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RECURRENCE RELATIONS AND CONVERGENCE THEORY
OF THE GENERALIZED POLAR DECOMPOSITION

ON LIE GROUPS

ANTONELLA ZANNA

Abstract. The subject matter of this paper is the analysis of some issues
related to generalized polar decompositions on Lie groups. This decomposition,
depending on an involutive automorphism σ, is equivalent to a factorization
of z ∈ G, G being a Lie group, as z = xy with σ(x) = x−1 and σ(y) = y, and
was recently discussed by Munthe-Kaas, Quispel and Zanna together with its
many applications to numerical analysis.

It turns out that, contrary toX(t) = log(x), an analysis of Y (t) = log(y) is a
very complicated task. In this paper we derive the series expansion for Y (t) =
log(y), obtaining an explicit recurrence relation that completely defines the
function Y (t) in terms of projections on a Lie triple system pσ and a subalgebra
kσ of the Lie algebra g, and obtain bounds on its region of analyticity.

The results presented in this paper have direct application, among others,
to linear algebra, integration of differential equations and approximation of
the exponential.

1. Introduction

The polar decomposition is well known in linear algebra as a useful canonical
form of matrices: it consists in factoring a real matrix as the product of a positive
semidefinite matrix and an orthogonal matrix [5]. However, the matrix case is just
a particular setting. In fact, structures like Lie groups, endowed with involutive au-
tomorphisms, possess all the attributes needed to define the analogue of the matrix
polar decomposition, the difference being that the decomposition depends on the
choice of the automorphism σ — hence the name generalized polar decomposition.

The generalized polar decomposition on Lie groups was recently considered in
[15], and some application in numerical analysis were studied in [14]: for instance,
the generalized Scovel projection [13] to generate self-adjoint numerical schemes
from an arbitrary integrator for differential equations, as well as the Thue–Morse
sequence [7] for improving the retention of symmetries by a numerical ODE scheme,
can be associated to choosing a factor in the generalized polar decomposition of the
underlying numerical method in tandem with an appropriate automorphism.

Other applications of the generalized polar decomposition occur in linear algebra.
Recently, it has been shown that iterated generalized polar decompositions can be
employed to approximate the matrix exponential from a Lie algebra g to a Lie group

Received by the editor September 5, 2001 and, in revised form, October 1, 2002.
2000 Mathematics Subject Classification. Primary 51A50; Secondary 65L99, 58A99.
Key words and phrases. Lie group, Lie algebra, generalized polar decomposition, generalized

Cartan decomposition.

c©2003 American Mathematical Society

761



762 A. ZANNA

G [16], and the resulting algorithms are very competitive with standard methods
for approximating the matrix exponential.

To be more specific, let G be a Lie group (i.e., a manifold which is endowed with
a multiplication compatible with its topology) and σ an involutive automorphism (a
one-to-one mapG→ G such that σ(xy) = σ(x)σ(y), and σ 6= id, σ2 = id). Concrete
examples of Lie groups are matrix groups like the general linear group GL(n,C) of
complex invertible matrices, the group of matrices with unit determinant SL(n,C),
and, in general, continous subgroups of GL(n,C). Concrete example of involutive
automorphisms on G ⊆ GL(n,C) are the maps

σ1(z) = z̄,

where z̄ is the complex conjugate of the matrix z,

σ2(z) = z−T

and, finally,
σ3(z) = z−∗,

where z∗ = z̄T is the Hermitian adjoint of z.
Returning to the more abstract setting, denote by Gσ the subgroup of G con-

sisting of fixed points of σ, by Gσ = {y|σ(y) = y} and Gσ the set of ‘anti-fixed’
points of G, i.e., of the type σ(x) = x−1. The set Gσ has the structure not of a
group but of a symmetric space [4], namely it is closed under a symmetric type of
composition,

x1 · x2 = x1x
−1
2 x1 ∈ Gσ, x1, x2 ∈ Gσ,

where x1x2 denotes the usual product in the Lie group G. Now, the generalized
polar decomposition of z ∈ G is equivalent to writing

z = xy, x ∈ Gσ, y ∈ Gσ.
As mentioned above, such a decomposition always exists when z is sufficiently close
to the identity element e ∈ G; thus, if z = exp(tZ), then the factors x and y are
differentiable functions and x = exp(X(t)), y = exp(Y (t)), for some functions X(t)
and Y (t) in g. Moreover, since σ induces an involutive automorphism dσ on the
Lie algebra g, then g is split into the direct sum of two vector spaces,

g = pσ ⊕ kσ,

pσ corresponding to the eigenvalue λ = −1 of dσ (i.e., P ∈ pσ implies that dσ(P ) =
−P ), kσ corresponding to the eigenvalue λ = 1 of dσ (i.e., K ∈ kσ implies that
dσ(K) = K). It is easily verified that kσ is a subalgebra of g, while pσ has the
structure of a Lie triple system, meaning that pσ is closed not under the commutator
but under the double commutator: [X1, [X2, X3]] ∈ pσ whenever X1, X2, X3 ∈ pσ.
The functions X(t) and Y (t) have the property that

