4).
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Figure 3. The region Dd

hence
φ′(z) =

1
tanh(z)

, z = φ−1(w) = log
(
ew +

√
1 + e2w

)
,

where φ(z) is the conformal map of Dd onto the infinite strip Dd defined by (3.4).
For any f ∈ H1(Dd), we introduce the integral representation for the error I

arising in the cardinal series expansions

(5.10)
f(z)
φ′(z)

=
∞∑

k=−∞

f(tk)
φ′(tk)

S(k, h) (φ(z)) + I
[
f

φ′

]
(z) for all z ∈ Dd

(see [22] for more details) with

(5.11) I [ψ] (z) :=
sin[πφ(z)/h]

2πi

∫
∂Dd

ψ(ζ)φ′(ζ)dζ
[φ(ζ) − φ(z)] sin[πφ(ζ)/h]

.

Similarly, if φ′f ∈ H1(Dd), then

(5.12) f(z) =
∞∑

k=−∞
f(tk)S(k, h) (φ(z)) + I [f ] (z) for all z ∈ Dd.

It is easy to check that

(5.13) gα(·, λ) ∈ Lα,β(Dd), β ≥ min{1, b0} for λ ∈ ΓL,

where, with given b0, a > 0, ΓL := {z = ξ + iη : ξ = −b0 − aη2, η ∈ (−∞,∞)} is
the integration parabola used in the proof of Lemma 5.2 below. Due to [22, Lemma
4.2.4] we know that (5.13) implies

(5.14) φ′(·)gα(·, λ) ∈ H1(Dd).
The next lemma proves a uniform bound on the value N1 in (5.9) with respect to
λ ∈ ΓL.
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Lemma 5.1. It holds that gα(·, λ) ∈ Lα,β(Dd). Moreover, φ′gα(·, λ) ∈ H1(Dd),
where the corresponding value N1(φ′gα(·, λ),Dd) defined by (5.9) is uniformly
bounded in λ ∈ ΓL.

Proof. The first assertion is easy to check. Our proof of the second statement is
similar to that in [22, Lemma 4.2.4]. We have to prove that

(5.15) N1(φ′gα(·, λ),Dd) :=
∫
∂Dd
|φ′(z)gα(z, λ)| |dz| < C <∞,

where C does not depend on λ. If z ∈ ∂Dd, then φ(z) = t+ iτ where t = <eφ(z),
τ = =mφ(z) = ±d. Thus dz = {1/φ′(z)}dt and z = φ−1(t ± id) implying |z| =
O(t), t→∞, and∫

∂Dd
|φ′(z)gα(z, λ)| |dz|

≤ C
∫
R

|t|α
(1 + |t|)α |e

log2(et±id+
√

1+e2(t±id))(−b0−aη2+iη)|dt ≤ C(b0, a) <∞.

Then (5.15) follows. �

Due to Lemma 5.1, we can substitute f(z) = gα(z, λ) in both (5.10) and (5.12).

5.3. First quadrature applied to Z(L). In the sequel, the value of d involved
in Dd (cf. (5.8)) will be chosen from the interval 0 < d < π

2(1+2α) , where we
further fix the parameter α = 1/2. Without loss of generality we can assume
β = min{1, λ0/2} ≤ α = 1/2 and then choose the parameter b0 that defines the
integrating parabola ΓL by b0 = λ0/2. This choice also implies a < λ0

2µ2 . Since
α = 1/2 is fixed, we futher omit the subscript α in gα and set g = g1/2. Now we
are in a position to derive the quadrature rule.

Lemma 5.2. Let the spectrum of L lie in the strip Sµ defined by (5.5). Given
N ∈ N and β = min{1, λ0/2}, with the proper choice of h > 0, tk ∈ [0,∞), and M
by

(5.16) h = 3

√
πd

2λ0N2
, tk = log

(
ekh +

√
1 + e2kh

)
, M = d2βNe ,

the integral Z(L) =
∫∞

0
G0(t,L, G)dt allows an exponentially convergent quadrature

rule

(5.17) ZN (L) := h

N∑
k=−M

tanh(tk)G 1
2
(tk,L, G),

providing the error estimate

(5.18) ‖Z(L)−ZN (L)‖ ≤ Cµ2e−(2πλ0dN)2/3

with the constant C independent of N and with µ being half the width of the strip
Sµ in (5.5).

