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FACTORING POLYNOMIALS
OVER FINITE FIELDS WITH DRINFELD MODULES

G. J. VAN DER HEIDEN

Abstract. In the following, we describe a way of factoring polynomials in
Fq[X] with Drinfeld modules. We furthermore analyse the complexity of the
algorithm and compare it to the well-known Cantor-Zassenhaus algorithm.

1. Defining Fq[X ]-module structures with Drinfeld modules

Throughout this paper we will denote A = Fq[X ], where q is a power of some
prime p, and N ∈ A for the polynomial which is to be factored. Let B be an
A-algebra coming from an Fq-linear ring homomorphism γ : A −→ B.

(1) B{τ} is the skew-polynomial ring which consists as set of all finite expres-
sions

∑
n≥0 bnτ

n, bi ∈ B, and B{τ} has addition and multiplication defined
by∑
n≥0

bnτ
n +

∑
n≥0

cnτ
n =

∑
n≥0

(bn + cn)τn, biτ
i.cjτ

j = bic
qi

j τ
i+j ,

where bn + cn is addition and bic
qi

j is multiplication in B.
(2) We define a homomorphism on B{τ} as follows:

∂0 : B{τ} −→ B by
∑

bnτ
n 7→ b0.

(3) Let ϕ : A −→ EndFq(Ga,B) = B{τ} be a ring homomorphism; ϕ is called a
Drinfeld module if ∂0◦ϕ = γ. This property implies that a Drinfeld module
ϕ is Fq-linear and hence is completely given by the image of X ∈ A.

In the following we will write ϕa instead of ϕ(a) for a ∈ A. If we denote ϕX =∑r
i=0 biτ

i, then b0 = γ(X). If moreover br is not nilpotent in B, then we call r ≥ 0
the rank of ϕ. In fact, without loss of generality we may assume that br is not
nilpotent; cf. [Mat97].

Canonically B is an A-module via γ. Every
∑
i ciτ

i ∈ B{τ} induces an Fq-
linear endomorphism B −→ B by

∑
i ciτ

i(b) =
∑

i cib
qi . This gives us a ring

homomorphism
B{τ} −→ EndFq(B).

In particular this means that for all a ∈ A, ϕa induces such a map. One checks easily
that ϕ gives rise in this way to a new A-module structure on B via (a, b) 7→ ϕa(b).
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2. Drinfeld modules acting on A/NA

From now on assume B = A/NA. In this section we describe the linear operators
on B induced by B{τ} and in particular by a Drinfeld module ϕ. We will assume
that N =

∏k
i=1 Pi, where the Pi are distinct monic, irreducible polynomials of the

same degree d. We write n = deg(N). This notation will be used throughout
the rest of this paper. This form of N can easily be achieved by the first step of
Berlekamp’s algorithm: replace N by gcd(N,Xqd−X) and subsequently divide out
gcd(N,Xql −X) for all l | d, l 6= d.

We write Bj = A/PjA, hence B '
⊕k

j=1Bj . Let γ : A −→ B be the natural
map given by X 7→ X mod N . Let ϕ : A −→ B{τ} be a Drinfeld module of rank
r and ϕX =

∑r
i=0 biτ

i. By choice of γ, b0 = X mod N . Moreover we assume
that br ∈ B∗. This is not a restrictive assumption, because for our application
br 6∈ B∗ means that we have found a proper divisor of N , namely gcd(N, br), which
is exactly the goal of the algorithm we want to find.

Because the natural map B −→ Bj given by b 7→ b mod Pj is an Fq-linear ring
homomorphism, the q-Frobenius map τ : B −→ B induces a map τ |Bj : Bj −→ Bj ,
the q-Frobenius on Bj , such that τ(b) mod Pj = τ |Bj (b mod Pj). We could also
say that τ leaves each Bj invariant. We note three consequences of this.

(1) ϕ induces an A-module structure on each Bj ; hence there is an isomorphism
of A-modules B '

⊕k
j=1Bj , where the A-module structure is given by ϕ.

(2) τd is the identity on B. Note that Bj ' Fqd , which implies that τd is the
identity on each Bj , hence on B.

(3) τ keeps each Bj invariant; hence the operators induced by ω ∈ B{τ} keep
each Bj invariant.

Lemma 2.1. The map B{τ} −→ EndFq(B) has as kernel the two-sided ideal
(τd − 1) and its image is isomorphic to∏

j

EndFq(Bj) ' B{τ}/(τd − 1).

Furthermore EndFq(Bj) 'Md(Fq), where Md(Fq) denotes the ring of d×d matrices
with coefficients in Fq.