X(t) ∈ pσ, Y (t) ∈ kσ,

and are analytic at t = 0, provided that the commutator is a bounded operator
and that g is a Banach space. Thus, X(t) =

∑∞
n=0 t

nXn and Y (t) =
∑∞

n=0 t
nYn.

The recurrence relation for the Xns was derived in [15]. However, although in the
same paper the authors showed that Y (t) expands in odd powers of t only and
obtained a differential equation for Y (t), such an equation was not independent of
the knowledge of X(t), and this dependence rendered the derivation of a recurrence
relation for Y (t) a rather convoluted task.
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In this paper we shall follow a different approach and hence complete the work
in [15] by deriving an explicit recurrence relation for the Yns. This will be accom-
plished in two phases: first, in Section 2 we derive a differential equation obeyed
by Y , this time independent of the direct knowledge of X(t). Although the differ-
ential equation is implicit in Y ′, in Section 3 we derive a recurrence relation for
the Yns expanding all the terms and operators in series and comparing powers of t,
and estimate the radius of convergence for the function Y (t) as a series expansion.
Some applications of our results to the polar decomposition of matrices, integration
of differential equations with time-reversal symmetries and approximation of the
exponential of a matrix from a Lie algebra to a Lie group are described in Section 4,
while in Section 5 we present some discussion and concluding remarks on the issues
of this paper.

1.1. Notation and background theory. We use the notation convention of [4]
to denote group and algebra elements. Thus, group elements will be denoted by
lowercase Latin letters and algebra elements by uppercase Latin letters. A generic
Lie group will be denoted by G, while Lie algebras (and their subspaces) will be
denoted by Gothic letters. For background theory on symmetric spaces we refer
mainly to [4] and [11].

To simplify notation, we will make use time and again of the following Lie-group
and Lie-algebra operators,

AdaB = aBa−1, a ∈ G,B ∈ g,

adAB = [A,B], A,B ∈ g,

dexpA =
eu − 1
u

∣∣∣∣
u=adA

=
∞∑
k=0

1
(k + 1)!

adkA, A ∈ g,

dexp−1
A =

u

eu − 1

∣∣∣∣
u=adA

=
∞∑
k=0

Bk
k!

adkA, A ∈ g

(the Bks are Bernoulli numbers, see [1]), whose main properties are described at
length in [8].

Let G be a Lie group and g the corresponding Lie algebra. Denote by σ :
G → G an involutive automorphism and let dσ be the corresponding Lie-algebra
automorphism, defined as

(1) dσ(Z) =
d
dt

∣∣∣
t=0

σ(exp(tZ))

( dσ = dσe, the tangent map of σ at e, where e is the identity element of G). Set
pσ = {P ∈ g| dσ(P ) = −P} and kσ = {K ∈ g| dσ(K) = −K}. Then, every element
Z ∈ g can be uniquely written as

Z = P +K, P ∈ pσ, K ∈ kσ,

where
P =

1
2

(Z − dσ(Z)) and K =
1
2

(Z + dσ(Z)).

In other words, g decomposes as the direct sum

(2) g = pσ ⊕ kσ.

We refer to the decomposition (2) as a generalized Cartan decomposition of g, to
distinguish it from Cartan decompositions of semi-simple Lie algebras, which are
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again of the form (2) but possess the additional feature that the Cartan-Killing
form 〈A,B〉 = tr(adAadB) is strictly negative definite on kσ and strictly positive
definite on pσ [4].

The linear subspace kσ is a subalgebra of g (corresponding to the eigenvalue
λ = 1 of dσ), while pσ is a Lie triple system (linear subspace of g corresponding to
the eigenvalue λ = −1), and is closed under the double commutator ad2, that is,

[A, [B,C]] ∈ pσ, A,B,C ∈ pσ,

while in general it is not true that [A,B] is in pσ.
The sets pσ and kσ obey the important inclusion relations

[kσ , kσ] ⊆ kσ,

[kσ, pσ] ⊆ pσ,

[pσ, pσ] ⊆ kσ.

