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LAX THEOREM AND FINITE VOLUME SCHEMES

BRUNO DESPRES

Abstract. This work addresses a theory of convergence for finite volume
methods applied to linear equations. A non-consistent model problem posed
in an abstract Banach space is proved to be convergent. Then various examples
show that the functional framework is non-empty. Convergence with a rate

h
1
2 of all TVD schemes for linear advection in 1D is an application of the

general result. Using duality techniques and assuming enough regularity of the
solution, convergence of the upwind finite volume scheme for linear advection
on a 2D triangular mesh is proved in Lα, 2 ≤ α ≤ +∞: provided the solution

is in W 1,∞, it proves a rate of convergence h
1
4−ε in L∞.

1. Introduction

The Lax theorem states that stability and consistency are sufficient conditions
for a linear scheme to be convergent. Many numerical examples show that stability
is necessary and sufficient. However, there are numerical methods, such as finite
volume methods in 2D on triangular meshes, which are formally non-consistent even
for linear equations. Since numerical evidence shows that finite volume methods
for linear equations are convergent, we infer that consistency (that is, consistency
in the finite difference setting [28], [13], [27]) is not necessary. To our knowledge,
a comprehensive explanation of this phenomena is still missing. This work intends
to fill the gap, for non-stationary linear equations.

Finite volume methods are engineers’ methods: in the rest of this paper finite
volume stands for P 0 cell-centered numerical schemes. In contrast with the finite
element methods [6], there is no functional framework for the introduction of finite
volume numerical schemes. Despite this lack of mathematical foundations, finite
volume methods are very robust and efficient for practical computations when ap-
plied to the direct simulation of complex physics. This is particularly the case in
computational fluid dynamics. On the mathematical side, many researchers have
stressed that proofs of convergence are very difficult to obtain for finite volume
methods: see [20], [26], [7], [12], [15], [11], [30], [2] (based on [22]) and other papers
therein; an up-to-date reference is [17]. A rule of thumb for numerical methods
is that robustness of a scheme is partially a consequence of its dissipativity. On
the mathematical side dissipativity is a standard way to obtain a priori estimates,
and then to prove convergence. But this paradigm seems not to be true when ap-
plied to finite volume methods, mainly due to the formal non-consistency of finite
volume methods. Even though it is not the purpose of this work to treat higher

Received by the editor November 28, 2001 and, in revised form, January 10, 2003.
2000 Mathematics Subject Classification. Primary 65M12; Secondary 65M15, 65M60.
Key words and phrases. Finite volume schemes, linear advection.

c©2003 American Mathematical Society

1203



1204 BRUNO DESPRES

order methods such as discontinuous Galerkin methods (which are a compromise
between finite volumes and finite elements, see [19], [8]) for linear problems, we
do mention that many mathematical difficulties still exist around all finite volume
based numerical schemes on arbitrary meshes.

However, some of the issues about convergence of finite volume methods have
already been resolved. Among past works to which this one can be related, let
us mention the series of papers [31], [32], [33], where the notion of supracon-
vergence has been proposed to explain why formally non-consistent schemes are
actually convergent. The same idea is used in [24] and [24] for vertex centered
second order and high order schemes on various meshes. This idea (the struc-
ture of the truncation error has to be taken into account, and not only its
magnitude) in conjunction with entropy inequalities has been used in [9], [10] to
get a proof of convergence with an optimal rate h

1
2 of convergence in L1 for scalar

hyperbolic equations in dimension two. Application to scalar linear equations gives
the same rate of convergence. Despite this recent and major progress, a general
proof with optimal rate of convergence in various Lp spaces for linear finite volume
discretization is not reachable by these techniques.

The main idea of this work is the following. If we analyze the truncation error
of a finite volume scheme on an arbitrary triangular mesh in 2D, then we are
forced to admit that finite volume methods are non-consistent in the finite difference
sense: the truncation error is O(1). This motivates the study of an abstract non-
consistent model problem posed in a general Banach space: we wonder if it is
possible to relax consistency in the Lax theorem, still having convergence of the
model problem. The answer is positive, based on some simple and formally
non-consistent residuals with a vanishing perturbation as the mesh size tends to
zero. Destructive interactions in time explain why the error is negligible. Note
that we give explicit expansions of the norm of the error, so there is a natural
interpretation of our results. This interpretation is the following. Finite volume
methods are indeed non-consistent methods: an O(1) numerical error is made at
each time step. But this O(1) error is spread over the whole mesh after some time
steps, so its norm tends to zero. In some cases, we can prove an O( 1

(q+1)s ) bound
where s > 0 and q is the number of time steps after the occurrence of the O(1)
error: s = 1

2 in 1D, and s = 1
4 or s = 1

4 − ε in 2D. Finally, it is proved on various
examples that the O( 1

(q+1)s ) decrease of the error implies an explicit and standard
C(T )hs rate of convergence.

This paper is organized as follows. In section 2, we present the model problem,
which is an abstract evolution equation posed in a Banach space V . After recalling
the Lax theorem in section 3, we study the possibility of getting non-consistent
but convergent methods in section 4. In section 5 we prove that there exist non-
consistent residuals with a vanishing perturbation when the mesh size tends to 0.
Then we turn to applications. We prove that implicit and explicit schemes converge
one to the other (section 6). Then, in section 7, we apply the formalism to all TVD
schemes for the discretization of linear advection in 1D: we prove the convergence
in L1 (R) for all of them. Finally, in sections 8 to 12 we generalize the analysis to
finite volume methods for the numerical solution of linear advection on a uniformly
regular triangulation: using duality techniques and assuming enough regularity of
the solution, we prove convergence in Lα, 2 ≤ α ≤ +∞. Some of these estimates
seem to be new: this is particularly the case for the h

1
4−ε L∞ error estimate on
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arbitrary regular triangulations. By comparison with [9], [10], one may infer that
the h

1
4−ε rate of convergence is probably still sub-optimal.

2. Model problem and notations

Let V be a Banach space equipped with the norm ||.|| defined by (L(V ) is the
space of linear continuous operators in V )

∀A ∈ L(V ), ||A|| = sup
u∈V,u6=0

||Au||
||u|| .

Let u(t) ∈ V be the solution of the following abstract and general time evolution
problem:

(2.1)
{

∂
∂tu = Au, t ≥ 0,
u(0) = u0 ∈ V.

A is a linear operator with a dense domain D(A) ⊂ V . Under very natural hy-
potheses, this problem is well posed [13], [3]. In the rest of this paper, we assume
that the semigroup etA is bounded as a linear operator in V , namely

(2.2) ∃T > 0 and K > 0, ||etA|| ≤ K, ∀t ∈ [0, T ].

A convenient abstract framework for the introduction of numerical methods for the
numerical solution of problem (2.1) is the following. Let h > 0 be a parameter
referred to as the mesh size. Studying the convergence of some numerical method
when the mesh size tends to 0 consists in studying the limit case h→ 0+.

Let Vh ⊂ V be some vector subspace of V with finite dimension. Vh is a space
of discrete functions. This vector subspace is indexed by the mesh size h. Let Πh

be some approximation operator, Πh : V → Vh. We assume that Πh is a “good”
approximation operator in the sense that

(2.3) ∀u ∈ D(A), lim
h→0
||u−Πhu|| = 0.

Let Ah be some numerical approximation of the operator A, Ah : Vh → Vh. Let
∆t > 0 be the time step.

Using these notations, a general explicit numerical approximation of (2.1), re-
ferred to as the time-explicit scheme (forward Euler), is

(2.4)

{
un+1
h −unh

∆t = Ahu
n
h, n ≥ 0,

u0
h = Πhu0.

In this work we will focus more on the model problem

(2.5)

{
un+1
h −unh

∆t = Ahu
n
h + snh, n ≥ 0,

u0
h = Πhu0,

where snh ∈ Vh, snh = O(1). snh incorporates all extra terms due to some non-linear
discretization of (2.1), or all the consistency defaults caused by the approximation
of A by Ah.

System (2.5) appears naturally when studying the convergence of (2.4) by means
of the numerical error enh,

(2.6) enh = vnh − unh, where vnh = Πhu(n∆t).
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Since vnh is solution of

(2.7)

{
vn+1
h −vnh

∆t = Ahv
n
h +

(
vn+1
h −vnh

∆t −Ahvnh
)
, n ≥ 0,

v0
h = Πhu0,

then the numerical error enh is the solution of

(2.8)

{
en+1
h −enh

∆t = Ahe
n
h + snh, n ≥ 0,

e0
h = 0,

where snh = vn+1
h −vnh

∆t −Ahvnh . It is clear that (2.7) and (2.8) are particular cases of
the model problem (2.5).

The proof of the key estimate will be given for the model problem with variable
time steps tn 6= tn+1:

(2.9)

{
un+1
h −unh

∆tn
= Ahu

n
h + snh, n ≥ 0,

u0
h = Πhu0,

3. Consistent approximations

Since Lax it is well known that stability and consistency are sufficient to insure
the convergence of the numerical solution of the linear scheme (2.4) to the exact
solution of (2.1) (see [28], [27], [13]). Let us recall these notions.