Proof. Because Bj ' Fqd , we have by general Galois theory

EndFq(Bj) =
⊕

ρ∈Gal(F
qd
/Fq)

Bjρ =
d−1⊕
i=0

Bjσ
i,

where σ generates Gal(Fqd/Fq). This shows that the map

Bj{τ} −→ EndFq(Bj)

by τ 7→ σ is surjective. By dimension considerations we see that

Bj{τ}(τd − 1) ' EndFq(Bj).

As rings

B{τ}/(τd − 1) '
k∏
j=1

Bj{τ}/(τd − 1),

which proves the lemma. �



FACTORING POLYNOMIALS, FINITE FIELDS WITH DRINFELD MODULES 319

Proposition 2.2. Every element in B{τ}/(τd − 1) can be represented by ϕX ∈
B{τ}, where ϕ is a Drinfeld module of rank at most d+ 1.

Proof. Any element in B{τ}/(τd−1) can be represented by some ω =
∑d−1

i=0 aiτ
i ∈

B{τ}. We choose bi ∈ B, i = 0, . . . , d + 1, such that b0 = X mod N, bi = ai
for 1 ≤ i ≤ d − 1 and bd = a0 − b0. If bd is not nilpotent, we choose bd+1 = 0;
otherwise we choose bd+1 = 1. With this choice of the bi’s, ϕX =

∑d+1
i=0 biτ

i defines
a Drinfeld module ϕ of rank at most d+ 1, and ϕX represents by construction the
same element in EndFq(B) as ω. �

3. The algorithm

In this section we describe the algorithm and illustrate it with an example. If ϕ is
some Drinfeld module of rank at most d+ 1, then ϕX ≡

∑d−1
i=0 biτ

i mod (τd−1) ∈
B{τ}/(τd − 1). This is an Fq-linear operator on B; hence it has a characteristic
polynomial, say f ∈ A, such that f(

∑d−1
i=0 biτ

i) ≡ 0 mod (τd − 1). In particular
ϕf = f(ϕX) ≡ 0 mod (τd − 1).

From Lemma 2.1 it follows that ϕX also induces an Fq-linear operator on each
Bj ; hence it gives rise to polynomials fj ∈ A, such that f =

∏k
j=1 fj .

In this way we associate to each polynomial Pi a polynomial fi of the same
degree d, but fi may very well be reducible. We decompose f as f = gdgr, where
gd is a product of all fi’s which are irreducible and gr consists of the other fi’s.

Proposition 3.1. If 1 6= gd 6= f , then for all b ∈ B∗, gcd(ϕgd(b), N) is a proper
divisor of N .

Proof. Because gd 6= 1 there is an i such that ϕgd(b) = 0 mod Pi. In fact this
is exactly the case for all i with fi | gd. If fi does not divide gd, then let a ∈ A
be the polynomial of minimal degree such that ϕa(b) = 0 mod Pi. Then a | fi.
Hence gcd(a, gd) = 1 and thus ϕgd(b) 6= 0 mod Pi. This shows that ϕgd(b) is a
zero divisor. �

If d = 1, then the fi are all of degree 1, so for all ϕ, gd = f . Henceforth this
case will not be interesting. One can also see this in a different way. If d = 1, then
τ acts as the identity. Hence ϕh acts as multiplication with γ(h) = h mod N for
all h ∈ A; i.e., ϕ induces the same A-module structure on B as γ.

The next case is d = 2. We will illustrate the suggested algorithm in an example
for this case.

Example 3.2. Suppose d = 2, p > 2. We choose ϕX = X + cτ, c ∈ F∗q . We take
N =

∏k
i=1 Pi, such that Pi = X2 + aiX + bi ∈ Fq[X ]. Then on Bi = A/PiA,

ϕX(1) = X + c, ϕX(X) = X2 + cXq = −aiX − bi − c(X + ai).

Hence on the basis {1, X} of Bi, ϕX is given by(
c −cai − bi
1 −ai − c

)
.

The characteristic polynomial of ϕX on Bi is fi = λ2 + aiλ + bi − c2. If we
fix Pi, for how many c’s is fi = Pi − c2 still irreducible? The discriminant of fi is
a2
i −4(bi−c2) = D+4c2, where D is the discriminant of Pi. Hence fi is reducible iff
D+4c2 is a square in Fq. Now applying theorem (5.48) in [LN97] to the polynomial
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g(X) = 4X2 +D and noting that g(0) = D 6∈ (F∗q)2 gives that the proportion of c’s
in F∗q such that D + 4c2 is a square in Fq equals

1
2 ·

q+1
q−1 if −1 is not a square in Fq;

1
2 if −1 is a square in Fq.

