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SOME NEW KINDS OF PSEUDOPRIMES

JERZY BROWKIN

ABSTRACT. We define some new kinds of pseudoprimes to several bases, which
generalize strong pseudoprimes. We call them Sylow p-pseudoprimes and ele-
mentary Abelian p-pseudoprimes. It turns out that every n < 10'2, which is a
strong pseudoprime to bases 2, 3 and 5, is not a Sylow p-pseudoprime to two
of these bases for an appropriate prime pjn — 1.

We also give examples of strong pseudoprimes to many bases which are not
Sylow p-pseudoprimes to two bases only, where p = 2 or 3.

1. INTRODUCTION

The definition of strong pseudoprimes is based on the fact that in a finite field
the equation X2 = 1 has at most two solutions 1 and —1. In the present paper we
define more general pseudoprimes using a similar idea. In a finite field the equation
X7 =1 has at most r solutions, for every r > 2. Thus if for some n the congruence

" =1 (mod n) has more than r solutions, then n is composite. In our definition
we consider several bases simultaneously to get many solutions of this congruence.

We give examples of strong pseudoprimes n to several bases by, . .., b which are
not pseudoprimes in the new sense. In other words, no number b; (1 < j < k) is
a witness for n individually, but the set {b1,...,bs} is a witness for n; i.e., some
properties of the set imply that n is composite.

2. DEFINITIONS

Let n > 1 be odd and let p be a prime divisor of n — 1. More precisely, let
n —1 = p"m, where r > 0 and p t m. Let by,...,b; be some residues modulo n
prime to n, and denote a; = b}, forj=1,...,k.
If n is a prime number, then (Z/n)" is a cyclic group of order n— 1. Consequently
(1) "t =1, for every b € (Z/n)".
(2) The Sylow p-subgroup of (Z/n)* is cyclic of order p”.
(3) The maximal elementary Abelian p-subgroup of (Z/n)" is cyclic of order
p. In particular, for p = 2, it is equal to {—1, 1}.
(4) If a is an element of (Z/n)" of order t > 1, then 1 +a+a?+---+a'~t = 0.
It follows that also the subgroup G = (b1,...,br) generated by the residues
b1, ..., by is cyclic.
Hence

(1) ¥ =1,forj=1,....k
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(2") The Sylow p-subgroup of G is cyclic of order dividing p".

(3’) The maximal elementary Abelian p-subgroup of G is cyclic of order 1 or p.
In particular, for p = 2, it is a subgroup of {—1,1}.

(4) For 1 < j <k, if the order of a; is p* > 1, then

l+aj+a+-+d ' =0.

Since the Sylow p-subgroup of G is generated by ay,...,ax, condition (2') can
be stated equivalently as
(2") If, say, ord(a1) > ord(a;), for j = 1,...,k, then asg,...,a; belong to the
group generated by a;.

To reformulate (3'), we need the following notation. For j =1,... k, let

1, ifa; =1,
“ a?rd(aj)/p, if p| ord(a;).

Thus c; is an element of order 1 or p.

Evidently the maximal elementary Abelian p-subgroup of G is generated by
1, ..., ck. Consequently (3') can be stated equivalently as

(3") If, say, ord(c1) >ord(c;), for j = 1,...,k, then cs,...,c; belong to the
group generated by ci. In particular, for p = 2, every ¢; is equal to 1 or —1.

Finally, from (4') if follows

(4”) If ord¢; = p, then 1 +¢; +¢f + ~-—|—c§71 =0.

The above properties of an odd prime number n lead to the following definition.

Definition.

(i) We call a composite number n satisfying (1) a p-pseudoprime to bases
b1,...,b,. We use the notation n € psp, (b1, ..., bx).

(ii) We call a composite number n satisfying (1), (2”) and (4’) a Sylow p-pseu-
doprime to bases by, ..., bx, and we use the notation

n € Sylp-psp (b1, ..., br).
(iii) We call a composite number n satisfying (1), (3") and (4”) an elementary
Abelian p-pseudoprime to bases b1, ..., bg, and we use the notation

n € Elemy-psp (b1, ..., bk).

