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DECIDING THE NILPOTENCY OF THE GALOIS GROUP
BY COMPUTING ELEMENTS IN THE CENTRE

PILAR FERNANDEZ-FERREIROS AND M. ANGELES GOMEZ-MOLLEDA

ABSTRACT. We present a new algorithm for computing the centre of the Galois
group of a given polynomial f € Q[z] along with its action on the set of roots
of f, without previously computing the group. We show that every element in
the centre is representable by a family of polynomials in Q[z]. For computing
such polynomials, we use quadratic Newton-lifting and truncated expressions
of the roots of f over a p-adic number field. As an application we give a
method for deciding the nilpotency of the Galois group. If f is irreducible
with nilpotent Galois group, an algorithm for computing it is proposed.

1. INTRODUCTION

The existing algorithms for the determination of the Galois group of a polynomial
present strong limitations when the degree of the polynomial grows up. Part of them
requires the classification of the permutation groups with the same degree as the
given polynomial. The others use factorization of polynomials over number fields,
which is very inefficient for high degrees.

V. Acciaro and J. Kliiners [I] described a method for computing the conjugates
of a root of an irreducible polynomial f € Q[z] with abelian Galois group. Their
method is based on some results using prime ramification and Frobenius automor-
phisms, and it uses the quadratic Newton-lifting as principal technique in order
to avoid factorization of polynomials over number fields. When it is known that
the Galois group of a polynomial is abelian, its computation becomes easier. This
motivates the question about the possibility of applying special techniques to other
classes of groups and, in case this is possible, how to determine, a priori, whether
the Galois group of a given polynomial f € Q[x] belongs to any of these classes.

In a previous paper [7] we gave a method, based on the techniques used by
V. Acciaro and J. Kliners in [I], to decide whether the Galois group of a given
irreducible polynomial f € Q[z] is abelian in polynomial time in the size of the
coefficients of f (assuming the Extended Riemann Hypothesis).

In the present paper we extend such a method to the computation of the centre
of the Galois group of any polynomial f € Q[z], not necessarily irreducible. As an
application, we obtain a way to determine whether the Galois group is nilpotent, by
constructing a series of polynomials related to a central series of this group. Finally
we propose a procedure to compute the Galois group of an irreducible polynomial
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once decided it is nilpotent. Some examples show the behaviour of this method to
compute Galois groups of polynomials with high degree.

Since for every f € Q[z] there exists a monic and squarefree polynomial in Z[x]
with the same Galois group, we will assume throughout this paper that the given
polynomial f is monic and squarefree with integer coefficients.

From now on, we will denote by n the degree of f, by Gal(f) the Galois group
of f over Q and by Z(Gal(f)) the centre of Gal(f). We represent by aq, ..., a, all
the roots of f in a splitting field F' over Q whose ring of integers is S. We will say
that f is normal when F' = Q(«) for any root « of f.

2. COMPUTATION OF THE CENTRE

Along this section, we will denote by fi,..., fr of respective degrees ni,...,n,
all the irreducible factors of f in Z[z]. For every i € {1,...,7}, q;1,...,Qip, will
represent all the roots of f; and «; any fixed root of f;.

We prove in subsection 2.1 that every element in Z(Gal(f)) is representable by
a family of polynomials F}, ..., F,.. We present several properties of these polyno-
mials which allow us to construct them by performing quadratic Newton-lifting. In
subsection 2.2 we consider the number of primes needed to complete the computa-
tion of the centre. In subsection 2.3 the algorithm is described.

2.1. Polynomial representation of the central elements.

Proposition 1. An element 7 € Gal(f) belongs to Z(Gal(f)) if and only if there
exist r polynomials Fi,. .., F. € Q[z] (not necessarily different) such that Fi(ouj) =

T(euj) for allj=1,...,n; and for every i =1,...,r.
Moreover, for each element T € Z(Gal(f)), the corresponding polynomial F;,
i=1,...,7, can be uniquely chosen of degree smaller than n;.

Proof. Let us consider an element 7 € Z(Gal(f)) and, for every i, let H; be the
subgroup of Gal(f) associated to Q(«a;) by the Galois correspondence. For every
o € H;,
o(t(ai)) = 7(o(ai)) = 7(w).

Thus, 7(o;) € Q(a;) and there exists a unique F; € Q[z] of degree smaller than
n; such that Fi(a;) = 7(oy). Since Gal(f) acts transitively on the roots of f;,
Fi(ai;) = 7(ay;) for every j=1,...,n;.

Reciprocally, we suppose that r polynomials Fi, ..., F, describe the action of an
element 7 € Gal(f) on the roots of f. For every o € Gal(f), every i € {1,...,r}
and every root oy; of fi,

or(aij) = o(Fi(aij)) = Fi(o(aij)) = m(o(u;)).
Therefore, 7o = o7 and 7 € Z(Gal(f)). O

Definition 1. A family of polynomials F1, ..., F,. € Q[z] (not necessarily different)
with degree (F;) < m; such that there exists 7 € Z(Gal(f)) satisfying F;(a;;) =
T(ay;) for all ¢ = 1,...,r and for every j = 1,...,n; will be called the family of
polynomials associated to (7, f).

The polynomial F; is the polynomial associated to (7, f;).

In order to compute Z(Gal(f)) without previously computing the whole Galois
group, our aim will be to determine, for every central element 7, the family of
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polynomials associated to (7, f). For this, it is not enough to find a polynomial
permuting the roots of f, as the following example shows.

Example 1. f(z) = 2% + 2° + 42* + 2% + 222 — 22 + 1 € Q[z] is irreducible.

If « is a root of f, then —% — %a — gaz —2a% —at - %a‘r’ is also a root of f.
Thus
1 1 5 1
Fz)=—z — o —~a? —22% — 2 — ~4°
2 2 2 2

permutes the roots of f.

In this case, Gal(f) is isomorphic to the dihedral group of order 6. If F(x)
were representing an element in Gal(f), by Proposition [ this would belong to
the centre. But since Z(Gal(f)) is trivial, we must conclude that the permutation
defined by F'(x) does not belong to Gal(f).