Since we are interested in series expansions in a neighbourhood of the identity
e ∈ G, we set z = exp(tZ) and assume that Z = P +K is the canonical projection
of Z into pσ ⊕ kσ, i.e., dσ(P ) = −P and dσ(K) = K. We denote w = (σ(z))−1 =
σ(z−1). Note that, because of (1), it is true that w = exp(tW ), where W =
− dσ(Z) = P −K.

We also set

X(t) =
∞∑
n=0

Xnt
n, Y (t) =

∞∑
n=0

Ynt
n.

Before proceeding further, it is useful to recall the following results derived in [15].

Theorem 1.1. The following statements hold.

(i) For t sufficiently small, z = exp(tZ) admits the generalized polar decom-
position z = xy, where x = exp(X(t)), X(t) ∈ pσ, and y = exp(Y (t)),
Y (t) ∈ kσ.

(ii) The coefficients of the series expansion of X(t) obey the recurrence relation

(3)

(n+ 1)Xn+1 = −[Xn,K]

+
∑
`≥1

2`≤n

c2`
∑

`1,...,`2`>0
`1+···+`2`=n

[X`1 , [X`2 , · · · , [X`2` , P ]]],

X1 = P,

for n = 1, 2, . . ., where c2` = 22`B2`
(2`)! and B` is the `-th Bernoulli number [1].

(iii) Assume that g is a Banach space and that there exists 0 < µ ≤ 2 such that
‖adAB‖ ≤ µ‖A‖‖B‖ for all A,B ∈ g. Then, the function X(t) is analytic
in a sphere of radius ρ = δ

αµ , where 0 < δ < π and α = max{‖P‖, ‖K‖}.

Lemma 1.2. The function Y (t) is an odd function of t, that is,

(4) Y2n = 0, n = 0, 1, 2, . . . .

As a consequence of the above lemma, only the odd coefficients of Y need be
determined.
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2. An implicit differential equation for Y (t)

Assume that z = exp(tZ) admits a generalized polar decomposition z = xy as
in Theorem 1.1. Recall that σ(x) = x−1 and σ(y) = y, so that

(5) zσ(z)−1 = xyσ(xy)−1 = xyy−1x = x2,

from which it is easily verified (taking the logarithm on both sides) that

X(t) =
1
2

bch(tZ, tW ) =
1
2

bch(t(P +K), t(P −K)),

bch(·, ·) being the familiar operator of the Baker–Campbell–Hausdorff (BCH) for-
mula,

exp(Z1) exp(Z2) = exp(bch(Z1, Z2)),
where

bch(Z1, Z2) = Z1 + Z2 +
1
2

[Z1, Z2] +
1
12

([Z1, [Z1, Z2]]− [Z2, [Z1, Z2]]) + · · · .

Note that the function

(6) Z̃(t) = bch(tZ1, tZ2) =
∞∑
n=0

Z̃nt
n

obeys a recurrence relation very similar to (3) (see [18]).
Once x = exp(X(t)) is known, one has

y = x−1z;

hence, taking logarithm on both sides and using the bch formula, it is true that

(7) Y (t) = bch(−X(t), tZ).

Thus, the factors Yn of the expansion of Y (t) can be obtained by carefully tracing
powers of t.

However, a main complication is that both X(t) and the BCH formula are known
by recursion only, which means that (7) is a double infinite recursion. Furthermore,
there is another objection to this procedure, on a more philosophical basis: As
we have seen in Theorem 1.1, x = exp(X(t)) can be expressed independently of
y = exp(Y (t)) and as a function of z and σ(z) only. The same must holds for y,
since—although coupled by z and σ(z)—after all, the functions X(t) and Y (t) live
in different linear subspaces!

Motivated by this thought, our goal is to derive a relation for y, defined in terms
of z and σ(z) only. As a consequence, the differentiation of this relation will allow
us to obtain an explicit recurrence relation for Y in terms of Z = P + K and
W = P −K.

Our point of departure is the observation that z = xy implies σ(z) = x−1y, and
hence

x = yσ(z)−1 = yw.

Substitution in z = xy yields
z = xy = ywy,

a relation invoking only y, z and w = σ(z)−1, as desired. In order to differentiate,
it is however more convenient to multiply the above equality on both sides by y−1

on the right, to obtain

(8) zy−1 = yw.
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Differentiating (8) in the usual fashion, we obtain

Zzy−1 − zdexp−Y Y
′y−1 = dexpY Y

′w + yWw

= dexpY Y
′zy−1 + zy−1W,

where we have made use of the fact that w and W commute, as well as (8). Recall
that also z and Z commute. Hence, multiplication of both sides of the above
equation by z−1 on the left and by y on the right yields

(9) Z − dexp−Y Y
′ = z−1dexpY Y

′z + y−1Wy.

