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DECIDING THE NILPOTENCY OF THE GALOIS GROUP
BY COMPUTING ELEMENTS IN THE CENTRE

PILAR FERNANDEZ-FERREIROS AND M. ANGELES GOMEZ-MOLLEDA

Abstract. We present a new algorithm for computing the centre of the Galois
group of a given polynomial f ∈ Q[x] along with its action on the set of roots
of f , without previously computing the group. We show that every element in
the centre is representable by a family of polynomials in Q[x]. For computing
such polynomials, we use quadratic Newton-lifting and truncated expressions
of the roots of f over a p-adic number field. As an application we give a
method for deciding the nilpotency of the Galois group. If f is irreducible
with nilpotent Galois group, an algorithm for computing it is proposed.

1. Introduction

The existing algorithms for the determination of the Galois group of a polynomial
present strong limitations when the degree of the polynomial grows up. Part of them
requires the classification of the permutation groups with the same degree as the
given polynomial. The others use factorization of polynomials over number fields,
which is very inefficient for high degrees.

V. Acciaro and J. Klüners [1] described a method for computing the conjugates
of a root of an irreducible polynomial f ∈ Q[x] with abelian Galois group. Their
method is based on some results using prime ramification and Frobenius automor-
phisms, and it uses the quadratic Newton-lifting as principal technique in order
to avoid factorization of polynomials over number fields. When it is known that
the Galois group of a polynomial is abelian, its computation becomes easier. This
motivates the question about the possibility of applying special techniques to other
classes of groups and, in case this is possible, how to determine, a priori, whether
the Galois group of a given polynomial f ∈ Q[x] belongs to any of these classes.

In a previous paper [7] we gave a method, based on the techniques used by
V. Acciaro and J. Klüners in [1], to decide whether the Galois group of a given
irreducible polynomial f ∈ Q[x] is abelian in polynomial time in the size of the
coefficients of f (assuming the Extended Riemann Hypothesis).

In the present paper we extend such a method to the computation of the centre
of the Galois group of any polynomial f ∈ Q[x], not necessarily irreducible. As an
application, we obtain a way to determine whether the Galois group is nilpotent, by
constructing a series of polynomials related to a central series of this group. Finally
we propose a procedure to compute the Galois group of an irreducible polynomial
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once decided it is nilpotent. Some examples show the behaviour of this method to
compute Galois groups of polynomials with high degree.

Since for every f ∈ Q[x] there exists a monic and squarefree polynomial in Z[x]
with the same Galois group, we will assume throughout this paper that the given
polynomial f is monic and squarefree with integer coefficients.

From now on, we will denote by n the degree of f , by Gal(f) the Galois group
of f over Q and by Z(Gal(f)) the centre of Gal(f). We represent by α1, . . . , αn all
the roots of f in a splitting field F over Q whose ring of integers is S. We will say
that f is normal when F = Q(α) for any root α of f .

2. Computation of the centre

Along this section, we will denote by f1, . . . , fr of respective degrees n1, . . . , nr
all the irreducible factors of f in Z[x]. For every i ∈ {1, . . . , r}, αi1, . . . , αini will
represent all the roots of fi and αi any fixed root of fi.

We prove in subsection 2.1 that every element in Z(Gal(f)) is representable by
a family of polynomials F1, . . . , Fr. We present several properties of these polyno-
mials which allow us to construct them by performing quadratic Newton-lifting. In
subsection 2.2 we consider the number of primes needed to complete the computa-
tion of the centre. In subsection 2.3 the algorithm is described.

2.1. Polynomial representation of the central elements.

Proposition 1. An element τ ∈ Gal(f) belongs to Z(Gal(f)) if and only if there
exist r polynomials F1, . . . , Fr ∈ Q[x] (not necessarily different) such that Fi(αij) =
τ(αij) for all j = 1, . . . , ni and for every i = 1, . . . , r.

Moreover, for each element τ ∈ Z(Gal(f)), the corresponding polynomial Fi,
i = 1, . . . , r, can be uniquely chosen of degree smaller than ni.

Proof. Let us consider an element τ ∈ Z(Gal(f)) and, for every i, let Hi be the
subgroup of Gal(f) associated to Q(αi) by the Galois correspondence. For every
σ ∈ Hi,

σ(τ(αi)) = τ(σ(αi)) = τ(αi).

Thus, τ(αi) ∈ Q(αi) and there exists a unique Fi ∈ Q[x] of degree smaller than
ni such that Fi(αi) = τ(αi). Since Gal(f) acts transitively on the roots of fi,
Fi(αij) = τ(αij) for every j = 1, . . . , ni.

Reciprocally, we suppose that r polynomials F1, . . . , Fr describe the action of an
element τ ∈ Gal(f) on the roots of f . For every σ ∈ Gal(f), every i ∈ {1, . . . , r}
and every root αij of fi,

στ(αij) = σ(Fi(αij)) = Fi(σ(αij)) = τ(σ(αij )).

Therefore, τσ = στ and τ ∈ Z(Gal(f)). �

Definition 1. A family of polynomials F1, . . . , Fr ∈ Q[x] (not necessarily different)
with degree (Fi) < ni such that there exists τ ∈ Z(Gal(f)) satisfying Fi(αij) =
τ(αij) for all i = 1, . . . , r and for every j = 1, . . . , ni will be called the family of
polynomials associated to (τ, f).

The polynomial Fi is the polynomial associated to (τ, fi).

In order to compute Z(Gal(f)) without previously computing the whole Galois
group, our aim will be to determine, for every central element τ , the family of
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polynomials associated to (τ, f). For this, it is not enough to find a polynomial
permuting the roots of f , as the following example shows.

Example 1. f(x) = x6 + x5 + 4x4 + x3 + 2x2 − 2x+ 1 ∈ Q[x] is irreducible.
If α is a root of f , then − 1

2 −
1
2α −

5
2α

2 − 2α3 − α4 − 1
2α

5 is also a root of f .
Thus

F (x) = −1
2
− 1

2
x− 5

2
x2 − 2x3 − x4 − 1

2
x5

permutes the roots of f .
In this case, Gal(f) is isomorphic to the dihedral group of order 6. If F (x)

were representing an element in Gal(f), by Proposition 1, this would belong to
the centre. But since Z(Gal(f)) is trivial, we must conclude that the permutation
defined by F (x) does not belong to Gal(f).

The rest of the section is devoted to presenting a characterization of the poly-
nomials associated to central elements which allows us to compute them.

Proposition 2. For each element τ ∈ Z(Gal(f)) there exist infinitely many primes
p not dividing disc(f) such that

τ(u) ≡ up mod pS for every u ∈ S.

