SOME NEW KINDS OF PSEUDOPRIMES

JERZY BROWKIN

ABSTRACT. We define some new kinds of pseudoprimes to several bases, which generalize strong pseudoprimes. We call them Sylow p-pseudoprimes and elementary Abelian p-pseudoprimes. It turns out that every $n < 10^{12}$, which is a strong pseudoprime to bases 2, 3 and 5, is not a Sylow p-pseudoprime to two of these bases for an appropriate prime p|n-1.

We also give examples of strong pseudoprimes to many bases which are not Sylow p-pseudoprimes to two bases only, where p = 2 or 3.

1. Introduction

The definition of strong pseudoprimes is based on the fact that in a finite field the equation $X^2=1$ has at most two solutions 1 and -1. In the present paper we define more general pseudoprimes using a similar idea. In a finite field the equation $X^r=1$ has at most r solutions, for every $r\geq 2$. Thus if for some n the congruence $X^r\equiv 1\pmod n$ has more than r solutions, then n is composite. In our definition we consider several bases simultaneously to get many solutions of this congruence.

We give examples of strong pseudoprimes n to several bases b_1, \ldots, b_k which are not pseudoprimes in the new sense. In other words, no number b_j $(1 \le j \le k)$ is a witness for n individually, but the set $\{b_1, \ldots, b_k\}$ is a witness for n; i.e., some properties of the set imply that n is composite.

2. Definitions

Let n > 1 be odd and let p be a prime divisor of n - 1. More precisely, let $n - 1 = p^r m$, where r > 0 and $p \nmid m$. Let b_1, \ldots, b_k be some residues modulo n prime to n, and denote $a_j = b_j^m$, for $j = 1, \ldots, k$.

If n is a prime number, then $(\mathbb{Z}/n)^*$ is a cyclic group of order n-1. Consequently

- (1) $b^{n-1} = 1$, for every $b \in (\mathbb{Z}/n)^*$.
- (2) The Sylow *p*-subgroup of $(\mathbb{Z}/n)^*$ is cyclic of order p^r .
- (3) The maximal elementary Abelian *p*-subgroup of $(\mathbb{Z}/n)^*$ is cyclic of order *p*. In particular, for p = 2, it is equal to $\{-1, 1\}$.
- (4) If a is an element of $(\mathbb{Z}/n)^*$ of order t > 1, then $1 + a + a^2 + \cdots + a^{t-1} = 0$.

It follows that also the subgroup $G = \langle b_1, \ldots, b_k \rangle$ generated by the residues b_1, \ldots, b_k is cyclic.

Hence

(1')
$$a_j^{p^r} = 1$$
, for $j = 1, \dots, k$.

Received by the editor February 19, 1998 and, in revised form, October 23, 2002. 2000 Mathematics Subject Classification. Primary 11A15; Secondary 11A51, 11Y11. Key words and phrases. Strong pseudoprimes, primality testing.

- 1032
 - (2') The Sylow p-subgroup of G is cyclic of order dividing p^r .
 - (3') The maximal elementary Abelian p-subgroup of G is cyclic of order 1 or p. In particular, for p = 2, it is a subgroup of $\{-1, 1\}$.
 - (4') For $1 \le j \le k$, if the order of a_i is $p^t > 1$, then

$$1 + a_j + a_j^2 + \dots + a_j^{p^t - 1} = 0.$$

Since the Sylow *p*-subgroup of G is generated by a_1, \ldots, a_k , condition (2') can be stated equivalently as

(2") If, say, $\operatorname{ord}(a_1) \geq \operatorname{ord}(a_j)$, for $j = 1, \ldots, k$, then a_2, \ldots, a_k belong to the group generated by a_1 .

To reformulate (3'), we need the following notation. For j = 1, ..., k, let

$$c_j = \begin{cases} 1, & \text{if } a_j = 1, \\ a_j^{\operatorname{ord}(a_j)/p}, & \text{if } p \mid \operatorname{ord}(a_j). \end{cases}$$

Thus c_i is an element of order 1 or p.