Proof. In our proof we extend the results from [22, Example 4.2.11] to the case of
operator-valued functions. The proof consists of three steps.



DATA-SPARSE APPROXIMATION 1313

Step 1 (Cardinal series representations for g(·,L)). First we note that under the
above assumptions on L the operator-valued function g(·,L) can be represented by
using the uniformly convergent Dunford-Cauchy integral

(5.19) g(z,L) =
1

2πi

∫
ΓL

g(z, ξ)(ξI − L)−1dξ for z ∈ Dd,

where ΓL is the parabola containing sp(L) as above. In fact, it is easy to check
that for ξ ∈ ΓL,

|g(z, ξ)| ≤ C|z|1/2
∣∣∣ez2(−b0−aη2+iη)

∣∣∣ , η ∈ (−∞,∞),

where | arg z2| < π/2, i.e., <ez2 > 0, which ensures the convergence of the integral
in (5.19). A similar representation holds for g(z,L>)

φ′(z) . Therefore, due to g(·, λ) ∈
H1(Dd), λ ∈ ΓL (see Lemma 5.1), the substitution of (5.10) into the Dunford-
Cauchy integral leads to the identity
(5.20)

g(t,L>)
φ′(t)

=
∞∑

k=−∞

g(tk,L>)
φ′(tk)

S(k, h) (φ(t)) + I
[
g(·,L>)
φ′

]
(t) for t ∈ [0,∞).

The convergence of the integral in the right-hand side of (5.20) follows from the
estimate (for ζ ∈ Dd, ζ = t+ iτ, |τ | ≤ d)

(5.21)
∥∥g(ζ,L>)

∥∥ ≤ C e−b0t2
a
√
t
.

To prove (5.21), first we consider the case |ζ| → ∞, i.e., t→∞, and we obtain∥∥g(ζ,L>)
∥∥ ≤ C

∫
ΓL

|g(ζ, ξ)|
∥∥(ξI − L)−1

∥∥ |dξ|
≤ Ct

∫ ∞
−∞

| − 2aη + i|
1 +
√
a|η| |e

(t2−τ2+2itτ)(−b0−aη2+iη)|dη

≤ Cte−b0(t2−d2)

∫ ∞
−∞

e(d2−t2)η2−2tτηdη.(5.22)

To study the case ζ → 0, we note that due to the bound on d > 0, it holds that
|τ | ≤ tan(d) t, t→ 0 with tan(d) < 1. Then we obtain∥∥g(ζ,L>)

∥∥ ≤ C

∫
ΓL

|g(ζ, ξ)|
∥∥(ξI − L)−1

∥∥ |dξ|
≤ C

∫ ∞
−∞

√
t
| − 2aη + i|
1 +
√
a|η| |e

ct2(−b0−aη2+iη)|dη

≤ C
√
te−b0t

2
∫ ∞
−∞

∣∣∣ect2(−aη2+iη)
∣∣∣ dη

≤ C
√
te−b0t

2
∫ ∞
−∞

e−act
2η2
dη

≤ C
√
te−b0t

2
∫ ∞

0

1
2t2η

e−audu

≤ C
e−b0t

2

√
t

∫ ∞
0

1√
u
e−audu ≤ C e

−b0t2

a
√
t
,(5.23)
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which shows that the integrand in (5.20) is L1-integrable.
On the other hand, by the same arguments the property φ′g(·, λ) ∈ H1(Dd) (see

Lemma 5.1) leads to the representation (see (5.12))

(5.24) g(t,L) =
∞∑

k=−∞
g(tk,L)S(k, h) (φ(t)) + I [g(·,L)] (t) for t ∈ [0,∞).

Step 2 (Quadrature with an explicit error representation). We multiply (5.20) by
φ′(z) and insert the result together with (5.24) into the integral to be approximated
and we obtain
(5.25)∫ ∞

0

G1/2(t,L, G)dt :=
∫ ∞

0

g(t,L>)Gg(t,L)dt = B(L, G) + I1(L, G) + I2(L, G),

where

B(L, G) :=
∞∑

k=−∞

∞∑
m=−∞

g(tk,L>)
φ′(tk)

Gg(tm,L)
∫ ∞

0

S(k, h) (φ(t)) S(m,h) (φ(t))φ′(t)dt,

I1(L, G) :=
∫ ∞

0

φ′(t) I
[
g(·,L>)
φ′

]
(t) G g(t,L) dt,

I2(L, G) :=
∫ ∞

0

(
g(t,L>)− φ′(t)I

[
g(·,L>)
φ′

]
(t)
)
G I [g(·,L)] (t)dt.