The reciprocal is also true: if τ ∈ Gal(f) and τ(u) ≡ up mod pS for all u ∈ S
and for some prime p not dividing disc(f), then τ ∈ Z(Gal(f)).

Proof. The first assertion follows directly from Tchebotarev’s density theorem by
noting that τ ∈ Z(Gal(f)), pS is the intersection of all the prime ideals of S lying
over p and Gal(f) acts transitively over all these primes [10], [14], [15].

Now let τ ∈ Gal(f) such that τ(u) ≡ up mod pS for every u ∈ S and for a prime
p not dividing disc(f). Then στσ−1(u) ≡ up mod pS for every u ∈ S and for all
σ ∈ Gal(f). In particular, for any root α of f , στσ−1(α) and τ(α) are roots of
f such that στσ−1(α) − τ(α) ∈ pS. Since p does not divide disc(f), it must be
στσ−1(α) = τ(α) and τ ∈ Z(Gal(f)). �

Definition 2. A prime p is said to be associated to τ ∈ Z(Gal(f)) when it does
not divide disc(f) and τ(u) ≡ up mod pS for all u ∈ S.

It follows from Proposition 2 that, for every i ∈ {1, . . . , r}, the polynomial Fi
associated to (τ, fi) must satisfy Fi(αi) ≡ αpi mod pS for infinitely many primes p
not dividing disc(f).

Besides, since each polynomial Fi permutes the roots of fi, it is known that
Fi(x) = ai,0 + ai,1x + · · · + ai,ni−1x

ni−1 ∈ Q[x] where ai,j = bi,j
d with bi,j ∈ Z for

all j = 0, . . . , ni−1 and d the largest positive integer whose square divides disc(fi).
A bound Bi on the absolute value of the bi,j is computable from fi:

|bi,j | ≤ Bi = d disc(fi)−
1
2 (1 + |αi|∞)ni(ni − 1)

ni−1
2 |αi|ni−1

∞ ,

where |αi|∞ is the maximum of the absolute values of the roots of fi [1], [6], [9],
[11].

The following known result gives a way to compute the polynomials.

Proposition 3. If p is a prime not dividing disc(f) and Zp denotes the ring of
p-adic integers, there exists, for every i = 1, . . . , r, a unique polynomial H ∈ Zp[x]
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verifying
(i) fi(H(αi)) = 0,
(ii) H(αi) ≡ αpi mod p,
(iii) deg(H) ≤ ni − 1.

We remark that H ∈ Zp[x] is the p-adic limit of a sequence {Hk}k≥0 ⊆ Z[x] such
that H(x) ≡ Hk(x) mod p2k for all k ≥ 0. This sequence can be built up to any k
by means of quadratic Newton-lifting [1], [6], [9].

It is well known that if k0 ∈ N such that
√

p2k0

2 > max{Bi, |disc(fi)|}, there
exists a unique polynomial of the form H̃k0 = 1

disc(fi)
(c0 + c1x+ · · ·+ cni−1x

ni−1)

such that cj ∈ Z, |cj | ≤ p2k0

2 for every j = 1, . . . , ni and H̃k0 ≡ Hk0 mod p2k0 .
We will say that H̃k0 is a p-polynomial associated to fi.
Since the polynomial Fi associated to (τ, fi) satisfies the conditions in Propo-

sition 3, it must be Fi = H . In particular, Fi ≡ Hk mod p2k for every k ≥ 0.
Therefore, Fi = H̃k0 (see [3], [5] for the computation of H̃k0).

Once we have computed p-polynomials F̃1, . . . , F̃r corresponding respectively to
each irreducible factor fi of f , it is possible that, for some i ∈ {1, . . . , r}, F̃i(αi) is
not a root of fi. Then, F̃i does not define a permutation on the roots of fi, it is not
associated to (τ, fi) for any τ ∈ Z(Gal(f)) and we conclude that p is not associated
to any τ ∈ Z(Gal(f)). Otherwise, F̃i(αi) is a root of fi for every i = 1, . . . , r and
the following theorem asserts that p is associated to a central element.

Theorem 1. If p is a prime not dividing disc(f) and, for every i ∈ {1, . . . , r},
there are polynomials Fi ∈ Q[x] satisfying

(i) Fi(αi) is a root of fi,
(ii) Fi(αi) ≡ αpi mod pSi where Si is the ring of integers of the splitting field of

fi over Q,
then there exists τ ∈ Z(Gal(f)) such that τ(αij) = Fi(αij) for all j = 1, . . . , ni and
for every i = 1, . . . , r.

Proof. For every prime Q of S lying over p, there exists a unique element τ ∈ Gal(f)
such that τ(u) ≡ up mod Q for every u ∈ S [14].

For every root αij of fi there exists σij ∈ Gal(f) such that σij(αi) = αij . If
Fi(αij) 6= τ(αij), Fi(αij)− τ(αij) ∈ S divides disc(f) and, since

Fi(αij)−τ(αij) = Fi(αij)−αpij+αpij−τ(αij) = σij(Fi(αi)−αpi )+αpij−τ(αij) ∈ Q,
then disc(f) ∈ Q ∩Q = pZ, which constitutes a contradiction.

Thus, τ(αij) = Fi(αij) for all j = 1, . . . , ni and for every i = 1, . . . , r. From
Proposition 1, it follows that τ ∈ Z(Gal(f)). �
Example 2. f(x) = x6 + x4 − 2x3 + x2 − x+ 1 is irreducible. For the prime p = 2
we compute a p-polynomial F associated to f ,

F (x) =− 2336223622783712423189347007709618892
14283

+ 2336223622783712423189347007709618892
14283 x

+ 4672447245567424846378694015419223501
14283 x2

+ 2336223622783712423189347007709618892
14283 x3

+ 134243967870148415446798365366539595182
14283 x5.
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Since f splits completely modulo 211,

f(x) ≡ (x+ 8) (x+ 119) (x+ 121) (x+ 189) (x+ 84) (x+ 112) mod 211,

we can label each root of f with its value modulo 211. If α denotes the root
congruent to −8 modulo 211, then F (α) ≡ 161 mod 211, so that we can conclude
that F (α) is not a root of f and F is not associated to any τ ∈ Z(Gal(f)).

By considering p = 59, we obtain the p-polynomial F = −x3 − x+ 1. Using the
211-adic expansion of the roots of f , we check that F (α) is a root of f . Therefore
F is associated to a central element τ . Just by looking at the factorization of f
modulo 59,

f(x) ≡ (x2 + 13x+ 51)(x2 + 4x+ 16)(x2 + 42x+ 53) mod 59,

we deduce also that the order of τ is 2.