The rest of the section is devoted to presenting a characterization of the poly-
nomials associated to central elements which allows us to compute them.

Proposition 2. For each element 7 € Z(Gal(f)) there exist infinitely many primes
p not dividing disc(f) such that

7(u) = u? mod pS for everyu € S.

The reciprocal is also true: if T € Gal(f) and 7(u) = uP mod pS for all u € S
and for some prime p not dividing disc(f), then 7 € Z(Gal(f)).

Proof. The first assertion follows directly from Tchebotarev’s density theorem by
noting that 7 € Z(Gal(f)), pS is the intersection of all the prime ideals of S lying
over p and Gal(f) acts transitively over all these primes [10], [14], [T5].

Now let 7 € Gal(f) such that 7(u) = «w? mod pS for every u € S and for a prime
p not dividing disc(f). Then oro~!(u) = uP mod pS for every u € S and for all
o € Gal(f). In particular, for any root a of f, o0~ 1(a) and 7(a) are roots of
f such that oo~ !(a) — 7(a) € pS. Since p does not divide disc(f), it must be
oro Y a) = 7(a) and T € Z(Gal(f)). O

Definition 2. A prime p is said to be associated to 7 € Z(Gal(f)) when it does
not divide disc(f) and 7(u) = u? mod pS for all u € S.

It follows from Proposition B that, for every i € {1,...,r}, the polynomial F;
associated to (7, f;) must satisfy F;(a;) = of mod pS for infinitely many primes p
not dividing disc(f).

Besides, since each polynomial F; permutes the roots of f;, it is known that
Fi(z) = a0+ ai1x + -+ ajp,—12" 1 € Qlz] where a;; = bTJ with b; ; € Z for
all j =0,...,n;—1 and d the largest positive integer whose square divides disc(f;).
A bound B; on the absolute value of the b; ; is computable from f;:

n;—1 o
Ibij| < B = d disc(fi) 2 (1 + |ailoo)ni(ni — 1) 7T |og |71,

where || is the maximum of the absolute values of the roots of f; [1], [6], [9],
[11].
The following known result gives a way to compute the polynomials.

Proposition 3. If p is a prime not diwviding disc(f) and Z, denotes the ring of
p-adic integers, there exists, for every i =1,...,r, a unique polynomial H € Zy[z]
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verifying
() fi(H () =0,
(ii) H(a;) = of mod p,
(iii) deg(H) < n; — 1.

We remark that H € Zy[z] is the p-adic limit of a sequence {Hy }x>0 C Z[z] such

that H(z) = Hi(x) mod ka for all £ > 0. This sequence can be built up to any &
by means of quadratic Newton-lifting [1], [6], [9].

k
p20

It is well known that if kg € N such that \/ 25— > max{B;,|disc(f;)[}, there

exists a unique polynomial of the form Hj, = m(co +ext ot ep, gz

k
such that ¢; € Z, |¢;| < @ for every j =1,...,n; and ﬁko = Hy,, mod kaO.

We will say that H, ko 1S a p-polynomial associated to f;.

Since the polynomial F; associated to (7, f;) satisfies the conditions in Propo-
sition Bl it must be F; = H. In particular, F; = Hy mod ka for every k > 0.
Therefore, F; = Hy, (see [3], [F] for the computation of Hy,).

Once we have computed p-polynomials Fi, ..., F, corresponding respectively to
each irreducible factor f; of f, it is possible that, for some ¢ € {1,...,7}, E(ai) is
not a root of f;. Then, F; does not define a permutation on the roots of f;, it is not
associated to (7, f;) for any 7 € Z(Gal(f)) and we conclude that p is not associated
to any 7 € Z(Gal(f)). Otherwise, Fi(a;) is a root of f; for every i = 1,...,r and
the following theorem asserts that p is associated to a central element.

Theorem 1. If p is a prime not dividing disc(f) and, for every i € {1,...,r},
there are polynomials F; € Q[z| satisfying
(i) Fi(oy) is a root of fi,
(ii) Fi(aw) = o mod pS; where S; is the ring of integers of the splitting field of
fi over Q,
then there exists T € Z(Gal(f)) such that T(cuj) = Fi(auj) forallj=1,...,n; and
foreveryi=1,...,r.

Proof. For every prime @ of S lying over p, there exists a unique element 7 € Gal(f)
such that 7(u) = u? mod @ for every u € S [14].

For every root a;; of f; there exists o;; € Gal(f) such that 0;;(0;) = ay;. If
Fi(auj) # T(auy), Fi(ouj) — m(ouj) € S divides disc(f) and, since
Fi(vj) = 7(aij) = Fi(ouj) —of+af; = 7(ij) = 04 (Fi(aq) —af ) +af; = (uj) € Q,
then disc(f) € @ N Q = pZ, which constitutes a contradiction.

Thus, 7(a;j) = Fi(ag;) for all j = 1,...,n; and for every i = 1,...,r. From
Proposition[l], it follows that 7 € Z(Gal(f)). O

Example 2. f(z) = 2% +2* — 22% + 22 — 2 + 1 is irreducible. For the prime p = 2
we compute a p-polynomial F' associated to f,
F(z) = — 2336223620783712423189347007700618892
14283

2336223622783712423189347007709618892
14283 x

4672447245567424846378694015419223501 2
14283 z

2336223622783712423189347007709618892 .3
14283 x

134243967870148415446798365366539595182 £C5

+ o+ o+
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Since f splits completely modulo 211,
f(z) = (z+8) (x +119) (z + 121) (x + 189) (x + 84) (z + 112) mod 211,

we can label each root of f with its value modulo 211. If « denotes the root
congruent to —8 modulo 211, then F(a) = 161 mod 211, so that we can conclude
that F(«) is not a root of f and F is not associated to any 7 € Z(Gal(f)).

By considering p = 59, we obtain the p-polynomial F = —23 — x4+ 1. Using the
211-adic expansion of the roots of f, we check that F(«) is a root of f. Therefore
F is associated to a central element 7. Just by looking at the factorization of f
modulo 59,

f(z) = (2® + 132 4 51)(2* + 4z + 16) (2 + 422 + 53) mod 59,
we deduce also that the order of 7 is 2.