This shows that for relatively large q one may expect that fi is irreducible with a
probability of 1

2 . Hence the probability that applying this computation once gives

rise to a decomposition of N is approximately 1 − 1
2

k − 1
2

k ≥ 1
2 , because k ≥ 2.

There is one drawback, which is due to the fact that we chose ϕX in such a special
way. E.g., when N = P1P2 and a2

1 − 4b1 = a2
2 − 4b2, then there is no c for which

the described algorithm will give a decomposition. In a general setting, i.e., where
ϕX = c0X + c1τ, ci ∈ B, this problem disappears as we will see in Section 4.

The algorithm which appears from the previous considerations is the following:

Algorithm 3.3.

(1) Choose some Drinfeld module ϕX , which we regard as a linear operator;
hence it is given by a d-tuple a = (a0, . . . , ad−1), with ai ∈ B. Represent
ϕX as a matrix by computing ϕX(1), . . . , ϕX(Xn−1).

(2) Compute the characteristic polynomial f of ϕX .
(3) Compute gd, the product of all the irreducible polynomials of degree d in

f , by: For l = 1 up to d− 1, f ← f/ gcd(Xql −X, f).
(4) Finally, compute gcd(gd(ϕX)(1), N).
(5) This either gives a factor of N or one starts again with step (1).

Remark 3.4. Note that in step (1) one should not choose the Drinfeld module ϕ
of the form ϕX = X +

∑
i<∞ biτ

di ∈ B{τ}, because this Drinfeld module induces
the same A-action on B as γ does. These Drinfeld modules correspond exactly to
d-tuples (a0, 0, . . . , 0). The other d-tuples correspond to Drinfeld modules which
give an A-action on B different from the one induced by γ.

By Lemma 2.1 we see that there exists an M ∈ EndFq B, such that the char-
acteristic polynomial f of M splits as f = gdgr, such that both gd and gr are not
constant, where we use the same notation gd and gr as above. In this algorithm
we consider all Drinfeld modules up to rank d + 1; hence by Propositions 2.2 and
3.1 it will factor N . Note that there is no trivial reason to consider only Drinfeld
modules up to rank smaller than d+1. E.g., the final remark of Example 3.2 shows
that considering only rank 1 Drinfeld modules when d = 2 is not enough to factor
N .

Remark 3.5. In this paper we consider Algorithm 3.3, without looking at fancy
ways of implementing it. One may expect that the complexity of the algorithm
will improve if one takes implementation details into account and changes the algo-
rithm accordingly. In the following section, we will compute the complexity of the
algorithm, assuming that in steps (1) up to (5) classical methods are being used.

4. Complexity Analysis

In this section we give a complexity analysis of the algorithm described in Algo-
rithm 3.3. In the first part we compute with what probability the algorithm gives
a decomposition of N in one step; cf. Proposition 4.3. The second part computes
the number of multiplications in one step; cf. Proposition 4.4.
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Lemma 4.1. The number of matrices in Md(Fq) with a given characteristic poly-
nomial g ∈ Fq[X ] which is irreducible, monic and of degree d is

∏d−1
i=1 (qd − qi).

Proof. This is a special case Theorem 2 in [Rei61]. �
Proposition 4.2. Let δ = 1

q−1 and denote by α the proportion of operators in
Md(Fq) which have an irreducible characteristic polynomial. Then for q > 5

1
d
> α >

1
d

(1− δ)(1 − 2δ).

If q � d, then α is approximately 1
d .

Proof. Let xd = #{monic irreducible polynomials of degree d in Fq[X ]}. According
to Lemma 4.1 there are (qd − q) · · · (qd − qd−1) matrices with the same irreducible
characteristic polynomial of degree d; hence a proportion α = xd(qd−q)···(qd−qd−1)

qd2 =
1
qd
xdβ, with β = (1−q1−d) · · · (1−q−1) < 1 of all matrices has irreducible character-

istic polynomial. The well-known estimate 1
dq
d > xd >

1
dq
d(1− q

q−1q
−1
2 d) ≥ (1−δ),

where the latter is true when d ≥ 2, implies that 1
d > α > 1

dβ(1 − δ).
Now we estimate β. If |x| < 1, then | log(1+x)| ≤ 1

1−|x| |x|. Because 1+δ = 1
1− 1

q

,

this estimate implies | log(1 − q−i)| ≤ (1 + δ)q−i, for i = 1, . . . , d − 1, and thus
| log(β)| ≤ (1 + δ) q

−1−q−d
1−q−1 ≤ (1 + δ)δ.

