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SPHERICAL HARMONIC PROJECTORS

PAUL N. SWARZTRAUBER AND WILLIAM F. SPOTZ

Abstract. The harmonic projection (HP), which is implicit in the numerous
harmonic transforms between physical and spectral spaces, is responsible for
the reliability of the spectral method for modeling geophysical phenomena.
As currently configured, the HP consists of a forward transform from physical
to spectral space (harmonic analysis) immediately followed by a harmonic
synthesis back to physical space. Unlike its Fourier counterpart in Cartesian
coordinates, the HP does not identically reconstruct the original function on
the surface of the sphere but rather replaces it with a weighted least-squares
approximation. The importance of the HP is that it uniformly resolves waves
on the surface of the sphere and therefore eliminates high frequencies that
are artificially induced by the clustering of grid points in the neighborhood of
the poles. The HP also maintains spectral accuracy when combined with the
double Fourier method. Originally the HP required O(N3) storage where N is

the number of latitudinal points. However, this was recently reduced to O(N2)
using an algorithm that also provided a savings of up to 50 percent in compute
time. The HP was also generalized to an arbitrary latitudinal distribution of
points. However, the HP as a composite of analysis and synthesis can be
subject to considerable error depending on the point distribution. Here we
define a variant of the traditional HP that is well conditioned, with condition
number 1, for any point distribution. In addition, storage requirements are
further reduced because the projections corresponding to all longitudinal wave
numbers m are expressed in terms of a single orthogonal matrix.

1. Introduction

For some time now, projections in one form or another have played an important
role in the modeling of dynamical systems, particularly systems that admit solutions
with vastly different time scales. Weather and climate provide such systems, and
methods have long been researched for “projecting” equations and/or solutions onto
slow manifolds to stabilize computations and make the computation of dominant
slow solutions feasible in the presence of small but fast solutions corresponding to
gravity and sound waves. Projections form the basis for modal analysis, and they
are also used to obtain curl or divergent free approximations to any given functions.
The Cartesian method [12] makes extensive use of projections at the level of the
equations themselves. The three-dimensional equations in Cartesian coordinates
are projected onto the surface of the sphere with an attendant reduction in the
computational complexity as well as the elimination of high frequencies induced by
the clustering of points near the poles.
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Another example is given by the harmonic projections (HPs) that are implicit to
the spectral method for solving partial differential equations on the sphere [11]. The
stability and accuracy of this popular method for geophysical modeling is largely
due to the HPs that are implicit to the numerous transforms between spectral and
physical space. Early efforts to develop models on the sphere attempted to take
advantage of the fast Fourier transform by duplicating the surface of the sphere and
using the resulting two-dimensional periodic Fourier representation to compute the
required spatial gradients [3]. These efforts met with limited success because of the
high frequencies introduced by the closeness of the points near the poles.

More recently the double Fourier representation, combined with a number of
other advances, has been elevated to the accuracy and robustness of the spectral
method [4]. Indeed the computations can be made indistinguishable from the spec-
tral method. The key ingredient is the periodic application of the HP. Although the
HP still requires O(N3) operations, it is more efficient than the traditional spectral
method because more efficient formulations of the HP are available [13, 4, 8]. In ad-
dition, fewer O(N3) computations are required because the fast Fourier transform
(FFT) rather than harmonic transforms are used to compute spatial derivatives.
It is important to note that the HP can also be computed using efficient itera-
tive methods [6], [14] that have been compared to the direct methods considered
here [8].

In previous work [13], the harmonic transforms (analysis and synthesis) were gen-
eralized to arbitrary distributions of latitudinal points. This unified the seemingly
quite distinct transforms based on (for example) Gaussian and equally spaced lati-
tudinal distributions. The transforms were also generalized to arbitrary rotations of
the traditional transforms. In particular, rotations were defined that reduced stor-
age requirements from O(N3) to O(N2) for applications that do not require the
explicit computation of the spectral coefficients such as the harmonic projection
that consists of a forward transform (analysis) followed immediately by a back-
ward transform (synthesis). It is known that this combination projects the original
function onto a smooth least-squares approximation without the high frequencies
induced by the closeness of the points in the neighborhood of the poles [10].

Unlike the discrete Fourier transform the HP can amplify certain functions on
the sphere. However, because it is a projection, amplification only occurs on its
first application. Therefore one does not observe the exponential error growth
that is traditionally associated with an amplification matrix. For a Gaussian or
reasonably uniform latitudinal grid distribution, the initial amplification it quite
acceptable. However, for arbitrary grid distributions, harmonic analysis can be
subject to considerable error. Consequently, the computation of a projection as a
composite of these transforms can also be subject to error.