2.2. Bound on the needed number of primes. For every prime p not dividing
disc(f) we can compute p-polynomials F1, ..., F,. associated to f. As we have seen,
Fy, ..., F, is the family of polynomials associated to (7, f) for some 7 € Z(Gal(f)) if
and only if p is associated to 7. Since there are infinitely many primes p associated
to each element 7 € Z(Gal(f)), by computing polynomials for sufficiently many
primes, we will be able to determine Z(Gal(f)), but how many primes must we try
to determine the whole centre?

The Tchebotarev density theorem asserts that the density of the number of

primes associated to an element 7 € Z(Gal(f)) is \GTl(f)\ Lagarias and Odlyzko in

[10] presented explicit bounds for the absolute value of the least prime associated
to a conjugacy class in the Galois group. The best bound assumes the Extended
Riemann Hypothesis. The result, in terms of our problem, is the following;:

There exists an effectively computable positive absolute constant ¢ such that, for
every element T € Z(Gal(f)), there exists a prime p associated to T such that

p < c(log|A])?,

where A is the discriminant of the splitting field of f over Q.
Bach and Sorenson [2] improved this result by giving a more specific bound:

p < (4log |A| + 2.5|Gal(f)| + 5)%.

If s is the minimal number of roots of f generating F' and a; is the coefficient
of x in f, then log |A| < s|Gal(f)|log |disc(f)| and Mahler’s bound for disc(f) [12]
provides the inequality |disc(f)] < n™ (3> ., |a;[)>" 2. Thus, the bound on the least
prime associated to a central element is polynomial in the order of Gal(f) and in
the size of the coefficients of f.

The following example shows that, in some cases, we have enough criteria to
compute the whole centre while checking only a few primes.

Example 3. Let f(z) = 25 + 2* — 22® + 22 — 2 + 1 be the polynomial in Example
Bl Since we have found an element 7 € Z(Gal(f)) of order 2 and a prime p
not dividing disc(f) not associated to a central element, we know that 2 divides
|Z(Gal(f))| and Gal(f) is not abelian. Taking into account that the order of the
centre of a transitive subgroup of ¥, divides n, |Z(Gal(f))| is a divisor of 6. Then
it must be |Z(Gal(f))| = 2 and Z(Gal(f)) = (7).
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2.3. Description of the algorithm.

Input: A monic squarefree polynomial f € Z[z] of degree n.
Output: The elements of Z(Gal(f)) with their action on the roots of f.

(1) Factorize f in Z[z] to get its irreducible factors f1, ..., f, of degrees nq, ..
n,, respectively.
(2) Let C be a bound for the least prime associated to an element in Z(Gal(f)).
Set ¢ := 1 and let Z be the trivial group.
(3) Choose a prime p not dividing disc(f) such that ¢ < p < C.
If such a prime does not exists, the algorithm ends and Z(Gal(f)) = Z.
(4) Compute p-polynomials Fi, ..., F,. associated to fi,..., fr. For a root o;
of fi,i=1,...,r, check whether F;(a;) is also a root of f;.

(4.1) I, for some i = 1,...,r, F;(a;) is not a root of f;, p is not associated

to any element in Z(Gal(f)). In particular,
Gal(f) is not abelian.
Set ¢ := p and go back to step (3).

(4.2) If Fi(«;) is a root of f; for every i = 1,...,r, p is associated to some
element 7 € Z(Gal(f)). The action of 7 on each root «;; of f; is given
by the evaluation Fj(a;j) for every i = 1,...,7. Set Z := (Z, 7). If
|Z| = nins - - - n,, the algorithm ends.

Gal(f) = Z, Gal(f) is abelian.
Let b be a bound on |Z(Gal(f))| (see Section 3). If |Z| = b, the
algorithm ends and

*

7 = Z(Gal(f)).
Else set ¢ := p and go back to step (3).

Since the computation of a p-polynomial associated to f; runs in polynomial time
in the size of f; and p [I] and the primes in step (3) are bounded by a polynomial
expression in |Gal(f)| and the size of the coefficients of f, we conclude that the
algorithm runs in polynomial time in the size of f and a given bound on |Gal(f)|.

3. SOME SHORTCUTS TO ACCELERATE THE COMPUTATION

We show in this section how, in many cases, we can discard a prime p as associ-
ated to a central element and avoid the computation of p-polynomials by looking
at the factorization of f modulo p. We will assume that f is irreducible.

3.1. Degree of the irreducible factors modulo p. If 7 € Z(Gal(f)) and p is
a prime associated to (7, f), the degrees of the irreducible factors of f modulo p
are the lengths of the orbits of the action of (), the Galois group of f over Z/pZ,
on the roots of f. From the obvious result below, it follows that all the irreducible
factors of f modulo p have the same degree.

Lemma 1. Let G be a transitive subgroup of the symmetric group ¥,,. If 7 € Z(G)
and T = Ty -+ - Ts 1S the decomposition of T into disjoint cycles, including cycles of
length 1 which represent the elements fixed by T, all the cycles 1,...,7s have the
same length.

This fact shows directly that the Galois group of the polynomial in Example [2
is not abelian by looking at its factorization modulo 7:

f@)= (2 +3z+5) (z+1)(z+4) (2> + 62 +6) mod 7.
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The number of linear factors appearing in the factorizations of f mod p for dif-
ferent primes p is also useful for getting a bound on |Z(Gal(f))]:

Lemma 2. If p1,...,pm are primes not dividing disc(f) such that, for each i =
1,...,m, f has exactly a; linear factors modulo p; and ged(aq,...,am) =k, then
| Aut Q(«)| is a divisor of k. In particular, |Z(Gal(f))| divides k.

Thus, if f is the polynomial of degree 6 above, by looking at its factorization
modulo 7, we conclude that |Z(Gal(f))| divides 2.