Note that

z−1dexpY Y
′z = Adexp(−tZ)dexpY Y

′ = exp(−tadZ)dexpY Y
′,

and by a similar token,

y−1Wy = exp(−adY )W.

It is convenient to isolate the first term of the two exponential operators above;
hence (9) becomes

Z−dexp−Y Y
′ = dexpY Y

′+{exp(−tadZ)−1}dexpY Y
′+W +{exp(−adY )−1}W,

from which, collecting the free ‘dexp’ terms on one side,

(10) {dexp−Y +dexpY }Y ′ = 2K−{exp(−tadZ)−1}dexpY Y
′−{exp(−adY )−1}W.

From

dexp−u =
e−u − 1

u

∣∣∣
u=adY

, dexpu =
eu − 1
u

∣∣∣
u=adY

,

we observe that

dexp−u + dexpu =
eu − e−u

u
= 2

sinhu
u

;

hence (10) reduces to

(11) 2
sinhu
u

∣∣∣
u=adY

Y ′ = 2K −
∞∑
k=1

(−t)k
k!

adkZdexpY Y
′ −

∞∑
k=1

(−1)k

k!
adkYW.

3. The series expansion and recurrence relation

Instead of inverting the operator sinhu
u , u = adY , on the left-hand-side of (11),

we observe that (11) can already be used to derive, after some algebra, an explicit
recurrence relation for the Yns. Let us begin by expanding in series the term on
the left hand side of (11). Since Y (t) =

∑∞
n=0 t

2n+1Y2n+1, it is easily seen that

Y ′(t) =
∞∑
n=0

(2n+ 1)t2nY2n+1.

Moreover,

sinhu
u

∣∣∣
u=adY

=
∞∑
k=0

1
(2k + 1)!

ad2k
Y
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(note that it is an even function of t, as it is Y ′). Hence, changing the order of
summation and isolating the first term,

sinhu
u

∣∣∣
u=adY

Y ′ =
∞∑
k=0

1
(2k + 1)!

ad2k
Y

∞∑
n=0

(2n+ 1)t2nY2n+1

=
∞∑
n=0

(2n+ 1)t2nY2n+1 +
∞∑
n=0

(2n+ 1)t2n
∞∑
k=1

1
(2k + 1)!

ad2k
Y (Y2n+1).

We next perform a series expansion of the second term on the above right-hand-side,
which, after matching powers of t, results in

∞∑
n=1

t2n
n∑
q=1

∑
k≥1
k≤q

1
(2k + 1)!

∑
k1,...,k2k>0

k1+···+k2k=2q

[Yk1 , . . . , [Yk2k , Y2(n−q)+1], . . .].

It turns out that the coefficient of the t2n term of the left hand side of (11) is given
by
(12)

2(2n+ 1)Y2n+1 + 2
n∑
q=1

∑
k≥1
k≤q

1
(2k + 1)!

∑
k1,...,k2k>0

k1+···+k2k=2q

[Yk1 , . . . , [Yk2k , Y2(n−q)+1], . . .].

Next, we turn our attention to the right hand side of (11). Let us start from the
term

(13)
∞∑
k=1

(−t)k
k!

adkZdexpY Y
′.

Since

dexpY Y
′ =

∞∑
n=0

(2n+ 1)t2ndexpY Y2n+1

=
∞∑
n=0

(2n+ 1)t2nY2n+1 +
∞∑
n=0

(2n+ 1)t2n{dexpY − 1}Y2n+1,

the term (13) can be split into two parts, say T1 + T2, where

T1 =
∞∑
k=1

(−t)k
k!

adkZ
∞∑
n=0

(2n+ 1)t2nY2n+1,

and

T2 =
∞∑
k=1

(−t)k
k!

adkZ
∞∑
n=0

(2n+ 1)t2n
( ∞∑
m=1

1
(m+ 1)!

admY Y2n+1

)
.

We analyse T1 first. We observe that T1 consists in even and odd powers of t;
however, given that the left hand side of (11) possesses even powers of t only, we
disregard the odd powers in T1 and consider the even part only, T1,even, given by

T1,even =
∞∑
n=1

t2n
n∑

m=1

2(n−m) + 1
(2m)!

ad2m
Z Y2(n−m)+1.
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Hence, the coefficient of t2n is

(14)
n∑

m=1

2(n−m) + 1
(2m)!

ad2m
Z Y2(n−m)+1.