Evidently the maximal elementary Abelian p-subgroup of G is generated by c_1, \ldots, c_k . Consequently (3') can be stated equivalently as

(3") If, say, $\operatorname{ord}(c_1) \geq \operatorname{ord}(c_j)$, for $j = 1, \ldots, k$, then c_2, \ldots, c_k belong to the group generated by c_1 . In particular, for p = 2, every c_j is equal to 1 or -1.

Finally, from (4') if follows

(4") If ord $c_j = p$, then $1 + c_j + c_j^2 + \dots + c_j^{p-1} = 0$.

The above properties of an odd prime number n lead to the following definition.

Definition.

- (i) We call a composite number n satisfying (1') a p-pseudoprime to bases b_1, \ldots, b_k . We use the notation $n \in psp_p(b_1, \ldots, b_k)$.
- (ii) We call a composite number n satisfying (1'), (2'') and (4') a Sylow p-pseudoprime to bases b_1, \ldots, b_k , and we use the notation

$$n \in Syl_p$$
- $psp(b_1, \ldots, b_k)$.

(iii) We call a composite number n satisfying (1'), (3'') and (4'') an elementary Abelian p-pseudoprime to bases b_1, \ldots, b_k , and we use the notation

$$n \in Elem_{p}$$
- $psp(b_1, \ldots, b_k)$.

In particular, elementary Abelian 2-pseudoprimes to bases b_1, \ldots, b_k are strong pseudoprimes to these bases. Therefore in place of $Elem_2$ - $psp(b_1, \ldots, b_k)$ we use the notation $spsp(b_1, \ldots, b_k)$.

3. Remarks

- 1. Condition (2'') and condition (3'') for p > 2 are nontrivial only, if k > 1, i.e., if we consider at least two bases. Conditions (4), (4') and (4'') give some information also if k = 1.
- 2. Every Sylow p-pseudoprime to bases b_1, \ldots, b_k is a fortiori an elementary Abelian p-pseudoprime to the same bases; thus

$$Syl_p$$
- $psp(b_1, \ldots, b_k) \subset Elem_p$ - $psp(b_1, \ldots, b_k) \subset psp_p(b_1, \ldots, b_k)$.

If moreover p||n-1, then the first two sets are equal.

- 3. If the set $\{c_1, \ldots, c_k\} \setminus \{1\}$ contains at least p elements, then (3'') is not satisfied, since in a cyclic group of order p there are only p-1 elements of order p. Consequently n is composite.
- 4. If an odd integer n is Sylow p-pseudoprime or elementary Abelian p-pseudoprime, then p|n-1. Thus to prove that n is not such a pseudoprime, we should consider prime divisors of n-1. The examples given in Tables 1 and 2 show that usually very small prime divisors p of n-1 suffice, namely 2, 3 or 5 with only one exception.
- 5. Evidently, if a positive integer n satisfies (1) and does not satisfy at least one of the above conditions (2)–(4") for some prime divisor p of n-1, then n is composite. There are fast primality proving techniques available if n-1 is completely or even partially factored (see [KP] and [BLS]). Our examples suggest that the necessary information on prime divisors of n-1 can be further reduced.

4. Examples

We illustrate the above definitions by some known examples (see [J], [PSW]) of strong pseudoprimes n to several bases b_1, \ldots, b_k . For some small prime divisors p of n-1 and for bases b_1, \ldots, b_k we write down the sequences

$$b_j$$
: a_j , a_j^p , $a_j^{p^2}$, ..., $a_j^{p^r}$, for $j = 1, ..., k$.

If $a_j^{p^t} = 1$, for some t, we omit the next terms of the sequence since they are equal to 1.

