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REDUCING THE CONSTRUCTION COST
OF THE COMPONENT-BY-COMPONENT

CONSTRUCTION OF GOOD LATTICE RULES

J. DICK AND F. Y. KUO

Abstract. The construction of randomly shifted rank-1 lattice rules, where
the number of points n is a prime number, has recently been developed by
Sloan, Kuo and Joe for integration of functions in weighted Sobolev spaces and
was extended by Kuo and Joe and by Dick to composite numbers. To construct
d-dimensional rules, the shifts were generated randomly and the generating
vectors were constructed component-by-component at a cost of O(n2d2) oper-
ations. Here we consider the situation where n is the product of two distinct
prime numbers p and q. We still generate the shifts randomly but we modify
the algorithm so that the cost of constructing the, now two, generating vectors
component-by-component is only O(n(p+ q)d2) operations. This reduction in
cost allows, in practice, construction of rules with millions of points. The rules
constructed again achieve a worst-case strong tractability error bound, with a
rate of convergence O(p−1+δq−1/2) for δ > 0.

1. Introduction

In the recent Sloan, Kuo, and Joe paper [10], the d-dimensional integral

Id(f) =
∫

[0,1]d
f(x) dx

for functions f belonging to certain weighted Sobolev spaces was approximated by
a certain class of equal-weight quasi–Monte Carlo (QMC) quadrature rules, namely
“randomly shifted rank-1 lattice rules”:

Rn,d(f,∆1, . . . ,∆t) =
1
tn

t∑
m=1

n∑
i=1

f

({
iz

n
+ ∆m

})
,

where ∆1, . . . ,∆t are t independent random “shifts” drawn from a uniform distri-
bution on [0, 1]d. Here z is a d-dimensional integer vector called the “generating
vector”, and the braces around the vector indicate that we take the fractional part
of each component of the vector.

The d-dimensional weighted Sobolev spaces considered in [10] are in fact tensor
product reproducing kernel Hilbert spaces. (See [1] or [12] for properties of such
spaces.) These weighted Sobolev spaces are parameterized by two sequences β =
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(β1, β2, . . .) and γ = (γ1, γ2, . . .) of “weights” satisfying
γ1

β1
≥ γ2

β2
≥ · · · .

Many recent papers include analysis of integration in these spaces. (For example,
see [12] and [13].) In particular, Sloan, Kuo, and Joe developed an algorithm in [9]
for constructing shifted rank-1 lattice rules, which are rules of the form

Qn,d(f) =
1
n

n∑
i=1

f

({
iz

n
+ ∆

})
.

Both the shift ∆ and the generating vector z are constructed component-by-
component, and the cost to construct such a rule up to d dimensions is O(n3d2)
operations, with the number of points n taken to be a prime number. (The idea
for such an algorithm originates from [11].) The construction was later generalized
by Kuo and Joe in [8] to rules with a composite number of points. In [10], Sloan,
Kuo and Joe used a number of random shifts to replace the construction of the
single shift in [9] and as a result the cost of construction was reduced to O(n2d2)
operations, with the additional advantage of a possible probabilistic error estima-
tion. (See [4] for the key underlying concepts behind such randomization ideas.) In
detail they showed that the generating vector z can be constructed one component
at a time by minimizing the quantity

e2
n,d(z) = −

d∏
j=1

(
βj + γj

3

)
+

1
n

n∑
i=1

d∏
j=1

(
βj + γj

[
B2

({
izj
n

})
+ 1

3

])
,

over the set Zdn = {1, 2, . . . , n − 1}d with n being a prime number. Here B2(x) =
x2−x+1/6 is the Bernoulli polynomial of degree 2. We shall call en,d(z) the “worst-
case error” of randomly shifted rank-1 lattice rules in weighted Sobolev spaces, as
it is the worst-case error of rank-1 lattice rules in some related function spaces.
The definition of worst-case error and the full details of why such quantity can be
used as the selection criterion for z in a randomly shifted rank-1 lattice rule can be
found in [10].

The motivation for this paper is to find an algorithm that reduces the cost of
construction even further so it is possible to construct, in practice, rules with even
a larger number of points. Instead of taking n to be a prime number, we choose n
to be the product of two distinct prime numbers p and q. We are thus considering
rank-1 lattice rules with points given by the set{{

iz

p
+
kw

q

}
: 1 ≤ i ≤ p, 1 ≤ k ≤ q

}
,

where z ∈ Zdp = {1, 2, . . . , p−1}d and w ∈ Zdq = {1, 2, . . . , q−1}d are two generating
vectors. This idea is not new. In 1960, Korobov pointed out in [6] the advantage
of the decomposition n = pq with p ≈ q2. This fact was later mentioned again in
Hua and Wang’s book [5] in 1981.

In Section 2 we derive the existence of a pair (z,w) such that e2
p,q,d(z,w) satisfies

a strong QMC tractability error bound, where strong QMC tractability means that
the minimal number of function evaluations n in a quasi–Monte Carlo rule

Qn,d(f) =
1
n

n∑
i=1

f(xi)
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needed to reduce the initial error Id(f) by a factor of ε > 0 is bounded by a
polynomial in ε−1 independently of d. Moreover, we show that there exists a pair
(z,w) such that the better rate of convergence O(n−1+δ) for any δ > 0 can be
achieved. The proofs in Section 2 are based on averaging arguments and are not
constructive.

In Section 3 we show how the component-by-component algorithm of [10] can be
modified to reduce the construction cost. The corresponding worst-case error for
these modified rules with n = pq satisfies

e2
p,q,d(z,w) = −

d∏
j=1

(
βj + γj

3

)
+

1
pq

p∑
i=1

q∑
k=1

d∏
j=1

(
βj + γj

[
B2

({
izj
p + kwj

q

})
+ 1

3

])
.(1.1)

The new algorithm constructs the vectors z = (z1, . . . , zd) and w = (w1, . . . , wd)
component-by-component. We set z1 and w1 to 1, then for each s satisfying 2 ≤
s ≤ d, zs is found by minimizing the average of e2

p,q,s(z,w) over all ws ∈ {1, . . . , q−
1}; and then with this zs fixed, ws is obtained by minimizing e2

p,q,s(z,w) (see
Algorithm 3.1 for more details). The cost of construction for this algorithm is
O(n(p + q)d2) operations. We show that with some minor restrictions on p and
q, the square worst-case errors of rules constructed using Algorithm 3.1 are better
than the QMC mean (see Lemma 8 of [12]):

E2
n,d =

1
n

 d∏
j=1

(
βj + γj

2

)
−

d∏
j=1

(
βj + γj

3

) ,

in weighted Sobolev spaces. We show also that the rules constructed using Algo-
rithm 3.1 achieve the rate of convergence O(p−1+δq−1/2), for any δ > 0. In the final
section, Section 4, we outline numerical experiments and present the numerical re-
sults. We consider the performance of Algorithm 3.1 using different decompositions
of n and various choices of weights.