The analysis of the T2 term is more complicated. First, merging the first two series,
we obtain

T2 = −tadZ
∞∑
`=0

t`
∑̀
j=0

(−1)`−j(j + 1)
(`− j + 1)!

ad`−jZ .

Second, observe that

∞∑
m=1

1
(m+ 1)!

admY Yj+1

=
∞∑
q=0

tq+1
∑
k≥1

k≤q+1

1
(k + 1)!

∑
j1,...,jk>0

j1+···+jk=q+1

[Yj1 , . . . , [Yjk , Yj+1] . . .],

from which we obtain

T2 =
∞∑
m=0

tm+2
m∑
q=0

m−q∑
j=0

(−1)m−q−j+1(j + 1)
(m− q − j + 1)!

adm−j−q+1
Z

×
∑
k≥1
k≤q+1

1
(k + 1)!

∑
j1,...,jk>0

j1+···+jk=q+1

[Yj1 , . . . , [Yjk , Yj+1] . . .].

To obtain the coefficient of t2n in the above expression, it is sufficient to set m+2 =
2n, from which we deduce that m = 2(n − 1). Substituting above, the required
coefficient is

2(n−1)∑
q=0

2(n−1)−q∑
j=0

(−1)2n−q−j−1(j + 1)
(2n− q − j − 1)!

ad2n−j−q−1
Z

×
∑
k≥1
k≤q+1

1
(k + 1)!

∑
j1,...,jk>0

j1+···+jk=q+1

[Yj1 , . . . , [Yjk , Yj+1] . . .].

It remains to analyse the last term of (11),

∞∑
k=1

(−1)k

k!
adkYW,

a task that offers no particular difficulties. Let us recall, however, that Y is an odd
function of t; therefore terms of the form ad2k+1

Y only contribute with odd powers
of t to the expansion, while we are interested in even powers of t. Therefore, we
disregard the odd powers altogether, to consider the expansion of

∞∑
k=1

1
(2k)!

ad2k
Y W
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instead. This reduces to
∞∑
n=1

t2n
∑
`≥1
`≤n

1
(2`)!

∑
`1,...,`2`>0

`1+···+`2l=2n

[Y`1 , . . . , [Y`2` ,W ], . . .],

and the coefficient of t2n is

(15)
∑
`≥1
`≤n

1
(2`)!

∑
`1,...,`2`>0

`1+···+`2l=2n

[Y`1 , . . . , [Y`2` ,W ], . . .].

Now we have all the elements to complete the proof of the main result of this
paper.

Theorem 3.1. Let G be a Lie group and σ an involutive automorphism so that the
generalized polar decomposition z = exp(tZ) = xy = exp(X(t)) exp(Y (t)) exists in
the sense of [15]. The function Y (t) admits a series expansion Y (t) =

∑∞
n=0 Ynt

n,
whose coefficient obey the explicit recurrence relation

Y1 = K,(16)
Y2n = 0, n = 0, 1, 2, . . . ,

2(2n+ 1)Y2n+1 = −2
n∑
q=1

∑
k≥1
k≤q

1
(2k + 1)!

∑
k1,...,k2k>0

k1+···+k2k=2q

[Yk1 , . . . , [Yk2k , Y2(n−q)+1], . . .]

−
n∑

m=1

2(n−m) + 1
(2m)!

ad2m
Z Y2(n−m)+1(17)

−
2(n−1)∑
q=0

2(n−1)−q∑
j=0

(−1)2n−q−j−1(j + 1)
(2n− q − j − 1)!

ad2n−j−q−1
Z

×
∑
k≥1
k≤q+1

1
(k + 1)!

∑
j1,...,jk>0

j1+···+jk=q+1

[Yj1 , . . . , [Yjk , Yj+1] . . .]

−
∑
`≥1
`≤n

1
(2`)!

∑
`1,...,`2`>0

`1+···+`2l=2n

[Y`1 , . . . , [Y`2` ,W ], . . .].

Here, Z = P + K and W = P − K, where dσ(P ) = −P and dσ(K) = K (i.e.,
P ∈ pσ and K ∈ kσ).