3.2. Repetitions in the coefficients of the irreducible factors modulo p.
We will show that, for all primes p associated to an element in Z(Gal(f)) except for
a finite set, there is a certain type of regularity in the repetitions of the coefficients
of the factors of f modulo p.

If f is irreducible and p is a prime associated to some element 7 € Z(Gal(f)) of
order r, we suppose the roots aj,...,a, of f ordered in such a way that

e ( is arbitrarily chosen at the beginning,
e for 2 <4 < n/r, a; is arbitrarily chosen among the roots not belonging to
the set

{T'am):1<m<i, 0<1<r—1},
efor1<j<Zand0<i<r—1, ozgiﬂ-:Ti(aj).
Then

(1) f factors modulo p into % irreducible polynomials given by

(2 = m(aq) (@ = m(r(n))) - (= m(r" " (a)))

where i = 1,..., % and 7 is the canonical projection of S onto S/pS.
(2) I, for every k = 1,...,7, ex(z1,...,2,) denotes the k-th elementary sym-
metric function on z1, ..., x,, the polynomial

n/r

ge(@) = [ [ (@ = ex(ai, (i), ..., 77 H(aa)))

i=1

belongs to Z[z]. Moreover, since all its roots are conjugate, g is a power
of tj, the minimal polynomial over Q of

erx(ar, 7(aq),. .. ,T’"_l(al)).

Proposition 4. Let p be a prime associated to T € Z(Gal(f)) not dividing disc(ty).
Then the coefficients of "% in the irreducible factors of f mod p are repeated as
many times as the multiplicity of the roots of gx.

Proof. The roots of g mod p are the coefficients of " ~* in each irreducible factor
of f. If p does not divide disc(ty), the projections of the different roots of gi remain
different. Therefore the coefficients of "% in the irreducible factors of f modulo
p are repeated as many times as the multiplicity of the roots of gy. ([

Note that, since g does not depend on the prime p associated to 7, the repetitions
in the coefficients of 2" ~* of the factors of f mod p must be of the same type for
every prime associated to 7 not dividing disc(¢).
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In Example[3],
f(z) = (2*+3) (2 + 22+ 4) (2® + 32+ 3) mod 5.

The independent coefficient 3 appears in two factors while 4 appears in only one.
This means that either 5 divides the disc(t2) or 5 is not associated to any element
in the centre. Since there are only finitely many primes dividing the discriminant,
we can decide to avoid Newton-lifting and look for another prime.

When, for some k = 0,...,r—1, two different coefficients of 2" ~* appear repeated
in the irreducible factors of f mod p a different number of times, we will say that
the factorization of f mod p presents irregular repetitions.

Example 4. We apply the algorithm to the irreducible polynomial
f(x) =a2'® 6217 + 6210 + 2721 — 512 — 662" + 155212 4 321 21!
—1009 z'% + 742 27 + 1266 2°® — 4815 2" + 4951 2° + 573 2°
—2347 2" — 7372% + 625 2% + 334 2 4 43.

By means of the shortcuts above we will determine Z(Gal(f)) by computing
p-polynomials only for four primes.

fl@)= (2" + 2> +292+3) (2° + 322° + 262 + 11) (2® + 112° + 26 2 + 22)

x(x+18) (x+22) (x + 1) (z + 11) (x + 36) = (x + 33) (z + 4) (« + 40) mod 43.

By Lemma2 |Z(Gal(f))| divides 9. None of the first fifty prime numbers provide
irreducible factors of f of degree 9 and only the following give all the factors of
degree 3 without presenting irregularities:

37,97,103,109, 127, 151, 163 and 181.

Computing a 37-polynomial associated to f, we check that 37 is not associated to
any element in Z(Gal(f)).
Associated to some 71 € Z(Gal(f)), we get a 97-polynomial
F(z) = 321247032733772000482235685 _ 1105734151031157856747325823

648093112708411873363341182 324046556354205936681670591

_,’_518774928596588725084579087 332 + 546125327753152214669363531 333
324046556354205936681670591 24926658181092764360128507

+22218900759518128027669770063 1‘4 _ 41666065358891058820973080838 .5
648093112708411873363341182 324046556354205936681670591

+2539397652812721437896761189 6 _ 11593995086999898649807888087 ,.7
24926658181092764360128507 648093112708411873363341182

_ 6855549177050245491181709934 1[,'8 + 6945738360859535948751982282 .9
324046556354205936681670591 324046556354205936681670591

_3762600491452618807415809089 1[,'10 _ 2066102342372030983878154103 {EH
648093112708411873363341182 648093112708411873363341182

+679223286686897061982981543 1'12 + 367102182220650714893166968 ,.13
648093112708411873363341182 324046556354205936681670591

_331887278209162895030714199 ,.14 _ 99571260388811737246268927 .15
648093112708411873363341182 648093112708411873363341182

T 42102461982125822289341469 3316 _13632428315441178444012723 .17
324046556354205936681670591 648093112708411873363341182
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We set Z = (1) and |Z| = 3. Going back to step (3) of the algorithm, we check
that 103 is not associated to any central element. Later, we find a 109-polynomial
F associated to some 7o € Z(Gal(f)). Now Z = (11, 72) has order 9 and it is not
cyclic. Since |Z(Gal(f))| is bounded by 9, it follows that Gal(f) = (71, 72).

With the help of GAP [8] we know that, among the 983 classes of transitive
subgroups of 15, only four have centre of order 9. The centre of two of them is
cyclic, so that the only options for Gal(f) are 18t17 and 18t79.

4. DECIDING THE NILPOTENCY OF (GALOIS GROUPS

In this section we make use of the computation of central elements in order to
decide whether Gal(f) is nilpotent by constructing a series of polynomials related
to a central series of this group.

In subsection 4.1 we define the derived polynomials of f and show that they can
be computed by determining the minimal polynomial over QQ of a primitive element
of a suitable extension. By successive construction of derived polynomials, we can
compute a series of polynomials which, in case f is normal, is strongly related with
a central series of Gal(f).

In subsetion 4.2 we give an algorithm to decide the nilpotency of the Galois
group of any polynomial with rational coefficients.