Definition 3.1 (Stability). We assume that there exists a function τ : R+ → R+,
called the maximal time step for a given mesh size h, such that

∀h > 0, ∀∆t ∈ ]0, τ(h)], ∀n, 0 ≤ n∆t ≤ T,
we have

(3.1) ||(I + ∆tAh)n|| ≤ K,
where K is given in (2.2).

The inequality

(3.2) ∆t ≤ τ(h)

is called the CFL stability condition. In general (that is, when Ah is the numerical
discretization of a partial differential operator A) the maximal time step is such
that

(3.3) lim
h→0

τ(h) = 0.

A consequence of the CFL inequality (3.3) is then that the finer the mesh and the
smaller the time step, the more work one has to do on the computer.

Since the scheme (2.4) is clearly of order one in time, we retain the following
simplified definition of consistency.

Definition 3.2 (Consistency). Let u(t) be the solution of (2.1). Let us define the
truncation error rnh ∈ Vh as

(3.4) rnh =
Πhu((n+ 1)∆t)−Πhu(n∆t)

∆t
−AhΠhu(n∆t), ∀n, h.

Considering the solution u(t) of (2.1), we assume that there exists s > 0 such that

(3.5) ∃C1 > 0 and C2 > 0, ||rnh || ≤ C1h
s + C2∆t, ∀n, h.
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The order of the scheme with respect to the space is s, while the order with
respect to the time is only 1. Generally speaking, it is necessary to assume that
the initial data u0 is sufficiently regular in order for the consistency inequality to
be true: for instance u0 ∈ D(A) (see [28], [27]).

Various extensions of this definition of consistency are possible. In particular,
full high order schemes such that ||rnh || ≤ C1h

s1 + C2∆ts2 with s2 > 1 are highly
desirable for practical numerical computations. However, for the sake of simplicity,
we only consider in this paper the case s2 = 1, compatible with (2.4).

Theorem 3.3 (Lax theorem). Assume that a linear scheme (2.4) is stable and
consistent. Then, under the CFL condition (3.3), it is convergent. See [28].

Following (2.6), we define the projection vnh of the exact solution and the nu-
merical error enh. Then by definition of the truncation error, we get (2.7) and (2.8).
The error is the solution of a non-homogeneous system with zero initial data. Due
to the recurrence formula

en+1
h = (I + ∆tAh) enh + ∆t rnh ,

we get the exact representation formula

(3.6) enh = (I + ∆tAh)n e0
h + ∆t

n−1∑
p=0

(I + ∆tAh)n−1−p rph,

that is,

(3.7) enh = ∆t
n−1∑
p=0

(I + ∆tAh)n−1−p
rph.

So

||enh|| ≤ ∆t
n−1∑
p=0

|| (I + ∆tAh)n−1−p || ||rph||;

that is, due to (3.1) and (3.5),

||enh|| ≤ K(n∆t)(C1h
s + C2∆t) ≤ KT (C1h

s + C2τ(h)).

Since C1h
s +C2τ(h)→ 0 when h→ 0, it proves an estimate of convergence for the

error and ends the proof. The estimate is uniform for 0 ≤ n∆t ≤ T .

4. Non-consistent approximations

Many numerical methods for the numerical approximation of linear problems,
however, do not satisfy the consistency requirement. Examples are known in finite
volume methods for linear problems or non-linear numerical methods for linear
problems. References may be found in [26], [20] and other papers cited therein.
Examples are given in the last sections of this work.

The above fact motivates the study of the model problem

(4.1)

{
un+1
h −unh

∆t = Ahu
n
h + snh, n ≥ 0,

u0
h = Πhu0,

where u0 ∈ V and

(4.2) ‖snh|| = O(1) uniformly with respect to h→ 0 and n.
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The solution of (4.1) satisfies

(4.3) unh − (I + ∆tAh)n Πhu0 = ∆t
n−1∑
p=0

(I + ∆tAh)n−1−p sph.

If we bound the right hand side of this equality using (4.2) and the stability in-
equality (3.1), we only obtain

‖unh − (I + ∆tAh)n Πhu0‖ ≤ K(n∆t) O(1) ≤ (KT ) O(1).

The introduction of the extra term snh may induce some discrepancy between unh
and the solution of (2.4), that is, (I + ∆tAh)n Πhu0. In this case the numerical
solution of the scheme (4.1) may be very different from the numerical solution of
the scheme (2.4), even for h→ 0.

We address the possibility of this extra term becoming negligible after some
time steps due to some internal structure of these snh, this internal structure being
compatible with the iteration operator I+∆Ah. In other words, we investigate the
possibility that

(4.4) ∀p, lim
n→+∞

(I + ∆tAh)n−1−p sph → 0,

even if we only have (4.2) and (3.1) (still assuming the CFL inequality). A key
issue seems to be obtaining uniform bounds such as

(4.5) || (I + ∆tAh)q sph|| ≤ εq ∀p, q, ∀h,

where the sequence (εq)q∈N decreases to 0:

(4.6) εq → 0 when q → +∞.

Indeed, a consequence of (4.3)-(4.6) is

(4.7) ||unh − (I + ∆tAh)n Πhu0|| ≤ ∆t
n−1∑
p=0

εn−1−p = ∆t
n−1∑
p=0

εp.

Since the sum is bounded uniformly with respect to n, i.e.,

∆t
n−1∑
p=0

εp ≤ ∆t
n−1∑
p=0

max
q

(εq) = (n∆t) max
q

(εq) = T max
q

(εq),

since and we have by hypothesis pointwise convergence to 0 (i.e., εq → 0), then the
Lebesgue theorem states that

∆t
n−1∑
p=0

εp → 0 when n→ 0.

In this case we really have ||unh − (I + ∆tAh)n Πhu0|| → 0 when h→ 0, and for all
n, 0 ≤ n∆t ≤ T .

In summary, an O(1) perturbation snh such that (4.5) and (4.6) are true has
asymptotically a zero perturbation.
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5. Convergence for the model problem

In order to apply the previous analysis, the key is to identify some general
perturbations snh such that (4.5)-(4.6) is true for the model problem (4.1).

Definition 5.1 (A class of admissible perturbations). An additional term snh such
that

(5.1) ∃C > 0, ∀h, n, ∃znh ∈ Vh with ||znh || ≤ C and snh = (τ(h)Ah)znh
is called an admissible perturbation.

In this definition τ(h) is the maximal time step given by the CFL condition (3.2).
Defining

(5.2) Th = I + τ(h)Ah

and using the stability estimate (3.1), we know that there exists a constant K > 0
such that ||Th|| ≤ K for all h. Thus the operator τ(h)Ah is bounded:

||τ(h)Ah|| ≤ 1 +K, ∀h,
and we only have the bound

||snh|| ≤ ||τ(h)Ah|| ||znh || ≤ (1 +K)C,

compatible with (4.2).
We rewrite

I + ∆tAh = (1− νh)I + νhTh, νh =
∆t
τh
∈ ]0, 1] due to (3.1),

and rewrite (4.3) plus (5.1) as

(5.3) unh − (I + ∆tAh)n Πhu0 = ∆t
n−1∑
p=0

((1− νh)I + νhTh)n−1−p (Th − I) zph.

Note that all powers of Th are uniformly bounded due to the stability estimate
(3.1):

(5.4) ‖(Th)n‖ ≤ K ∀ h, n.
Now we make the remark which is at the base of this work.

In (5.3) ((1 − νh)I + νhTh)n−1−p is as a polynomial in Th with non-
negative coefficients. Multiplying this polynomial by Th − I results in
cancellation of these coefficients. This cancellation is the key to obtain-
ing (4.5)-(4.6).

In the next theorem, a bound is given for Bph = ((1− νh)I + νhTh)p (Th − I).
Note that we state the result in a slightly more general framework, such that the
result is also true for non-constant time steps. Of course it also covers the model
problem with constant time steps (4.1) or (5.3).

Theorem 5.2. Let us assume a), b) and c).
a) We assume that the CFL inequality (5.5) is true ∀h > 0, ∀n such that

(5.5) 0 ≤
n−1∑
j=0

∆tj ≤ T,∆tj ∈ ]0, τ(h)].
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b) We assume that the stability estimate

(5.6) ||
n−1∏
j=0

(I + ∆tjAh)|| ≤ K

holds, where K is given in (2.2) and (3.1), as a consequence of the CFL
inequality.

c) We assume that

(5.7) ∃(ν−, ν+) such that 0 < ν− ≤ νh,j ≤ ν+ < 1 ∀j, h,
where νh,j is defined by

(5.8) νh,j =
∆tj
τ(h)

∈ ]0, 1].

Let us consider Bph given by

(5.9) Bph =
p−1∏
j=0

((1− νh,j)I + νh,jTh)(Th − I), B0
h = Th − I,

where Th is given by (5.2). Then there exists C > 0 such that ∀h, ∀νh,j satisfying
(5.7), ∀p ≥ 0,

(5.10) ||Bph|| ≤
(

max
±

KC√
(1− ν±)ν±

)
1√
p+ 1

.

Here C is a universal constant which does not depend on ν−, ν+, p, h.