Proof. Having derived the series expansion of the differential equation (11) obeyed
by Y (t), we need only to match the coefficients of the t2n term in (11), for n =
0, 1, . . ., since we already know that the function Y (t) is odd in t [15]. Thus, (12)–
(15), in tandem with (11), result in the relations (16) and (17), thus proving the
first part of the theorem. �

The first terms in the expansion of the function Y (t) are

(18)
Y = Kt− 1

12 [P, [P,K]]t3 +
(

1
120 [P, [P, [P, [P,K]]]]

+ 1
720 [K, [K, [P, [P,K]]]]− 1

240 [[P,K], [K, [P,K]]]
)
t5 +O

(
t7
)
.
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If g is a Banach space and ad is a bounded operator, i.e., ‖adAB‖ ≤ µ‖A‖‖B‖
for some finite µ, then Y (t) is analytic at the origin with radius of convergence
ρ = δbch

βµ , where δbch is the radius of convergence of the BCH formula and β =
max{t‖Z‖, ‖X(t)‖}. This is a consequence of the convergence of the series X(t),
proven in [15] and that of the BCH formula [18]. In particular, the series Y (t)
always converges for t sufficiently small in the finite dimensional case.

However, a better estimate of the radius of convergence of Y in terms of α =
max{‖P‖, ‖K‖} and µ is given in the result below.

Theorem 3.2. Under the same assumptions as Theorem 1.1, assume that the
series

∞∑
n=1

wnt
n

has radius of convergence δ̄, where wn is the solution of the recurrence relation

w1 =
1
2
,

w2n = 0, n = 1, 2, . . . ,

2(2n+ 1)w2n+1 = 2
n∑
q=1

w2(n−q)+1

∑
k≥1
k≤q

1
(2k + 1)!

∑
k1,...,k2k>0

k1+···+k2k=2q

wk1 · · ·wk2k

+
n∑

m=1

2(n−m) + 1
(2m)!

w2(n−m)+1

+
2(n−1)∑
q=0

2(n−1)−q∑
j=0

(j + 1)
(2n− q − j − 1)!

wj+1

×
∑
k≥1
k≤q+1

1
(k + 1)!

∑
j1,...,jk>0

j1+···+jk=q+1

wj1 · · ·wjk

+
∑
`≥1
`≤n

1
(2`)!

∑
`1,...,`2`>0

`1+···+`2l=2n

w`1 · · ·w`2` .

Then, the radius of convergence of

Y (t) =
∞∑
n=0

Ynt
n is ρ̄ ≥ δ̄

2αµ
.

Proof. First observe that the wn are all positive. Next, we show that ‖Yj‖ ≤
(2αµ)j

µ wj for j = 1, 2, . . .. Clearly, the assertion is true for j = 1, since ‖Y1‖ =
‖K‖ ≤ α = 2αw1, and for even values of j. Assume now that the statement is true
for all j = 2, 3, . . . , 2n. Passing to the norm in (17), using the triangle inequality and
the fact that ‖Z‖, ‖W‖ ≤ ‖P‖+‖K‖ ≤ 2α, together with the induction hypothesis,
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we have

2(2n+ 1)‖Y2n+1‖

≤ 2
n∑
q=1

(2αµ)2(n−q)+1

µ
w2(n−q)+1

∑
k≥1
k≤q

µ2k

(2k + 1)!

∑
k1,...,k2k>0

k1+···+k2k=2q

(2αµ)2q

(µ)2k
wk1 · · ·wk2k

+
n∑

m=1

2(n−m) + 1
(2m)!

(2αµ)2m (2αµ)2(n−m)+1

µ
w2(n−m)+1

+
2(n−1)∑
q=0

2(n−1)−q∑
j=0

(j + 1)
(2n− q − j − 1)!

(2αµ)2n−j−q−1 (2αµ)j+1

µ
wj+1

×
∑
k≥1
k≤q+1

µk

(k + 1)!

∑
j1,...,jk>0

j1+···+jk=q+1

(2αµ)q+1

µk
wj1 · · ·wjk

+
∑
`≥1
`≤n

2α
(2`)!