Due to the orthogonality relation∫ ∞
0

S(k, h) (φ(z)) S(m,h) (φ(z)) φ′(z) dz = hδk−m (δk−m : Kronecker symbol)

for Sinc-functions (see [22]), we can reduce the double sum in B(L, G) to

(5.26) B(L, G) = h

∞∑
k=−∞

g(tk,L>)
φ′(tk)

G g(tk,L).

Step 3 (Final error estimate). Using the relation φ′(tk)−1 = tanh(tk) which
proves |φ′(tk)−1| = O(1) as tk →∞ and truncating the infinite sum B(L, G) from
(5.26), we obtain the quadrature rule for the integral involving G1/2,

(5.27) GN := h
N∑

k=−M
tanh(tk)g(tk,L>)Gg(tk,L).

Due to (5.25) we readily obtain

(5.28) A0 :=
∥∥∥∥∫ ∞

0

G1/2(t,L, G)dt−B(L, G)
∥∥∥∥ ≤ ‖I1(L, G)‖ + ‖I2(L, G)‖ ,

where the integrals I1(L, G) and I2(L, G) can be estimated by using (5.11). Taking
into account that for z ∈ R and ζ ∈ ∂Dd it holds that =mφ(ζ) = ±d and −d <
=mφ(z) < d, we conclude that

| sin(πφ(ζ)/h)| ≥ sinh(πd/h),

| sin(πφ(z)/h)| ≤ cosh[(π/h){=mφ(z)}],
|φ(ζ) − φ(z)| ≥ d− |=mφ(z)|(5.29)
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(see [22]). Indeed, one can easily verify that

‖I1(L, G)‖ ≤ C||G||
∫ ∞

0

√
te−a0t

2
|φ′(t)|

∥∥∥∥I [g(·,L>)
φ′

]
(t)
∥∥∥∥ dt

≤ C||G||
∫
∂Dd
‖g(ζ,L>)‖dζ

∫ ∞
0

√
te−a0t

2 sin[πφ(t)/h]
sinh(πd/h)

max
ζ∈Dd

1
|φ(ζ) − φ(t)|dt

≤ CN1(g(·,L>),Dd)||G||e−πd/h.

(5.30)

The bound for I2(L, G) is more involved. We split I2 into two terms. Similarly
to above we derive∥∥∥∥∫ ∞

0

g(t,L>)GI[g(·,L)](t)dt
∥∥∥∥ ≤ CN1(φ′g(·,L),Dd)||G||e−πd/h

by taking into account that |φ′(t)| → 1 as t →∞. Using the inequality (5.29), the
asymptotic behaviour <e φ(t) ∼ t as t→∞ and =mφ(t) = 0 for t ∈ [0,∞), we get∥∥∥∥∫ ∞

0

I[g(·,L)](t)GI
[
g(·,L>)
φ′

]
(t)φ′(t)dt

∥∥∥∥
≤ Ce−2πd/hN1(g(·,L>),Dd)N1(φ′g(·,L),Dd)||G||

× sup
ζ∈∂Dd

∫ ∞
0

dt

d2 + |<e φ(ζ)−<e φ(t)|2

for the second term, where the corresponding integral over [0,∞) is uniformly
bounded with respect ζ ∈ ∂Dd.

Finally, we estimate the sum representing the error δN of the quadrature rule,

δN :=

∥∥∥∥∥
∫ ∞

0

G0(t,L, G)dt − h
N∑

k=−M

G1/2(tk,L, G)
φ′(tk)

∥∥∥∥∥ ≤ A0 +A1 +A2,

where

A0 ≤ Ce−πd/hN1(g(·,L>),Dd)N1(φ′g(·,L))||G|| for A0 from (5.28),

A1 :=

∥∥∥∥∥h
−M−1∑
k=−∞

G1/2(tk,L, G)
φ′(tk)

∥∥∥∥∥ , A2 :=

∥∥∥∥∥h
∞∑

k=N+1

G1/2(tk,L, G)
φ′(tk)

∥∥∥∥∥ .
Next, we consider A2 (the treatment of A1 is similar). Due to the estimate∥∥∥∥G1/2(tk,L, G)