We note that the reduction in cost of Algorithm 3.1 can be substantial: If p ≈
q ≈ n1/2, then the cost is reduced from O(n2d2) to approximately O(n3/2d2). If,
for example, n = 106, then the cost is reduced by a factor of about a thousand.
This reduction in cost allows the construction of rules with millions of points.

Throughout the paper, we will make use of the fact that for x ∈ [0, 1],

B2(x) =
1

2π2

∞∑′

h=−∞

e2πihx

h2
,

where the prime on the sum indicates that we omit the h = 0 term. We will also
make use of the Riemann zeta function

ζ(k) =
∞∑
h=1

1
hk
, k > 1,

and in particular ζ(2) = π2/6.
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2. The existence of a good randomly shifted rank-1 lattice rule

We will use the averaging argument which was used in various other papers. First
we derive the expression for the mean square worst-case error over all generating
vectors. We then argue the existence of good vectors with square worst-case error
better than the mean.

We can separate the cases of i = p and k = q in the square worst-case error
expression (1.1) and obtain

e2
p,q,d(z,w) = −

d∏
j=1

(
βj + γj

3

)
+

1
pq

d∏
j=1

(
βj + γj

2

)
+

1
pq

p−1∑
i=1

d∏
j=1

(
βj + γj

[
B2

({
izj
p

})
+ 1

3

])

+
1
pq

q−1∑
k=1

d∏
j=1

(
βj + γj

[
B2

({
kwj
q

})
+ 1

3

])

+
1
pq

p−1∑
i=1

q−1∑
k=1

d∏
j=1

(
βj + γj

[
B2

({
izj
p + kwj

q

})
+ 1

3

])
.(2.1)

We define the mean of the square worst-case error:

M2
p,q,d :=

1
(p− 1)d(q − 1)d

∑
z∈Zdp

∑
w∈Zdq

e2
p,q,d(z,w).

Theorem 2.1. Let p and q be two distinct prime numbers. We have

M2
p,q,d = −

d∏
j=1

(
βj + γj

3

)
+

1
pq

d∏
j=1

(
βj + γj

2

)
+
p− 1
pq

d∏
j=1

(
βj + γj

(
1
3 −

1
6p

))

+
q − 1
pq

d∏
j=1

(
βj + γj

(
1
3 −

1
6q

))

+
(p− 1)(q − 1)

pq

d∏
j=1

(
βj + γj

(
1
3 + 1

6pq

))
.

This expression is an easy consequence of the following result:

Lemma 2.2. Let p and q be two distinct prime numbers. For i 6= p and k 6= q, we
have

1
p− 1

p−1∑
z=1

B2

({
iz
p

})
= − 1

6p
,

1
p− 1

p−1∑
z=1

B2

({
iz
p + kw

q

})
=

1
p(p− 1)

B2

({
pkw
q

})
− 1
p− 1

B2

({
kw
q

})
,
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and
1

(p− 1)(q − 1)

p−1∑
z=1

q−1∑
w=1

B2

({
iz
p + kw

q

})
=

1
6pq

.

Proof. The first equation was used in several papers before. For completeness we
include a proof here. For i 6= p, we have

1
p− 1

p−1∑
z=1

B2

({
iz
p

})
=

1
2π2

∞∑′

h=−∞

[
1
h2

(
1

p− 1

p−1∑
z=1

e2πihiz/p

)]
.

Since

1
p− 1

p−1∑
z=1

e2πihiz/p =

{
1, if h is a multiple of p,
− 1
p−1 , otherwise,

we have

1
p− 1

p−1∑
z=1

B2

({
iz
p

})

=
1

2π2

 ∑′

h≡0 (mod p)

1
h2
− 1
p− 1

∑′

h 6≡0 (mod p)

1
h2


=

1
2π2

[ ∞∑′

m=−∞

1
m2p2

− 1
p− 1

( ∞∑′

h=−∞

1
h2
−

∞∑′

m=−∞

1
m2p2

)]

=
1

2π2

[
2ζ(2)
p2
− 1
p− 1

(
2ζ(2)− 2ζ(2)

p2

)]
= − 1

6p
.

Similarly we can obtain for i 6= p,

1
p− 1

p−1∑
z=1

B2

({
iz
p + kw

q

})
=

1
2π2

∞∑′

h=−∞

[
e2πihkw/q

h2

(
1

p− 1

p−1∑
z=1

e2πihiz/p

)]

=
1

p(p− 1)
B2

({
pkw
q

})
− 1
p− 1

B2

({
kw
q

})
.

Finally, it follows from the two results above that for i 6= p and k 6= q,

1
(p− 1)(q − 1)

p−1∑
z=1

q−1∑
w=1

B2

({
iz
p + kw

q

})
=

1
6pq

.

This completes the proof. �

Now we find an upper bound for the mean M2
p,q,d.

Theorem 2.3. Let p and q be two distinct prime numbers. We have

M2
p,q,d ≤ 1

(p− 1)(q − 1)

 d∏
j=1

(
βj + γj

2

)
−

d∏
j=1

(
βj + γj

3

) .
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Proof. Using the property that
d∏
j=1

(bj + aj) =
∑
u⊆D

(∏
j /∈u

bj
∏
j∈u

aj

)

=
d∏
j=1

bj +
∑
∅6=u⊆D

(∏
j /∈u

bj
∏
j∈u

aj

)
,(2.2)

where D = {1, 2, . . . , d}, we can write M2
p,q,d from Theorem 2.1 as

M2
p,q,d =

1
pq

∑
∅6=u⊆D

(
S(u)

∏
j /∈u

(
βj + γj

3

)∏
j∈u

(γj
6

))
,

where

S(u) = 1 + (p− 1)
(
− 1
p

)|u|
+ (q − 1)

(
− 1
q

)|u|
+ (p− 1)(q − 1)

(
1
pq

)|u|
.

For 1 ≤ |u| ≤ d, if |u| is even, we have

S(u) ≤ 1 +
p− 1
p2

+
q − 1
q2

+
(p− 1)(q − 1)

p2q2
≤ pq

(p− 1)(q − 1)
,

and if |u| is odd, we have

S(u) = 1− p− 1
p|u|

− q − 1
q|u|

+
(p− 1)(q − 1)

p|u|q|u|
≤ 1 ≤ pq

(p− 1)(q − 1)
.

Thus

M2
p,q,d ≤ 1

(p− 1)(q − 1)

∑
∅6=u⊆D

(∏
j /∈u

(
βj + γj

3

)∏
j∈u

(γj
6

))

=
1

(p− 1)(q − 1)

 d∏
j=1

(
βj + γj

2

)
−

d∏
j=1

(
βj + γj

3

) .

This completes the proof. �

We now write the square worst-case error as one sum. As we shall see later, this
allows us to apply Jensen’s inequality (see Theorem 19 of [3]), which states that for
{ai} a sequence of positive numbers,∑

ai ≤
(∑

aλi

) 1
λ

for 0 < λ ≤ 1.