2.2. Bound on the needed number of primes. For every prime p not dividing
disc(f) we can compute p-polynomials F1, . . . , Fr associated to f . As we have seen,
F1, . . . , Fr is the family of polynomials associated to (τ, f) for some τ ∈ Z(Gal(f)) if
and only if p is associated to τ . Since there are infinitely many primes p associated
to each element τ ∈ Z(Gal(f)), by computing polynomials for sufficiently many
primes, we will be able to determine Z(Gal(f)), but how many primes must we try
to determine the whole centre?

The Tchebotarev density theorem asserts that the density of the number of
primes associated to an element τ ∈ Z(Gal(f)) is 1

|Gal(f)| . Lagarias and Odlyzko in
[10] presented explicit bounds for the absolute value of the least prime associated
to a conjugacy class in the Galois group. The best bound assumes the Extended
Riemann Hypothesis. The result, in terms of our problem, is the following:

There exists an effectively computable positive absolute constant c such that, for
every element τ ∈ Z(Gal(f)), there exists a prime p associated to τ such that

p ≤ c(log |∆|)2,

where ∆ is the discriminant of the splitting field of f over Q.
Bach and Sorenson [2] improved this result by giving a more specific bound:

p ≤ (4 log |∆|+ 2.5|Gal(f)|+ 5)2.

If s is the minimal number of roots of f generating F and ai is the coefficient
of xi in f , then log |∆| ≤ s|Gal(f)| log |disc(f)| and Mahler’s bound for disc(f) [12]
provides the inequality |disc(f)| < nn(

∑n
i=0 |ai|)2n−2. Thus, the bound on the least

prime associated to a central element is polynomial in the order of Gal(f) and in
the size of the coefficients of f .

The following example shows that, in some cases, we have enough criteria to
compute the whole centre while checking only a few primes.

Example 3. Let f(x) = x6 + x4 − 2x3 + x2 − x+ 1 be the polynomial in Example
2. Since we have found an element τ ∈ Z(Gal(f)) of order 2 and a prime p
not dividing disc(f) not associated to a central element, we know that 2 divides
|Z(Gal(f))| and Gal(f) is not abelian. Taking into account that the order of the
centre of a transitive subgroup of Σn divides n, |Z(Gal(f))| is a divisor of 6. Then
it must be |Z(Gal(f))| = 2 and Z(Gal(f)) = 〈τ〉.
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2.3. Description of the algorithm.

Input: A monic squarefree polynomial f ∈ Z[x] of degree n.
Output: The elements of Z(Gal(f)) with their action on the roots of f .

(1) Factorize f in Z[x] to get its irreducible factors f1, . . . , fr of degrees n1, . . . ,
nr, respectively.

(2) Let C be a bound for the least prime associated to an element in Z(Gal(f)).
Set q := 1 and let Z be the trivial group.

(3) Choose a prime p not dividing disc(f) such that q < p < C.
If such a prime does not exists, the algorithm ends and Z(Gal(f)) = Z.

(4) Compute p-polynomials F1, . . . , Fr associated to f1, . . . , fr. For a root αi
of fi, i = 1, . . . , r, check whether Fi(αi) is also a root of fi.

(4.1) If, for some i = 1, . . . , r, Fi(αi) is not a root of fi, p is not associated
to any element in Z(Gal(f)). In particular,

Gal(f) is not abelian.
Set q := p and go back to step (3).

(4.2) If Fi(αi) is a root of fi for every i = 1, . . . , r, p is associated to some
element τ ∈ Z(Gal(f)). The action of τ on each root αij of fi is given
by the evaluation Fi(αij) for every i = 1, . . . , r. Set Z := 〈Z, τ〉. If
|Z| = n1n2 · · ·nr, the algorithm ends.

Gal(f) = Z, Gal(f) is abelian.
Let b be a bound on |Z(Gal(f))| (see Section 3). If |Z| = b, the
algorithm ends and

Z = Z(Gal(f)).
Else set q := p and go back to step (3).

Since the computation of a p-polynomial associated to fi runs in polynomial time
in the size of fi and p [1] and the primes in step (3) are bounded by a polynomial
expression in |Gal(f)| and the size of the coefficients of f , we conclude that the
algorithm runs in polynomial time in the size of f and a given bound on |Gal(f)|.

3. Some shortcuts to accelerate the computation

We show in this section how, in many cases, we can discard a prime p as associ-
ated to a central element and avoid the computation of p-polynomials by looking
at the factorization of f modulo p. We will assume that f is irreducible.

3.1. Degree of the irreducible factors modulo p. If τ ∈ Z(Gal(f)) and p is
a prime associated to (τ, f), the degrees of the irreducible factors of f modulo p
are the lengths of the orbits of the action of 〈τ〉, the Galois group of f over Z/pZ,
on the roots of f . From the obvious result below, it follows that all the irreducible
factors of f modulo p have the same degree.

Lemma 1. Let G be a transitive subgroup of the symmetric group Σn. If τ ∈ Z(G)
and τ = τ1 · · · τs is the decomposition of τ into disjoint cycles, including cycles of
length 1 which represent the elements fixed by τ , all the cycles τ1, . . . , τs have the
same length.

This fact shows directly that the Galois group of the polynomial in Example 2
is not abelian by looking at its factorization modulo 7:

f(x) ≡
(
x2 + 3 x+ 5

)
(x+ 1) (x+ 4)

(
x2 + 6 x+ 6

)
mod 7.



DECIDING THE NILPOTENCY OF THE GALOIS GROUP 2049

The number of linear factors appearing in the factorizations of f mod p for dif-
ferent primes p is also useful for getting a bound on |Z(Gal(f))|:

Lemma 2. If p1, . . . , pm are primes not dividing disc(f) such that, for each i =
1, . . . ,m, f has exactly ai linear factors modulo pi and gcd(a1, . . . , am) = k, then
|AutQ(α)| is a divisor of k. In particular, |Z(Gal(f))| divides k.

Thus, if f is the polynomial of degree 6 above, by looking at its factorization
modulo 7, we conclude that |Z(Gal(f))| divides 2.

3.2. Repetitions in the coefficients of the irreducible factors modulo p.
We will show that, for all primes p associated to an element in Z(Gal(f)) except for
a finite set, there is a certain type of regularity in the repetitions of the coefficients
of the factors of f modulo p.