Throughout this section we will assume that the polynomial f is irreducible and
we will denote by « a fixed root of f. The reducible case will be reduced to this one
at the end of the section. If K is an intermediate field of F//Q and H a subgroup of
Gal(f), we will denote by K* the subfield of K fixed elementwise by each element
of H.

4.1. Derived polynomials and central series. Once we have computed a non-
trivial element 7 € Z(Gal(f)), we know a first subgroup (7) of a central series of
G. To determine a second subgroup of a central series, it is enough to find (if it
exists) a nontrivial element in Z(Gal(f)/(7)). For this, we will try to construct a
polynomial whose Galois group is Gal(f)/(7).

Definition 3. If there exists a nontrivial element 7 € Z(Gal(f)) and 5 is an
algebraic integer such that Q(a)¢™ = Q(8), the minimal polynomial g € Z[z] of 3
over Q will be called a derived polynomial from f by 7.

Applying the Fundamental Theorem of Galois Theory to the extension F'/Q, we
obtain

Proposition 5. Let g be a derived polynomial from f by some 7 € Z(Gal(f)) of
order v. Then, g has degree - and Gal(g) is a quotient of Gal(f). When f is
normal, g is also normal and Gal(g) = Gal(f)/(T).

Proof. Let S be the subgroup of Gal(f) corresponding to Q(«). It is enough to
check that S(r) corresponds to Q(a){™), [Gal(f) : S(r)] = n/r, and Gal(g) ~
Gal(f)/Core(S(T)). O
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Then, when f is normal, the problem of looking for a polynomial whose Galois
group is Gal(f)/(r) is solved as soon as a derived polynomial is computed. In the
nonnormal case, the search for such a polynomial implies several difficulties since
the order of Gal(f)/(r) and the smallest degree of an irreducible polynomial whose
Galois group is Gal(f)/(r) are unknown.

Example 5. f(z) = 2!? — 2% — 2% — 1 is irreducible, Gal(f) = 127293, |Gal(f)| =
46080 and |Z(Gal(f))| = 2 (see [13]).

Using GAP [8], we have checked that there does not exist any transitive group of
degree smaller than 24 isomorphic to Gal(f)/Z(Gal(f)). Thus there exists no irre-
ducible polynomial of degree smaller than 24 with Galois group Gal(f)/Z(Gal(f)).
In particular, none of the derived polynomials from f have the desired Galois group.

However, we will see that derived polynomials are a useful tool for our purposes.
Once we know a nontrivial element 7 € Z(Gal(f)), the following proposition leads
us to obtain a derived polynomial from f by 7.

Proposition 6. Let 7 € Z(Gal(f)) be an element of order r > 1. Then, Q(a){™) =
Qer(a, 1), ... e (a, 7)) where e;(c, 7) denotes the i-th elementary symmetric func-
tion of {a,7(),..., 7" ()} for everyi e {1,...,r}.

As is well known, there exist infinitely many (r— 1)-tuples of integers (az, ..., a;,)
such that

e1(a,7) + agea(a, 7) + -+ - + arer(a, 1)

is a primitive element of Q(e1(«, 7),...,er(a,7))/Q. On the other hand, for any
given (r — 1)—tuple of integers (aq, ..., a,), e1(a, 7) + azea(a, 7)+ -+ - +are (o, 7) is
a primitive element of Q(c)(™) if and only if it has exactly n/r conjugates because
2~ Q) : Q).

In order to compute the minimal polynomial of a primitive element already
determined, we can use the p-adic expression of the roots of f for a suitable prime

p (see H).

Definition 4. A series of polynomials

gO:fagl =9,92,---,9m

such that, fori =1,...,m, g; is a derived polynomial from g;_; by some nontrivial
element in Z(Gal(g;—1)) and g, either has degree 1 or Z(Gal(gy,)) is trivial will be
called a series of derived polynomials from f. When the degree of g, is 1, we will
say that the series is complete. We will refer to the polynomials g1 = g, 92, ., gm
as derived polynomials of f.

Proposition 7. Let go= f,91,---,9m be a series of derived polynomials of f. If
Gal(f) is nilpotent, then the series is complete. When f is normal, the reciprocal
is also true: if f is normal and the series is complete, then Gal(f) is nilpotent.
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Proof. Since Gal(g.,) is a quotient of Gal(f), when Gal(f) is nilpotent, either
Z(Gal(gy)) is not trivial or Gal(gy,) is trivial and then the degree of g, is 1.
Let us assume now that f is normal and the degree of g,,, is 1. From Proposition Bl
Gal(g;) is of the form Gal(f)/H; and H;/H,_4 is a cyclic subgroup of Z(Gal(g;—1))
for every i = 1,...,m, with H,,, = Gal(f). Then

].ZHoﬂHlﬂ"'ﬂHm,qual(f)

is a central series of Gal(f). O

There are nonnormal polynomials with a complete series of derived polynomials
whose Galois group is not nilpotent:

Example 6. f(r) = 2% + 2% — 23 — 222 + 2 + 1 is irreducible and Gal(f) = 675
(see [13]) is not nilpotent. Since 67°5 has order 18, f is not normal. However,

go(z)= f=a%+2* — 23— 222 + 2 +1,
g1(z) = 2% + 3,
g2(x) =z —1

is a complete series of derived polynomials from f.

The previous result gives a method for deciding whether the Galois group of a
normal polynomial is nilpotent. However, two questions remain unsolved: how to
decide, in advance, whether a given polynomial is normal and how to decide the
nilpotency in the nonnormal case. The general method will be exposed in the next
paragraph.

4.2. Nilpotency of the Galois group of a polynomial. We will assume that
f is irreducible of degree n = p{** - - - p™ where s,m1,...,ms are positive integers
and p1,...,ps are distinct primes.

Proposition 8. If Gal(f) is nilpotent,

(a) pi1,...,ps are the only prime divisors of the order of Gal(f) and there exists
at least one element T € Z(Gal(f)) of order p; for eachi=1,...,s,
(b) there exists a derived polynomial g; of f of degree p;** for each i =1,...,s.