Lemma 2.4. We can write

e2
p,q,d(z,w) =

∑′

h∈Zd
h·z≡0 (mod p)
h·w≡0 (mod q)

d∏
j=1

r
(
2, βj + γj

3 ,
γj

2π2 , hj
)
,

where

r(α, β, γ, h) =

{
β if h = 0,
γ|h|−α if h 6= 0,

and the prime on the sum means that we omit h = (0, . . . , 0).
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Proof. We can rewrite (1.1) as follows:

e2
p,q,d(z,w)

= −
d∏
j=1

(
βj + γj

3

)
+

1
pq

p∑
i=1

q∑
k=1

d∏
j=1

( ∞∑
h=−∞

e2πih(izj/p+kwj/q) r
(
2, βj + γj

3 ,
γj

2π2 , h
))

=
∑′

h∈Zd

[(
1
p

p∑
i=1

e2πiih·z/p

)(
1
q

q∑
k=1

e2πikh·w/q

)

×
d∏
j=1

r
(
2, βj + γj

3 ,
γj

2π2 , hj
) .

The result now follows from the fact that
p∑
i=1

e2πiih·z/p is p if h · z is a multiple of

p and 0 otherwise, and similarly
q∑

k=1

e2πikh·w/q is q if h ·w is a multiple of q and 0

otherwise. �
The following theorem is a consequence of Theorem 2.3.

Theorem 2.5. Let p and q be two distinct prime numbers.
(a) There exist z ∈ Zdp and w ∈ Zdq such that

e2
p,q,d(z,w) ≤ 1

(p− 1)(q − 1)

 d∏
j=1

(
βj + γj

2

)
−

d∏
j=1

(
βj + γj

3

) .

(b) There exist z ∈ Zdp and w ∈ Zdq such that

e2
p,q,d(z,w) ≤ (p− 1)−

1
λ (q − 1)−

1
λ

d∏
j=1

((
βj + γj

3

)λ + 2ζ(2λ)
( γj

2π2

)λ) 1
λ

for all λ satisfying 1
2 < λ ≤ 1.

Proof. Clearly there exist z ∈ Zdp and w ∈ Zdq such that e2
p,q,d(z,w) ≤Mp,q,d. Thus

result (a) follows from Theorem 2.3.
To prove (b), let α = 2, β̄ = (β̄j) =

(
βj + γj

3

)
, and γ̄ = (γ̄j) =

( γj
2π2

)
. First, it

follows from Lemma 2.4 that

e2
p,q,d(z,w) = e2

p,q,d(α, β̄, γ̄; z,w) =
∑′

h∈Zd
h·z≡0 (mod p)
h·w≡0 (mod q)

d∏
j=1

r
(
α, β̄j , γ̄j , hj

)
.

Using Jensen’s inequality and the property

[r(α, β, γ, h)]λ = r(αλ, βλ, γλ, h),

we can show that

(2.3) e2
p,q,d(α, β̄, γ̄; z,w) ≤

[
e2
p,q,d(αλ, β̄

λ
, γ̄λ; z,w)

] 1
λ
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for all 1
2 < λ ≤ 1. Second, it follows from (a) that there exist z ∈ Zdp and w ∈ Zdq

such that

e2
p,q,d(α, β̄, γ̄; z,w) ≤ 1

(p− 1)(q − 1)

d∏
j=1

(
β̄j + 2ζ(α)γ̄j

)
.

From this with a change of parameters, we see that there exist z ∈ Zdp and w ∈ Zdq
such that

(2.4) e2
p,q,d(αλ, β̄

λ
, γ̄λ; z,w) ≤ 1

(p− 1)(q − 1)

d∏
j=1

(
β̄λj + 2ζ(αλ)γ̄λj

)
.

The result (b) now follows from (2.3) and (2.4). �

The following theorem shows the existence of a pair (z,w) that achieves strong
QMC tractability under a certain condition on the weights.

Theorem 2.6. There exists a pair (z,w) such that

ep,q,d(z,w) ≤ Cd(δ)n−1+δe0,d, for all 0 < δ ≤ α−1
2 ,

where Cd(δ) is independent of n. Moreover, if
∞∑
j=1

(
γj
βj

) 1
2(1−δ)

<∞,

then
Cd(δ) ≤ C∞(δ) <∞;

that is, ep,q,d(z,w)/e0,d is O(n−1+δ) for δ > 0, independently of d.

Proof. The initial error in the weighted Sobolev spaces is

e0,d =
d∏
j=1

(
βj + γj

3

) 1
2 .

It follows from (b) in Theorem 2.5 that there exists a pair (z,w) such that

ep,q,d(z,w) ≤ [(p− 1)(q − 1)]−
1

2λ

d∏
j=1

((
βj + γj

3

)λ + 2ζ(2λ)
( γj

2π2

)λ) 1
2λ

≤ 3
1

2λn−
1

2λ

d∏
j=1

(
1 +

2ζ(2λ)
( γj

2π2

)λ(
βj + γj

3

)λ
) 1

2λ d∏
j=1

(
βj + γj

3

) 1
2

≤ 3
1

2λn−
1

2λ

d∏
j=1

(
1 + 2(2π2)−λζ(2λ)

(
γj
βj

)λ) 1
2λ

e0,d,

for all 1
2 < λ ≤ 1. Now with the substitution of

−1 + δ = − 1
2λ
,

the condition 1
2 < λ ≤ 1 becomes 0 < δ ≤ 1

2 and we obtain

ep,q,d(z,w) ≤ Cd(δ)n−1+δe0,d for all 0 < δ ≤ 1
2 ,
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where

Cd(δ) = 31−δ
d∏
j=1

[
1 + 2(2π2)−

1
2(1−δ) ζ

(
1

1−δ

)(
γj
βj

) 1
2(1−δ)

]1−δ
≤ C∞(δ),

and

C∞(δ)

= 31−δ exp

(1− δ)
∞∑
j=1

log
(

1 + 2(2π2)−
1

2(1−δ) ζ
(

1
1−δ

)(
γj
βj

) 1
2(1−δ)

)
≤ 31−δ exp

(1− δ)2(2π2)−
1

2(1−δ) ζ
(

1
1−δ

) ∞∑
j=1

(
γj
βj

) 1
2(1−δ)

 ,

where we have used the fact that log(1 + x) ≤ x for x ≥ 0. It is clear from this
expression that for 0 < δ ≤ 1

2 , C∞(δ) <∞ provided
∞∑
j=1

(
γj
βj

) 1
2(1−δ)

<∞.