If f is irreducible and p is a prime associated to some element τ ∈ Z(Gal(f)) of
order r, we suppose the roots α1, . . . , αn of f ordered in such a way that

• α1 is arbitrarily chosen at the beginning,
• for 2 ≤ i ≤ n/r, αi is arbitrarily chosen among the roots not belonging to

the set
{τ l(αm) : 1 ≤ m < i, 0 ≤ l ≤ r − 1},

• for 1 ≤ j ≤ n
r and 0 ≤ i ≤ r − 1, αn

r i+j
= τ i(αj).

Then

(1) f factors modulo p into n
r irreducible polynomials given by

(x− π(αi))(x − π(τ(αi))) · · · (x− π(τr−1(αi)))

where i = 1, . . . , nr and π is the canonical projection of S onto S/pS.
(2) If, for every k = 1, . . . , r, ek(x1, . . . , xr) denotes the k-th elementary sym-

metric function on x1, . . . , xr, the polynomial

gk(x) =
n/r∏
i=1

(x− ek(αi, τ(αi), . . . , τr−1(αi)))

belongs to Z[x]. Moreover, since all its roots are conjugate, gk is a power
of tk, the minimal polynomial over Q of

ek(α1, τ(α1), . . . , τr−1(α1)).

Proposition 4. Let p be a prime associated to τ ∈ Z(Gal(f)) not dividing disc(tk).
Then the coefficients of xr−k in the irreducible factors of f mod p are repeated as
many times as the multiplicity of the roots of gk.

Proof. The roots of gk mod p are the coefficients of xr−k in each irreducible factor
of f . If p does not divide disc(tk), the projections of the different roots of gk remain
different. Therefore the coefficients of xr−k in the irreducible factors of f modulo
p are repeated as many times as the multiplicity of the roots of gk. �

Note that, since gk does not depend on the prime p associated to τ , the repetitions
in the coefficients of xr−k of the factors of f mod p must be of the same type for
every prime associated to τ not dividing disc(tk).
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In Example 3,

f(x) ≡
(
x2 + 3

) (
x2 + 2 x+ 4

) (
x2 + 3 x+ 3

)
mod 5.

The independent coefficient 3 appears in two factors while 4 appears in only one.
This means that either 5 divides the disc(t2) or 5 is not associated to any element
in the centre. Since there are only finitely many primes dividing the discriminant,
we can decide to avoid Newton-lifting and look for another prime.

When, for some k = 0, . . . , r−1, two different coefficients of xr−k appear repeated
in the irreducible factors of f mod p a different number of times, we will say that
the factorization of f mod p presents irregular repetitions.

Example 4. We apply the algorithm to the irreducible polynomial

f(x) = x18 − 6 x17 + 6 x16 + 27 x15 − 51 x14 − 66 x13 + 155 x12 + 321 x11

−1009 x10 + 742 x9 + 1266 x8 − 4815 x7 + 4951 x6 + 573 x5

−2347 x4 − 737 x3 + 625 x2 + 334 x+ 43.

By means of the shortcuts above we will determine Z(Gal(f)) by computing
p-polynomials only for four primes.

f(x) ≡
(
x3 + x2 + 29 x+ 3

) (
x3 + 32 x2 + 26 x+ 11

) (
x3 + 11 x2 + 26 x+ 22

)
×(x+ 18) (x+ 22) (x+ 1) (x+ 11) (x+ 36)x (x+ 33) (x+ 4) (x+ 40) mod 43.

By Lemma 2, |Z(Gal(f))| divides 9. None of the first fifty prime numbers provide
irreducible factors of f of degree 9 and only the following give all the factors of
degree 3 without presenting irregularities:

37, 97, 103, 109, 127, 151, 163 and 181.

Computing a 37-polynomial associated to f , we check that 37 is not associated to
any element in Z(Gal(f)).

Associated to some τ1 ∈ Z(Gal(f)), we get a 97-polynomial

F (x) = 327247032733772000482235685
648093112708411873363341182 −

1105734151931157856747325823
324046556354205936681670591 x

+ 518774928596588725084579087
324046556354205936681670591 x

2 + 546125327753152214669363531
24926658181092764360128507 x3

+ 22218900759518128027669770063
648093112708411873363341182 x4 − 41666065358891058820973080838

324046556354205936681670591 x5

+ 2539397652812721437896761189
24926658181092764360128507 x6 − 11593995086999898649807888087

648093112708411873363341182 x7

− 6855549177050245491181709934
324046556354205936681670591 x8 + 6945738360859535948751982282

324046556354205936681670591 x9

− 3762600491452618807415809089
648093112708411873363341182 x10 − 2066102342372030983878154103

648093112708411873363341182 x11

+ 679223286686897061982981543
648093112708411873363341182 x

12 + 367102182220650714893166968
324046556354205936681670591 x

13

− 331887278209162895030714199
648093112708411873363341182 x

14 − 99571260388811737246268927
648093112708411873363341182 x

15

+ 42102461982125822289341469
324046556354205936681670591 x

16 − 13632428315441178444012723
648093112708411873363341182 x

17.
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We set Z = 〈τ1〉 and |Z| = 3. Going back to step (3) of the algorithm, we check
that 103 is not associated to any central element. Later, we find a 109-polynomial
F associated to some τ2 ∈ Z(Gal(f)). Now Z = 〈τ1, τ2〉 has order 9 and it is not
cyclic. Since |Z(Gal(f))| is bounded by 9, it follows that Gal(f) = 〈τ1, τ2〉.

With the help of GAP [8] we know that, among the 983 classes of transitive
subgroups of Σ18, only four have centre of order 9. The centre of two of them is
cyclic, so that the only options for Gal(f) are 18t17 and 18t79.

4. Deciding the nilpotency of Galois groups

In this section we make use of the computation of central elements in order to
decide whether Gal(f) is nilpotent by constructing a series of polynomials related
to a central series of this group.

In subsection 4.1 we define the derived polynomials of f and show that they can
be computed by determining the minimal polynomial over Q of a primitive element
of a suitable extension. By successive construction of derived polynomials, we can
compute a series of polynomials which, in case f is normal, is strongly related with
a central series of Gal(f).

In subsetion 4.2 we give an algorithm to decide the nilpotency of the Galois
group of any polynomial with rational coefficients.

Throughout this section we will assume that the polynomial f is irreducible and
we will denote by α a fixed root of f . The reducible case will be reduced to this one
at the end of the section. If K is an intermediate field of F/Q and H a subgroup of
Gal(f), we will denote by KH the subfield of K fixed elementwise by each element
of H .

4.1. Derived polynomials and central series. Once we have computed a non-
trivial element τ ∈ Z(Gal(f)), we know a first subgroup 〈τ〉 of a central series of
G. To determine a second subgroup of a central series, it is enough to find (if it
exists) a nontrivial element in Z(Gal(f)/〈τ〉). For this, we will try to construct a
polynomial whose Galois group is Gal(f)/〈τ〉.