We drop the index h in the proof since it does not play any role. We study

(5.11) Bp =
p−1∏
j=0

((1 − νj)I + νjT )(T − I),

where all powers of T are uniformly bounded (||T p|| ≤ K) and (νj) is a sequence
such that 0 < ν− ≤ νj ≤ ν+ < 1. Identifying all coefficients in the polynomial
expansion

(5.12)
p−1∏
j=0

((1 − νj)I + νjT ) =
∑
j

αpjT
j,

we get

(5.13)
{
α0

0 = 1, α0
j = 0 for j 6= 0,

αp+1
j = (1− νp)αpj + νpα

p
j−1 ∀j, ∀p ≥ 0.

Next we split the rest of the proof in three lemmas.1

Lemma 5.3. Consider (5.13). Then

(5.14) ∀p ≥ 0, ∃j0(p) ∈ {0, ..., p} with
{
αpj − α

p
j−1 ≥ 0, j ≤ j0(p),

αpj − α
p
j−1 ≤ 0, j > j0(p).

1Note that (5.13) is the finite difference upwind discretization of{
∂tα+ a∂xα = 0, a > 0,
α(0, x) = δ.
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The proof of this lemma is by recurrence. Note that αpj ≥ 0 for all j, p.

a) p=0. We define j0(0) = 0, so (5.14) is true.
b) We assume that (5.14) is true for a given p ≥ 0. Since

αp+1
j − αp+1

j−1 = (1− νp)(αpj − α
p
j−1) + νp(α

p
j−1 − α

p
j−2),

we deduce that{
∀j ≤ j0(p) αp+1

j − αp+1
j−1 ≥ 0,

∀j ≥ j0(p) + 2 αp+1
j − αp+1

j−1 ≤ 0.

It remains to look at j = j0(p) + 1:{
If αp+1

j0(p)+1 − α
p+1
j0(p) ≥ 0, we define j0(p+ 1) = j0(p) + 1,

if αp+1
j0(p)+1 − α

p+1
j0(p) < 0, we define j0(p+ 1) = j0(p).

With this definition of j0(p + 1) property (5.14) is true for p + 1. This
finishes the proof of the lemma.

Lemma 5.4. Considering Bp given by (5.11), one has

(5.15) ||Bp|| ≤ 2αpj0(p)K,

where K is the stability constant.

Since Bp =
∑

j(α
p
j − α

p
j−1)T j , we get directly

||Bp|| ≤ K
∑
j

|αpj − α
p
j−1| = K

∑
j≤j0(p)

(αpj − α
p
j−1)−K

∑
j>j0(p)

(αpj − α
p
j−1),

that is, ||Bp|| ≤ 2αpj0(p)K.

Lemma 5.5. There exists C > 0 such that

(5.16) αpj0(p) ≤
(
C max
±

1√
(1− ν±)ν±

)
1

(p+ 1)
1
2
.

Substituting the complex number eiθ in (5.12), we obtain another definition of
αpj0(p), that is,

(5.17) αpj0(p) =
1

2π

∫ 2π

0

fp(θ)e−ij0(p)θdθ,

where the function fp is defined by fp(θ) =
∏p−1
j=0

(
(1− νj) + νje

iθ
)
. Equality

(5.17) means that αpj0(p) is the j0(p)th Fourier coefficient of fp. We have

|αpj0(p)| ≤
1

2π

∫ 2π

0

p−1∏
j=0

∣∣(1− νj) + νje
iθ
∣∣ dθ.

Since ∣∣(1− νj) + νje
iθ
∣∣ =

√
1− 2νj(1 − νj)(1− cos θ) ≤

√
1− a sin2 θ

2
,

where

(5.18) a = 4 min
(
ν−(1− ν−), ν+(1− ν+)

)
≤ 1,
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we get

(5.19) |αpj0(p)| ≤
1

2π

∫ 2π

0

(1 − a sin2 θ

2
)
p
2 dθ.

The singularity in this integral is at θ = 0. We isolate it:

(5.20)
∫ 2π

0

(1− a sin2 θ

2
)
p
2 dθ = 2

∫ π

0

(1− a sin2 θ

2
)
p
2 dθ ≤ 8

∫ π
4

0

(1 − a sin2 θ)
p
2 dθ.

We use the change of variable ϕ = p sin2 θ, sin θ =
√

ϕ
p . Since θ ∈ [0, π4 ], we have

dθ =
1

2p sin θ cos θ
dϕ ≤ 1

2 cos π4
× dϕ
√
pϕ
.

So we obtain ∫ π
4

0

(1 − a sin2 θ)
p
2 dθ =

1
2 cos π4

1
√
p

∫ p
2

0

(1− aϕ
p

)
p
2
dϕ
√
ϕ
.

Finally we note that the function{
gp(ϕ) =

(1−aϕp )
p
2

√
ϕ for 0 ≤ ϕ ≤ p

2 ,

gp(ϕ) = 0 in other cases,

is uniformly bounded for all p and ϕ ≥ 0 by an integrable function gp(ϕ) ≤ g(ϕ),
where g is defined by

g(ϕ) =
e−2aϕ

√
ϕ

ϕ ≥ 0.

So ∫ p
2

0

gp(ϕ)dϕ =
∫ +∞

0

gp(ϕ)dϕ ≤
∫ +∞

0

g(ϕ)dϕ =
1√
a

∫ +∞

0

e−2ϕ

√
ϕ
dϕ

The interesting consequence is that

∃H > 0, ∀p,
∫ +∞

0

gp(ϕ)dϕ ≤ H√
a
.

So we get that ∃I > 0 such that |αpj0(p)| ≤
I√
ap , p ≥ 1, and

∃J > 0 such that |αpj0(p)| ≤
J√

a(p+ 1)
, ∀p ≥ 0.

In conjunction with (5.18), this finishes the proof of the lemma. Finally, Theorem
5.2 is a consequence of (5.16) and (5.10).

Corollary 5.6. Let us consider an admissible perturbation snh of the form (5.1).
We assume that all hypotheses of Theorem 5.2 are true.

Then we have the property (4.5): there exists C > 0 such that ∀p, r, h

(5.21) ‖
p−1∏
j=0

((1− νh,j)I + νh,jTh)srh|| ≤
(

max
±

KC√
(1− ν±)ν±

max
h,n
||znh ||

)
1√
p+ 1

.

Moreover, ∃C̃ > 0 such that the solution of the model problem with variable time
steps ∆tn,

(5.22)

{
un+1
h −unh

∆tn
= Ahu

n
h + snh, n ≥ 0,

u0
h = Πhu0,
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satisfies

(5.23)

||unh−
n−1∏
j=0

((1 − νh,j)I + νh,jTh)Πhu0||

≤
(

max
±

KC̃√
(1− ν±)ν±

max
h,n
||znh ||

)√
T max

j
(∆tj).

Here C and C̃ are two universal constants which do not depend on p, n, h, ν− and
ν+. These estimates are true for 0 ≤ n∆t ≤ T .

Inequality (5.21) is a direct consequence of Theorem 5.2.
We detail the rest of the proof only for ν− = ν+ = ν; the other case is straight-

forward. Using (4.3) and (5.21), we obtain

||unh − (I + ∆tAh)nΠhu0|| ≤ ∆t
n−1∑
p=0

KC√
p+ 1

1√
ν(1 − ν)

max
h,n
||znh ||.

Since
n−1∑
p=0

1√
p+ 1

= 1 +
n−1∑
p=1

1√
p+ 1

≤ 1 +
∫ n

1

dx√
x

= 1 +
√
n− 1
2

,

this proves that

∃F > 0 such that
n−1∑
p=0

1√
p+ 1

≤ F
√
n ∀n ≥ 1.

Then

||unh−(I + ∆tAh)nΠhu0|| ≤ (KC̃ max
h,n
||znh ||)

1√
ν(1 − ν)

∆t
√
n

≤ (KC̃ max
h,n
||znh ||)

1√
ν(1 − ν)

∆t

√
T

∆t
=

(
KC̃√
ν(1 − ν)

max
h,n
||znh ||

)
√
T∆t

for a suitable C̃ = CF . This finishes the proof.
Always for ν− = ν = ν+, a consequence of (5.23) is

||unh − (I + ∆tAh)nΠhu0|| ≤
(

KC̃√
1− ν

max
h,n
||znh ||

)√
Tτ(h).

Since the right hand side of this inequality is uniformly bounded for ∆t → 0, it
gives a similar estimate for the continuous-in-time scheme. This means that the
lower bound ν− ≤ ∆t

τ(h) is not restrictive.

6. Implicit scheme

The next two sections are devoted to showing that the framework developed
above is non-empty, and that new results are obtained.

In this section we deal with implicit schemes and prove that, under reasonable
assumptions, the difference between the solution of the explicit scheme and the
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solution of the implicit scheme tends to 0, when h→ 0. Let us consider a solution
unh of the first order2 implicit scheme

(6.2)

{
un+1
h −unh

∆t = Ahu
n+1
h , n ≥ 0,

u0
h = Πhu0.

The current iteration is

(6.3) (I −∆tAh)un+1
h = unh.

We assume that (6.2) is unconditionally stable, in the sense that ∀∆t > 0, the
matrix I −∆tAh is non-singular and

(6.4) ∀∆t > 0, ∀h, ∀p ≥ 0, ‖ (I −∆tAh)−p ‖ ≤ K,
where K is the stability constant (2.2), (3.1). We rewrite (6.3) as

(6.5)
un+1
h − unh

∆t
= Ahu

n
h + (τ(h)Ah)

un+1
h − unh
τ(h)

.