µ2` (2αµ)2n

µ2`

∑
`1,...,`2`>0

`1+···+`2l=2n

w`1 · · ·w`2`

= 2(2n+ 1)
(2αµ)2n+1

µ
w2n+1,

from which we deduce that the assertion is true also for j = 2n + 1. Thus, the
series

∑∞
n=1 ‖Yn‖tn is bounded by the converging series 1

µ

∑∞
n=1 wn(2αµ)ntn, from

which we deduce that the radius of convergence of Y (t) is at least δ̄/(2αµ). �
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Figure 1. Graph of the function w(t) obtained by the Matlab
routine ode45 and by the recurrence relation in Theorem 3.2.
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The function w(t) is the solution of the differential equation[
2
(

2− sinhw
w

)
− cosh t+ 1− 1

2

(
(et − 1)

ew − 1− w
w

− (e−t − 1)
e−w − 1 + w

w

)]
w′ = coshw

with initial condition w(0) = 0. In Figure 1 we plot the approximation of the
above ordinary differential equation obtained with the Matlab routine ode45 and
initial condition w(0) =

√
ε, where ε is the machine epsilon (about 2.22e-16). The

tolerance on relative and absolute error is set to 1.0e-4. The solid line corresponds
to the approximation of w(t) ≈

∑20
n=1 wnt

n where the coefficients wn, n = 1, . . . , 20,
are obtained by means of the recurrence relation in Theorem 3.2. The dash-dotted
line corresponds to the tangent at t = 0 to w(t), whose slope is w1 = 1

2 . The radius
of convergence δ̄ is the distance from the first singularity, which is detected by the
ODE routine between 1.1 and 1.2.

4. On some applications

In this section we briefly describe some applications of the results derived in
this paper. First, let us consider the case when G = GL(n,R), the group of real-
coefficient invertible n×n matrices, and set σ(z) = z−T . Assume that z = exp(Z).
Then P = 1

2 (Z − ZT ) and K = 1
2 (Z + ZT ), and the decomposition z = xy is

the classical polar decomposition of the matrix z, and the functions X(t) and Y (t)
are the logarithms of the factor x (a symmetric and positive definite matrix) and
y (an orthogonal matrix) respectively, which are completely described as analytic
functions at the origin by the recurrence relations discussed in this paper. In
Figure 2 we plot the norm of the truncation of X(t) and Y (t) to include the O

(
t14
)
-

terms in the series expansions for values of t between 10−2 and 10. The matrix Z
is a 10 × 10 random matrix with entries between −1 and 1, while µ = 2, since an
obvious bound for the commutator operator is ‖AB − BA‖ ≤ 2‖A‖‖B‖ when A
and B are arbitrary matrices. We also plot the bounds on α for convergence as
obtained in Theorems 1.1 and 3.2. The convergence of the series ceases when the
norms behave like t14, and Figure 2 seems to indicate that the bound α < π/µ for
X(t) is quite sharp, and that the bound for Y (t), α < δ̄/2µ, can also be improved
to the same value.

In the second example we consider the application of our results to differential

equations with time-reversal symmetries. Assume for instance that ϕt

(
p0

q0

)
is

the evolution map of a Hamiltonian system with a linear time-reversal symmetry
defined by the matrix

R =
(
−1 0
0 1

)
.

Then RϕtR = ϕ−t. We write ϕt = exp(tF) to indicate that ϕ is the flow of the
Hamiltonian vector field F . Clearly, ϕt ∈ Gσ, where σ is the involutive auto-
morphism σ(ϕ) = RϕR, and moreover F ∈ pσ; namely, RFR = −F . Now, let
ϕh = exp(hFh) be the flow of a numerical method used to approximate ϕt with
stepsize h. We assume that the shadow vector field Fh is known (it can be approx-
imated with an exponentially small error by means of backward error analysis, see
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Figure 2. Norms of the truncated series of X(t) and Y (t) to order
14 for a 10× 10 random matrix Z.

[17]). Usually, Fh 6∈ pσ. However, denote

Ph =
1
2

(Fh −RFhR),

Kh =
1
2

(Kh +RFhR).

Then, we can apply the generalized polar decomposition

exp(hFh) = exp(hXh) exp(hYh),

where Xh and Yh are the vector fields corresponding to the series in Theorems 1.1
and 3.2 in terms of Ph and Kh. The commutator ‘ad’ corresponds to the Jacobi
bracket of vector fields. The vector fields Xh and Yh can be approximated to a given
order of accuracy by means of the recurrence relations discussed in this paper. Note
that Xh possessesR as a time-reversal symmetry; hence, if ϕh is a numerical method
of order p, then the approximation

ϕh = exp(hFh) ≈ exp(hXh) = ϕ̃h

yields a numerical method ϕ̃h that has order p and R as a time-reversal symmetry.
In this case, though, the series Xh and Yh might not converge, because the Jacobi
bracket of vector fields need not be bounded, and one might need to truncate the
infinite expansions to an appropriate index so that exponentially small estimates
hold. This is not a practical method for devising new numerical methods that
have R as a reversing symmetry, but we believe that it might be useful on a more
theoretical level.