Proof. (a) It suffices to take into account that |Z(Gal(f))| divides n and the ele-
mentary properties of nilpotent groups.
(b) Let us fix i € {1,...,s}. For each prime divisor p; of n different from p;,

n

there exists 7; € Z(Gal(f)) of order p; and a derived polynomial g; of degree s

such that Gal(g;) is nilpotent. Applying the same procedure successively to g;, a
derived polynomial g; of degree p;"* will be obtained. (I

From this result, it is easy to see that the Galois group of the polynomial of degree
18 in Example[lis not nilpotent. Following the steps described in the proof, we can
construct, if they exist, derived polynomials of f, g1, ..., gs of degrees pi™, ..., pT=,
respectively.
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Example 7. For the irreducible polynomial

fx)=2"2—23 271 +184 27°—225 259 — 5483 1:5% +-30704 257 +13044 %6 —623096 x:°° +1466262 54
+5156167 %% —28692315 £%2+637737 25 4268019636 250 —439552468 2°° —1333892130 °8
+4760576310 °7 41919149440 2°° —28087306812 +:°° 421785662978 5% 4103327855886 +:>>
—193358366332 2°2 —199561023659 z°' 4848657247161 °° — 166112223678 x*°
—2236894567362 18 4+2467200252462 27 +2901130319607 =46 —8094285660644 x*°
+2772836800425 244 4+12579392127673 243 —22931462037981 142 +6244874681055 z*!
+46979264837861 x40 —85534578381569 239 4+-6834272402154 3% +177623721558930 237
—247215610663730 226 4+14513888378477 3% +405430878100266 23* —651681888729020 233
+309037433848077 232 +682964083193431 31 —1465980110888206 20 +898472126091157 z2°
+729409996703855 2% —1810845158613785 227 +1414800185812152 226 +107550799384398 =2°
—1606918488180510 224 4-1456064707707072 223 +403274703835174 x:2% —1357241529160791 22!
+110662000936722 120 4917810273926986 ='° —144511480285596 '8 —650632477508129 =17
+257719825346877 116 4251277847069086 =1° —196748594221017 214 422038660480818 '3
+39039097969879 12 —58349598149779 = +27343290355593 21 +17816276262087 z°
—17573412515707 25 —741377168381 7 +4180989901176 2.6 —710370862789 z°

—373096550602 z 1 +115279398831 348294164606 2.2 — 5139464562 +435549967
we have computed derived polynomials of degrees 8 and 9:

G1(2)=2%4+9 27 +144 2% 42500 2° 46328 z* — 78627 2> —263585 > +619550 £ 42182813,

g2 (x)=2°—58 28+1126 7 —7906 £° 45274 °+91426 2* —39428 > —382650 2:% —294609 = —27019.

If, for some ¢ € {1,..., s}, there does not exist any derived polynomial of degree
p;"*, then Gal(f) cannot be nilpotent. Theorem [ below states a reciprocal: if such
derived polynomials exist for every i € {1,...,s} and they have nilpotent Galois
groups, then Gal(f) is nilpotent.

Theorem 2. For everyi € {1,...,s}, let §; be a derived polynomial of f of degree
pit. Then
(a) Gal(g;) = Gal(f)/N;, with N; a normal subgroup of Gal(f) of order
Pyt -pf;1 Py e -pks where ky, ... ki_1,kiv1,. .., ks are positive integers.
(b) Gal(f) can be embedded in Gal(gy) x --- x Gal(gs).
(c) Gal(f) is nilpotent if and only if Gal(g;) is nilpotent for everyi=1,...,s.
Moreover, if Gal(f) is nilpotent

Gal(f) =~ Gal(g1) x --- x Gal(gs).

Proof. It is enough to prove (a). Then (b) and (c) follow directly.

Let f = g0,91,92,---,0; be an incomplete derived series such that, for every
j € {1,...,i}, g; is derived from g;_1 by a central element of Gal(g;—1) whose
order is a prime. This prime must be distinct from p; since g; has degree p;".

If p; # p; is the order of the central element 7 which leads to obtain g; from f,
then Gal(g1) = Gal(f)/H; where H; is the normal subgroup of Gal(f) associated,
by the Galois correspondence, to the normal closure in F of Q(a){™ over Q. Thus,
for every o € Hy and for every root o of f, o fixes the polynomial

(z = aj)(@ —7(a;)) -+ (x — 77" (ay))
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and there exists some integer k; such that o(a;) = 7% (). Since 7% has order
either p; or 1, we can conclude that the disjoint cycles of the permutation induced
by o on the roots of f have length either p; or 1. Therefore H; is a p;-group.

If g2 has been obtained from g¢; by an element in Z(Gal(f)/H1) of prime order
pe2 # pi, then Gal(ge) = (Gal(f)/H:1)/(H2/Hy) ~ Gal(f)/Hs for some normal
subgroup Ha of Gal(f) containing H;. By the above reasoning, Hy/H; is a po-
group and the order of Hy is of the form p32p{*, for some positive integers a1, ao.
Following the same reasoning up to g;, we conclude the thesis. O

The problem of deciding the nilpotency of the Galois group of an irreducible
polynomial of degree n = pJ™ ---p™= is thus reduced to deciding the nilpotency of
s polynomials of degree pi™, ..., p"=. The following theorem decides the nilpotency
of the Galois group of an irreducible polynomial whose degree is a power of a prime.

Theorem 3. If f € Z[x] is irreducible of degree p™, where m is a positive integer
and p a prime, and go = f,q1,-.-,9k i any derived series of f, then Gal(f) is
nilpotent if and only if the series is complete.

Proof. If Gal(f) is nilpotent, the series is complete by Proposition[1.