In particular, elementary Abelian 2-pseudoprimes to bases by, ..., by are strong
pseudoprimes to these bases. Therefore in place of Elems-psp (b1, ...,b;) we use
the notation spsp (b1, ..., bg).

3. REMARKS

1. Condition (2”) and condition (3") for p > 2 are nontrivial only, if k£ > 1,
i.e., if we consider at least two bases. Conditions (4), (4') and (4”) give
some information also if k = 1.

2. Every Sylow p-pseudoprime to bases by, ..., by is a fortiori an elementary
Abelian p-pseudoprime to the same bases; thus

Sylp-psp (b1, ...,b;) C Elemy-psp (b, ... ,bx) C pspp(b1, ..., b).

If moreover p||n — 1, then the first two sets are equal.
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3. If the set {c1,...,ck} \ {1} contains at least p elements, then (3”) is not
satisfied, since in a cyclic group of order p there are only p — 1 elements of
order p. Consequently n is composite.

4. If an odd integer n is Sylow p-pseudoprime or elementary Abelian p-pseu-
doprime, then p|n — 1. Thus to prove that n is not such a pseudoprime, we
should consider prime divisors of n — 1. The examples given in Tables 1 and
2 show that usually very small prime divisors p of n — 1 suffice, namely 2,
3 or 5 with only one exception.

5. Evidently, if a positive integer n satisfies (1) and does not satisfy at least
one of the above conditions (2)—(4") for some prime divisor p of n — 1,
then n is composite. There are fast primality proving techniques available
if n — 1 is completely or even partially factored (see [KP] and [BLS]). Our
examples suggest that the necessary information on prime divisors of n — 1
can be further reduced.

4. EXAMPLES

We illustrate the above definitions by some known examples (see [J], [PSW]) of

strong pseudoprimes n to several bases by, ..., bx. For some small prime divisors p
of n — 1 and for bases by, ...,b; we write down the sequences
2 [
) p D P .
b; : aj, aj, @i, ..., Q;, for j7=1,... k.

t
If a? =1, for some ¢, we omit the next terms of the sequence since they are equal
to 1.

Example 1. Let n = 8291657 = 1373653. Then n — 1 =2%.33.7.23.79.
p=2
by =2 : a; =890592, a? = —1, a’=1.
b2 =3 : a9 = 1.
Therefore n is spsp (2,3) and even n € Syla-psp (2, 3).

p=3
by=2 : a;=339686, a® = 1168186, af = 1.
by =3 : ap=220519, al = 1282588, a)=1.

Therefore ¢; = a$, and ¢y = a3 are elements of order 3. Since ¢ = 11681862
210440 # c2 (mod n), it follows that condition (2') is not satisfied. Hence n is
composite, and n is not Elems-psp (2,3). A fortiori it is not Syls-psp (2, 3).

Example 2. Let n = 4540612081 - 9081224161 = 41234316135705689041. Then
n—1=2%.3% ...

p=2

biy=2 : a;=401..., a?=406..., af=-1, a}=1.
bp=3 : ax=261..., a3=639..., a3=-1, a§=1.
b3=5 : a3=256..., a3=551..., ai=—1, a§ =1.

We have replaced last digits of large numbers by dots since these digits are not
important for our purposes.

For b; € {7,11,13,17} we have a?- = —1, and for by = 19 we have a3 = —1.

Therefore n is spsp (2,3,5,7,11,13,17,19).

Since a?, a3, a% are distinct elements of order four, the group generated by by, ba,
bs is not cyclic. Hence n is composite and n ¢ Syla-psp (2, 3,5).
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Now, let G be the group generated by b; and by only.