Example 1. Let $n = 829 \cdot 1657 = 1373653$. Then $n - 1 = 2^2 \cdot 3^3 \cdot 7 \cdot 23 \cdot 79$.

```
\begin{array}{l} \underline{p=2} \\ \overline{b_1=2} \ : \ a_1=890592, \ a_1^2=-1, \ a_1^4=1. \\ b_2=3 \ : \ a_2=1. \end{array}
```

Therefore n is spsp(2,3) and even $n \in Syl_2$ -psp(2,3).

```
\begin{array}{lll} \underline{p=3} \\ \overline{b_1=2} & : & a_1=339686, \ a_1^3=1168186, \ a_1^9=1. \\ b_2=3 & : & a_2=220519, \ a_2^3=1282588, \ a_2^9=1. \end{array}
```

Therefore $c_1 = a_1^3$, and $c_2 = a_2^3$ are elements of order 3. Since $c_1^2 = 1168186^2 \equiv 210440 \not\equiv c_2 \pmod{n}$, it follows that condition (2') is not satisfied. Hence n is composite, and n is not $Elem_3$ -psp (2, 3). A fortiori it is not Syl_3 -psp (2, 3).

Example 2. Let $n = 4540612081 \cdot 9081224161 = 41234316135705689041$. Then $n - 1 = 2^4 \cdot 3^3 \cdot \dots$

```
\begin{array}{llll} \underline{p=2} \\ \overline{b_1=2} & : & a_1=401\ldots, & a_1^2=406\ldots, & a_1^4=-1, & a_1^8=1. \\ b_2=3 & : & a_2=261\ldots, & a_2^2=639\ldots, & a_2^4=-1, & a_2^8=1. \\ b_3=5 & : & a_3=256\ldots, & a_3^2=551\ldots, & a_3^4=-1, & a_3^8=1. \end{array}
```

We have replaced last digits of large numbers by dots since these digits are not important for our purposes.

```
For b_j \in \{7, 11, 13, 17\} we have a_j^8 = -1, and for b_9 = 19 we have a_9^4 = -1.
Therefore n is spsp(2, 3, 5, 7, 11, 13, 17, 19).
```

Since a_1^2, a_2^2, a_3^2 are distinct elements of order four, the group generated by b_1, b_2, b_3 is not cyclic. Hence n is composite and $n \notin Syl_2$ -psp(2,3,5).

Now, let G be the group generated by b_1 and b_2 only.

One can easily verify that $(a_1^2)^3 = a_3^2 \neq a_2^2$. Hence in G there are three distinct elements of order four: a_1^2, a_1^6, a_2^2 . Consequently the group G is not cyclic. Therefore in view of (2') n is composite and $n \notin Syl_2$ -psp(2,3).

We list the following numbers which are strong pseudoprimes to several bases (see [J]). The numbers n_1 and n_7 have been discussed in the above examples; we include them here for completeness.

```
n_1 - 1 = 2^2 \cdot 3^3 \dots
 n_1 = 829 \cdot 1657 = 1373653,
                                           n_2 - 1 = 2^4 \cdot 3^3 \cdot 5^3 \dots
 n_2 = 2251 \cdot 11251 = 25326001,
 n_3 = 151 \cdot 751 \cdot 28351 = 3215031751,
                                                n_3 - 1 = 2 \cdot 3^4 \cdot 5^3 \dots
                                                        n_4 - 1 = 2 \cdot 3 \cdot 7^2 \dots
 n_4 = 6763 \cdot 10627 \cdot 29947 = 2152302898747,
                                                                  n_5 - 1 = 2 \cdot 3^3 \cdot 7 \dots
 n_5 = 1303 \cdot 16927 \cdot 157543 = 3474749660383,
                                                                  n_6 - 1 = 2^6 \cdot 3 \cdot 5 \dots
 n_6 = 10670053 \cdot 32010157 = 341550071728321,
 n_7 = 4540612081 \cdot 9081224161 = 41234316135705689041,
       n_7 - 1 = 2^4 \cdot 3^3 \dots
 n_8 = 22754930352733 \cdot 68264791058197 = 1553360566073143205541002401,
       n_8 - 1 = 2^5 \cdot 3^2 \cdot 5^2 \dots
n_9 = 137716125329053 \cdot 413148375987157 = 56897193526942024370326972321,
       n_0 - 1 = 2^5 \cdot 3^2 \cdot 5 \dots
```