Definition 3. If there exists a nontrivial element τ ∈ Z(Gal(f)) and β is an
algebraic integer such that Q(α)〈τ〉 = Q(β), the minimal polynomial g ∈ Z[x] of β
over Q will be called a derived polynomial from f by τ .

Applying the Fundamental Theorem of Galois Theory to the extension F/Q, we
obtain

Proposition 5. Let g be a derived polynomial from f by some τ ∈ Z(Gal(f)) of
order r. Then, g has degree n

r and Gal(g) is a quotient of Gal(f). When f is
normal, g is also normal and Gal(g) = Gal(f)/〈τ〉.

Proof. Let S be the subgroup of Gal(f) corresponding to Q(α). It is enough to
check that S〈τ〉 corresponds to Q(α)〈τ〉, [Gal(f) : S〈τ〉] = n/r, and Gal(g) ≈
Gal(f)/Core(S〈τ〉). �
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Then, when f is normal, the problem of looking for a polynomial whose Galois
group is Gal(f)/〈τ〉 is solved as soon as a derived polynomial is computed. In the
nonnormal case, the search for such a polynomial implies several difficulties since
the order of Gal(f)/〈τ〉 and the smallest degree of an irreducible polynomial whose
Galois group is Gal(f)/〈τ〉 are unknown.

Example 5. f(x) = x12 − x6 − x2 − 1 is irreducible, Gal(f) = 12T 293, |Gal(f)| =
46080 and |Z(Gal(f))| = 2 (see [13]).

Using GAP [8], we have checked that there does not exist any transitive group of
degree smaller than 24 isomorphic to Gal(f)/Z(Gal(f)). Thus there exists no irre-
ducible polynomial of degree smaller than 24 with Galois group Gal(f)/Z(Gal(f)).
In particular, none of the derived polynomials from f have the desired Galois group.

However, we will see that derived polynomials are a useful tool for our purposes.
Once we know a nontrivial element τ ∈ Z(Gal(f)), the following proposition leads
us to obtain a derived polynomial from f by τ .

Proposition 6. Let τ ∈ Z(Gal(f)) be an element of order r > 1. Then, Q(α)〈τ〉 =
Q(e1(α, τ), . . . , er(α, τ)) where ei(α, τ) denotes the i-th elementary symmetric func-
tion of {α, τ(α), . . . , τr−1(α)} for every i ∈ {1, . . . , r}.

As is well known, there exist infinitely many (r−1)-tuples of integers (a2, . . . , ar)
such that

e1(α, τ) + a2e2(α, τ) + · · ·+ arer(α, τ)

is a primitive element of Q(e1(α, τ), . . . , er(α, τ))/Q. On the other hand, for any
given (r−1)–tuple of integers (a2, . . . , ar), e1(α, τ) +a2e2(α, τ) + · · ·+arer(α, τ) is
a primitive element of Q(α)〈τ〉 if and only if it has exactly n/r conjugates because
n
r = [Q(α)〈τ〉 : Q].

In order to compute the minimal polynomial of a primitive element already
determined, we can use the p-adic expression of the roots of f for a suitable prime
p (see [4]).

Definition 4. A series of polynomials

g0 = f, g1 = g, g2, . . . , gm

such that, for i = 1, . . . ,m, gi is a derived polynomial from gi−1 by some nontrivial
element in Z(Gal(gi−1)) and gm either has degree 1 or Z(Gal(gm)) is trivial will be
called a series of derived polynomials from f . When the degree of gm is 1, we will
say that the series is complete. We will refer to the polynomials g1 = g, g2, . . . , gm
as derived polynomials of f .

Proposition 7. Let g0 = f, g1, . . . , gm be a series of derived polynomials of f . If
Gal(f) is nilpotent, then the series is complete. When f is normal, the reciprocal
is also true: if f is normal and the series is complete, then Gal(f) is nilpotent.
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Proof. Since Gal(gm) is a quotient of Gal(f), when Gal(f) is nilpotent, either
Z(Gal(gm)) is not trivial or Gal(gm) is trivial and then the degree of gm is 1.
Let us assume now that f is normal and the degree of gm is 1. From Proposition 5,
Gal(gi) is of the form Gal(f)/Hi and Hi/Hi−1 is a cyclic subgroup of Z(Gal(gi−1))
for every i = 1, . . . ,m, with Hm = Gal(f). Then

1 = H0 E H1 E · · · E Hm−1 /Gal(f)

is a central series of Gal(f). �

There are nonnormal polynomials with a complete series of derived polynomials
whose Galois group is not nilpotent:

Example 6. f(x) = x6 + x4 − x3 − 2x2 + x + 1 is irreducible and Gal(f) = 6T 5
(see [13]) is not nilpotent. Since 6T 5 has order 18, f is not normal. However,

g0(x) = f = x6 + x4 − x3 − 2x2 + x+ 1,
g1(x) = x2 + 3,
g2(x) = x− 1

is a complete series of derived polynomials from f .

The previous result gives a method for deciding whether the Galois group of a
normal polynomial is nilpotent. However, two questions remain unsolved: how to
decide, in advance, whether a given polynomial is normal and how to decide the
nilpotency in the nonnormal case. The general method will be exposed in the next
paragraph.

4.2. Nilpotency of the Galois group of a polynomial. We will assume that
f is irreducible of degree n = pm1

1 · · · pmss where s,m1, . . . ,ms are positive integers
and p1, . . . , ps are distinct primes.

Proposition 8. If Gal(f) is nilpotent,

(a) p1, . . . , ps are the only prime divisors of the order of Gal(f) and there exists
at least one element τ ∈ Z(Gal(f)) of order pi for each i = 1, . . . , s,

(b) there exists a derived polynomial g̃i of f of degree pmii for each i = 1, . . . , s.

Proof. (a) It suffices to take into account that |Z(Gal(f))| divides n and the ele-
mentary properties of nilpotent groups.