We define a highly stable variant of the traditional harmonic projections with
best possible condition number 1 for any distribution of latitudinal points. Storage
requirements are further reduced by demonstrating that the projections correspond-
ing to all longitudinal wave numbers can be computed from the columns of a single
N×N matrix where N is the number of latitudinal points. This may be significant
for multicomputer implementations because it reduces the communication require-
ments. Unlike the traditional projections, the variants correspond to symmetric
matrices with all singular values equal to 1.
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2. Harmonic transforms and projections

Given the discrete function fi,j , defined at latitudes θi, i = 1, . . . , N , and longi-
tudes φj , j = 1, . . . , 2N − 2, the forward harmonic transform or harmonic analysis
consists of determining coefficients am,n and bm,n such that fi,j has the represen-
tation

fi,j =
N−1∑
n=0

n∑
m=0

P̄mn (θi)(am,n cosmφj + bm,n sinmφj) ,(1)

where P̄mn (θi) are tabulations of the normalized associated Legendre functions

P̄mn (θ) =
1

2nn!

[
2n+ 1

2
(n−m)!
(n+m)!

]1/2

(cos θ)m
dn+m

dxn+m
(x2 − 1)n,(2)

where x = sin θ.
The harmonic analysis, am,n and bm,n, are determined by first using the FFT to

compute

am(θi) =
1

2N − 2

2N−2∑
j=1

fi,j cosmφj ,(3)

bm(θi) =
1

2N − 2

2N−2∑
j=1

fi,j sinmφj .

If the θi are Gauss distributed, then the harmonic analysis is given by

am,n =
N∑
i=1

wiam(θi)P̄mn (θi),(4)

bm,n =
N∑
i=1

wibm(θi)P̄mn (θi) ,

where the wi are the Gaussian weights. Once the am,n and bm,n are determined,
the harmonic synthesis or backward transform is given by (1). As mentioned in the
introduction, the forward harmonic transform followed immediately by a backward
transform will not, in general, reconstruct the discrete function fi,j but rather will
provide a useful weighted least-squares approximation f̂i,j [10]. We begin with a
study of the harmonic projection as a composite of the analysis followed by synthesis
and later we develop the projection as a single entity with individual attributes.

In this work the focus is on the transforms (4) between Fourier and harmonic
space because the Fourier transforms (3) are one-to-one, orthonormal, and well
understood. The computation of both am,n and bm,n in (4) is by application of the
matrix operator PT

mW0 where W0 is an N × N diagonal matrix with Gaussian
weights wi and Pm is the N × (N −m) matrix

Pm =

 P̄mm (θ1) · · · P̄mN−1(θ1)
...

. . .
...

P̄mm (θN ) · · · P̄mN−1(θN )

 .(5)

The harmonic projection combines both the analysis and synthesis,

Fm = PmPT
mW0,(6)
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into a single N × N matrix for each longitudinal wave number m. The discrete
Legendre functions are orthogonal with respect to Gaussian quadrature. That is,
PT
mW0Pm = I(N−m)×(N−m). This implies P0PT

0 W0 = IN×N and therefore

W0 = (P0PT
0 )−1 .(7)

From (6) we obtain F0 = IN×N . For a Gauss distribution of latitudinal points, the
Christoffel-Darboux formula yields the well-known result that W0 is diagonal, e.g.,
[13].

These results can be generalized to any point distribution starting with the
weighted least-squares projection of any vector onto any other set of vectors. For
the moment assume Pm to be an arbitrary matrix with N −m columns, each with
N elements. By direct substitution it can be established that the columns are
weighted orthogonal with N ×N weight matrix

Wm = (PmPT
m)−1 .(8)

That is, PT
mWmPm = I(N−m)×(N−m). This provides an algorithm for approxi-

mating any given vector in terms of any other vectors; namely, the columns of Pm,
e.g., [9]. Following the earlier development, the “forward” transform of an arbi-
trary vector u is given by a = PT

mWmu. The “backward” transform then provides
a least-squares approximation to u in terms of the vectors Pm; namely, û = Pma.

The vector û is the projection of u onto the vectors spanned by Pm because any
subsequent application leaves û unchanged. The projection û is the closest vector
in the span of Pm to the vector u in the weighted sense where distance is measured
by the pseudonorm based on the weighted inner product (u,v)Wm = uTWmv [10].
Up to this point the presentation has been formal; however, the inverse on the right
side of (8) does not exist for m > 0. We will continue this discussion later. Now
we return to the harmonic transforms based on a Gauss distribution of points.