5. Tables

The above numbers n_j satisfy (1) but do not satisfy some conditions of (2')–(4"). Hence they are composite and are not elementary Abelian (respectively, Sylow) p-pseudoprimes to some bases, as is shown in Table 1. Let us remark that every number n_j (j = 1, ..., 9) does not belong to some Syl_p -psp (b_1, b_2), where p = 2 or 3 and $b_1, b_2 \in \{2, 3, 5\}$ are appropriate bases.

The computations have been done using the GP/PARI package, version 1.39.

We reproduce from [J] the list of all strong pseudoprimes $n < 10^{12}$ to bases 2, 3 and 5. We have verified that for every n in the list (with one exception) there exists a prime $p \in \{2,3,5\}$ and a basis $b_1, b_2 \in \{2,3,5\}$ such that some of the conditions (2')–(4'') are not satisfied. In some cases it is sufficient to consider only the one-element basis, when we use condition (4''). It follows that n is composite, and $n \notin Syl_p$ - $psp(b_1, b_2)$. The results are given in Table 2.

The exceptional number n (No. 73 in Table 2) satisfies $n-1=2^2\cdot 5\cdot 13\cdot \ldots$ Moreover, $n\in Syl_p$ -psp (2,3,5) for p=2 and 5, but $n\notin psp_2(13)\cup psp_5(13)$.

n	Is spsp to bases		Is Syl_p - psp ?		Is $Elem_p$ - psp ?		
		p	bases		p	bases	
n_1	2,3	2	2,3	YES	3	2,3	NO
n_2	2, 3, 5	2	2,3,5	YES	3	2,3	NO
n_3	2, 3, 5, 7	2	2,3,5,7	YES	3	2,3	NO
n_4	2, 3, 5, 7, 11	2	2,3,5,7,11	YES	3	2,5	NO
n_5	2, 3, 5, 7, 11, 13	2	2,3,5,7,11,13	YES	3	2,3	NO
n_6	2, 3, 5, 7, 11, 13, 17	2	2,17	NO	3	3,5	NO
n_7	2, 3, 5, 7, 11, 13, 17, 19				2	2,3	NO
n_8	2, 3, 5, 7, 11, 13, 17, 19, 23	2	2,11	NO	3	2	NO
n_9	2, 3, 5, 7, 11, 13, 17, 19, 23, 29	2	2,7	NO	3	2,5	NO

Table 1.

Table 2.