(b) Let us fix i ∈ {1, . . . , s}. For each prime divisor pj of n different from pi,
there exists τj ∈ Z(Gal(f)) of order pj and a derived polynomial gj of degree n

pj

such that Gal(gj) is nilpotent. Applying the same procedure successively to gj , a
derived polynomial g̃i of degree pmii will be obtained. �

From this result, it is easy to see that the Galois group of the polynomial of degree
18 in Example 4 is not nilpotent. Following the steps described in the proof, we can
construct, if they exist, derived polynomials of f , g̃1, . . . , g̃s of degrees pm1

1 , . . . , pmss ,
respectively.
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Example 7. For the irreducible polynomial

f(x)=x72−23 x71+184 x70−225x69−5483x68+30704x67+13044x66−623096x65+1466262 x64

+5156167 x63−28692315 x62+637737 x61+268019636 x60−439552468 x59−1333892130 x58

+4760576310 x57+1919149440 x56−28087306812 x55+21785662978 x54+103327855886 x53

−193358366332 x52−199561023659 x51+848657247161 x50−166112223678 x49

−2236894567362 x48+2467200252462 x47+2901130319607 x46−8094285660644 x45

+2772836800425 x44+12579392127673 x43−22931462037981 x42+6244874681055 x41

+46979264837861 x40−85534578381569 x39+6834272402154 x38+177623721558930 x37

−247215610663730 x36+14513888378477 x35+405430878100266 x34−651681888729020 x33

+309037433848077 x32+682964083193431 x31−1465980110888206 x30+898472126091157 x29

+729409996703855 x28−1810845158613785 x27+1414800185812152 x26+107550799384398 x25

−1606918488180510 x24+1456064707707072 x23+403274703835174 x22−1357241529160791 x21

+110662000936722 x20+917810273926986 x19−144511480285596 x18−650632477508129 x17

+257719825346877 x16+251277847069086 x15−196748594221017 x14+22038660480818 x13

+39039097969879 x12−58349598149779 x11+27343290355593 x10+17816276262087 x9

−17573412515707 x8−741377168381 x7+4180989901176 x6−710370862789 x5

−373096550602 x4+115279398831 x3+8294164606 x2−5139464562 x+435549967

we have computed derived polynomials of degrees 8 and 9:

g̃1(x)=x8+9 x7+144x6+2500 x5+6328 x4−78627x3−263585x2+619550 x+2182813,

g̃2(x)=x9−58 x8+1126x7−7906 x6+5274 x5+91426 x4−39428x3−382650 x2−294609 x−27019.

If, for some i ∈ {1, . . . , s}, there does not exist any derived polynomial of degree
pmii , then Gal(f) cannot be nilpotent. Theorem 2 below states a reciprocal: if such
derived polynomials exist for every i ∈ {1, . . . , s} and they have nilpotent Galois
groups, then Gal(f) is nilpotent.

Theorem 2. For every i ∈ {1, . . . , s}, let g̃i be a derived polynomial of f of degree
pmii . Then

(a) Gal(g̃i) ≈ Gal(f)/Ni, with Ni a normal subgroup of Gal(f) of order
pk1

1 · · · p
ki−1
i−1 p

ki+1
i+1 · · · pkss where k1, . . . , ki−1, ki+1, . . . , ks are positive integers.

(b) Gal(f) can be embedded in Gal(g̃1)× · · · ×Gal(g̃s).
(c) Gal(f) is nilpotent if and only if Gal(g̃i) is nilpotent for every i = 1, . . . , s.

Moreover, if Gal(f) is nilpotent

Gal(f) ≈ Gal(g̃1)× · · · ×Gal(g̃s).

Proof. It is enough to prove (a). Then (b) and (c) follow directly.
Let f = g0, g1, g2, . . . , g̃i be an incomplete derived series such that, for every

j ∈ {1, . . . , i}, gj is derived from gj−1 by a central element of Gal(gj−1) whose
order is a prime. This prime must be distinct from pi since gi has degree pimi .

If p1 6= pi is the order of the central element τ which leads to obtain g1 from f ,
then Gal(g1) = Gal(f)/H1 where H1 is the normal subgroup of Gal(f) associated,
by the Galois correspondence, to the normal closure in F of Q(α)〈τ〉 over Q. Thus,
for every σ ∈ H1 and for every root αj of f , σ fixes the polynomial

(x− αj)(x− τ(αj)) · · · (x− τp1−1(αj))
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and there exists some integer kj such that σ(αj) = τkj (αj). Since τkj has order
either p1 or 1, we can conclude that the disjoint cycles of the permutation induced
by σ on the roots of f have length either p1 or 1. Therefore H1 is a p1-group.

If g2 has been obtained from g1 by an element in Z(Gal(f)/H1) of prime order
p2 6= pi, then Gal(g2) = (Gal(f)/H1)/(H2/H1) ≈ Gal(f)/H2 for some normal
subgroup H2 of Gal(f) containing H1. By the above reasoning, H2/H1 is a p2-
group and the order of H2 is of the form pa2

2 pa1
1 , for some positive integers a1, a2.

Following the same reasoning up to g̃i, we conclude the thesis. �

The problem of deciding the nilpotency of the Galois group of an irreducible
polynomial of degree n = pm1

1 · · · pmss is thus reduced to deciding the nilpotency of
s polynomials of degree pm1

1 , . . . , pmss . The following theorem decides the nilpotency
of the Galois group of an irreducible polynomial whose degree is a power of a prime.

Theorem 3. If f ∈ Z[x] is irreducible of degree pm, where m is a positive integer
and p a prime, and g0 = f, g1, . . . , gk is any derived series of f , then Gal(f) is
nilpotent if and only if the series is complete.

Proof. If Gal(f) is nilpotent, the series is complete by Proposition 7.
If the series is complete, for every i = 1, . . . , k, Gal(gi) is a quotient of Gal(f) by

some normal subgroup Hi. Since the degree of gk is 1, Gal(f) = Hk. The reasoning
used in the proof of Theorem 2 (a) shows now that Hk is a p-group. �

Example 8. Let f be the polynomial of degree 72 in Example 7, and let g̃1, g̃2 be
the derived polynomials of degrees 8 and 9 already computed. Since there exists a
complete series of derived polynomials of g̃1,

g0(x) = g̃1(x) = x8 + 9 x7 + 144 x6 + 2500 x5 + 6328 x4 − 78627 x3

−263585 x2 + 619550 x+ 2182813,
g1(x) = x4 − 9 x3 + 215 x2 − 1533 x+ 3193,
g2(x) = x2 + 9 x+ 237,
g3(x) = x− 9,

and a complete series of derived polynomials of g̃2,

g′0(x) = g̃2(x) = x9 − 58 x8 + 1126 x7 − 7906 x6 + 5274 x5 + 91426 x4

−39428 x3 − 382650 x2 − 294609 x− 27019,
g′1(x) = x3 + 58 x2 + 1091 x+ 6607,
g′2(x) = x− 58,

we can conclude that Gal(f) is nilpotent. Any of the existing methods deter-
mines quickly the Galois groups of g̃1 and g̃2. Using the Computer Algebra System
Magma, we have obtained that Gal(g̃1) = 8T 35 and Gal(g̃2) = 9T 17. From The-
orem 2, Gal(f) = 8T 35× 9T 17.