One can easily verify that (a3)® = a # a3. Hence in G there are three distinct
elements of order four: a?,a$, a2. Consequently the group G is not cyclic. Therefore
in view of (2) n is composite and n ¢ Syls-psp (2, 3).

We list the following numbers which are strong pseudoprimes to several bases
(see [J]). The numbers n; and n7 have been discussed in the above examples; we
include them here for completeness.

ni = 829 - 1657 = 1373653, ng—1=22.3% .

ns = 2251 - 11251 = 25326001, ne—1=24.3%.5% ..

ns = 151 - 751 - 28351 = 3215031751, ng—1=2-3%.5% ...

ny = 6763 - 10627 - 20947 = 2152302898747, na—1=2-3-72....

ns = 1303 - 16927 - 157543 = 3474749660383, ng—1=2-33.7....

ng = 10670053 32010157 = 341550071728321, ng—1=26.3.5....

n7 = 4540612081 - 9081224161 = 41234316135705689041,
ny—1=24.3% .

ng = 22754930352733 - 68264791058197 = 1553360566073143205541002401,
ng—1=25.32.52....
ng=137716125329053 - 413148375987157 =56897193526942024370326972321,
ng—1=25.32.5....

5. TABLES

The above numbers n; satisfy (1) but do not satisfy some conditions of (2')-(4").
Hence they are composite and are not elementary Abelian (respectively, Sylow) p-
pseudoprimes to some bases, as is shown in Table 1. Let us remark that every
number n; (j =1,...,9) does not belong to some Syl,-psp (b1, b2), where p =2 or
3 and by, by € {2,3,5} are appropriate bases.

The computations have been done using the GP/PARI package, version 1.39.

We reproduce from [J] the list of all strong pseudoprimes n < 10'? to bases 2,
3 and 5. We have verified that for every n in the list (with one exception) there
exists a prime p € {2,3,5} and a basis b1,b2 € {2,3,5} such that some of the
conditions (2')—(4") are not satisfied. In some cases it is sufficient to consider only
the one-element basis, when we use condition (4”). It follows that n is composite,
and n ¢ Syly,-psp (b1, bz2). The results are given in Table 2.

The exceptional number n (No. 73 in Table 2) satisfiesn —1 =22-5-13-....
Moreover, n € Syly,-psp (2,3,5) for p =2 and 5, but n ¢ pspa(13) U psps(13).

TABLE 1.
n Is spsp to bases Is Syl,-psp ? Is Elemy-psp?
p bases P bases

ni | 2,3 2 23 YES | 3 2,3 NO
ne | 2,3,5 2 235 YES | 3 2,3 NO
ng | 2,3,5,7 2 2,357 YES | 3 2,3 NO
ng | 2,3,5,7,11 2 235711 YES | 3 2,5 NO
ns | 2,3,5,7,11,13 2 235711,13 YES |3 2,3 NO
ne | 2,3,5,7,11,13,17 2 217 NO |3 3,5 NO
nr | 2,3,5,7,11,13,17, 19 2 2,3 NO
ng | 2,3,5,7,11,13,17,19,23 2 2,11 NO |3 2 NO
ng | 2,3,5,7,11,13,17,19,23,29 | 2 2,7 NO |3 2,5 NO
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TABLE 2.

No. n factorization of n — 1 p | b1,bo
1. 25326001 | 2%-33-53.7.67 3123
2. 161304001 | 26-3-53.11-13-47 3135
3. 960946321 | 2*-3-5-29-101 - 1367 2125
4. 1157839381 | 22-33.5-401 - 5347 3135
5. 3215031751 | 2-3*-5%.7-37-613 3123
6. 3697278427 | 2-33 .31 - 563 - 3923 3123
7. 5764643587 | 2-3%-13-19-37-11681 312

8. 6770862367 | 2-3-199 - 827 - 6857 3125
9. 14386156093 | 22-33.7.113 .17 - 292 2125
10. | 15579919981 | 22-32.5.29-1471 - 2029 3123
11. | 18459366157 | 22-33.7-11-17-37- 3529 3123
12. | 19887974881 | 2°-3-5-19-23-59 - 1607 312