φ′(tk)

∥∥∥∥ ≤ C‖G‖ ∥∥∥∥g(tk,L>)
φ′(tk)

∥∥∥∥ ‖g(tk,L)‖

≤ C‖G‖tke−2λ0t
2
k ≤ C‖G‖e−2λ0(kh)2

,

(see [22, (4.1.7)]), we obtain

A2 ≤ Ch
∞∑

k=N+1

e−2λ0(kh)2 ≤ Ch
∫ ∞
N

e−2λ0(xh)2
dx =

Ch

2λ0h2N
e−2λ0h

2N2
,

where the constant C = C(L, G) can be estimated by C ≤ c||G||. Now we derive

δN ≤ Ce−πd/hN1(g(·,L>),Dd)N1(φ′g(·,L))||G|| + C||G||(e−2λ0h
2M2

+ e−2λ0h
2N2

),
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that proves the result for G0, taking into account that according to (5.22) and (5.23)

N1(g(·,L>),Dd) ≤ Ca−1, N1(φ′g(·,L),Dd) ≤ Ca−1.

The choice of the parameters h and M by (5.16) leads to the desired error estimate.
�

Remark 5.3. Note that setting L = −βI, G = I leads to the exponentially conver-
gent qudrature rule for the integral of a holomorphic function g(z) := G0(z,−βI, I)
over [0,∞), which is a particular case of [22, Theorem 4.2.11].

Lemma 5.2 already provides a low rank approximation to the solution of the
Lyapunov equation in the case where a right-hand side G has this property. In
fact, let us assume that G has a separable representation consisting of kG terms,
i.e.,

G :=
kG∑
α=1

aα ∗ fα,

where fα : L2(Ω)→ R are linear continuous functionals, while aα ∈ L2(Ω) are func-
tions on Ω. Substitution of the above representation into G0(tk,L, G) = etkL

>
GetkL

also shows that G0(tk,L, G) is separable with kG terms. Due to (5.17), ZN (L) is
separable with k = kG(N +M + 1) terms (in the matrix case, this is equivalent to
rankZN (L) ≤ k).

5.4. Second quadrature applied to ZN (L). We proceed with the approximation
of the individual terms G1/2(tk,L, G) in (5.17). For this purpose, we apply the basic
construction from §3.4 modified by a proper translation transform explained below.
We use the symbol A for both L and L>.

We recall that with a given elliptic operator A and for the described choice of
the parameters zp, h, cp, the quadrature

(5.31) expL(A) =
L∑

p=−L
cpe
−zp(zpI −A)−1 (see (3.25))

provides exponential convergence (cf. (3.24)). To adapt the above approximation
to our particular situation, we include the parameter tk into the operator by setting
Ak := t2kL, which then leads to the bound λmin(Ak) = O(t2k). Due to the factor 1

t in
(3.24), the error estimate deteriorates when tk → 0. To obtain uniform convergence
with respect to tk → 0, we use a simple shift of the spectrum,

eAk = e−1 · eBk for Bk := Ak + I,

ensuring that λmin(Bk) = O(1) > 0. Now we apply the quadrature (5.31) to the
operator Bk, which leads to the uniform error estimate

‖ exp(Bk)− expL(Bk)‖ ≤ Ce−L/ logL for all k = −M, ..., N,

where the constant C does not depend on L and k. With this procedure, we arrive
at the following product quadrature.

Theorem 5.4. Under the conditions of Lemma 5.2, the expression

ZN,L(L) := 2h
N∑

k=−M
tk tanh(tk)S>L,kGSL,k with SL,k :=

L∑
p=−L

cpe
−1−zp(zpI −Bk)−1
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converges exponentially to Z(L),

‖Z(L)−ZN,L(L)‖ ≤ C
[
µ2e−(2πλ0dN)2/3

+ e−L/ logL
]

as N,L→∞.

Proof. The combination of the result of Lemma 5.2 with the modified quadrature
(5.31) leads to the desired bound. �

6. Approximation to the weighted cosine operator

6.1. Integral representation of the weighted cosine operator. In this sec-
tion we consider the integral representation of a so-called weighted cosine family
generated by an (fS , fR)-type operator of class ER,S . We define the following classes
of operator-valued functions:

H0
e−αη (R+) := L2

e−αη (R+) :=
{
f :
∫ ∞

0

‖f(η)‖2e−αηdη <∞
}
,

Hm
e−αη (R+) :=

{
f ∈ L2

e−αη (R+) :
drf

dηr
∈ L2

e−αη (R+), 0 ≤ r ≤ m
}
.