The reducible case. If the given polynomial f is reducible and f1, . . . , fr are all its
irreducible factors over Q, for every i ∈ {1, . . . , r}, Gal(fi) is a quotient of Gal(f)
and Gal(f) is a subgroup of Gal(f1) × · · · × Gal(fr). Thus, Gal(f) is nilpotent if
and only if Gal(fi) is nilpotent for every i = 1, . . . , r.
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5. Computing nilpotent Galois groups

Let f be an irreducible polynomial of degree n = pm1
1 · · · pmss such that Gal(f)

is nilpotent. By Theorem 2, Gal(f) =
∏s
i=1 Gal(g̃i) with g̃i as in Proposition 8. If

the degrees of the derived polynomials g̃i are small, several methods can be used to
compute their Galois groups. Our aim in this section is to give some results which
make possible the computation of these groups in case the degrees are too high.

Throughout this section we will be assuming that f ∈ Z[x] is a monic irreducible
polynomial of degree n = pm, m a positive integer, p a prime and that Gal(f) is a
p-group.

Let f = g0, g1, . . . , gm be a complete series of derived polynomials of f . For
every j = 1, . . . ,m, let us denote by τj ∈ Z(Gal(gj−1)) the element of order p such
that gj is a derived polynomial from gj−1 by τj . Then, the degree of gi is pm−i for
every i = 0, 1, . . . ,m. We denote by β0 any fixed root of f and by βj (j = 1, . . . ,m)
the primitive element of Q(βj−1)〈τj〉/Q which is a root of gj .

Among the polynomials in the series there exists at least one such that it is
normal and the expression of its roots as polynomials in a fixed one is known. Let
i ∈ {0, . . . ,m− 2} be the smallest index such that gi+1 satisfies both conditions. A
factorization of gi over Q(βi) can be obtained as follows:

Let βi,1, βi,2, . . . , βi,pm−i−1 be roots of gi such that βi,1 = βi and

βi,j 6∈
j−1⋃
l=1

{βi,l, τi+1(βi,l), . . . , τ
p−1
i+1 (βi,l)}, for every j = 2, . . . , pm−i−1.

It is clear that, for every j = 1, . . . , pm−i−1, the polynomial

hj(x) = (x− βi,j)(x− τi+1(βi,j)) · · · (x− τp−1
i+1 (βi,j)) ∈ Q(βi,j)[x],

belongs to Q(βi,j)〈τi+1〉[x].

Lemma 3. For every j = 1, . . . , pm−i−1,

(a) Q(βi,j)〈τi+1〉 = Q(F (βi,j)), where F ∈ Q[x] is a polynomial such that βi+1 =
F (βi).

(b) hj(x) ∈ Q(βi)[x].

Proof. (a) Let σ ∈ Gal(gi) be such that βi,j = σ(βi). Then Q(βi,j)〈τi+1〉 ⊇
Q(F (βi,j)) because

τi+1(F (βi,j)) = τi+1σ(F (βi)) = στi+1(F (βi)) = σ(F (βi)) = F (βi,j).

Let δ = a0 + a1βi,j + · · ·+ an−1β
n−1
i,j ∈ Q(βi,j)〈τi+1〉. Then

σ−1(δ) = a0 + a1βi + · · ·+ an−1β
n−1
i ∈ Q(βi)〈τi+1〉 = Q(F (βi))

and δ ∈ Q(F (σ(βi))) = Q(F (βi,j)). Thus, Q(βi,j)〈τi+1〉 ⊆ Q(F (βi,j)).
(b) F (βi,j) is clearly a conjugate root of F (βi) = βi+1. Since gi+1 is normal,

F (βi,j) ∈ Q(βi+1) ⊆ Q(βi). �
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Since

gi(x) =
pm−i−1∏
j=1

hj(x),

we have a factorization of gi in factors of degree p in Q(βi)[x], not necessarily
irreducible. To obtain the complete factorization of gi over Q(βi), it will be enough
to factorize every hj(βi, x). In fact, it is enough to factorize at most m − i − 1
polynomials hj .

Proposition 9. It is enough to factorize over Q(βi), at most m− i−1 polynomials
of the set {hj : 2 ≤ j ≤ pm−i−1} to either find an irreducible hj or to obtain the
expression of all roots of gi as polynomials in βi.

Proof. The roots of h1, β1, τi+1(β1), . . . , τi+1
p−1(β1) are already expressed as poly-

nomials in β1. If h2 is irreducible over Q(β1), we have finished. Else, [Q(βi,2, β1) :
Q(β1)] < p and, since Gal(f) is a p-group, βi,2 ∈ Q(βi). Thus, h2 splits over Q(β1)
and a polynomial F2 ∈ Q[x] such that βi,2 = F2(βi) is obtained. If σ2 ∈ Gal(f)
such that βi,2 = σ2(βi), then F2

k(βi) = σ2
k(βi) ∀k ∈ N.

Since the order of σ2 is a power of p, it should be F2
k(βi) 6= βi for all k ∈

{1, . . . , p− 1}. Thus, F2
k(βi) (k = 0, . . . , p− 1) are roots of p different polynomials

hj so that the expression as a polynomial in βi of every root of each one of them is
known.

If none of these elements is a root of h3 and h3 is irreducible over Q(βi), we
have finished. Otherwise, we have computed a polynomial F3 ∈ Q[x] such that
βi,3 = F3(βi). Now, the elements F3

l(F3
k(βi)) with l, k ∈ {0, . . . , p − 1} are roots

of p2 different polynomials hj .
Following this procedure for suitable polynomials hj , in at most m− i− 1 steps,

either we found an irreducible hj or we have expressed the roots of gi as polynomials
in βi. �

Once we have obtained the factorization of gi over Q(βi), two cases must be
considered:

(a) If gi is normal, we can repeat the procedure in order to obtain the factor-
ization of gi−1 over Q(βi−1). In case the given polynomial f is normal, by
applying the procedure successively, we will compute all the roots of f as
polynomials in a fixed root α and the action of Gal(f) over the roots of f
will be completely determined.