If the series is complete, for every i = 1,...,k, Gal(g;) is a quotient of Gal(f) by
some normal subgroup H;. Since the degree of g is 1, Gal(f) = Hy. The reasoning
used in the proof of Theorem 2] (a) shows now that Hy, is a p-group. O

Example 8. Let f be the polynomial of degree 72 in Example[d, and let g;, g2 be
the derived polynomials of degrees 8 and 9 already computed. Since there exists a
complete series of derived polynomials of g1,

go(z) =g1(x) = 28+ 927 + 14425 4 2500 2° + 6328 x* — 78627 23
—263585 22 + 619550 = + 2182813,

gi(x) = a* — 92% + 21522 — 15332 + 3193,
g2(z) = 2% + 92 + 237,
gs(z) = -9,

and a complete series of derived polynomials of gs,

gh(x) = go(z) = 2% — 5828 + 1126 27 — 7906 2 + 5274 2° + 91426 2*
—39428 23 — 382650 22 — 294609 = — 27019,

(z) = 2 4+ 5822 4+ 1091 = + 6607,

we can conclude that Gal(f) is nilpotent. Any of the existing methods deter-
mines quickly the Galois groups of g; and g». Using the Computer Algebra System
Magma, we have obtained that Gal(g1) = 8735 and Gal(gz2) = 97'17. From The-
orem B] Gal(f) = 8735 x 9T'17.

The reducible case. If the given polynomial f is reducible and fi,..., f, are all its
irreducible factors over Q, for every i € {1,...,r}, Gal(f;) is a quotient of Gal(f)
and Gal(f) is a subgroup of Gal(f1) x --- x Gal(f,). Thus, Gal(f) is nilpotent if
and only if Gal(f;) is nilpotent for every i =1,...,7.
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5. COMPUTING NILPOTENT (GALOIS GROUPS

Let f be an irreducible polynomial of degree n = pi™ ---pTs such that Gal(f)
is nilpotent. By Theorem [Z, Gal(f) = [[;_, Gal(g;) with g; as in Proposition[8. If
the degrees of the derived polynomials §; are small, several methods can be used to
compute their Galois groups. Our aim in this section is to give some results which
make possible the computation of these groups in case the degrees are too high.

Throughout this section we will be assuming that f € Z[z] is a monic irreducible
polynomial of degree n = p™, m a positive integer, p a prime and that Gal(f) is a
p-group.

Let f = go,91,...,9m be a complete series of derived polynomials of f. For
every j =1,...,m, let us denote by 7; € Z(Gal(g;—1)) the element of order p such
that g; is a derived polynomial from g;_; by 7;. Then, the degree of g; is p™~* for
every i =0,1,...,m. We denote by Gy any fixed root of f and by 8; (j =1,...,m)
the primitive element of Q(3;_1)¢™/Q which is a root of g;.

Among the polynomials in the series there exists at least one such that it is
normal and the expression of its roots as polynomials in a fixed one is known. Let
1 € {0,...,m— 2} be the smallest index such that g;1 satisfies both conditions. A
factorization of g; over Q(3;) can be obtained as follows:

Let 351,02, ..,8; pm—i—1 be roots of g; such that 3;; = ; and

j—1
Biy & \J{Binmia(Bia), - PR (Bia)}, for every j =2, pm L
=1

It is clear that, for every j =1,...,p™ ", the polynomial
hj(@) = (& = Bi) (@ — 11 (Bi) - (@ = 725 (Big)) € Q(Big)lal,

belongs to Q(8;,5) (Tt 1) [z].

m—i—1
)

(a) Q(Bi ;) "+ = Q(F(B;;)), where F € Q[z] is a polynomial such that ;11
F(B;).
(b) hj(z) € Q(Gi)[x].

Proof. (a) Let o € Gal(g;) be such that §;;, = o(8;). Then Q(ﬁz‘,j)<”+1> 5
Q(F(Bi,;)) because

Ti+1(F(ﬁz‘,j)) = Ti+10(F(5i)) = UTi+1(F(ﬁi)) = U(F(ﬁi)) = F(ﬁm’)-

Let 6 =ag+ a1Bij + -+ an18}; " € Q(B;;){"+). Then

Lemma 3. Foreveryj=1,...,p

o) = a0+ ar1fi+ -+ an1 77 € Q(6:) ) = Q(F(B))

and § € Q(F(o(8;))) = Q(F(Bi;)). Thus, Q(B:,) ™+ C Q(F(B;.5))-
(b) F(f,,,) is clearly a conjugate root of F(8;) = Bi+1. Since g;41 is normal,

F(Bi;) € Q(Bir1) € Q(B:). O
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Since

m—i—1

gi(x) = H hj(z),

we have a factorization of g; in factors of degree p in Q(f;)[x], not necessarily
irreducible. To obtain the complete factorization of g; over Q(;), it will be enough
to factorize every h;(0;,z). In fact, it is enough to factorize at most m — i — 1
polynomials h;.

Proposition 9. It is enough to factorize over Q(3;), at most m —1i—1 polynomials
of the set {h; : 2 < j < p™~"=1} to either find an irreducible h; or to obtain the
expression of all roots of g; as polynomials in (;.

Proof. The roots of hy, B1,Tix1(B31), .., Tir1P~1(B1) are already expressed as poly-
nomials in B1. If hs is irreducible over Q(f31), we have finished. Else, [Q(8;2,01) :
Q(B1)] < p and, since Gal(f) is a p-group, B;2 € Q(8;). Thus, he splits over Q(51)
and a polynomial F» € Q[z] such that 3;2 = F»(3;) is obtained. If oo € Gal(f)
such that 51"2 = Ug(ﬂi), then F2k(ﬂz) = O'Qk(ﬁi) Vk € N.

Since the order of oy is a power of p, it should be ng(ﬁi) # 0; for all k €
{1,...,p—1}. Thus, F5*(6;) (k=0,...,p— 1) are roots of p different polynomials
hj so that the expression as a polynomial in §; of every root of each one of them is
known.

If none of these elements is a root of hz and hg is irreducible over Q(3;), we
have finished. Otherwise, we have computed a polynomial F3 € Q[z] such that
Bis = F3(3;). Now, the elements F3'(F3"(3;)) with I,k € {0,...,p — 1} are roots
of p? different polynomials h;.