No.	n	factorization of $n-1$	p	b_{1}, b_{2}
1.	25326001	$2^4 \cdot 3^3 \cdot 5^3 \cdot 7 \cdot 67$	3	2,3
2.	161304001	$2^6 \cdot 3 \cdot 5^3 \cdot 11 \cdot 13 \cdot 47$	3	3,5
3.	960946321	$2^4 \cdot 3 \cdot 5 \cdot 29 \cdot 101 \cdot 1367$	2	2,5
4.	1157839381	$2^2 \cdot 3^3 \cdot 5 \cdot 401 \cdot 5347$	3	3,5
5.	3215031751	$2\cdot 3^4\cdot 5^3\cdot 7\cdot 37\cdot 613$	3	2,3
6.	3697278427	$2\cdot 3^3\cdot 31\cdot 563\cdot 3923$	3	2,3
7.	5764643587	$2\cdot 3^3\cdot 13\cdot 19\cdot 37\cdot 11681$	3	2
8.	6770862367	$2\cdot 3\cdot 199\cdot 827\cdot 6857$	3	2,5
9.	14386156093	$2^2 \cdot 3^3 \cdot 7 \cdot 11^3 \cdot 17 \cdot 29^2$	2	2,5
10.	15579919981	$2^2 \cdot 3^2 \cdot 5 \cdot 29 \cdot 1471 \cdot 2029$	3	2,3
11.	18459366157	$2^2 \cdot 3^3 \cdot 7 \cdot 11 \cdot 17 \cdot 37 \cdot 3529$	3	2,3
12.	19887974881	$2^5 \cdot 3 \cdot 5 \cdot 19 \cdot 23 \cdot 59 \cdot 1607$	3	2
13.	21276028621	$2^2 \cdot 3^4 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \cdot 47 \cdot 191$	3	2,3
14.	27716349961	$2^3 \cdot 3^4 \cdot 5 \cdot 13 \cdot 109 \cdot 6037$	2	3,5
15.	29118033181	$2^2 \cdot 3^2 \cdot 5 \cdot 257 \cdot 313 \cdot 2011$	3	2,3
16.	37131467521	$2^8 \cdot 3 \cdot 5 \cdot 7 \cdot 73 \cdot 127 \cdot 149$	2	2,5
17.	41752650241	$2^9 \cdot 3^2 \cdot 5 \cdot 7 \cdot 29 \cdot 79 \cdot 113$	2	2,5
18.	42550716781	$2^2 \cdot 3^2 \cdot 5 \cdot 11 \cdot 13 \cdot 17 \cdot 97241$	3	2,3
19.	43536545821	$2^2 \cdot 3^5 \cdot 5 \cdot 2459 \cdot 3643$	3	3,5
20.	44732778751	$2\cdot 3^2\cdot 5^4\cdot 11\cdot 47\cdot 7691$	3	2
21.	44778481441	$2^5 \cdot 3 \cdot 5 \cdot 7^2 \cdot 11 \cdot 17 \cdot 10181$	3	2,5
22.	48354810571	$2\cdot 3^7\cdot 5\cdot 11\cdot 19\cdot 71\cdot 149$	3	2,3
23.	52139147581	$2^2 \cdot 3^4 \cdot 5 \cdot 13 \cdot 23 \cdot 107641$	3	2,3
24.	53700690781	$2^2 \cdot 3^2 \cdot 5 \cdot 11 \cdot 2731 \cdot 9931$	3	2,3
25.	56209415767	$2\cdot 3\cdot 7^2\cdot 23\cdot 859\cdot 9677$	3	2,5
26.	57698562127	$2\cdot 3\cdot 37\cdot 73\cdot 541\cdot 6581$	3	2,3
27.	67403434561	$2^6 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 73 \cdot 12491$	2	2,5
28.	73796984161	$2^5 \cdot 3 \cdot 5 \cdot 79 \cdot 1307 \cdot 1489$	3	2,5
29.	74190097801	$2^3 \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 13 \cdot 17 \cdot 83 \cdot 107$	3	2,3
30.	75285070351	$2 \cdot 3 \cdot 5^2 \cdot 7 \cdot 17 \cdot 269 \cdot 15679$	3	2,5
31.	75350936251	$2\cdot 3^2\cdot 5^4\cdot 19\cdot 61\cdot 5779$	3	2,3
32.	77475820141	$2^2 \cdot 3^3 \cdot 5 \cdot 163 \cdot 541 \cdot 1627$	3	2,3
33.	79696887661	$2^2 \cdot 3^3 \cdot 5 \cdot 13 \cdot 29 \cdot 353 \cdot 1109$	3	2,5
34.	83828294551	$2\cdot 3^3\cdot 5^2\cdot 7\cdot 11\cdot 13\cdot 17\cdot 41\cdot 89$	3	2
35.	88473676747	$2\cdot 3\cdot 7\cdot 13\cdot 67\cdot 683\cdot 3541$	3	2,3
36.	88974090367	$2\cdot 3\cdot 7\cdot 53\cdot 67\cdot 596573$	3	2
37.	98515393021	$2^2 \cdot 3^5 \cdot 5 \cdot 11 \cdot 137 \cdot 13451$	3	2
38.	111737197441	$2^7\cdot 3^3\cdot 5\cdot 11\cdot 17\cdot 151\cdot 229$	3	2
39.	114247549027	$2 \cdot 3^2 \cdot 13 \cdot 41 \cdot 149 \cdot 229 \cdot 349$	3	2,3
40.	118670087467	$2\cdot 3^2\cdot 7\cdot 47\cdot 107\cdot 137\cdot 1367$	3	2
41.	126223730461	$2^2 \cdot 3^5 \cdot 5 \cdot 53 \cdot 79 \cdot 6203$	5	2,3
42.	134670080641	$2^7 \cdot 3 \cdot 5 \cdot 61 \cdot 521 \cdot 2207$	2	2,3
43.	135586888951	$2 \cdot 3 \cdot 5^2 \cdot 17 \cdot 19^2 \cdot 147289$	3	2,3
44.	136136947201	$2^9 \cdot 3 \cdot 5^2 \cdot 1627 \cdot 2179$	2	2,3
45.	148600530541	$2^2 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 59 \cdot 181721$	3	3,5
46.	150401047441	$2^4 \cdot 3 \cdot 5 \cdot 7 \cdot 349 \cdot 256517$	3	2,3