13. | 21276028621 | 2%2-3*.5.7-11-19-47-191 3123
14. | 27716349961 | 23-3*.5-13-109- 6037 2135
15. | 29118033181 |2%2-32.5.257-313-2011 3123
16. | 37131467521 |28-3-5.7-73-127-149 2125
17. | 41752650241 [ 29-32.5-7-29-79-113 2125
18. | 42550716781 |2%2-32.5-11-13-17-97241 3123
19. | 43536545821 | 22-35.5.2459 - 3643 3135
20. | 44732778751 | 2-32.5%.11-47-7691 312

21. | 44778481441|2%-3-5-7%.11-17-10181 3125
22. | 48354810571 2-37-5-11-19-71-149 3123
23. | 52139147581 | 22-3*-5-13-23- 107641 3123
24. | 53700690781 | 22-3%2.5-11-2731-9931 3123
25. | 56209415767 | 2-3-72-23-859-9677 3125
26. | 57698562127 | 2-3-37-73-541 - 6581 3123
27. | 67403434561 | 26-3-5-7-11-73-12491 2125
28. | 73796984161 | 2°-3-5-79-1307 - 1489 3125
29. | 74190097801 | 23-3%.5%2.7-13-17-83-107 3123
30. | 75285070351 | 2-3-52.7-17-269- 15679 3125
31. | 75350936251 | 2-32-5%.19-61-5779 3123
32. | 77475820141 | 22-3%-5-163- 541 - 1627 3123
33. | 79696887661 | 22-3%-5-13-29-353-1109 3125
34. | 83828294551 |2-33.52.7-11-13-17-41-89 |3 |2

35. | 88473676747 |2-3-7-13-67-683- 3541 3123
36. | 88974090367 | 2-3-7-53-67-596573 312

37. | 98515393021 | 22-3%-5-11-137- 13451 312

38. | 111737197441 | 27-33-5-11-17-151-229 3|2

39. | 114247549027 | 2-32-13-41-149- 229 - 349 3123
40. | 118670087467 | 2-32.7.47-107-137- 1367 312

41. | 126223730461 | 22-3%-5-53- 79 - 6203 5123
42. | 134670080641 | 27-3-5-61- 521 - 2207 2123
43. | 135586888951 | 2-3-52-17-192 - 147289 3123
44. | 136136947201 | 2°-3-52.1627- 2179 2123
45. | 148600530541 | 22-32.5-7-11-59- 181721 3135
46. | 150401047441 | 2*-3-5-7-349 - 256517 3123
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Table 2 (continued)