This completes the proof. �

3. Component-by-component construction

of good randomly shifted rank-1 lattice rules

We want to construct two d-dimensional vectors z ∈ Zdp and w ∈ Zdq component-
by-component. For each s satisfying 2 ≤ s ≤ d, we can write (see (2.1))

e2
p,q,s((z1, . . . , zs), (w1, . . . , ws))

=
(
βs + γs

3

)
e2
p,q,s−1((z1, . . . , zs−1), (w1, . . . , ws−1)) +

γs
6pq

s−1∏
j=1

(
βj + γj

2

)

+
γs
pq

p−1∑
i=1

s−1∏
j=1

(
βj + γj

[
B2

({
izj
p

})
+ 1

3

])
B2

({
izs
p

})
+
γs
pq

q−1∑
k=1

s−1∏
j=1

(
βj + γj

[
B2

({
kwj
q

})
+ 1

3

])
B2

({
kws
q

})
+
γs
pq

p−1∑
i=1

q−1∑
k=1

s−1∏
j=1

(
βj + γj

[
B2

({
izj
p + kwj

q

})
+ 1

3

])

× B2

({
izs
p + kws

q

}) .
We define the mean of e2

p,q,s((z1, . . . , zs), (w1, . . . , ws)) over all ws ∈ Zq by

θ2
p,q,s((z1, . . . , zs−1), (w1, . . . , ws−1); zs)

:=
1

q − 1

q−1∑
ws=1

e2
p,q,s((z1, . . . , zs), (w1, . . . , ws)).
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The explicit expression for θ2
p,q,s (see (3.1) below) can be derived using Lemma 2.2.

We present an algorithm for constructing z and w component-by-component.
For each s satisfying 2 ≤ s ≤ d, zs is found by minimizing over the quantity θ2

p,q,s,
and then with this zs fixed, ws is found by minimizing over the square worst-case
error. Since B2({x}) = B2(1 − {x}), we have

θ2
p,q,s((z1, . . . , zs−1), (w1, . . . , ws−1); zs)

= θ2
p,q,s((z1, . . . , zs−1), (w1, . . . , ws−1); p− zs),

and thus the search of zs can be reduced to the set {1, 2, . . . , p−1
2 }.

Algorithm 3.1 (Partial Search). Given two distinct prime numbers p and q:

1. Set z1 and w1, the first components of z and w, to 1.
2. For s = 2, . . . , d, do the following:

(a) Find zs ∈ {1, 2, . . . , p−1
2 } to minimize

θ2
p,q,s((z1, . . . , zs−1), (w1, . . . , ws−1); zs)

=
(
βs + γs

3

)
e2
p,q,s−1((z1, . . . , zs−1), (w1, . . . , ws−1)) +

γs
6pq

s−1∏
j=1

(
βj + γj

2

)

+
γs
pq

p−1∑
i=1

s−1∏
j=1

(
βj + γj

[
B2

({
izj
p

})
+ 1

3

])
B2

({
izs
p

})
− γs

6pq2

q−1∑
k=1

s−1∏
j=1

(
βj + γj

[
B2

({
kwj
q

})
+ 1

3

])

+
γs
pq

p−1∑
i=1

q−1∑
k=1

s−1∏
j=1

(
βj + γj

[
B2

({
izj
p + kwj

q

})
+ 1

3

])

×
(

1
q(q−1)B2

({
qizs
p

})
− 1

q−1B2

({
izs
p

})) .(3.1)

(b) Find ws ∈ {1, 2, . . . , q − 1} to minimize

e2
p,q,s((z1, . . . , zs), (w1, . . . , ws))

= −
s∏
j=1

(
βj + γj

3

)
+

1
pq

p∑
i=1

q∑
k=1

s∏
j=1

(
βj + γj

[
B2

({
izj
p + kwj

q

})
+ 1

3

])
.

For each s satisfying 2 ≤ s ≤ d, the search for zs requires O(p2qs) operations
and the search for ws requires O(pq2s) operations, with a total of O(n(p + q)s)
operations. Thus the cost for constructing an n-point rule up to dimension d is
O(n(p+ q)d2) operations. Similar to other component-by-component construction
algorithms, this cost can be reduced to O(n(p+q)d) at the expense of O(n) storage.

The following theorem shows that with some minor restrictions on p and q, the
randomly shifted rank-1 lattice rules constructed by Algorithm 3.1 are in fact better
than average QMC rules.
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Theorem 3.2. Let n = pq where p and q are two distinct prime numbers, and let
ẑ ∈ Zdp and ŵ ∈ Zdq be constructed using Algorithm 3.1. If

p, q ≥ 2 exp

1
6

∞∑
j=1

γj
βj

 ,

then for each s = 1, 2, . . . , d, we have

e2
p,q,s((1, ẑ2, . . . , ẑs), (1, ŵ2, . . . , ŵs))

≤ 1
pq

 s∏
j=1

(
βj + γj

2

)
−

s∏
j=1

(
βj + γj

3

) = E2
n,s.

Proof. For s = 1, there is only one n-point lattice rule: the n-point rectangle rule.
Thus we may take z1 = 1 and w1 = 1 to obtain

e2
p,q,1(1, 1) = M2

p,q,1 =
γ1

6p2q2
≤ γ1

6n
= E2

n,1,

where the third to last expression follows from Theorem 2.1. Hence the result is
true for s = 1.

For each s satisfying 2 ≤ s ≤ d, suppose that two (s − 1)-dimensional vectors
(1, ẑ2, . . . , ẑs−1) and (1, ŵ2, . . . , ŵs−1) have already been constructed using Algo-
rithm 3.1 and they satisfy

e2
p,q,s−1((1, ẑ2, . . . , ẑs−1), (1, ŵ2, . . . , ŵs−1))

≤ 1
pq

s−1∏
j=1

(
βj + γj

2

)
−
s−1∏
j=1

(
βj + γj

3

) = E2
n,s−1.(3.2)

Following step 2 of Algorithm 3.1, we choose ẑs ∈ Zp to minimize θ2
p,q,s (which is

the average of e2
p,q,s over all ws), and then with this ẑs fixed, we choose ŵs ∈ Zq to

minimize e2
p,q,s. Thus these choices of ẑs and ŵs satisfy

e2
p,q,s((1, z2, . . . , ẑs), (1, w2, . . . , ŵs))

≤ θ2
p,q,s((1, z2, . . . , zs−1), (1, w2, . . . , ws−1); ẑs)

≤ 1
p− 1

p−1∑
zs=1

θ2
p,q,s((1, z2, . . . , zs−1), (1, w2, . . . , ws−1); zs).(3.3)

The result is proved if we can show that this last expression is bounded by E2
n,s.
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It follows from (3.1) and Lemma 2.2 that

1
p− 1

p−1∑
zs=1

θ2
p,q,s((1, z2, . . . , zs−1), (1, w2, . . . , ws−1); zs)

=
(
βs + γs

3

)
e2
p,q,s−1((1, z2, . . . , zs−1), (1, w2, . . . , ws−1))

+
γs
6pq

s−1∏
j=1

(
βj + γj

2

)
− γs

6p2q

p−1∑
i=1

s−1∏
j=1

(
βj + γj

[
B2

({
izj
p

})
+ 1

3

])

− γs
6pq2

q−1∑
k=1

s−1∏
j=1

(
βj + γj

[
B2

({
kwj
q

})
+ 1

3

])