Table 2 (continued)

Table 2 (continued)					
No.	n	factorization of $n-1$	p	b_1, b_2	
47.	156677923729	$2^4 \cdot 3^3 \cdot 19 \cdot 163 \cdot 181 \cdot 647$	3	2,3	
48.	157615339681	$2^5 \cdot 3^2 \cdot 5 \cdot 6367 \cdot 17191$	2	2,5	
49.	167259489409	$2^7 \cdot 3^5 \cdot 11 \cdot 433 \cdot 1129$	3	2,3	
50.	174460968067	$2\cdot 3\cdot 7\cdot 11\cdot 19\cdot 571\cdot 34807$	3	2	
51.	183413388211	$2 \cdot 3 \cdot 5 \cdot 13 \cdot 31 \cdot 317 \cdot 47857$	3	2	
52.	187403492251	$2 \cdot 3^2 \cdot 5^3 \cdot 13 \cdot 37 \cdot 43 \cdot 4027$	3	2,3	
53.	216291665041	$2^4 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \cdot 47 \cdot 102539$	5	2,3	
54.	218215348801	$2^6 \cdot 3 \cdot 5^2 \cdot 29 \cdot 31 \cdot 61 \cdot 829$	3	3,5	
55.	218673063181	$2^2 \cdot 3^3 \cdot 5 \cdot 11 \cdot 13 \cdot 31 \cdot 167 \cdot 547$	3	2	
56.	234311749201	$2^4 \cdot 3^2 \cdot 5^2 \cdot 53 \cdot 863 \cdot 1423$	2	2,3	
57.	240438464197	$2^2 \cdot 3 \cdot 7 \cdot 29 \cdot 4831 \cdot 20431$	2	2,5	
58.	244970876021	$2^2 \cdot 5 \cdot 13 \cdot 179 \cdot 521 \cdot 10103$	5	2,3	
59.	245291853691	$2 \cdot 3^4 \cdot 5 \cdot 13 \cdot 17 \cdot 1370269$	3	2	
60.	247945488451	$2 \cdot 3 \cdot 5^2 \cdot 11 \cdot 19 \cdot 43 \cdot 193 \cdot 953$	3	2	
61.	252505670761	$2^3 \cdot 3^4 \cdot 5 \cdot 7 \cdot 47 \cdot 236881$	2	2,5	
62.	272447722207	$2\cdot 3^6\cdot 11\cdot 179\cdot 94903$	3	2	
63.	291879706861	$2^2 \cdot 3^2 \cdot 5 \cdot 7 \cdot 6367 \cdot 36383$	3	2	
64.	295545735181	$2^2 \cdot 3^4 \cdot 5 \cdot 137 \cdot 1331647$	3	2,3	
65.	307768373641	$2^3 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13 \cdot 467 \cdot 20117$	2	2,5	
66.	315962312077	$2^2 \cdot 3^2 \cdot 37 \cdot 211 \cdot 479 \cdot 2347$	2	2,5	
67.	331630652449	$2^{5} \cdot 3^{2} \cdot 139 \cdot 193 \cdot 42923$	3	2,3	
68.	342221459329	$2^7 \cdot 3^4 \cdot 7 \cdot 757 \cdot 6229$	3	2,3	