No. n factorization of n — 1 p | by,bo
47. 1 156677923729 | 27 3% .19-163 - 181 - 647 3123
48. | 157615339681 | 2°-32-5-6367 - 17191 2125
49. | 167259489409 | 27 -3° .11 -433 - 1129 3123
50. | 174460968067 | 2-3-7-11-19-571 - 34807 3|2
51. | 183413388211 | 2-3-5-13-31-317 - 47857 3|2
52. | 187403492251 | 2-3%2-53 .13 .37 - 43 - 4027 3123
53. | 216291665041 | 2*-3-5-11-17-47-102539 5123
54. | 218215348801 | 26-3-52-29-31-61-829 3135
55. | 218673063181 | 22-33.5-11-13-31-167-547 | 3| 2
56. | 234311749201 | 2*-32 .52 .53 - 863 - 1423 2123
57. | 240438464197 | 22-3-7-29 - 4831 - 20431 2125
58. | 244970876021 | 22-5-13-179- 521 -10103 5123
59. | 245291853691 | 2-3*-5-13-17 - 1370269 3|2
60. | 247945488451 | 2-3-5%-11-19-43-193-953 |3 |2
61. | 252505670761 | 22 -3%.5.7.47-236881 2125
62. | 272447722207 | 2-35-11-179 - 94903 3|2
63. | 291879706861 | 22-32.5-7-6367 - 36383 3|2
64. | 295545735181 | 22.3%.5.137- 1331647 3123
65. | 307768373641 | 22 -32.5-7-13-467-20117 2125
66. | 315962312077 | 22-32.37-211-479 - 2347 2125
67. | 331630652449 | 2°-32.139-193 - 42923 3123
68. | 342221459329 | 27 - 3% . 7. 757 - 6229 3123
69. | 353193975751 | 2-3-5%-7-11-283-21611 3|2
70. | 354864744877 | 22 -3 -199 - 5987 - 24821 312
71. | 362742704101 | 22 -32 .52 .7-239-240913 312
72. | 398214876001 | 2°-3-5%-97-313- 1093 2125
73. | 405439595861 | 22 - 513 -47 - 4999 - 6637 - -
74. | 407979839041 | 26 -3-5-79- 389 - 13829 3|35
75. | 431229929521 | 2*-3.5.13-19-37-421-467 |3|2,3
76. | 457453568161 | 2° - 32 .5 10847 - 29287 2125
77. | 490883439061 | 22-32.5.7-23-29-359-1627 | 5 | 2,3
78. | 503691743521 | 25-33.5.7-271 - 61463 3123
79. | 505130380987 | 2-3-7-11-8461 - 129223 3123
80. | 528929554561 | 27-3-5-11-3181-7873 2125
81. | 546348519181 | 22-3%-5-19-31-281-6113 312
82. | 549866444221 | 22.3%.5.101-971 - 3461 312
83. | 591090138721 | 2°-3*.5-17-137- 19583 3|2
84. | 641498618881 | 210.32.5.7.367-5419 3123
85. | 602248359169 | 28 - 3% . 4519 - 6427 3123
86. | 659937299407 | 2-3-7-11-19-509 - 147703 3125
87. | 688529415421 | 22-.3%.5.7-11-23-127-5669 | 3 | 2
88. | 712614969307 | 2-32-67-113-131-179-223 |3 |2,3
89. | 729421133761 | 26-32.5-11-412-13697 312
90. | 733224429367 | 2-3-11-13-251-499 - 6823 3|35
91. | 736775510329 | 23 -3 -11-13-2237- 10663 312
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Table 2 (continued)
No. n factorization of n — 1
92. | 741881186287 | 2-3 - 71777 - 1722653
93. | 744049848481 | 2%-3-5-41-47-883-911
94. | 774840343681 | 27-3%2-5-13-19-733- 743
95. | 842638521121 | 2°-3-5-112.23-73-8641
96. | 851402588401 | 2*-33.52.7.13-17-131-389
97. | 853196213761 | 2°-3-5-11-1091 - 9257
98. | 863370140641 | 2%-3-5-7-29-991 - 8941
99. | 908201935681 | 26 -3.5-13-47-439 - 3527
100. | 966299321527 | 2-3-7-112. 677 - 280859
101. | 997031384161 | 25 -3 -5 -7 - 6863 - 43237

bl;bQ
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Note added in March 2002. In a recent paper by Zhang [ZZ] there are given
tables of all strong pseudoprimes < 10%* (of some special kinds) to at least the
first nine prime bases. We have verified that all these pseudoprimes are not ele-
mentary Abelian p-pseudoprimes for some bases by,b2 € {2,3,5} and some prime
p € {2,3,5} with one exception. The number n (No. 36 in Table 1 in [ZZ]) is not
Elema-psp (2,7).

Note added in October 2002. M. Agrawal, N. Kayal and N. Saxena [AKS] on
August 6, 2002, presented a deterministic polynomial time algorithm that deter-
mines if a positive integer is prime or composite. In view of this result the im-
portance of pseudoprimes of different kinds, including those defined in the present
paper, has been drastically reduced.
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