The spaces Hm
e−αη(R+) can also be defined as Hilbert spaces with the scalar product

(f, g)m,e−αη =
m∑
r=0

∫ ∞
0

(
drf(η)
dηr

,
drg(η)
dηr

)
e−αηdη

and the corresponding norm ‖ · ‖m,e−αη . The spaces Hm
e−αη (R+) for noninteger m

are defined via interpolation (cf. [19]).
Let L be a linear, densely defined, closed operator of (fS , fR)-type in a Banach

space X . The operator-valued function Ck ≡ Ck(·;L) := C(·;L)L−k, k ∈ N,
defines the family {Ck(t) : t ∈ R} of weighted cosine operators. It satisfies the
differential equation

C′′k (t) + LCk(t) = 0 for t > 0, Ck(0) = L−k, C′k(0) = Θ,

where Θ is the zero operator. The vector-valued solution u(·) : (0,∞)→ X of the
hyperbolic differential equation

u′′ + Lu = 0, u(0) = u0, u′(0) = 0

with an initial value u0 ∈ X can be represented as

u(t) = Ck(t)Lku0 for t > 0,

provided that u0 ∈ X belongs to the domain of the operator Lk.

Lemma 6.1. Let L be an operator from the class ES,R and k > 1. Choose a curve
(the integration curve) ΓI = {z = ξ+ iη : ξ = b cosh (a1η)} with a1 < a, b ∈ (0, γ0).
Then the operator Ck(t,L) can be represented by the Dunford-Cauchy integral

Ck(t;L) =
1

2πi

∫
ΓI

z−k cos
(√
zt
)

(zI − L)−1dz

= − 1
πi

∫ ∞
−∞

e−a1|η|F (η, t)dη = − 1
a1πi

∫ ∞
0

e−ζFc(ζ, t)dζ,(6.1)
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where, for ζ ∈ (0,∞), η ∈ (−∞,∞),

F (η, t) = ea1|η|z−k cos
(√
zt
)

(ba1 sinh (a1η) + i)(zI − L)−1

with z = b cosh (a1η) + iη,

Fc(ζ, t) = F (−ζ/a1, t) + F (ζ/a1, t).

The integrand Fc(·, t) belongs to the class Hk
e−2η (0,∞).

Proof. The integration curve is given by fI(η) = b cosh (a1η). Using the formulae

√
z =

√
ξ + iη = ±

{√
1
2

[
ξ +

√
ξ2 + η2

]
+ i sign(η)

√
1
2

[
−ξ +

√
ξ2 + η2

]}

= ±


√

1
2

[
ξ +

√
ξ2 + η2

]
+ i sign(η)

|η|
√

2
√
ξ +

√
ξ2 + η2

 with ξ := fI(η),

cos (x± iy) = cos (x) cosh (y)∓ i sin (x) sinh (y) ,

sin(x ± iy) = sin (x) cosh (y)± i cos (x) sinh (y) ,

cosh(x± iy) = cos (y) cosh (x)± i sin (y) sinh (x) ,

sinh(x ± iy) = cos (y) sinh (x)± i sin (y) cosh (x) ,

we have for z = b cosh (a1η) + iη ∈ ΓI , η ∈ (−∞,∞), that
√
z = ±(usq(η) + i sign(η)vsq(η))

with

usq(η) =

√
1
2

[
b cosh (a1η) +

√
(b cosh (a1η))2 + η2

]
= O(

√
b cosh (a1η)),

vsq(η) =

√
1
2

[
−b cosh (a1η) +

√
(b cosh (a1η))2 + η2

]
(6.2)

=
|η|

√
2
√
b cosh (a1η) +

√
(b cosh (a1η))2 + η2

= O(
|η|

2
√
b cosh (a1η)

).