+
γs

6p2q2

p−1∑
i=1

q−1∑
k=1

s−1∏
j=1

(
βj + γj

[
B2

({
izj
p + kwj

q

})
+ 1

3

])
≤

(
βs + γs

3

)
e2
p,q,s−1((1, z2, . . . , zs−1), (1, w2, . . . , ws−1))

+
γs
6pq

s−1∏
j=1

(
βj + γj

2

)
+

γs
6p2q2

×G,(3.4)

where

G =
p−1∑
i=1

q−1∑
k=1

s−1∏
j=1

(
βj + γj

[
B2

({
izj
p + kwj

q

})
+ 1

3

])

−
s−1∏
j=1

(
βj + γj

[
B2

({
izj
p

})
+ 1

3

])

−
s−1∏
j=1

(
βj + γj

[
B2

({
kwj
q

})
+ 1

3

]) .
Later we will show that G ≤ 0 under the assumption

p, q ≥ 2 exp

1
6

∞∑
j=1

γj
βj

 ,

after which upon combining (3.2), (3.3) and (3.4), it will follow that

e2
p,q,s((1, ẑ2, . . . , ẑs), (1, ŵ2, . . . , ŵs))

≤
(
βs + γs

3

) 1
pq

s−1∏
j=1

(
βj + γj

2

)
−
s−1∏
j=1

(
βj + γj

3

)+
γs
6pq

s−1∏
j=1

(
βj + γj

2

)

=
1
pq

 s∏
j=1

(
βj + γj

2

)
−

s∏
j=1

(
βj + γj

3

) = E2
n,s.

It will then follow inductively that the result is true for all s = 1, 2, . . . , d.
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To prove that G ≤ 0, we use property (2.2) to rewrite G as

G = −(p− 1)(q − 1)
s−1∏
j=1

(
βj + γj

3

)
+

∑
∅6=u⊆{1,2,...,s−1}

∏
j /∈u

(
βj + γj

3

)∏
j∈u

γj ×Hu

 ,
where

Hu =
p−1∑
i=1

q−1∑
k=1

∏
j∈u

B2

({
izj
p + kwj

q

})

−
∏
j∈u

B2

({
izj
p

})
−
∏
j∈u

B2

({
kwj
q

})
=

1

(2π2)|u|

p−1∑
i=1

q−1∑
k=1

∏
j∈u

∞∑′

h=−∞

e2πih(izj/p+kwj/q)

h2

−
∏
j∈u

∞∑′

h=−∞

e2πihizj/p

h2
−
∏
j∈u

∞∑′

h=−∞

e2πihkwj/q

h2

 .
Now let zu denote the |u|-dimensional vector containing those components of z
whose indices belong to u. Then we can rewrite Hu as

Hu =
1

(2π2)|u|
∑
h∈Z|u|
hj 6=0 ∀j

[
1

h2
1 · · ·h2

|u|

p−1∑
i=1

q−1∑
k=1

(
e2πi(ih·zu/p+kh·wu/q)

−e2πiih·zu/p − e2πikh·wu/q
)]

.

It can be shown that

p−1∑
i=1

q−1∑
k=1

(
e2πi(ih·zu/p+kh·wu/q) − e2πiih·zu/p − e2πikh·wu/q

)
=

{
p+ q − 1, if h · zu 6= 0 (mod p) and h ·wu 6= 0 (mod q),
−(p− 1)(q − 1) ≤ p+ q − 1, otherwise.

Thus

Hu ≤
p+ q − 1

(2π2)|u|
∑
h∈Z|u|
hj 6=0 ∀j

1
h2

1 · · ·h2
|u|

=
p+ q − 1

(2π2)|u|
(
2ζ(2)

)|u|
=
p+ q − 1

6|u|
,
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which leads to

G ≤ −(p− 1)(q − 1)
s−1∏
j=1

(
βj + γj

3

)

+(p+ q − 1)
∑

∅6=u⊆{1,2,...,s−1}

∏
j /∈u

(
βj + γj

3

)∏
j∈u

(γj
6

)
= −(p− 1)(q − 1)

s−1∏
j=1

(
βj + γj

3

)

+(p+ q − 1)

s−1∏
j=1

(
βj + γj

2

)
−
s−1∏
j=1

(
βj + γj

3

)
= −pq

s−1∏
j=1

(
βj + γj

3

)
+ (p+ q − 1)

s−1∏
j=1

(
βj + γj

2

)
.

Now consider

R =
(p+ q − 1)

s−1∏
j=1

(
βj + γj

2

)
pq

s−1∏
j=1

(
βj + γj

3

) =
(

1
p + 1

q −
1
pq

) s−1∏
j=1

(
1 + γj

6βj+2γj

)
.

Since

p, q ≥ 2 exp

1
6

∞∑
j=1

γj
βj

 ,

we have

R =
(

1
p + 1

q −
1
pq

)
exp

s−1∑
j=1

log
(

1 + γj
6βj+2γj

)
≤

(
1
p + 1

q

)
exp

 1
6

∞∑
j=1

γj
βj

 ≤ 1,

which leads to G ≤ 0. This completes the proof. �

The condition of

p, q ≥ 2 exp

1
6

∞∑
j=1

γj
βj


is not unreasonable at all. For example, for βj = 1 and γj = 0.5j we need p, q ≥ 3;
for βj = 1 and γj = 0.9j we need p, q ≥ 9; for βj = 1 and γj = 1/j2 we need
p, q ≥ 3.

The next theorem shows that the randomly shifted lattice rules constructed by
Algorithm 3.1 achieve the rate of convergence O(p−1+δq−1/2) for any δ > 0.
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Theorem 3.3. Let p and q be two distinct prime numbers, and let ẑ ∈ Zdp and
ŵ ∈ Zdq be constructed using Algorithm 3.1. Then for each s = 1, 2, . . . , d, we have

e2
p,q,s((1, ẑ2, . . . , ẑs), (1, ŵ2, . . . , ŵs))

≤ (p− 1)−
1
λ (q − 1)−1

s∏
j=1

((
βj + γj

3

)λ + 2ζ(2λ)
( γj

2π2

)λ) 1
λ

,

for all 1
2 < λ ≤ 1.

Proof. For s = 1, it follows from the proof of Theorem 3.2 that

e2
p,q,1(1, 1) =

γ1

6p2q2
.

For any λ satisfying 1
2 < λ ≤ 1, we have

γ1

6p2q2
≤ p−2q−2

((
β1 + γ1

3

)
+ 2ζ(2)

(
γ1

2π2

))
≤ p−2q−2

((
β1 + γ1

3

)λ + 2λ[ζ(2)]λ
(
γ1

2π2

)λ) 1
λ

,

where the second inequality follows by applying Jensen’s inequality to the sum.
It can be easily verified that p−2 < (p − 1)−

1
λ , q−2 < (q − 1)−1, 2λ ≤ 2, and by

Jensen’s inequality, [ζ(2)]λ ≤ ζ(2λ). Thus we have

e2
p,q,1(1, 1) =

γ1

6p2q2
≤ (p− 1)−

1
λ (q − 1)−1

((
β1 + γ1

3

)λ + 2ζ(2λ)
(
γ1

2π2

)λ) 1
λ

.