This means that the implicit scheme may be considered as an explicit scheme plus a
perturbation which is admissible (in the sense of Definition 5.1) provided we prove

that un+1
h −unh
τ(h) is uniformly bounded. Nevertheless, implicit schemes are used mostly

with large time steps like ∆t > τ(h), so we cannot apply Corollary 5.6 directly to
(6.5).

Let us consider a smaller time step

(6.6) ∆t =
∆t
d
, d ∈ N∗, with

∆t
τ(h)

∈ ]0, 1[,

and the linear interpolant un,kh , k = 0, 1, ..., d,

un,kh = unh +
k

d
(un+1
h − unh), un+1,0

h = un,dh .

For the sake of simplicity we assume that d is a constant. In other words, d does
not depend on the mesh size h.

For 0 ≤ k ≤ d− 1, this linear interpolant is a solution of

(6.7)
un,k+1
h − un,kh

∆t
=
un+1
h − unh
d∆t

= Ahu
n+1
h = Ahu

n,k
h + sn,kh

with

sn,kh = Ah(un+1
h − un,kh ) = (τ(h)Ah)

(
(1− k

d
)
un+1
h − unh
τ(h)

)
.

It remains to obtain some bounds for un+1
h −unh
τ(h) . We define

vnh =
un+1
h − unh

∆t

2Generalization of the discussion to the Crank-Nicholson second order implicit scheme (6.1) is
straightforward:

(6.1)

{
un+1
h −unh

∆t
= Ah

un+1
h +unh

2
, n ≥ 0,

u0
h = Πhu0.
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and note that vnh is the solution of the implicit scheme

(6.8)

{
vn+1
h −vnh

∆t = Ahv
n+1
h , n ≥ 0,

v1
h−AhΠhu0

∆t = Ahv
1
h.

A consequence of the stability estimate for the implicit scheme is

||u
n+1
h − unh

∆t
|| = ||vnh || ≤ K||AhΠhu0||, ∀n ≥ 0.

and

(6.9) ||u
n+1
h − unh
τ(h)

|| ≤ ∆t
∆t

∆t
τ(h)

K||AhΠhu0|| ≤ dK||AhΠhu0||.

Under reasonable assumptions, this last term ||AhΠhu0|| is uniformly bounded for
many initial data u0

h = Πhu0, when u0 ∈ D(A), [13], [27].
So (6.7) enters in the formalism covered by Corollary 5.6. As a consequence we

get

Theorem 6.1. Under all the above hypotheses (6.4), (6.6) about the implicit scheme
(6.2), there exists a constant C = C(d, ∆t

τ(h)) > 0 such that

(6.10) ‖unh − (I + ∆tAh)(dn)Πhu0‖ ≤ (KC||AhΠhu0||)
√
T∆t, 0 ≤ n∆t ≤ T.

This result means that the solution of the implicit scheme is asymptotically
equal to the solution of the explicit scheme with a smaller time step. Under the
hypotheses of the theorem, proving convergence of the explicit scheme is equivalent
to proving convergence of the implicit scheme.

7. TVD schemes in 1D

Let us now consider linear advection in 1D,

(7.1)
{
∂tu = −a∂xu, a > 0,
u(0, x) = u0(x).

The solution is
u(t, x) = u0(x− at).

We would like to discuss the convergence of TVD schemes for the numerical
solution of this problem. The space is V = L1 (R); we assume that u0 ∈ L1(R) ∩
BV (R).

Let h > 0 be the mesh size and ∆t > 0 the time step. The general form of such
a TVD scheme is

(7.2)
un+1
j − unj

∆t
+ a

un
j+ 1

2
− un

j− 1
2

h
= 0,

with the initial data given by

(7.3) u0
j =

1
h

∫ (j+1)h

jh

u0(x)dx.

We refer to [26], [20] and the references given therein for an introduction to TVD
schemes. It is well known in the theory of TVD schemes that interesting values
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for the numerical flux are (we give the common name of the limiter and drop the
superscript n)
(7.4)

upwind, uj+ 1
2

= uj,

minmod, uj+ 1
2

= uj + 1
2 (1− ν)minmod(1, rj+ 1

2
)(uj+1 − uj),

superbee, uj+ 1
2

= uj

+ 1
2 (1− ν) max

(
0,min(1, 2rj+ 1

2
),min(2, rj+ 1

2
)
)

(uj+1 − uj),

ultrabee, uj+ 1
2

= uj + (1− ν)minmod( 1
1−ν ,

r
j+ 1

2
ν )(uj+1 − uj).

Here rj+ 1
2

= uj−uj−1
uj+1−uj and ν = a∆t

h . The minmod function is defined by if ab ≤ 0, minmod(a, b) = 0,
if ab > 0 and a > 0, minmod(a, b) = min(a, b),
if ab > 0 and a < 0, minmod(a, b) = max(a, b).

A common property of all these schemes is the TVD property [20], [26], which we
recall now.

Lemma 7.1. Assume the CFL inequality

a
∆t
h
≤ 1,

that is, τ(h) = h
a . Then:

a) The linear upwind scheme (i.e., (7.2) with the upwind flux) is L1 stable:

(7.5) h
∑
j

|un+1
j | ≤ h

∑
j

|unj | (i.e., K = 1).

b) The solution of the scheme (7.2) with a non-linear TVD flux (examples
are given in (7.4)) satisfies the TVD inequality

(7.6)
∑
j

|un+1
j − un+1

j−1 | ≤
∑
j

|unj − unj−1|.

Many other limiters are used in the literature. We note that all of these numerical
fluxes are defined as the upwind scheme plus a correction. This correction is non-
linear, and corresponds to a limited evaluation of 1

2 (uj+1 − uj) for second order
fluxes; this is the case for the minmod and superbee limiter formulas, and also for
the van Leer limiter formula [20], [26]. The correction is a limited evaluation of
(uj+1−uj) for the ultrabee scheme, which is only first order (see [14] for a discussion
of the optimality of the ultrabee limiter for the capture of discontinuous profiles).

We only mention that the numerical solution of all these schemes converges in
L1([0, T ]×R) to the exact solution, based on the TVD property. Concerning conver-
gence and rate of convergence in L1 (R), simple proofs are available for monotone
schemes—unfortunately only the upwind scheme is monotone. Convergence and
rate of convergence of the minmod, superbee and van Leer limiters are reached
using the theory of [17], [4]; we remark that these proves are very technical and
never use the linearity of the equation.

As for us, we note that all these TVD schemes may be rewritten as

(7.7)
un+1
j − unj

∆t
= −a

unj − unj−1

h
− a

snj − snj−1

h
,
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where snj is the non-linear correction

snj = unj+ 1
2
− unj .

Lemma 7.2. All TVD schemes defined in (7.4) satisfy

(7.8)
∑
j

|snj | ≤ 2(1− a∆t
h

)
∑
j

|unj − unj−1|.

Due to the definition (7.4), we note that the upwind, minmod and superbee
limiters satisfy

(7.9) |snj | ≤ (1− ν)|unj+1 − unj |,
which proves (7.8). A little algebra is needed for the ultrabee limiter, rewritten as

(snj )ub = minmod
(
uj+1 − uj , (

1
ν
− 1)(uj − uj−1)

)
.

Let us assume that ν ≥ 1
2 . Then

|(snj )ub| ≤ (
1
ν
− 1)|uj − uj−1| ≤ 2(1− ν)|uj − uj−1|.

On the contrary if we assume that ν < 1
2 , then we use

|(snj )ub| ≤ |(uj+1 − uj | ≤ 2(1− ν)|(uj+1 − uj |.
In both cases we get (7.8). This ends the proof of the lemma.

Let us define

Vh = {u ∈ L1 (R) ; u(x) is constant for x ∈ ]jh, (j + 1)h[},
and

unh(x) = unj ∀x ∈ ]jh, (j + 1)h[.
One has

(7.10)


unh = (unj ) ∈ Vh,
(Ahu)j = −auj−uj−1

h , ∀u ∈ Vh,
znh = (znh,j) = (a s

n
j

h ) ∈ Vh.

Due to (7.8) we note that

(7.11) ‖znh‖L1(R) = h
∑
j

|znh,j| ≤ 2a(1− a∆t
h

)
∑
j

|u0
j − u0

j−1|.

Now we assume that u0 ∈ L1 (R) ∩ BV (R). In this case it is well known that
the total variation of the discrete profile u0 is bounded by the total variation of u0:

(7.12)
∑
j

|u0
j − u0

j−1| ≤ TV (u0).

For a differentiable u0, one has

TV (u0) =
∫
R
|∂xu0(x)|dx.

If u0 is not differentiable, the total variation is defined as

TV (u0) = max
ϕ∈C1(R),|ϕ(x)|≤1

∫
R
(−ϕ′(x)u0(x))dx.
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What is important here is that znh is bounded in L1 (R) independently of the mesh
size h,

(7.13) ‖znh‖L1(R) ≤ 2a(1− a∆t
h

)TV (u0).