69.	353193975751	$2 \cdot 3 \cdot 5^3 \cdot 7 \cdot 11 \cdot 283 \cdot 21611$	3	2	
70.	354864744877	$2^2 \cdot 3 \cdot 199 \cdot 5987 \cdot 24821$	3	2	
71.	362742704101	$2^2 \cdot 3^2 \cdot 5^2 \cdot 7 \cdot 239 \cdot 240913$	3	2	
72.	398214876001	$2^5 \cdot 3 \cdot 5^3 \cdot 97 \cdot 313 \cdot 1093$	2	2,5	
73.	405439595861	$2^2 \cdot 5 \cdot 13 \cdot 47 \cdot 4999 \cdot 6637$	-	-	
74.	407979839041	$2^{6} \cdot 3 \cdot 5 \cdot 79 \cdot 389 \cdot 13829$	3	3,5	
75.	431229929521	$2^4 \cdot 3 \cdot 5 \cdot 13 \cdot 19 \cdot 37 \cdot 421 \cdot 467$	3	2,3	
76.	457453568161	$2^5 \cdot 3^2 \cdot 5 \cdot 10847 \cdot 29287$	2	2,5	
77.	490883439061	$2^2 \cdot 3^2 \cdot 5 \cdot 7 \cdot 23 \cdot 29 \cdot 359 \cdot 1627$	5	2,3	
78.	503691743521	$2^5 \cdot 3^3 \cdot 5 \cdot 7 \cdot 271 \cdot 61463$	3	2,3	
79.	505130380987	$2 \cdot 3 \cdot 7 \cdot 11 \cdot 8461 \cdot 129223$	3	2,3	
80.	528929554561	$2^7 \cdot 3 \cdot 5 \cdot 11 \cdot 3181 \cdot 7873$	2	2,5	
81.	546348519181	$2^2 \cdot 3^3 \cdot 5 \cdot 19 \cdot 31 \cdot 281 \cdot 6113$	3	2	
82.	549866444221	$2^2 \cdot 3^4 \cdot 5 \cdot 101 \cdot 971 \cdot 3461$	3	2	
83.	591090138721	$2^5 \cdot 3^4 \cdot 5 \cdot 17 \cdot 137 \cdot 19583$	3	2	
84.	641498618881	$2^{10} \cdot 3^2 \cdot 5 \cdot 7 \cdot 367 \cdot 5419$	3	2,3	
85.	602248359169	$2^8 \cdot 3^4 \cdot 4519 \cdot 6427$	3	2,3	
86.	659937299407	$2 \cdot 3 \cdot 7 \cdot 11 \cdot 19 \cdot 509 \cdot 147703$	3	2,5	
87.	688529415421	$2^2 \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23 \cdot 127 \cdot 5669$	3	2	
88.	712614969307	$2 \cdot 3^2 \cdot 67 \cdot 113 \cdot 131 \cdot 179 \cdot 223$	3	2,3	
89.	729421133761	$2^6 \cdot 3^2 \cdot 5 \cdot 11 \cdot 41^2 \cdot 13697$	3	2	
90.	733224429367	$2 \cdot 3 \cdot 11 \cdot 13 \cdot 251 \cdot 499 \cdot 6823$	3	3,5	
91.	736775510329	$2^3 \cdot 3^3 \cdot 11 \cdot 13 \cdot 2237 \cdot 10663$	3	2	