Hence the result is true for s = 1.
For each s satisfying 2 ≤ s ≤ d, suppose that two (s − 1)-dimensional vectors

(1, ẑ2, . . . , ẑs−1) and (1, ŵ2, . . . , ŵs−1) have already been constructed using Algo-
rithm 3.1 and that they satisfy

e2
p,q,s−1((1, ẑ2, . . . , ẑs−1), (1, ŵ2, . . . , ŵs−1))

≤ (p− 1)−
1
λ (q − 1)−1

s−1∏
j=1

((
βj + γj

3

)λ + 2ζ(2λ)
( γj

2π2

)λ) 1
λ

(3.5)

for all 1
2 < λ ≤ 1.

Following step 2 of Algorithm 3.1, we first choose ẑs ∈ Zp to minimize θ2
p,q,s,

which is the average of e2
p,q,s over all ws. From the expression of e2

p,q,s in Lemma 2.4,
θ2
p,q,s can be written as

θ2
p,q,s((1, z2, . . . , zs−1), (1, w2, . . . , ws−1); zs)

=
1

q − 1

q−1∑
ws=1

∑′

h∈Zs
h·(1,z2,...,zs)≡0 (mod p)
h·(1,w2,...,ws)≡0 (mod q)

s∏
j=1

r
(
2, βj + γj

3 ,
γj

2π2 , hj
)

=
(
βs + γs

3

)
e2
p,q,s−1((1, z2, . . . , zs−1), (1, w2, . . . , ws−1)) + 1

q−1F (zs),(3.6)
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where we have separated out the hs = 0 terms, and
(3.7)

F (zs) =
q−1∑
ws=1

∑′

hs∈Z

∑
h∈Zs−1

h·(1,z2,...,zs−1)≡−hszs (mod p)
h·(1,w2,...,ws−1)≡−hsws (mod q)

 γs
2π2
|hs|−2

s−1∏
j=1

r
(
2, βj + γj

3 ,
γj

2π2 , hj
) .

Since F (zs) is the only dependency of θ2
p,q,s on zs, our choice of ẑs will satisfy

F (ẑs) ≤ F (zs) for all zs ∈ Zp. Thus for any 1
2 < λ ≤ 1, we have [F (ẑs)]

λ ≤ [F (zs)]
λ

for all zs ∈ Zp, which leads to

(3.8) [F (ẑs)]
λ ≤ 1

p− 1

p−1∑
zs=1

[F (zs)]
λ
, or F (ẑs) ≤ (p− 1)−

1
λ

(
p−1∑
zs=1

[F (zs)]
λ

) 1
λ

.

Using Jensen’s inequality and the property r(α, β, γ, h)λ = r(αλ, βλ, γλ, h), we
obtain from (3.7) that

(3.9)
p−1∑
zs=1

[F (zs)]λ ≤
( γs

2π2

)λ∑′

hs∈Z

T (hs)
|hs|2λ

,

where

T (hs) =
p−1∑
zs=1

q−1∑
ws=1

∑
h∈Zs−1

h·(1,z2,...,zs−1)≡−hszs (mod p)
h·(1,w2,...,ws−1)≡−hsws (mod q)

s−1∏
j=1

r
(

2λ,
(
βj + γj

3

)λ
,
( γj

2π2

)λ
, hj

)
.

To simplify the notation, let us write this expression as

T (h) =
p−1∑
z=1

q−1∑
w=1

∑
h·z≡−hz (mod p)
h·w≡−hw (mod q)

R(h),

with

R(h) :=
s−1∏
j=1

r
(

2λ,
(
βj + γj

3

)λ
,
( γj

2π2

)λ
, hj

)
,

and we are interested in finding an upper bound to∑′

h

T (h)
|h|2λ

=
∑′

h≡0 (mod p)
h≡0 (mod q)

T (h)
|h|2λ +

∑′

h≡0 (mod p)
h 6≡0 (mod q)

T (h)
|h|2λ +

∑′

h 6≡0 (mod p)
h≡0 (mod q)

T (h)
|h|2λ +

∑′

h 6≡0 (mod p)
h 6≡0 (mod q)

T (h)
|h|2λ .

If h is a multiple of both p and q, then

T (h) = (p− 1)(q − 1)
∑

h·z≡0 (mod p)
h·w≡0 (mod q)

R(h) and
∑′

h≡0 (mod p)
h≡0 (mod q)

1
|h|2λ =

2ζ(2λ)
p2λq2λ

.
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If h is a multiple of p but not q, then

T (h) = (p− 1)
∑

h·z≡0 (mod p)
h·w 6≡0 (mod q)

R(h) and
∑′

h≡0 (mod p)
h 6≡0 (mod q)

1
|h|2λ =

2ζ(2λ)(q2λ − 1)
p2λq2λ

.

If h is a multiple of q but not p, then

T (h) = (q − 1)
∑

h·z 6≡0 (mod p)
h·w≡0 (mod q)

R(h) and
∑′

h 6≡0 (mod p)
h≡0 (mod q)

1
|h|2λ =

2ζ(2λ)(p2λ − 1)
p2λq2λ

.

If h is neither a multiple of p nor a multiple of q, then

T (h) =
∑

h·z 6≡0 (mod p)
h·w 6≡0 (mod q)

R(h)

=
∑
h

R(h)−
∑

h·z≡0 (mod p)
h·w≡0 (mod q)

R(h)−
∑

h·z≡0 (mod p)
h·w 6≡0 (mod q)

R(h)−
∑

h·z 6≡0 (mod p)
h·w≡0 (mod q)

R(h)

and ∑′

h 6≡0 (mod p)
h 6≡0 (mod q)

1
|h|2λ =

2ζ(2λ)(p2λ − 1)(q2λ − 1)
p2λq2λ

.