So (7.7) may be rewritten as

(7.14)

{
un+1
h −unh

∆t = Ahu
n
h + (τ(h)Ah)znh , n ≥ 0,

u0
h = Πhu0,

where Πh is the constant mass approximation (7.3).
We obtain a first result

Lemma 7.3. Assume the CFL condition

(7.15) a
∆t
h
< 1,

and u0 ∈ L1(R)∩BV (R). Then ∃C > 0 such that for all TVD schemes considered
above we have

(7.16) ||unh − (I + ∆tAh)nΠhu0|| ≤ (C TV (u0))

√
a(1− a∆t

h
)Th.

This is true ∀h and ∀n, 0 ≤ n∆t ≤ T .

The proof is a direct consequence of Corollary 5.6 in the case ν− = ν+ = ∆t
τ(h) .

The convergence of the upwind scheme may also be proved using our formalism.
Let us define the projection of the exact solution

(7.17) vnh = Πhu(n∆t, .) =

(
1
h

∫ (j+1)h

jh

u(n∆t, x)dx

)
.

This vector is the solution of

(7.18)

{
vn+1
h −vnh

∆t = Ahv
n
h + Q̃nh, n ≥ 0,

v0
h = Πhu0,

where

(7.19)

(Q̃nh)j =
1

∆th

∫ (j+1)h

jh

(u((n+ 1)∆t, x)− u(n∆t, x)) dx

+
a

h2

(∫ (j+1)h

jh

u(n∆t, x)dx−
∫ jh

(j−1)h

u(n∆t, x)dx

)
.

Since∫ (j+1)h

jh

(u((n+ 1)∆t, x)− u(n∆t, x)) dx =
∫ (n+1)∆t

n∆t

∫ (j+1)h

jh

∂tu(s, x)dsdx

= −a
∫ (n+1)∆t

n∆t

∫ (j+1)h

jh

∂xu(s, x)dsdx

= −a
∫ (n+1)∆t

n∆t

(u(s, (j + 1)h)− u(s, jh)) ds,
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we have that

(Q̃nh)j =
a

h

([
1
h

∫ (j+1)h

jh

u(n∆t, x)dx − 1
∆t

∫ (n+1)∆t

n∆t

u(s, (j + 1)h)ds

]

−
[

1
h

∫ jh

(j−1)h

u(n∆t, x)dx − 1
∆t

∫ (n+1)∆t

n∆t

u(s, jh)ds

])
,

that is, Q̃nh = (τ(h)Ah)z̃nh with

(7.20) (z̃nh )j =
1

τ(h)

[
1
h

∫ (j+1)h

jh

u(n∆t, x)dx − 1
∆t

∫ (n+1)∆t

n∆t

u(s, (j + 1)h)ds

]
.

Note that∫ (n+1)∆t

n∆t

u(s, (j + 1)h)ds =
∫ (n+1)∆t

n∆t

u(n∆t, (j + 1)h− a(s− n∆t))ds

=
∫ (j+1)h

(j+1)h−a∆t

u(n∆t, x)
dx

a
,

where we have used the change of variable a(s− n∆t) = (j + 1)h− x. So

(z̃nh )j =
a

h

[
1
h

∫ (j+1)h

jh

u(n∆t, x)dx− 1
a∆t

∫ (j+1)h

(j+1)h−a∆t

u(n∆t, x)dx

]

=
a

h
(1 − a∆t

h
)

[
1

h− a∆t

∫ (j+1)h−a∆t

jh

u(n∆t, x)dx

− 1
a∆t

∫ (j+1)h

(j+1)h−a∆t

u(n∆t, x)dx

]

=
a

h
(1 − a∆t

h
)

[
1

h− a∆t

∫ (j+1)h−a∆t

jh

(u(n∆t, x)− u(n∆t, jh))dx

− 1
a∆t

∫ (j+1)h

(j+1)h−a∆t

(u(n∆t, x)− u(n∆t, jh))dx

]
.

Since

|u(n∆t, x)− u(n∆t, jh)| ≤
∫ (j+1)h

jh

|∂xu(n∆t, x)|dx

we obtain

|(z̃nh )j | ≤
a

h
(1 − a∆t

h
)

(
2
∫ (j+1)h

jh

|∂xu(n∆t, x)|dx
)
.

Note that z̃nh ∈ Vh is uniformly bounded in L1:

(7.21) ||z̃nh || = h
∑
j

|(z̃nh)j | ≤ 2a(1− a∆t
h

)TV (u) = 2a(1− a∆t
h

)TV (u0).

Next we define the error enh = vnh − unh. This error is the solution of

(7.22)
{

en+1−en
∆t = Ahe

n
h + (τ(h)Ah)z̃nh , n ≥ 0,

e0
h = 0.

So we apply Corollary 5.6 to (7.22) and obtain
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Theorem 7.4. Assume the CFL condition

(7.23) a
∆t
h
< 1,

and u0 ∈ L1(R)∩BV (R). Then ∃C > 0 such that for all TVD schemes considered
above we have

(7.24) ||unh −Πhu(n∆t)|| ≤ (C TV (u0))

√
a(1− a∆t

h
)Th.

This is true ∀h and ∀n, 0 ≤ n∆t ≤ T .

Since (7.24) is true for the upwind scheme due to Corollary 5.6 we see that, and
since we have Lemma 7.3, it follows that (7.24) is true for all TVD schemes. Note
that (7.24) is accurate, in the sense that asymptotic regimes are correctly described.
If a→ 0+ (no advection), we indeed find a zero error. If 1− a∆t

h → 0+, we find a
zero error compatible with the fact that the scheme is exact for 1− a∆t

h = 0.

8. Linear advection by finite volume method

The rest of this paper is devoted to the study of linear advection in 2D:

(8.1)
{
∂tu+ ~a.~∇u = 0, (t, x) ∈ [0, T ]× Ω,
u(t = 0, x) = u0(x), x ∈ Ω = [0, 1]× [0, 1].

For the sake of simplicity we assume that ~a ∈ R2, ~a 6= 0, is constant, and supplement
(8.1) with periodic boundary conditions

(8.2)
{
u(t, 0, x2) = u(t, 1, x2), (t, x2) ∈ [0, T ]× [0, 1],
u(t, x1, 0) = u(t, x1, 1), (t, x1) ∈ [0, T ]× [0, 1].

Let (Ωj)j∈J be a finite triangular mesh of Ω:

(8.3)
{

Ωj ∩Ωk = ∅, ∀j, k, j 6= k,⋃
j∈J Ωj = Ω = Ω.

Two cells are neighboring cells if and only if they have an edge in common (taking
periodic boundary conditions into account). Each cell has 3 neighbors: I(j) is the
set of indices of the neighbors of the cell j. The outgoing normal from Ωj on the
edge Ωj ∩ Ωk is denoted as ~njk. Of course the outgoing normal from Ωj is the
opposite of the outgoing normal from Ωk for k ∈ I(j),

(8.4) ~njk + ~nkj = 0.

We introduce some very natural notation:

(8.5)
{
ljk = lkj = R-Lebesgue measure of Ωj ∩ Ωk, a length,
sj = R2-Lebesgue measure of Ωj , a surface.

We also define

(8.6)


I+(j) = {k ∈ I(j); (~a, ~njk) > 0},
I0(j) = {k ∈ I(j); (~a, ~njk) = 0},
I−(j) = {k ∈ I(j); (~a, ~njk) < 0}.

and

(8.7) mjk = mkj = ljk|(~a, ~njk)|.
Here (., .) denotes the standard scalar product. I+(j) (resp. I−(j)) is the set of
outgoing (resp. incoming) cells from Ωj. An example is given in Figure 1. With all
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j
k

k

k

1

3

2

a

Figure 1. I+(j) = {k2, k3}, I−(j) = {k1}

these notations the finite volume upwind scheme is defined as

(8.8) sj
un+1
j − unj

∆t
+

∑
k∈I+(j)

mjku
n
j −

∑
k∈I−(j)

mjku
n
k = 0, ∀j ∈ J,

with the constant mass initial approximation

(8.9) u0
j =

1
sj

∫
Ωj

u(0, x)dx.

mjku
n
j is the flux value integrated along the edge Ωj ∩ Ωk, k ∈ I+(j).

The following formula will play an important role in the analysis. The proof is
left to the reader.

Lemma 8.1. One has the equality

(8.10)
∑

k∈I+(j)

mjk =
∑

k∈I−(j)

mjk, ∀j.

Using this formula, we rewrite (8.8) as

un+1
j =

1− ∆t
sj

∑
k∈I−(j)

mjk

 unj +
∆t
sj

∑
k∈I−(j)

mjku
n
k .

Provided the CFL condition is satisfied, i.e.,

(8.11)
∆t
sj

∑
k∈I−(j)

mjk ≤ 1,

un+1
j is a convex combination of (unj ). As a consequence we get

Lemma 8.2. Assume (8.11). Consider the solution of (8.8). Then

(8.12)

∑
j

sj |un+1
j |α


1
α

≤

∑
j

sj |unj |α


1
α

, ∀α, 1 ≤ α < +∞,
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and

(8.13) max
j
|un+1
j | ≤ max

j
|unj |.