Furthermore, we have
cos(
√
zt) = uc(η, t) + ivc(η, t)

with

uc(η, t) = cos(tusq(η)) cosh (t sign(η)vsq(η)), uc(−η, t) = uc(η, t),

vc(η, t) = sin(tusq(η)) sinh (t sign(η)vsq(η)), vc(−η, t) = −vc(η, t).
It is easy to see that for η →∞,

usq(η) = O
(√

b cosh (a1η)
)
, vsq(η) = O

(
η/
√
b cosh (a1η)

)
and for a fixed t and η →∞,

uc(η, t) = O(1), vc(η, t) =

{
0 t = 0,

O
(
η/
√
b cosh (a1η)

)
t > 0,

so that on the integration path it holds that

(6.3) cos(
√
zt) = O(1) + iO

(
η/
√
b cosh (a1η)

)
.
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After parametrisation of the path ΓI we get

Ck(t) =
1

2πi

∫
ΓI

z−k cos(
√
zt)(zI − L)−1dz

=
1

2πi

∫ 0

∞
z−k(uc(η, t)− ivc(η, t))(ba1 sinh(a1η) + i)(b cosh(a1η) + iη − L)−1dη

+
1

2πi

∫ −∞
0

z−k(uc(η, t)− ivc(η, t))(ba1 sinh(a1η) + i)

× (b cosh(a1η) + iη − L)−1dη

= − 1
πi

∫ ∞
−∞

e−a1|η|F (η, t)dη = − 1
a1πi

∫ ∞
0

e−ζFc(ζ, t)dζ.

Since the operator L belongs to the class ES,R and ‖(zI − L)−1‖ ≤ 1/|=m z|, we
get

‖Ck(t)‖ ≤ C
∫ ∞

0

(1 + ζ)−1e−(k−1)ζdζ.

The last integral converges for all t ≥ 0 due to the assumption k > 1.
Having in mind that

Fc(ζ, t) = F (−η, t) + F (η, t),

F (η, t) = ea1|η|z−k cos(
√
zt) (ba1 sinh(a1η) + i) (zI − L)−1

with z = b cosh (a1η) + iη, η ∈ (−∞,∞), we obtain after the first differentiation
with respect to η that

d

dη
z−k = z−(k+1)(ba1 sinh (a1η) + i),

d

dη
cos (
√
zt) = sin (

√
zt)

t

2
√
z

(ba1 sinh (a1η) + i),

d

dη
(ba1 sinh (a1η) + i) = ba2

1 cosh (a1η) ,

d

dη
(zI − L)−1 = −(zI − L)−2(ba1 sinh (a1η) + i).

Due to (6.3), the terms cos (
√
zt) and sin(

√
zt) remain bounded for η ∈ (−∞,∞).

Since | ddη (
√
zt) · d

dη z| ≈ ea1η/2, each differentiation of these terms increases the
asymptotic behaviour by the factor ea1η/2. Due to |z| ≈ ea1η, the asymptotic
behaviour of the terms |z−m| (m > 0) is not changed by differentiation. The
same holds for cos (a1η) and sinh (a1η). Since ‖(zI − L)−1‖ ≤ c/(1 + η), the
asymptotic behaviour of the derivatives of ‖(zI−L)−m‖ becomes worse by the factor
ea1η/(1 + η) with every further differentiation. Altogether, each differentiation
leads to a worsening of the asymptotic behaviour of Fc(ζ, t) by eζ/ζ. Thus, since
‖Fc(ζ, t)‖ ≤ ce−(k−1)ζ/ζ, we get that Fc ∈ Hk

e−2η . �

6.2. Gauss-Lobatto quadrature of Laguerre type. In this section we describe
a Gauss-Lobatto quadrature for certain weighted improper integrals of operator-
valued functions. The proof of these results is completely analogous to that of [19]
if we replace the modulus of functions by the corresponding operator norms. Let
ζ0 = 0 and let the zeros ζk, k = 1, 2, . . . , N , of the Laguerre polynomial d

dxLN+1

form the grid ΩN+1. Let INu be the interpolation polynomial of u(ζ) with respect to
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the nodes ΩN+1. Using the interpolation polynomial, one can get the interpolatory
quadrature formula

I(u) ≡
∫ ∞

0

e−ζu(ζ)dζ ≈ QN (u) ≡
N∑
p=0

ωpu(ζp)

which is exact for polynomials of degree ≤ N . The quadrature coefficients are

(6.4) ωp =
1

(N + 1)L2
N+1(ζp)

.

The quadrature coefficients possess the stability property
N∑
p=0

ωpe
(1−ε)ζp ≤ 1

ε
for all ε ∈ (0, 1].