Table 2 (continued)

No.	n	factorization of $n-1$	p	b_1, b_2
92.	741881186287	$2 \cdot 3 \cdot 71777 \cdot 1722653$	3	2
93.	744049848481	$2^5 \cdot 3 \cdot 5 \cdot 41 \cdot 47 \cdot 883 \cdot 911$	3	2,3
94.	774840343681	$2^7 \cdot 3^2 \cdot 5 \cdot 13 \cdot 19 \cdot 733 \cdot 743$	3	2
95.	842638521121	$2^5 \cdot 3 \cdot 5 \cdot 11^2 \cdot 23 \cdot 73 \cdot 8641$	3	2
96.	851402588401	$2^4 \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 13 \cdot 17 \cdot 131 \cdot 389$	3	2
97.	853196213761	$2^9 \cdot 3 \cdot 5 \cdot 11 \cdot 1091 \cdot 9257$	2	2,3
98.	863370140641	$2^5 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 991 \cdot 8941$	3	2
99.	908201935681	$2^6\cdot 3\cdot 5\cdot 13\cdot 47\cdot 439\cdot 3527$	3	2
100.	966299321527	$2 \cdot 3 \cdot 7 \cdot 11^2 \cdot 677 \cdot 280859$	3	2,5
101.	997031384161	$2^5 \cdot 3 \cdot 5 \cdot 7 \cdot 6863 \cdot 43237$	2	2,5

Note added in March 2002. In a recent paper by Zhang [ZZ] there are given tables of all strong pseudoprimes $< 10^{24}$ (of some special kinds) to at least the first nine prime bases. We have verified that all these pseudoprimes are not elementary Abelian p-pseudoprimes for some bases $b_1, b_2 \in \{2, 3, 5\}$ and some prime $p \in \{2, 3, 5\}$ with one exception. The number n (No. 36 in Table 1 in [ZZ]) is not $Elem_2$ -psp(2, 7).

Note added in October 2002. M. Agrawal, N. Kayal and N. Saxena [AKS] on August 6, 2002, presented a deterministic polynomial time algorithm that determines if a positive integer is prime or composite. In view of this result the importance of pseudoprimes of different kinds, including those defined in the present paper, has been drastically reduced.

ACKNOWLEDGMENT

I thank the referees for valuable comments that helped to improve the paper and Zhenxiang Zhang for sending me files containing strong pseudoprimes from his paper.

REFERENCES

- [AKS] M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P, http://www.cse.iitk.ac.in.
- [BLS] J. Brillhart, D.H. Lehmer, J.L. Selfridge, New primality criteria and factorizations of $2^m \pm 1$, Math. Comp. **29** (1975), 620–647. MR **52**:5546
- [J] G. Jaeschke, On strong pseudoprimes to several bases, Math. Comp. 61 (1993), 915–926.
 MR 94d:11004
- [KP] S. Konyagin, C. Pomerance, On primes recognizable in deterministic polynomial time, The mathematics of Paul Erdős (R.L. Graham, J. Nesetril, eds.), vol. I, Springer, Berlin, 1997, pp. 176–198. MR 98a:11184
- [PSW] C. Pomerance, J.L. Selfridge, S.S. Wagstaff, Jr., The pseudoprimes to $25\cdot 10^9$, Math. Comp. **35** (1980), 1003–1026. MR **82g**:10030
- [ZZ] Zhenxiang Zhang, Finding strong pseudoprimes to several bases, Math. Comp. 70 (2001), 863–872. MR 2001g:11009

Institute of Mathematics, University of Warsaw, ul. Banacha 2, PL-02-097 Warsaw, Poland

 $E ext{-}mail\ address: bro@mimuw.edu.pl}$