Also |ex − 1| ≤ |x|
1−|x| , and hence |β − 1| ≤ (1+δ)δ

1−(1+δ)δ ≤ 2δ, where the latter
inequality is true when δ ≤ 1

4 , i.e. q ≥ 5. �
Proposition 4.3. Let α be as in Proposition 4.2. Then we may expect that after

1
1−αk−(1−α)k

choices of a Drinfeld module, Algorithm 3.3 gives a decomposition of

N . If q � d, this number is approximately dk

dk−(d−1)k−1
.

Proof. The algorithm gives according to Proposition 3.1 a decomposition when gd,
the part of the characteristic polynomial f =

∏
i fi of ϕX which consists of all

fi’s which are irreducible, is neither f nor 1. According to Proposition 4.2 gd = f
with probability αk and gd = 1 with probability (1 − α)k. If q � d, then α is
approximately 1

d . �

Proposition 4.4. One step of Algorithm 3.3 takes n2 log(q) + dn3 multiplications
in Fq asymptotically. If q � n, then this is asymptotically n2 log(q).

Proof. We count the number of multiplications in Fq in each step of Algorithm 3.3;
q � d, and hence α is approximately 1

d .
(1) To compute the matrix of ϕX , one needs to compute ϕX(X i) mod N for

i = 0, . . . , n − 1, where ϕX =
∑d−1
i=0 aiτ

i. First we compute X iqj in the
following standard way. Computing Xq takes log(q) multiplications in B.
So computing the vector (X iq)n−1

i=0 takes log(q)+n−2 multiplications in B.
If we write Xq =

∑n−1
i=0 biX

i with bi ∈ Fq, then Xq2
=
∑n−1

i=0 biX
iq; hence

computing Xq2
will cost n2 multiplications in Fq. Thus computing the

elements Xq, . . . , Xqd−1
takes (d − 2)n2 multiplications in Fq. Finally we

compute ϕX(Xj) by computing the vector (aiXqi)d−1
i=0 , which gives ϕX(X)

by adding all components. Now computing (aiXqiXqi) = (aiX2qi)d−1
i=0 gives

ϕX(X2), etc. This takes (d− 1)(n− 1) multiplications in B.
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One multiplication in B takes n2 multiplications in Fq; hence we see that
this step is of order O(n2 log(q) + dn3) computations in Fq.

(2) According to [Coh93, p. 55], the Hessenberg algorithm there described will
take order O(n3) multiplications in Fq.

(3) This is just the first step of the Berlekamp algorithm. Computing Xql −X
mod f is done as in step (1); hence this will take asymptotically n2 log(q)+
ln2 multiplications in Fq, and the gcd of 2 polynomials of degree n and
n−1 will take asymptotically n2 multiplications in Fq. Hence this does not
add anything asymptotically to step (1).

(4) This will take deg(gd), which is d times the number of irreducible fi’s, ma-
trix multiplications. Given the fact that α ≈ 1

d , we expect that deg(gd) = k.
To compute ϕXj (1), we only need to compute the first column of ϕXj , which
is ϕX times the first column of ϕXj−1 . So to compute ϕX(1), . . . , ϕXk(1)
takes kn2 multiplications in Fq. Hence to compute gd(ϕX(1)) takes kn2+kn
multiplications, hence asymptotically kn2 in Fq.

This sums asymptotically to n2 log(q) + dn3. Hence if q � n, this sums asymptot-
ically to n2 log(q). �
Remark 4.5. Finally, we compare this method to the well-known Cantor-Zassenhaus
algorithm. As they show in their paper [CZ81], the probability of successfully
finding a factor of N in one step of the algorithm is about 1− 21−k, where k is the
number of irreducible components. And one step of their algorithm, using classical
methods as is done in this paper, is of complexity O(dn2 + n2 log(q)).

We see that according to Proposition 4.3, the probability of finding a factor in
one step is for large q about 1 − (d−1)k+1

dk
. In case d is large compared to k, this

factor is approximately k
d . In this case the proposed algorithm is much worse than

Cantor-Zassenhaus.
If k ≥ d, then 1 − (d−1)k+1

dk
> 1

2 and in fact tends to 1 if k is much larger than

d. E.g., when d = 2, then we see that 1− (d−1)k+1
dk

= 1− 21−k.
The complexity of one step of the proposed Algorithm 3.3 is O(dn3 +n2 log(q)),

which can compete with the complexity of Cantor-Zassenhaus if dn3 is not of a
higher order than n2 log(q).

This means that for q � n and k ≥ d Algorithm 3.3 may be expected to be as
efficient as Cantor-Zassenhaus’s algorithm.
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