Putting all of the above together, we have

∑′

h

T (h)
|h|2λ =

2ζ(2λ)
p2λq2λ

[
(p2λ − 1)(q2λ − 1)

∑
h

R(h)

−
[
(p2λ − 1)(q2λ − 1)− (p− 1)(q − 1)

] ∑
h·z≡0 (mod p)
h·w≡0 (mod q)

R(h)

−
[
(p2λ − 1)(q2λ − 1)− (p− 1)(q2λ − 1)

] ∑
h·z≡0 (mod p)
h·w 6≡0 (mod q)

R(h)

−
[
(p2λ − 1)(q2λ − 1)− (p2λ − 1)(q − 1)

] ∑
h·z 6≡0 (mod p)
h·w≡0 (mod q)

R(h)

]

≤ 2ζ(2λ)(p2λ − 1)(q2λ − 1)
p2λq2λ

∑
h

R(h)

≤ 2ζ(2λ)
s−1∏
j=1

((
βj + γj

3

)λ + 2ζ(2λ)
(
γs

2π2

)λ)
.(3.10)

We now conclude from (3.8), (3.9), and (3.10) that

(3.11) F (ẑs) ≤ 2
1
λ [ζ(2λ)]

1
λ γs

2π2 (p− 1)−
1
λ

s−1∏
j=1

((
βj + γj

3

)λ + 2ζ(2λ)
(
γs

2π2

)λ) 1
λ

.
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With this ẑs fixed, ŵs ∈ Zq is chosen to minimize e2
p,q,s. Thus it follows from (3.5),

(3.6), and (3.11) that these choices of ẑs and ŵs satisfy

e2
p,q,s((1, ẑ2, . . . , ẑs), (1, ŵ2, . . . , ŵs))

≤ θ2
p,q,s((1, ẑ2, . . . , ẑs−1), (1, ŵ2, . . . , ŵs−1); ẑs)

≤
((
βs + γs

3

)
+ 2

1
λ [ζ(2λ)]

1
λ γs

2π2

)
×(p− 1)−

1
λ (q − 1)−1

s−1∏
j=1

((
βj + γj

3

)λ + 2ζ(2λ)
( γj

2π2

)λ) 1
λ

≤
((
βs + γs

3

)λ + 2ζ(2λ)
(
γs

2π2

)λ) 1
λ

×(p− 1)−
1
λ (q − 1)−1

s−1∏
j=1

((
βj + γj

3

)λ + 2ζ(2λ)
( γj

2π2

)λ) 1
λ

= (p− 1)−
1
λ (q − 1)−1

s∏
j=1

((
βj + γj

3

)λ + 2ζ(2λ)
( γj

2π2

)λ) 1
λ

,

where the third inequality follows from applying Jensen’s inequality to the sum
in the first factor. Hence it follows inductively that the result is true for all s =
1, 2, . . . , d. �

Remark. We want to have an algorithm so that the choice of zs is independent of
ws. A natural criterion for choosing zs is then to minimize θ2

p,q,s as it is the average
of e2

p,q,s over all possible ws and we know that we can always find a ws such that

e2
p,q,s((z1, . . . , zs), (w1, . . . , ws)) ≤ θ2

p,q,s((z1, . . . , zs−1), (w1, . . . , ws−1); zs)

for any zs. In this way we separate the search for zs and ws, which yields the
reduction of the construction cost.

As we do not have a concise formula for

1
q − 1

q−1∑
ws=1

[
e2
p,q,s((z1, . . . , zs), (w1, . . . , ws))

]λ
with 1

2 < λ < 1, which could be used instead of θ2
p,q,s in Algorithm 3.1, the bound

in Theorem 3.3 cannot be improved by the arguments used in the proof.

4. Numerical experiments

By means of numerical calculations we test how well the Partial Search algorithm
(Algorithm 3.1) performs for various choices of decompositions n = pq. Since the
theory suggests a rate of convergence O(p−1+δq−1/2) for δ > 0, it would seem
intuitive to choose p much larger than q to ensure a low worst-case error. On
the other hand, the cost of the construction is O(n(p + q)d2) operations, which is
minimized when choosing p and q to be roughly the same, that is, p ≈ q ≈ n1/2.
Table 1 shows a comparison of the theoretical rate of convergence against the cost
of construction.

In particular, we test whether for fixed n larger values of p (which means higher
costs for the construction) will indeed lead to better rates of convergence. Further-
more we compare numerical results from the Partial Search algorithm with those
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Table 1. Partial search analysis

cost of construction rate of convergence
n = pq O(n(p+ q)d2) O(p−1+δq−1/2), δ > 0

p = q O(n1.5d2) O(n−0.75+δ)
p = q2 O(n1.67d2) O(n−0.83+δ)
p = q3 O(n1.75d2) O(n−0.875+δ)

from the Full Search algorithm (Algorithm 4.1 below), which requires a cost of
O(n2d2) operations. Results from the Kuo and Joe paper [8] can be used to justify
Algorithm 4.1. In [2], Dick showed that rules constructed by Algorithm 4.1 achieve
a rate of convergence O(n−1+δ) for δ > 0.

Algorithm 4.1 (Full Search). Given any composite number n:
1. Set z1, the first component of z, to 1.
2. For s = 2, 3, . . . , d− 1, d, find zs ∈ {1 ≤ z ≤ n−1

2 : gcd(z, n) = 1} such that

e2
n,s(z1, . . . , zs) = −

s∏
j=1

(
βj + γj

3

)
+

1
n

n∑
i=1

s∏
j=1

(
βj + γj

[
B2

({
izj
n

})
+ 1

3

])
,

is minimized.

We take β = 1 and six different sequences of γ:

γj = 0.9j, γj = 0.5j, γj = 0.1j, γj = 1/j2, γj = 1/j6, and γj = 1/j,

and we consider different decompositions with p ≈ q, p ≈ q2, and p ≈ q3. For each
choice of n = pq, we compare the following:

(1) worst-case error en,100 for the 100-dimensional rule constructed by the Full
Search algorithm (Algorithm 4.1),

(2) worst-case error ep,q,100 for the 100-dimensional rule constructed by the
Partial Search algorithm (Algorithm 3.1),

(3) root QMC mean En,100.
The results of these comparisons are presented in Tables 2, 3, and 4. The observed
rates of convergence O(n−ω) for successive worst-case errors are also included in
these tables.

We observe from our numerical results that the worst-case errors for rules con-
structed by the Partial Search algorithm are only slightly worse than those con-
structed by the Full Search algorithm, and they are all significantly better than
the root QMC mean, which is supported by Theorem 3.2. The observed rates of
convergence for rules constructed by the Partial Search algorithm are very close to
those constructed by the Full Search algorithm. This indicates that in practice, we
can use the cheaper Partial Search algorithm as a replacement for the costly Full
Search algorithm.

Contrary to what Theorem 3.3 may suggest, the observed rates of convergence
show no correlation with the choice of decompositions p ≈ q, p ≈ q2 or p ≈ q3. (It
would appear that the observed rate of convergence depends on the rate of decay of
the weights γ.) From this we may conclude that there is no advantage in taking p
to be much larger than q. The Partial Search algorithm performs just as well with
the cheaper choice of p ≈ q. In this case the algorithm has only a construction cost
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of O(n1.5d2) operations, and we are now able to use 106 or even 107 points: see
Table 5 for results with n roughly 2 million, 4 million, and 8 million.