Now we reformulate (8.8)-(8.9) using the abstract formalism. Let h be a char-
acteristic length of the triangular mesh, which is assumed to be uniformly regular,
that is,

(8.14) ∃c0, c1 > 0, c0h ≤ ljk ≤ c1h, ∀j, k,
or equivalently

(8.15) ∃c2, c3 > 0, c2h
2 ≤ sj ≤ c3h2, ∀j.

It implies (a proof is given in [15])

∃c4, c5 > 0, c4h ≤
∑

k∈I−(j)

mjk ≤ c5h, ∀j, ∀h.

As a consequence we get

Lemma 8.3. The maximal time step

τ(h) = max
j

sj∑
k∈I−(j) mjk

is such that

(8.16) ∃C1 > 0, C2 > 0, C1h ≤ τ(h) ≤ C2h.

In order to simplify the discussion, we assume for the rest of this
paper that the CFL condition is bounded away from 0 and 1: The reason
is that we desire to use the estimate (5.21) of Corollary 5.6, which is singular at
ν = 0 and ν = 1. So we assume that there exist ν− and ν+ such that

(8.17) 0 < ν− ≤ ∆t
τ(h)

≤ ν+ < 1, ∀h.

This assumption is not a real restriction since it is in accordance with the practical
use which is made of such schemes. Let

V α = Lα(Ω),

and
V αh = {u ∈ V α; u is constant in Ωj ∀j, that is, uj = u|Ωj} ⊂ V α.

The norm in V α is

||u||α =
(∫

Ω

|u|αdx
) 1
α

∀u ∈ V α,

and

||u||α =

∑
j

sj |uj |α
 1

α

∀u ∈ V αh .

Let {
Πh : V α → V αh ,
(Πhu)j = 1

sj

∫
Ωj
u(x)dx,

and

(8.18)

{
Ah : V αh → V αh ,

(Ahu)j =
−
∑
k∈I+(j) mjkuj+

∑
k∈I−(j) mjkuk

sj
.
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With this notation, the upwind finite volume scheme is equivalent to (2.4). Note
that the stability inequality may be rewritten as

(8.19) ‖ (I + ∆tAh)n ‖α ≤ 1, ∀n provided (8.11) (i.e., Kα = K = 1).

In order to study the convergence we define the approximation vnh of the exact
solution:

vnh = Πhu(n∆t).

This vector is a solution of the system

(8.20)

{
vn+1
h −vnh

∆t = Ahv
n
h + snh, n ≥ 0,

v0
h = Πhu0.

The perturbation snh is given by

(snh)j =
(
vn+1
h − vnh

∆t
−Ahvnh

)
j

=
1
s j

(∫
Ωj

u((n+ 1)∆t)− u(n∆t)
∆t

+
∑

k∈I+(j)

mjk(vnh )j −
∑

k∈I−(j)

mjk(vnh )k


=

1
s j

∫
Ωj

∫ (n+1)∆t

n∆t

∂tu(s)ds+
∑

k∈I+(j)

mjk(vnh )j −
∑

k∈I−(j)

mjk(vnh )k


=

1
s j

− ∫
Ωj

∫ (n+1)∆t

n∆t

~a.∇u(s)ds+
∑

k∈I+(j)

mjk(vnh )j −
∑

k∈I−(j)

mjk(vnh )k

 .

Finally, after integration by parts,

(8.21) (snh)j =
1
s j

 ∑
k∈I+(j)

mjk((vnh )j − unh,jk)−
∑

k∈I−(j)

mjk((vnh )k − unh,jk)

 ,

where unh,jk stands for the time-and-edge average of the solution:

unh,jk =
1

∆t

∫ (n+1)∆t

n∆t

∫
x∈∂Ωj∩∂Ωk

u(s, x)dsdσ.

snh given in (8.21) is a function of the difference between the cell average and the
edge-time average ((vnh )j − unh,jk): snh is like a bounded operator

τ(h)
sj

 ∑
k∈I+(j)

mjk(...)−
∑

k∈I−(j)

mjk(...)


applied to some bounded quantity (terms like

(vnh)j−unh,jk
τ(h) ). So these snh are O(1).

In general (that is, for an arbitrary mesh), there is no chance for this term to be
O(h), even for a very smooth solution u. This is precisely the lack of consistency
problem that we are addressing in this paper. We rewrite this as

(8.22) (snh)j =
τ(h)
sj

 ∑
k∈I+(j)

mjkz
n
h,jk −

∑
k∈I−(j)

mjkz
n
h,jk

 ,
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where

(8.23) znh,jk =
(vnh)j − unh,jk

τ(h)
.

However, a difficulty occurs in dimension greater than 1. For a given h and a
given n, znh = (znh,jk) lives in a space which has the dimension of the number of
edges, greater than the number of cells. In a 2D periodic domain with a triangular
mesh, the number of edges is 3

2N , where N is the number of cells. So there is no
chance for znh to belong to V αh , znh 6∈ V αh . Note that in dimension 1, the number of
edges is equal to the number of cells; this is why it is possible to apply the abstract
formalism directly only in dimension 1 (as it is done in section 7). In summary, one
has

Lemma 8.4. The truncation error (8.21) of the 2D advection equation is, in gen-
eral, not admissible in the sense of Definition 5.1: snh 6= τ(h)Ahzh.

This is the classical dimensional obstruction to a simple proof of convergence for
finite volume schemes. It means that the proof in dimension 1 needs to be adapted.
Let us define

Wα
h = {z = (zh,jk); zh,jk is constant in ∂Ωj ∩ ∂Ωk ∀j, k}.

The norm in Wα
h is

||z||α =

∑
jk

(τ(h)mjk)|zh,jk|α


1
α

∀z ∈Wα
h , 1 ≤ α < +∞,

and

||z||∞ = max
jk
|zh,jk|.

Note that the coefficient τ(h)mjk = τ(h)ljk|(~a, ~njk)| is homogeneous to a surface,
τ(h)mjk ≈ sj . The norm in Wα

h is very similar to the norm in V αh . It is the reason
why we use the same notation ||.||α for the norm in V α and that in Wα

h .

Lemma 8.5. Let α ∈ ]1,+∞]. Assume that u0 ∈W 1,α
per (Ω) (so u(t) = u0(x−~at) ∈

W 1,α
per (Ω), ∀t). Then znh = (znh,jk) ∈ Wα

h , and ∃C > 0 such that

(8.24) ||znh ||α ≤ C||∇u0||Lα(Ω), ∀h, n, ∀α ∈ [1,+∞[.

Assume that u0 ∈ L1(Ω) ∩BVper(Ω) (so u(t) = u0(x− ~at) ∈ L1(Ω) ∩BVper(Ω),
∀t). Then znh ∈ W 1

h , and ∃C > 0 such that

(8.25) ||znh ||1 ≤ C||u0||BVper(Ω), ∀h, n.

The constant C is the same for all α ∈ [1,+∞]. Such a result is completely stan-
dard, so we skip its proof. See [15], where a very similar property is proved. We refer
to [3], [18] for an introduction to the functional spacesW 1,α(Ω) and L1(Ω)∩BV (Ω):
W 1,α

per (Ω) ⊂ W 1,α(Ω) and L1(Ω) ∩ BVper(Ω) ⊂ L1(Ω) ∩ BV (Ω) are the restriction
to periodic profiles of these spaces; we leave to the reader the straightforward gen-
eralization to other boundary conditions, such as incoming Dirichlet conditions.
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9. Convergence via duality estimates

The previous section has shown us that the truncation error is not admissible
in 2D, since its structure is not exactly what we have assumed in the general
study. So we need another argument to be able to extend the class of perturbations
considered in Definition 5.1. Duality is an appropriate tool for this task. The idea,
very classical, is to apply the general argument, but for test functions.

The discrete duality product is

〈vh, wh〉 =
∑
j

sjvh,jwh,j , ∀vh ∈ V αh and ∀wh ∈ V βh ,
1
α

+
1
β

= 1.

The duality product between zh ∈ Wα
h and wh ∈W β

h is

〈zh, wh〉 =
∑
jk

(τ(h)mjk)zh,jkwjk,
1
α

+
1
β

= 1.

The Hölder inequality [1] implies that

‖vh‖α = max
wh∈V βh ,||wh||β=1

〈vh, wh〉 , ∀vh ∈ V αh .

We define the error

(9.1) enh = vnh − unh.

Lemma 9.1. The error is bounded by

(9.2) ||enh||α ≤ ∆t
n−1∑
p=0

|| (I + ∆tAh)n−1−p sph||α.

Each term in the sum is

(9.3) || (I + ∆tAh)q sph||α = max
||wh||β=1

∑
j<k

∑
k∈I+(j)

(τ(h)mjk)znh,jk(wqh,j − w
q
h,k)

 ,

where the test function is (q = n− 1− p)

(9.4) wqh = (I + ∆tA∗h)q wh.

Since

(9.5) enh = ∆t
n−1∑
p=0

(I + ∆tAh)n−1−p sph,

then the error is of course bounded by

(9.6) ||enh||α ≤ ∆t
n−1∑
p=0

|| (I + ∆tAh)n−1−p
sph||α,

where

|| (I + ∆tAh)q sph||α = max
wh∈V βh , ||wh||β=1

〈wh, (I + ∆tAh)q sph〉

= max
wh∈V βh , ||wh||β=1

〈(I + ∆A∗h)q wh, s
p
h〉 = max

wh∈V βh , ||wh||β=1
〈wqh, s

p
h〉 .