Following this procedure for suitable polynomials &, in at most m —4 — 1 steps,
either we found an irreducible h; or we have expressed the roots of g; as polynomials

Once we have obtained the factorization of g; over Q(3;), two cases must be
considered:

(a) If g; is normal, we can repeat the procedure in order to obtain the factor-
ization of g;—1 over Q(B;—1). In case the given polynomial f is normal, by
applying the procedure successively, we will compute all the roots of f as
polynomials in a fixed root « and the action of Gal(f) over the roots of f
will be completely determined.

Example 9. For the polynomial f with

f(2)=232412231 +1062304-76222° +450122% +231722:27 +10572622% +42955822°
+1583950x2% 45291262223 +161285922:22 445110268221 +11512723722°
+2702914022° 4582395138218 4113885848227 +207237342316
43339356088z '° 451041331204 +6550655310213 487098195332 12
48087807202z 4104876710542 ° +-5838840108x° +116603481082.8
485093948227 +122785277002:% +12532985822:° 4215655147294

42539603896 4146469412782 — 196045307702+ 14880828169,
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the following complete series of derived polynomials is obtained:
go(z)=f (=),
g1(z)=21%—8821°4+35922'% —8988021% +15342452 12 — 18798648z
+16920309421° —1123693646x° +-54347412752°% — 184720698307
+408799753222° — 4900272244625 +13382022899z*
4139931564102 1345003675022 +22230868650z+6726610525,

g2 (z)=28+8827+33882°+742962°+1012608z* +8760608x> +4688505622

+1417312002+185178880,

g3 (x)=x* 88234293222 — 4382424248384,

ga(x)=x>488x+2012,

g5 (z)=x—88.

If B4 is a root of g4, the other is —88 — B4. We will construct the
polynomials h; in order to factorize gs over Q(B3), taking into account
that g4 is a derived polynomial from g3 by a central element defined by

Fz)=—1312 L 1855 1l g2 4 L g3
and that 64 = —63 — F(ﬁ3)
hl(w):l’%r(*% Bs+1312 11 532*ﬁ ﬁss)l’*%Jﬁlgj Bs—12L 532+% Bs®.

The polynomial he, with its coefficients already expressed in Q(83), is

hz(w):IQJr(*%Jr% Bs— it 532+ﬁ ﬁsS)IJr@*%j Bs+121 532*% Bs®.

It is obvious, by the definition of hy, that its roots in Q(«g3) are 83 and
F(Bs). By factorizing he over Q(f33), we obtain the other two roots of gs,
which is a normal polynomial:

1 4 1342 185 11, 11, 1 .4
2453 5 T3 B3 4537 3 3 53-*-453 2453-
Proceeding analogously, we compute the factorization of go over Q(f32).

It results in being normal. Repeating the procedure for go we notice that

1474 185

—.2 _ 179490164839105768452185675424697605839 15 “e
h3(x)_x + x( 185347178664986085100401643308566231921032820 ﬁl +

- +854045242894993492140064641842903536835698212919 )
1056478918390420685072289366858827521949887074

+ 71242838066206222811864261243176861602767 ﬁ 15 + e
10564789183904206850722893668588275219498870740 11

. _237913066936491262315054409263679¢10684892349922901
4225915673561682740289157467435310087799548296

is irreducible over Q).

(b) If g; is not normal, there exists j € {2,...,p™ *"!} such that h; does not
split over Q(3;). Then, we should have [Q(8;;,5:) : Q(6:)] = p and h;
is irreducible over Q(5;). Since Q(8;) C Q(«) and G;; € Q(«), Bi,; is
algebraic of degree p over Q(«).

According to this remark, the extension Q(c, §;,;)/Q has degree p
If we construct a primitive element of Q(a, 8;;)/Q, we can apply to its
minimal polynomial f the procedure applied to f. If the order of Gal(f) is
p™+1 it will be computed by factorizing successively the derived polyno-
mials of f as described above. Otherwise, another element 3 will be found

m+1
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such that Q(a, 3; ;,3) has degree p™*+2 over Q. If |Gal(f)| = p™+M, the
algorithm will end after M steps.

Example 10. The polynomial f given by

2%% —328 2% 152880 %% — 5583316 x5 +434025006 °° — 26476342816 z°° +1319178102464 :°8
—55172027907840 x°7 +1975474132701615 2°° —61459358137894896 :°°
+1680447375678738240 z°4 —40745258028613470296 x°> +882355784953015567856 2°2
—17163505100912929251840 2° +-301264979553827236666810 :°°
—4789002034108430073611012 4°4-69137735239670011548314377 284+ . . .. ... .. ... ...
........................ —9260037844716710773725440191295122498545540503880 x>
+4991638593737595331295518768298177130709528859622 x>
—1616803360329159026514072447671092735965334919544 x
+399960888789264880213405327854257750094429927501

is the minimal polynomial of a primitive element of Q(«, 1 3) over Q, where
a and f31 3 are, respectively, roots of f and hz in Example [0l Thus, the
polynomial f of degree 32 has the same Galois group as f.

Repeating the described procedure for the polynomial f, we have been
able to obtain the 32 polynomials h; of degree 2 and to compute the 64
roots of f in Q(@), for any fixed root @ of f.

6. CONCLUSIONS

We have presented an algorithm for deciding whether the Galois group of a given
polynomial f € Q[z] is nilpotent, by computing nontrivial elements in Z(Gal(f)).
Since the computation of elements in the centre is fast in practice, the decision
procedure is quite efficient.

The problem of the determination of Gal(f), once it has been decided that it
is nilpotent, has been reduced, in case the degree of f is not a power of a prime,
to derived polynomials of smaller degree whose Galois groups are, in many cases,
computable in a reasonable time by the existing methods. When the degree of f is
a power of a prime p and is too high to apply them, we have proposed a method for
computing the Galois group, which is a p-group. The hardest part of this method
is the factorization of a certain number of polynomials of degree p (Proposition [
over a root field of the corresponding derived polynomial. However, the procedure
has allowed us to study the Galois group of many polynomials which cannot be
handled by other methods.
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