In the third and last example, perhaps the most practical, let us denote by
SL(n) the group of matrices with unit determinant and by sl(n) the corresponding
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Lie algebra of traceless matrices. We wish to describe how to approximate the
exponential exp(tZ) ∈ SL(n) of a matrix Z ∈ sl(n), so that the approximation
F (t, Z) ∈ SL(n). To this purpose, consider the involutive automorphism σ(z) =
SzS on SL(n), where S is the diagonal matrix

S =


−1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1

 .

Then, it easily verified that dσ(Z) = SZS and

P =
1
2

(Z − SZS) =


0 z1,2 · · · z1,n

z2,1 0 · · · 0
...

...
. . .

...
zn,1 0 · · · 0

 ,

K =
1
2

(Z + SZS) =


z1,1 0 · · · 0
0 z2,2 · · · z2,n

...
...

. . .
...

0 zn,2 · · · zn,n

 .

Thus, one can truncate the series X(t) and Y (t) discussed in this paper to a given
order of accuracy p, and approximate

exp(tZ) ≈ F (t, Z) = exp(
p∑

n=0

Xnt
n) exp(

p∑
n=0

Ynt
n),

where the Xns and Yns are determined in terms of the matrices P and K above.
Note that both

∑p
n=0Xnt

n and
∑p

n=0 Ynt
n are zero-trace matrices; hence their

exact exponential is a matrix with determinant equal to one. Hence F (t, Z) is
guaranteed to sit in SL(n). The truncation of X(t) has only one row and one
column, and its exponential is very easy to compute exactly. Commutators of
matrices in pσ and kσ can be computed employing only matrix-vector products,
using O

(
n2
)

operations. In [16] an iterative approach of this kind is used to devise
methods for the approximation of the exponential from sl(n) to SL(n) for large n,
costing O

(
3 1

3n
3
)
,O
(
7n3
)
,O
(
9n3
)

floating point operations for approximations of
order 2, 3 and 4 respectively. Also, this method can be generalized to other matrix
groups and is very attractive when the given matrices are in a banded/Hessenberg
form [10].

5. Concluding remarks

In this paper we have presented a combinatorial formula that gives the solution
of the implicit Lie-algebra differential equation (11) and we have discussed its con-
vergence, in the spirit, say, of Chacon and Fomenko [3]. However, there exist at
least two alternative solution techniques, both already present in the geometric-
integration literature:

• the Picard iteration approach, and
• the rooted-trees approach.
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The Picard iteration approach consists in approximating a nonlinear ordinary dif-
ferential equation

y′ = f(y), y(0) = y0,

by a sequence of linear problems of the type

(y[m+1])′ = f(y[m](t)), m = 0, 1, 2, . . . , y[0] = y0,

so that, at each iteration, y[m+1] can be computed explicitly,

y[m+1](t) =
∫ t

0

f(y[m](τ)) dτ.

In the Lie-group context, Picard iterations were used as long ago as Magnus [12],
and in more recent years by Iserles and Nørsett [9] and Blanes, Casas, Oteo and
Ros [2].

The rooted-trees approach was first introduced by Iserles and Nørsett in [9] as an
alternative expansion to Picard iterations for differential equations on Lie groups.
In this approach, binary trees represent multiple integrals of commutator terms.
Lately, this approach has been extended to the case of trees with coloured leaves
[6].

The main disadvantage of the two approaches above is that they need to be
applied to an explicit differential equation, while (11) is implicit. However, an
alternative is to use the explicit differential equation for Y ,

Y ′ = dexp−1
Y

(
K − 2

∞∑
k=1

(22k − 1)B2k

(2k)!
u2k−1

∣∣∣
u=adX

(P )

)
,

given in [15], in tandem with the initial condition Y (0) = 0. Note that, in this
formulation, solving for Y (t) requires the knowledge of the function X(t), which is
not necessary in the formulation (11): indeed, the Y (t) term is independent of the
function X(t), but depends on the terms P and K that decompose Z. Clearly, each
of the three approaches has its advantages and disadvantages. In our opinion, the
approach presented in this paper is more favourable for symbolic manipulations of
the expansions.

In passing, we mention that symbolic software to compute the series expansion
for the functions X(t) and Y (t) described in this paper is now included in the latest
release of the Matlab package DiffMan, written by K. Engø, A. Marthinsen and H.
Munthe-Kaas and freely available from the home page

http://www.ii.uib.no/diffman/

DiffMan is an object-oriented MATLAB toolbox for solving differential equations
on manifolds.
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