The traditional harmonic transforms for a Gauss distribution of points fixes the
weight matrix as W0 = (P0PT

0 )−1 which is nonsingular and provides weighted
orthogonality for all Pm. This follows from the existence of an N × (N − m) l2
orthonormal matrix Hm such that Pm = P0Hm [13]. Therefore

PT
mW0Pm = HT

mPT
0 (P0PT

0 )−1P0Hm = I(N−m)×(N−m) .(9)

For other than a Gaussian distribution of points, two weight matrices are required
corresponding to P0 and P1 [13]. Formally this discussion does not depend on the
point distribution. That is, for any distribution with nonsingular P0PT

0 , its inverse
then provides the weight function for all Pm, m = 0, . . . , N − 1. Of course P0PT

0

can be quite poorly conditioned depending on the point distribution even though,
as we will show, the projection itself is always well conditioned.

Numerical experiments reveal that traditional projections, based on a Gaussian
distribution of points, correspond to a nonsymmetric matrix with singular values
in excess of 1; i.e., there exist initial fields defined on the sphere whose l2 norm
is increased by a traditional projection. The maximum singular value for several
latitudinal grid sizes is given in Table 1 together with its corresponding longitudinal
wave number m.

A projection with a singular value greater than one does not generate the level
of concern that it might for an arbitrary matrix because amplification does not
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Table 1. Maximum singular values sm of the traditional projec-
tion on a Gaussian grid

N m sm
16 1 1.21691
32 1 1.31121
64 2 1.41096
128 2 1.50874

occur on subsequent applications that do not contain components corresponding to
singular values that are greater than one. Therefore the exponential or explosive
error growth associated with eigenvalues in excess of 1 is replaced by linear growth
on the order of that induced by any orthonormal transformation.

3. The variant harmonic projection

In this section we develop variant symmetric projections that do not amplify in
the sense that all singular values are equal to 1. We also develop a well-conditioned
procedure for computing the projections that does not require the computation of
the harmonic transforms or the weight matrix. To this end we use the singular
value decomposition (SVD) [5] which is available at [7]. In particular, subroutine
DSVDC was used to compute the numerical results reported here.

The SVD of an arbitrary N × (N −m) matrix Pm is given by

Pm = UmSmVT
m(10)

where Um is an N × (N − m) column orthogonal matrix; Sm is an (N − m) ×
(N −m) diagonal matrix with elements si,i called singular values, and Vm is an
(N − m) × (N − m) orthogonal matrix. If P2

0 = P0 is itself a projection, then
from (10)

S0 = S0VT
0 U0S0 .(11)

If there are l nonzero singular values, the first l columns of V0 and U0 are
mutually orthogonal (but not orthonormal) because VT

l Ul = S−1
l . This explains

why linear error growth occurs with singular values that are greater than one, unlike
the exponential error growth associated with eigenvalues that are greater than one.

The variant projection, defined in this section, has a weight matrix that is based
on Pm rather than P0. That is, the weight matrix is given by (8), which takes the
form

Wm = UmS−2
m UT

m .(12)

The harmonic analysis matrix has the form

Am = VmS−1
m UT

m .(13)

The synthesis matrix is just Pm given by (10). Finally the projection matrix, as
the composite of (10) and (13), is given simply by

F̂m = UmUT
m .(14)
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It is therefore evident that with singular values s−2
i,i , the weight matrix (12) is

more poorly conditioned than the other matrices (13), (14), and even the synthesis
matrix Pm (10) itself. However, quite independent of the condition of the harmonic
transforms, the projection (14) has best possible condition (condition number = 1)
for any distribution of latitudinal points.

However, as noted in the previous section, projections with singular values in
excess of 1 are not a major concern because the error growth is linear and in
proportion to the singular value. That is, from Table 1 we note that the maximum
singular value for N = 16 is about 1.22 and occurs for longitudinal wave number
m = 1. The actual error following 10,000 applications of the traditional projection
is 2.104× 10−3 compared with 1.783× 10−3 for the variant projection.

This completes the development of the variant projections. However, memory-
efficient versions like those developed for the traditional projections in [13] still need
to be determined. We will outline the representation of the N projections (14) in
terms of a single N ×N matrix TN . The development is similar to that given for
the traditional projections in [13] and reduces storage requirements from O(N3) to
O(N2).