The following estimates

‖u− INu‖µ,e−2(1+ε)η ≤ CεNµ−(σ/2)+(1/2)‖u‖σ,e−2η ,

‖I(u)−QN (u)‖µ,e−2(1+ε)η ≤ CεNµ−(σ/2)+(1/2)‖u‖σ,e−2η(6.5)

hold for all σ > 1/2, 0 ≤ µ ≤ σ, ε > 0 (cf. [19]).
Note that the orthogonal projection operator π : Hσ

e−βη → PN with respect to
the corresponding scalar product satisfies

‖u− πu‖µ,e−(β+ε)η ≤ Cβ,εNµ−(σ/2)‖u‖σ,e−βη

(cf. [19]), i.e., the estimates (6.5) are asymptotically optimal up to a factor N1/2.
The representation given by Lemma 6.1 allows us to introduce the following algo-
rithm for the approximation of the weighted cosine function.

Proposition 6.2. Let t and N be given. Define zp (p = 0, . . . , N) by zp =
b cosh (ζp) − iζp/a1, where ζ0 = 0, and ζp, p = 1, . . . , N , are the zeros of the first
derivative of the Laguerre polynomial LN+1(ζ). Let ωp be defined by (6.4). Then
the approximation Ck,N (t;L) is the sum

Ck,N (t;L) =
N∑
p=0

γp(t)(zpI − L)−1

with γp(t) := ωpz
−k
p cos

(√
zpt
) [
eζp(ba1 sinh (ζp) + i) + e−ζp(−ba1 sinh (ζp) + i)

]
.

Due to estimates (6.5) we have the error bound

(6.6) ‖Ck(t;L)− Ck,N (t;L)‖µ,e−2(1+ε)η ≤ CNµ−(k−1)/2‖u‖k,e−2η

for k > 1, 0 ≤ µ ≤ (k − 1)/2, ε > 0.

7. Appendix

7.1. Examples of (fS , fR)-type operators with exponentially increasing fS.
As a first example let us consider a self-adjoint, positive definite operator A in a
Hilbert space H with (Au, u) > γ0(u, u). Any such operator is of (fS , fR)-type with

(7.1) fS(η) = γ0 cosh (aη) , fR(z) =

{
1/|=m z| if <e z > γ0 > 0,
|z − z0| otherwise,
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where a is an arbitrary positive number and z0 = (γ0, 0). Here the function fS
possesses exponential growth.

As a second example of an operator with nonreal spectrum one can consider
the operator arising in the problem on small motions of a viscoelastic fluid in an
arbitrary domain Ω ∈ R3 (cf. [1]).

This problem is to find the velocity field ~u(t, x) and the pressure field p(t, x)
satisfying the following system of equations with boundary and initial conditions

∂~u

∂t
= −ρ−1∇p+ νI0(t)(∆~u) + ~f, div ~u = 0 in Ω,(7.2)

(I0(t)~v)(t, x) := ~v(t, x) +
m∑
j=1

αj

∫ t

0

e−γj(t−s)~v(s, x)ds,

~u = ~0 on S = ∂Ω, ~u(0, x) = ~u0(x),

where ν > 0 is the kinematic viscosity coefficient, ρ > 0 is the density of the fluid,
αj > 0, j = 1, . . . ,m, 0 < γ1 < · · · < γm, and ~f = ~f(t, x) is the density of the small
field of mass forces added to the gravitational field.

We assume that for every t, ~u(t, x) and ∇p(t, x) are elements of the Hilbert space
~L2(Ω) of vector-valued functions, equipped with the inner product

(7.3) (~u,~v)Ω :=
∫

Ω

3∑
k=1

uk(x)vk(x)dΩ.

We use the orthogonal decomposition

~L2(Ω) = ~J0(Ω)⊕ ~G(Ω), ~G(Ω) := {~v ∈ ~L2(Ω) : ~v = ∇p},(7.4)

~J0(Ω) := {~u ∈ ~L2(Ω) : div ~u = 0 in Ω, un := ~u · ~n = 0 on ∂Ω},(7.5)

where ~n is the unit normal vector to ∂Ω and ~u and un are regarded as distributions
of finite order. By (7.2), we have ~u(t, x) ∈ ~J0(Ω), ∇p(t, x) ∈ ~G(Ω).