Tables of numerical results:

Table 2. Full Search and Partial Search with p ≈ q

n = pq Full Partial QMC Mean
n p q en,100 ω̃ ep,q,100 ω̃ En,100

2021 47 43 5.0496e-02 5.2455e-02 1.4320e-01
γj = 0.9j 8633 97 89 1.9124e-02

0.669
2.0187e-02

0.658
6.9286e-02

32399 181 179 7.9942e-03
0.660

8.3845e-03
0.664

3.5765e-02

2021 47 43 3.7133e-04 3.8948e-04 1.0370e-02
γj = 0.5j 8633 97 89 9.5914e-05

0.932
1.0685e-04

0.891
5.0172e-03

32399 181 179 2.8070e-05
0.929

3.0918e-05
0.938

2.5899e-03

2021 47 43 6.8716e-05 6.8744e-05 3.0398e-03
γj = 0.1j 8633 97 89 1.6123e-05

0.998
1.6135e-05

0.998
1.4708e-03

32399 181 179 4.3028e-06
0.999

4.3188e-06
0.997

7.5920e-04

2021 47 43 6.9041e-04 7.3900e-04 1.4074e-02
γj = 1/j2 8633 97 89 1.9196e-04

0.882
2.0846e-04

0.872
6.8097e-03

32399 181 179 6.0179e-05
0.877

6.5794e-05
0.872

3.5151e-03

2021 47 43 2.1076e-04 2.1089e-04 9.2246e-03
γj = 1/j6 8633 97 89 4.9526e-05

0.997
4.9568e-05

0.997
4.4632e-03

32399 181 179 1.3234e-05
0.998

1.3306e-05
0.994

2.3039e-03

2021 47 43 1.4932e-02 1.5220e-02 5.5014e-02
γj = 1/j 8633 97 89 5.4266e-03

0.697
5.6640e-03

0.681
2.6618e-02

32399 181 179 2.2089e-03
0.680

2.3072e-03
0.679

1.3740e-02

Table 3. Full Search and Partial Search with p ≈ q2

n = pq Full Partial QMC Mean
n p q en,100 ω̃ ep,q,100 ω̃ En,100

2171 167 13 4.7989e-02 5.2102e-02 1.3817e-01
γj = 0.9j 6821 359 19 2.2650e-02

0.656
2.4493e-02

0.659
7.7948e-02

24331 839 29 9.6878e-03
0.668

1.0832e-02
0.642

4.1271e-02

2171 167 13 3.4980e-04 4.1686e-04 1.0005e-02
γj = 0.5j 6821 359 19 1.2002e-04

0.934
1.4345e-04

0.932
5.6444e-03

24331 839 29 3.6586e-05
0.934

4.6724e-05
0.882

2.9886e-03

2171 167 13 6.3964e-05 6.4096e-05 2.9329e-03
γj = 0.1j 6821 359 19 2.0389e-05

0.999
2.0477e-05

0.997
1.6546e-03

24331 839 29 5.7304e-06
0.998

5.7696e-06
0.996

8.7608e-04

2171 167 13 6.5151e-04 7.4688e-04 1.3579e-02
γj = 1/j2 6821 359 19 2.3620e-04

0.886
2.7891e-04

0.860
7.6610e-03

24331 839 29 7.6780e-05
0.884

9.5401e-05
0.844

4.0563e-03

2171 167 13 1.9614e-04 1.9683e-04 8.9002e-03
γj = 1/j6 6821 359 19 6.2592e-05

0.998
6.3035e-05

0.995
5.0212e-03

24331 839 29 1.7632e-05
0.996

1.7790e-05
0.995

2.6586e-03

2171 167 13 1.4118e-02 1.5024e-02 5.3079e-02
γj = 1/j 6821 359 19 6.4111e-03

0.690
6.8911e-03

0.681
2.9946e-02

24331 839 29 2.6732e-03
0.688

2.9501e-03
0.667

1.5855e-02
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Table 4. Full Search and Partial Search with p ≈ q3

n = pq Full Partial QMC Mean
n p q en,100 ω̃ ep,q,100 ω̃ En,100

2429 347 7 4.4700e-02 4.9211e-02 1.3062e-01
γj = 0.9j 14597 1327 11 1.3675e-02

0.660
1.5449e-02

0.646
5.3284e-02

28639 2203 13 8.6638e-03
0.677

9.9991e-03
0.646

3.8041e-02

2429 347 7 3.1333e-04 3.7871e-04 9.4587e-03
γj = 0.5j 14597 1327 11 5.9134e-05

0.930
7.8475e-05

0.878
3.8584e-03

28639 2203 13 3.1809e-05
0.920

3.9061e-05
1.035

2.7546e-03

2429 347 7 5.7162e-05 5.7507e-05 2.7727e-03
γj = 0.1j 14597 1327 11 9.5467e-06

0.998
9.6067e-06

0.998
1.1311e-03

28639 2203 13 4.8675e-06
0.999

4.8822e-06
1.004

8.0751e-04

2429 347 7 5.9242e-04 7.2990e-04 1.2838e-02
γj = 1/j2 14597 1327 11 1.2096e-04

0.886
1.5567e-04

0.862
5.2369e-03

28639 2203 13 6.5966e-05
0.900

8.6099e-05
0.879

3.7388e-03

2429 347 7 1.7529e-04 1.7685e-04 8.4142e-03
γj = 1/j6 14597 1327 11 2.9345e-05

0.997
2.9631e-05

0.996
3.4324e-03

28639 2203 13 1.4975e-05
0.998

1.5029e-05
1.007

2.4505e-03

2429 347 7 1.3075e-02 1.4314e-02 5.0181e-02
γj = 1/j 14597 1327 11 3.7855e-03

0.691
4.2868e-03

0.672
2.0470e-02

28639 2203 13 2.3830e-03
0.687

2.7541e-03
0.656

1.4614e-02

Table 5. Partial Search with p ≈ q

n = pq Partial QMC Mean
n p q ep,q,100 ω̃ En,100

2005007 1423 1409 5.5119e-04 4.5464e-03
γj = 0.9j 4003997 2003 1999 3.4651e-04

0.671
3.2172e-03

8037211 2837 2833 2.1932e-04
0.656

2.2708e-03

2005007 1423 1409 7.1750e-07 3.2922e-04
γj = 0.5j 4003997 2003 1999 3.7002e-07

0.957
2.3297e-04

8037211 2837 2833 1.9148e-07
0.945

1.6443e-04

2005007 1423 1409 7.0272e-08 9.6509e-05
γj = 0.1j 4003997 2003 1999 3.5137e-08

1.002
6.8293e-05

8037211 2837 2833 1.4670e-08
1.254

4.8203e-05

2005007 1423 1409 1.9173e-06 4.4684e-04
γj = 1/j2 4003997 2003 1999 1.0686e-06

0.845
3.1620e-04

8037211 2837 2833 5.9812e-07
0.833

2.2318e-04

2005007 1423 1409 2.1845e-07 2.9287e-04
γj = 1/j6 4003997 2003 1999 1.0929e-07

1.001
2.0724e-04

8037211 2837 2833 5.3371e-08
1.029

1.4628e-04

2005007 1423 1409 1.4475e-04 1.7466e-03
γj = 1/j 4003997 2003 1999 9.0134e-05

0.685
1.2360e-03

8037211 2837 2833 5.6561e-05
0.669

8.7238e-04
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