Here
wqh = (I + ∆tA∗h)q wh ∀wh ∈ W β

h ,
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where A∗h is the adjoint of Ah, defined by

(9.7)

{
A∗h : Vh → Vh,

(Ahu)j =
−
∑
k∈I−(j) mjkuj+

∑
k∈I+(j) mjkuk

sj
.

A direct calculation gives (snh is given in (8.22))

〈wqh, s
p
h〉 =

∑
j

sjw
q
h,j

τ(h)
sj

 ∑
k∈I+(j)

mjkz
n
h,jk −

∑
k∈I−(j)

mjkz
n
h,jk

 ,

where znh is given in (8.23),

(9.8) 〈wqh, s
p
h〉 =

∑
j<k

∑
k∈I+(j)

(τ(h)mjk)znh,jk(wqh,j − w
q
h,k).

This expression is the duality product in Wα
h × W β

h of znh by (wqh,j − w
q
h,k). In

summary,

(9.9) || (I + ∆tAh)q sph||α = max
||wh||β=1

∑
j<k

∑
k∈I+(j)

(τ(h)mjk)znh,jk(wqh,j − w
q
h,k)

 ,

which ends the proof of the lemma.
The idea is then to prove that (wqh,j − w

q
h,k) ∈ W β

h in (9.3) is small. We know
two a priori estimates for the test function wqh ∈ V

β
h .

a) First a priori estimate. The stability inequality (8.19) implies

|| (I + ∆A∗h)q ||β ≤ 1, ∀q ∀β, ∀h.

A consequence is of course

(9.10) ||wqh||β ≤ ||wh||β = 1.

b) Second a priori estimate. We use Theorem 5.2 applied to

τ(h)A∗hw
q
h = (I + ∆tA∗h)q(τ(h)A∗h)wh.

Since ||wh||β = 1, this proves that

(9.11) ‖τ(h)A∗hw
q
h‖β ≤

C

(q + 1)
1
2
,

for a suitable constant C > 0.

Be aware that (9.10) and (9.11) give bounds in V βh , and not the bound of
(wqh,j − wqh,k) ∈ W β

h we are looking for. In the following we show how to com-
bine (9.10) and (9.11) in order to obtain a bound for (wqh,j − w

q
h,k) ∈W β

h .

10. The L2
case

In order to better organize the rest of the proof, we separate the case α = 2,
treated in this section, and the case 2 < α, treated in next section. A comment
about the case α < 2 is given in the conclusion.
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Lemma 10.1. In the case α = β = 2, there exists C > 0 such that the test function
defined in (9.4) satisfies

(10.1) ||(wqh,j − w
q
h,k)||β ≤

C

(q + 1)
1
4
.

Let us compute the scalar product of wqh by −τ(h)A∗hw
q
h:

−〈τ(h)A∗hw
q
h, w

q
h〉 = τ(h)

∑
j

 ∑
k∈I−(j)

mjkw
q
h,j −

∑
k∈I+(j)

mjkw
q
h,k

wqh,j

= τ(h)
∑
j

 ∑
k∈I−(j)

mjk(wqh,j)
2 −

∑
k∈I+(j)

mjkw
q
h,jw

q
h,k

 .

But

wqh,jw
q
h,k =

1
2

(wqh,j)
2 +

1
2

(wqh,k)2 − 1
2

(wqh,j − w
q
h,k)2.

So

− 〈τ(h)A∗hw
q
h, w

q
h〉 =

1
2
τ(h)

∑
j

∑
k∈I−(j)

mjk(wqh,j)
2

− 1
2
τ(h)

∑
j

∑
k∈I+(j)

mjk(wqh,k)2 +
1
2
τ(h)

∑
j

∑
k∈I+(j)

mjk(wqh,j − w
q
h,k)2.

Reorganizing the two first terms using (8.10), we get3

−〈τ(h)A∗hw
q
h, w

q
h〉 =

1
2
τ(h)

∑
j

∑
k∈I+(j)

mjk(wqh,j − w
q
h,k)2.

Due to (9.10)-(9.11), this becomes∑
j

∑
k∈I+(j)

(τ(h)mjk)(wqh,j − w
q
h,k)2


1
2

≤ C

(q + 1)
1
4
.

This ends the proof of the lemma.

Theorem 10.2. Assume that the mesh is uniformly regular. Assume the CFL
inequality (8.17). Assume that u ∈W 1,2

per(Ω), i.e., u0 ∈ W 1,2
per(Ω). Then

(10.2) ∃C > 0, ||(I + ∆tAh)qsph||2 ≤
C

(q + 1)
1
4
||∇u0||L2(Ω),

and

(10.3) ∃C̃ > 0, ||unh − Πhu(n∆t)||2 ≤
(
C̃||∇u0||L2(Ω)

)
T

3
4h

1
4 .

Considering (9.8) and (10.1), we get that 〈wqh, snh〉 ≤ C

(q+1)
1
4
||znh ||2. Now if the so-

lution u is assumed to be in W 1,2
per(Ω), we have (Lemma 8.5) ||znh ||2 ≤ C||∇u0||L2(Ω).

So (10.2) is a direct consequence of (10.1). Even if not exactly admissible in the

3This inequality expresses the coercivity in L2 of the operator −A∗h (resp. −Ah). It is the first

time in this paper that we use such a property.



1228 BRUNO DESPRES

sense of definition 3, snh is quasi-admissible with a weaker bound: O( 1

(q+1)
1
4

) instead

of O( 1

(q+1)
1
2

). Using (9.6) and (10.2), we get

||enh||2 ≤ (C∆t||∇u0||L2(Ω))
n−1∑
p=0

1
(p+ 1)

1
4
≤ (C̃∆t||∇u0||L2(Ω))× n

3
4 ,

||enh||2 ≤ (C̃∆t||∇u0||L2(Ω))(
T

∆t
)

3
4 =

(
C̃||∇u0||L2(Ω)

)
T

3
4h

1
4 .

Note that the influence of the CFL condition is embedded in the constant C̃: just
recall that C̃ depends on ν− and ν+.

11. The Lα case, α > 2

Now we study the case α > 2. The only difficulty lies in analyzing the “coer-
civity” in various Lβ of the operator −A∗h (or −Ah). We will make use of various
Hölder inequalities to get rid of it. The main result of this section is

Theorem 11.1. Assume that the mesh is uniformly regular. Assume the CFL
inequality (8.17). Let 2 < α < +∞. Assume that u0 ∈W 1,α

per (Ω).
Then there exists C(α) > 0 such that

(11.1) ||unh − Πhu(n∆t)||α ≤ (C(α)||∇u0||α)h
1
4 , 0 ≤ n∆t ≤ T.

Let α = +∞. Assume that u0 ∈ W 1,∞
per (Ω). Then ∀ε, 0 < ε < 1

4 , there exists
C(ε) > 0 such that

(11.2) ||unh −Πhu(n∆t)||∞ ≤ (C(ε)||∇u0||∞)h
1
4−ε, 0 ≤ n∆t ≤ T.

Let us begin the proof of the theorem by proving

Lemma 11.2. If 2 < α < +∞ and 1 < β < 2, then there exists C(α) such that

(11.3)
∑
j<k

∑
k∈I+(j)

(τ(h)mjk)cβ(wqh)(wqh,j − w
q
h,k)2 ≤ C(α)

(q + 1)
1
2
,

where the function cβ is defined by

(11.4) cβ(a, b) =
∫ 1

s=0

(1− s) |a+ s(b− a)|β−2ds.

The proof of this lemma is essentially a generalization of the proof in the case
α = β = 2. We already know that

(11.5) ‖wqh‖β ≤ ||wh||β = 1,

and

(11.6) ‖τ(h)A∗hw
q
h‖β ≤

C

(q + 1)
1
2
,

where C is independent of β and wqh. Note that |wqh|β−2wqh ∈ V αh with

|||wqh|β−2wqh||α =

∑
j

sj |wqh,j |(β−1)α


1
α

=

∑
j

sj |wqh,j |β


1
α

= ||wqh||
β
α

β ≤ 1.
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We compute the duality product

− 〈τ(h)A∗hw
q
h, |w

q
h|
β−2wqh〉

=
∑
j

 ∑
k∈I−(j)

mjkw
q
h,j −

∑
k∈I+(j)

mjkw
q
h,k

 |wqh,j |β−2wqh,j .(11.7)

First, ∣∣〈τ(h)A∗hw
q
h, |w

q
h|β−2wqh〉

∣∣ ≤ ||τ(h)A∗hw
q
h||β × ‖(|w

q
h|β−2wqh)‖α

= ||τ(h)A∗hw
q
h||β × ‖w

q
h‖

α
β

β ≤
C

(q + 1)
1
2

using (11.5) and (11.6). Second, we reorganize the right hand side of (11.7):

(11.8)

∑
j

 ∑
k∈I−(j)

mjkw
q
h,j −

∑
k∈I+(j)

mjkw
q
h,k

 |wqh,j |β−2wqh,j

=
∑
j

 ∑
k∈I+(j)

mjk(|wqh,j |
β − wqh,k|w

q
h,j |

β−2wqh,j)

 .