The following algorithm is valid for any Um that span nested subspaces, which
follows from the fact that the Pm span nested subspaces. Let u(m)

n denote the
columns of Um and first determine a unique vector t0 that is l2 orthogonal to u(1)

n

for n = 1, . . . , N − 1. Next for m = 2, . . . , N − 1 determine, in sequence, unique
vectors tm−1 that are l2 orthogonal to tn for n = 0, . . . ,m − 2 and u(m)

n for n =
m, . . . , N−1. Finally, set tN−1 = uN−1

N−1. If we define matrices T̄m = [t0, . . . , tm−1]
and Tm = [tm, . . . , tN−1], then all N projections can be represented in terms of a
single matrix TN as

F̂m = TmTT
m or F̂m = I− T̄mT̄T

m .(15)

The first form is more efficient if m ≤ N/2 and the second is more efficient if
N/2 < m < N . This algorithm differs significantly from traditional Gram-Schmidt
orthogonalization because the vectors tn are uniquely determined.

It should be noted that the variant projections alias differently than traditional
projection. Variant projections of wave numbers n > N are not restricted to the set
greater than N − n; rather, they may distribute over all latitudinal wave numbers.
This has been known to be true for equally spaced grids even with the traditional
discrete harmonic transforms but it is true for any point distribution using the
variant transforms. This implies that for strict alias control, one must use the
one-half rather than the two-thirds rule. However, both rules are now considered
rather severe, and more recently, some aliasing has been tolerated in exchange for
the increased accuracy that is provided by the additional modes.

We have observed that the variant projections are l2 norm reducing (less than
or equal) in physical space, which prompts the question: Is the associated variant
analysis also norm reducing? That is, is the norm of the resulting harmonic co-
efficients for the variant projection less than those obtained with the traditional
projection? Tables 2 and 3 below imply that the singular values of the variant
analysis matrix (13) are less than or equal to the singular values of the traditional
analysis matrix. The variant and traditional singular values are the same for m = 0.
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Table 2. Singular values of the variant analysis matrix Am for
N = 16

m = 1 m = 2 m = 5 m = 6 m = 9 m = 13 m = 15

.435259 .435178 .435220 .435031 .434983 .434182 .432741

.431863 .432616 .431567 .432005 .430229 .424699

.427321 .426577 .426945 .425207 .424691 .416167

.418603 .421596 .417339 .419100 .411378

.411286 .409162 .410124 .405021 .403007

.396113 .402809 .392902 .396899 .375868

.386776 .382413 .384060 .372956 .366038

.363625 .375549 .356601 .363844

.353028 .345221 .347118 .324428

.319526 .338537 .303585 .315399

.308478 .295083 .294573

.260035 .289129

.249507 .224757

.173186 .219996

.164780

Table 3. Singular values of the traditional analysis matrix
PT
mWm for N = 16

m = 1 m = 2 m = 5 m = 6 m = 9 m = 13 m = 15

.435259 .435236 .435242 .435086 .435030 .434250 .432851

.432122 .433719 .431785 .432249 .430469 .425093

.427321 .427103 .427154 .425708 .425123 .416825

.419651 .424899 .418218 .420062 .412355

.411286 .410644 .410739 .406429 .404237

.398516 .408324 .394906 .399024 .378185

.386776 .385384 .385376 .375779 .368584

.368039 .383141 .360253 .367559

.353028 .350332 .349579 .329322

.326818 .348267 .309597 .321213

.308478 .303273 .298960

.271667 .301471

.249507 .237944

.193087 .236499

.164780

4. Summary

Variant spherical harmonic projections have been defined with the following
attributes.

(1) The error associated with the variant projection is marginally less than the
traditional projection on a Gauss distributed latitudinal grid but may be
substantially less on an arbitrary grid.
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(2) The variant projections are symmetric and all N can be expressed as the
outer product of orthonormal vectors from a single N ×N matrix.

(3) The variant projection is norm reducing in the l2 sense, unlike the tradi-
tional spherical harmonic projection.

(4) The algorithm for computing the variant projections, as well as the projec-
tions themselves, are well conditioned for any latitudinal grid distribution.

(5) On a Gaussian grid the singular values of the variant analysis matrix are
up to 10 percent less than the traditional analysis matrix.

Unlike the discrete Fourier transform, the harmonic projection has singular val-
ues that are larger than 1. However, error growth is only linear rather than expo-
nential because the transform is a projection. Nevertheless, on an arbitrary grid
the traditional HP, as a composite of analysis followed by synthesis, can be subject
to substantial error unlike the variant HP provided here. The singular values of
the variant analysis matrix are evidently also smaller. More importantly the SVD
provides a mechanism to limit their size on an arbitrary grid.
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