Consider the orthogonal projection P0 on ~J0(Ω) and the orthogonal projection
PG on ~G(Ω), P0 + PG = I. Assuming that ~u(t, x) and ∇p(t, x) are the classical
solutions to problem (7.2) and applying the orthogonal projections P0 and PG to
both sides of the first equation in (7.2), we find

d~u

dt
+ νI0(t)(A0~u) = ~f0(t), ~u(0) = ~u0,(7.6)

A0~u := −P0(∆~u), ~f0 := P0
~f,(7.7)

ρ−1∇p = νI0(t)PG(∆~u) + PG ~f.(7.8)

Formula (7.8) shows that the pressure field ∇p(t, x) can be found provided that
we know the velocity field ~u(t, x) regarded as a function of t with values in ~H2

0 ∩
~J0(Ω), where ~H2

0 is the space of vector-valued functions with components in H2
0 (Ω).

Therefore, it suffices to consider problem (7.6), where ~u = ~u(t) is a function with
values in ~J0(Ω) and A0 is the Stokes operator, well known in hydrodynamics.

Problem (7.6) is a special case of the problem

(7.9)
du

dt
+A0u+

m∑
k=1

∫ t

0

e−γk(t−s)Aku(s)ds = f(t), u(0) = u0,
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where u = u(t) is an unknown function with values in a separable Hilbert space H,
γk are positive constants, 0 < γ1 < . . . < γm < ∞, f(t) is a given function with
values in H, u0 ∈ H, and Ak, k = 0, . . . ,m, are unbounded self-adjoint positive
definite (Ak � 0, k = 0, . . . ,m) operators with domains D(Ak), k = 0, . . . ,m, such
that

(7.10) D(Ak) = D(A0), k = 1, . . . ,m.

For an example of such differential operators in the case H = L2(Ω), Ω ⊂ Rn, we
can take uniformly elliptic operators

(7.11) Aku := −
n∑

i,j=1

∂

∂xi

(
a

(k)
ij (x)

∂u

∂xj

)
, k = 0, . . . ,m,

defined on the common domain

(7.12) D(Ak) = H2
0 (Ω) := {u(x) ∈ H2(Ω) : u = 0 on ∂Ω},

where H2(Ω) is the Sobolev space and ∂Ω ∈ C2.
Let u(t) be a strong solution of problem (7.9). We introduce new unknown

functions uk(t), k = 0, . . . ,m, by the formula

(7.13) u0(t) := u(t), uk(t) :=
∫ t

0

e−γk(t−s)A
1/2
k u0(s)ds, k = 1, . . . ,m.

Then the equalities

duk
dt

=
d

dt

∫ t

0

e−γk(t−s)A
1/2
k u0(s)ds = A

1/2
k u0(t)− γk

∫ t

0

e−γk(t−s)u0(s)ds

= A
1/2
k u0(t)− γkuk(t), k = 1, . . . ,m,

together with (7.9) and (7.13) lead to the differential equation

(7.14)
dũ

dt
+A0ũ = f̃(t), ũ(0) = ũ0,

in the Hilbert space

(7.15) H̃ :=
m⊕
k=0

Hk, Hk := H, k = 0, 1, . . . ,m,

where

ũ(t) := (u0(t); û1(t))T , û1(t) := (u1(t); ...;um(t))T ,

f̃(t) := (f(t); 0̂)T , ũ(0) = (u0; 0̂)T ,(7.16)

and the operator A has the following matrix representation in the orthogonal de-
composition (7.15):

A0 := (Aij)1
i,j=0, A00 := A0, A01 := (A1/2

1 ; ...;A1/2
m ),

A10 := −(A1/2
1 ; ...;A1/2

m )T , A11 := diag(γkI)mk=1.(7.17)

Properties of the closure A of the operator A0 were studied in [1], in particular it
was shown that the spectrum of the operatorA is positive except for a finite number
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of nonreal eigenvalues counted with certain multiplicities. Thus, the operator A is
of the (fS , fR)-type with

(7.18) fS(η) = γ0 cosh (aη) , fR(z) =

{
1/|=m z − s| if <e z > γ0,

dist(z, sp(Aa)) otherwise,

where s is the half-width of the strip containing all eigenvalues.
As a third example of an operator with nonreal spectrum one can consider an

analogous operator arising in the problem of small motions and normal oscillations
of a viscous fluid in a partially filled container, where a problem of the type (7.14)
can be obtained as the linearisation of the Navier-Stokes equations.

Finally, we note that square matrices with positive real part of the spectrum also
belong to the class of operators of (fS , fR)-type.
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