We use Taylor’s formula

f(b) = f(a) + (a− b)f ′(a) +
(∫ 1

0

(1− s)f ′′(a+ s(b− a))ds
)

(b− a)2,

with f(a) = |a|β . So

|wqh,k|β = |wqh,j |β + β|wqh,j |β−2wqh,j(w
q
h,k − w

q
h,j)

+
(
β(β − 1)

∫ 1

s=0

(1− s)|wqh,j + s(wqh,k − w
q
h,j)|β−2ds

)
(wqh,k − w

q
h,j)

2,

and

wqh,k|w
q
h,j |β−2wqh,j =

|wqh,k|β + (β − 1)|wqh,j |β

β

− (β − 1)cβ(wqh,j , w
q
h,k)(wqh,k − w

q
h,j)

2.

Plugging this expression into (11.7)-(11.8), we get

−〈τ(h)A∗hw
q
h, |w

q
h|
β−2wqh〉

=
1
β

∑
j

∑
k∈I−(j)

(τ(h)mjk)(wqh,j)
β − 1

β

∑
j

∑
k∈I+(j)

(τ(h)mjk)(wqh,k)β

+ (β − 1)
∑
j

∑
k∈I+(j)

(τ(h)mjk)cβ(wqh,j , w
q
h,k)(wqh,k − w

q
h,j)

2.

Due to the relation (8.10) we obtain

(11.9)
− 〈τ(h)A∗hw

q
h, |w

q
h|β−2wqh〉

= (β − 1)
∑
j

∑
k∈I+(j)

(τ(h)mjk)cβ(wqh,j , w
q
h,k)(wqh,k − w

q
h,j)

2.

Finally, using (11.5) and (11.6), we obtain (11.3). This ends the proof of this lemma.
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This inequality (11.9) expresses the “coercivity” of −A∗h. We observe that we
only obtain a control in a “weighted L2” of wqh,k − w

q
h,j . The rest of the proof is

devoted to eliminating the weight cβ(wqh,j , w
q
h,k), in order to get a more explicit

estimate.

Lemma 11.3. Let 1 < β < 2. There exists C(β) > 0 such that for all (w1, w2) ∈
R2, max(|w1|, w2|) 6= 0,

(11.10) 1 ≤ C(β) ×max(|w1|2−β , |w2|2−β)× cβ(w1, w2).

a) Assume that max(|w1|, |w2|) = |w1|. Then

max(|w1|2−β , |w2|2−β)cβ(w1, w2) =
∫ 1

s=0

(1− s)|1 + s(
w2

w1
− 1)|β−2ds.

Since −2 ≤ w2
w1
− 1 ≤ 0 and the function x→ xβ−2 is decreasing for x > 0

(recall that β − 2 < 0), we get

max(|w1|2−β , |w2|2−β)cβ(w1, w2) ≥
∫ s= 1

3

s=0

(1− s)(1 − 2s)β−2ds = c1(β) > 0.

b) Assume that max(|w1|, |w2|) = |w2|. Then

max(|w1|2−β , |w2|2−β)cβ(w1, w2) =
∫ 1

s=0

(1− s)|1 + (1 − s)(w1

w2
− 1)|β−2ds.

Since −2 ≤ w1
w2
− 1 ≤ 0, we get

max(|w1|2−β , |w2|2−β)cβ(w1, w2)

≥
∫ s=1

s= 2
3

(1 − s)(1− 2(1− s))β−2ds = c2(β) > 0.

c) Defining C(β) = max( 1
c1(β) ,

1
c2(β)) ends the proof of the lemma.

Lemma 11.4. Let 2 < α < +∞. Consider the expression (9.8). Then there exists
C(β) such that the test function wq defined in (9.4) satisfies

(11.11)

∣∣∣∣∣∣
∑
j<k

∑
k∈I+(j)

(τ(h)mjk)znh,jk(wqh,j − w
q
h,k)

∣∣∣∣∣∣ ≤ ||znh ||α C(β)
(q + 1)

1
4
.

We use∣∣∣∣∣∣
∑
j<k

∑
k∈I+(j)

(τ(h)mjk)znh,jk(wqh,j − w
q
h,k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j<k

∑
k∈I+(j)

(τ(h)mjk)znh,jk
1√

cβ(wqh,j , w
q
h,k)

(√
cβ(wqh,j , w

q
h,k)(wqh,j − w

q
h,k)

)∣∣∣∣∣∣
≤ C(β)

1
2

∑
j<k

∑
k∈I+(j)

(τ(h)mjk)|znh,jk|max(|wqh,j |, |w
q
h,k|)

2−β
2

×
(√

cβ(wqh,j , w
q
h,k)|wqh,j − w

q
h,k|
)

Here we have used Lemma 11.3 to eliminate the weight 1√
cβ(wqh,j ,w

q
h,k)

. Note that the

hypothesis of the lemma (max(|w1|, w2|) 6= 0) is not needed, since the inequality
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makes sense even if max(|wqh,j |, |w
q
h,k|) = 0. Using now the Hölder inequality in

Wα
h ×W

γ
h ×W 2

h (of course 1
α + 1

γ + 1
2 = 1, that is, γ = α−2

2α ), we obtain∣∣∣∣∣∣
∑
j<k

∑
k∈I+(j)

(τ(h)mjk)znh,jk(wqh,j − w
q
h,k)

∣∣∣∣∣∣
≤ C(β)

1
2 × ||znh ||α × ||max(|wqh,j |, |w

q
h,k|)

2−β
2 ||γ

× ||
√
cβ(wqh,j , w

q
h,k)|wqh,j − w

q
h,k|||2.

We already know a bound for the last term (compare with (11.3)). It remains to
study

||max(|wqh,j |, |w
q
h,k|)

2−β
2 ||γ =

∑
jk

(τ(h)mjk) max(|wqh,j |, |w
q
h,k|)

(2−β)γ
2

 1
γ

.

Since 1
γ + 1

2 = 1
β , we get (2−β)γ

2 = β. So

||max(|wqh,j |, |w
q
h,k|)

2−β
2 ||γ =

∑
jk

(τ(h)mjk) max(|wqh,j |, |w
q
h,k|)β


1
γ

= ||max(|wqh,j |, |w
q
h,k|)||

β
γ

β .

This expression is a power of the ||.||β norm of (max(|wqh,j |, |w
q
h,k|)) ∈ W β

h . We
bound this by the ||.||β norm of wqh ∈ V

β
h , up to some multiplicative factor:∑

jk

(τ(h)mjk) max(|wqh,j |, |w
q
h,k|)β

 ≤
∑

jk

(τ(h)mjk)(|wqh,j |β + |wqh,k|β)


≤

∑
j

(∑
k

(τ(h)mjk)

)
|wqh,j |

β

 ≤ (3 max
jk

τ(h)mjk

sj

)∑
j

sj |wqh,j |
β

 .

So

||max(|wqh,j |, |w
q
h,k|)

2−β
2 ||γ ≤

(
3 max

jk

τ(h)mjk

sj

) 1
γ

||wqh||
1
γ

β ≤ C̃(γ),

thanks to the uniform regularity of the mesh and (9.10). So finally we get (11.11).

Final Proof of Theorem 11.1. Inequality (11.2) is a consequence of (9.6), (9.9) and
(11.11). Concerning (11.2), we note4 that W 1,∞

per (Ω) ⊂ W 1,α
per (Ω), ∀1 ≤ α < +∞,

use (11.1) and let α→ +∞. So∑
j

sj
∣∣(unj,h)−Πhu(n∆t)j

∣∣α 1
α

≤ C(α)||∇u0||∞h
1
4 .

Since sj ≥ c2h2, which is true for uniformly regular meshes, this implies

c
1
α
2 h

2
α

∣∣(unj,h)−Πhu(n∆t)j
∣∣ ≤ C(α)||∇u0||∞h

1
4 ,

4It is essentially here that we use the boundedness of Ω.
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i.e., ∣∣(unj,h)−Πhu(n∆t)j
∣∣ ≤ C(α)

c
1
α
2

||∇u0||∞h
1
4−

2
α ,

which is exactly (11.2): ε = 2
α . This finishes the proof.

Considering Theorem 6.1, we see that all the above theorems of convergence are
also true for the implicit scheme.

12. Conclusion

We have presented an abstract framework for the numerical approximation in
general Banach spaces of linear equations by means of finite volume methods. We
emphasize an important property of finite volume methods: they are formally non-
consistent, so the Lax theorem does not apply. The main result of this work is a
proof that cancellation in time of the error is a reason why finite volume methods
converge. This result may be considered as a variation on the Lax theorem.

Application of finite volume methods for the numerical solution of linear advec-
tion on 2D triangular meshes gives some insight on the potentiality of the technique:
in this work we have studied convergence only in Lα, 2 ≤ α, but by continuity of
all these estimates of convergence with respect to α, it is possible to extend some
of them to the case 1 ≤ α < 2.

In this paper we have restricted the discussion to what we think is the core of
the method. We will report about some improvements of all these estimates in a
forthcoming work. An important issue is to recover the optimal rate of convergence
in L1, proved in [10] for hyperbolic scalar laws in dimension two by means of
completely different techniques.
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