Example 9. For the polynomial f with

f(x)=x32+12x31+106x30+762x29+4501x28+23172x27+105726x26+429558x25

+1583950x24+5291262x23+16128592x22+45110268x21+115127237x20

+270291402x19+582395138x18+1138858482x17+2072373423x16

+3339356088x15+5104133120x14+6550655310x13+8709819533x12

+8087807202x11+10487671054x10+5838840108x9+11660348108x8

+850939482x7+12278527700x6+1253298582x5+21565514729x4

+2539603896x3+14646941278x2−19604530770x+14880828169,
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the following complete series of derived polynomials is obtained:

g0(x)=f(x),

g1(x)=x16−88x15+3592x14−89880x13+1534245x12−18798648x11

+169203094x10−1123693646x9+5434741275x8−18472069830x7

+40879975322x6−49002722446x5+13382022899x4

+13993156410x3+13450036750x2+22230868650x+6726610525,

g2(x)=x8+88x7+3388x6+74296x5+1012608x4+8760608x3+46885056x2

+141731200x+185178880,

g3(x)=x4−88x3+2932x2−43824x+248384,

g4(x)=x2+88x+2012,

g5(x)=x−88.

If β4 is a root of g4, the other is −88 − β4. We will construct the
polynomials hj in order to factorize g3 over Q(β3), taking into account
that g4 is a derived polynomial from g3 by a central element defined by

F (x) = − 1342
3 + 185

3 x− 11
4 x2 + 1

24 x
3

and that β4 = −β3 − F (β3).

h1(x)=x2+(− 188
3 β3+ 1342

3 + 11
4 β3

2− 1
24 β3

3)x− 31048
3 + 4136

3 β3− 121
2 β3

2+ 11
12 β3

3.

The polynomial h2, with its coefficients already expressed in Q(β3), is

h2(x)=x2+(− 1606
3 + 188

3 β3− 11
4 β3

2+ 1
24 β3

3)x+ 33808
3 − 4136

3 β3+ 121
2 β3

2− 11
12 β3

3.

It is obvious, by the definition of h1, that its roots in Q(α3) are β3 and
F (β3). By factorizing h2 over Q(β3), we obtain the other two roots of g3,
which is a normal polynomial:

1
24
β3

3 − 1342
3

+
185
3
β3 −

11
4
β3

2,
1474

3
− 185

3
β3 +

11
4
β3

2 − 1
24
β3

3.

Proceeding analogously, we compute the factorization of g2 over Q(β2).
It results in being normal. Repeating the procedure for g2 we notice that

h3(x)=x2+ x(− 179490164839105768452185675424697605839
185347178664986085100401643308566231921032820 β1

15 + · · ·
· · · + 854045242894993492140064641842903536835698212919

1056478918390420685072289366858827521949887074 )
+ 71242838066206222811864261243176861602767

10564789183904206850722893668588275219498870740 β1
15 + · · ·

· · ·− 237913066936491262315054409263679q10684892349922901
4225915673561682740289157467435310087799548296

is irreducible over Q(β1).

(b) If gi is not normal, there exists j ∈ {2, . . . , pm−i−1} such that hj does not
split over Q(βi). Then, we should have [Q(βi,j , βi) : Q(βi)] = p and hj
is irreducible over Q(βi). Since Q(βi) ⊂ Q(α) and βi,j 6∈ Q(α), βi,j is
algebraic of degree p over Q(α).

According to this remark, the extension Q(α, βi,j)/Q has degree pm+1.
If we construct a primitive element of Q(α, βi,j)/Q, we can apply to its
minimal polynomial f the procedure applied to f . If the order of Gal(f) is
pm+1, it will be computed by factorizing successively the derived polyno-
mials of f as described above. Otherwise, another element β will be found
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such that Q(α, βi,j , β) has degree pm+2 over Q. If |Gal(f)| = pm+M , the
algorithm will end after M steps.

Example 10. The polynomial f given by

x64−328x63+52880x62−5583316x61+434025006 x60−26476342816 x59+1319178102464 x58

−55172027907840 x57+1975474132701615 x56−61459358137894896 x55

+1680447375678738240 x54−40745258028613470296 x53+882355784953015567856 x52

−17163505100912929251840 x51+301264979553827236666810 x50

−4789002034108430073611012 x49+69137735239670011548314377 x48+ . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . −9260037844716710773725440191295122498545540503880 x3

+4991638593737595331295518768298177130709528859622 x2

−1616803360329159026514072447671092735965334919544 x

+399960888789264880213405327854257750094429927501

is the minimal polynomial of a primitive element ofQ(α, β1,3) over Q, where
α and β1,3 are, respectively, roots of f and h3 in Example 9. Thus, the
polynomial f of degree 32 has the same Galois group as f .

Repeating the described procedure for the polynomial f , we have been
able to obtain the 32 polynomials hj of degree 2 and to compute the 64
roots of f in Q(α), for any fixed root α of f .

6. Conclusions

We have presented an algorithm for deciding whether the Galois group of a given
polynomial f ∈ Q[x] is nilpotent, by computing nontrivial elements in Z(Gal(f)).
Since the computation of elements in the centre is fast in practice, the decision
procedure is quite efficient.

The problem of the determination of Gal(f), once it has been decided that it
is nilpotent, has been reduced, in case the degree of f is not a power of a prime,
to derived polynomials of smaller degree whose Galois groups are, in many cases,
computable in a reasonable time by the existing methods. When the degree of f is
a power of a prime p and is too high to apply them, we have proposed a method for
computing the Galois group, which is a p-group. The hardest part of this method
is the factorization of a certain number of polynomials of degree p (Proposition 9)
over a root field of the corresponding derived polynomial. However, the procedure
has allowed us to study the Galois group of many polynomials which cannot be
handled by other methods.
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Departamento de Matemáticas, Estad́ıstica y Computación, Facultad de Ciencias,

Universidad de Cantabria, 39005 Santander, Spain

E-mail address: gomezma@matesco.unican.es

http://www.ams.org/mathscinet-getitem?mr=91b:11146
http://www.ams.org/mathscinet-getitem?mr=83m:65025
http://www.ams.org/mathscinet-getitem?mr=91h:11156
http://www.ams.org/mathscinet-getitem?mr=2002e:12004
http://www.ams.org/mathscinet-getitem?mr=56:5506
http://www.ams.org/mathscinet-getitem?mr=86d:11102
http://www.ams.org/mathscinet-getitem?mr=29:3465
http://www.ams.org/mathscinet-getitem?mr=2000k:12004
http://www.ams.org/mathscinet-getitem?mr=56:15601
http://www.ams.org/mathscinet-getitem?mr=97e:11144

	1. Introduction
	2. Computation of the centre
	2.1. Polynomial representation of the central elements
	2.2. Bound on the needed number of primes
	2.3. Description of the algorithm

	3. Some shortcuts to accelerate the computation
	3.1. Degree of the irreducible factors modulo p
	3.2. Repetitions in the coefficients of the irreducible factors modulo p

	4. Deciding the nilpotency of Galois groups
	4.1. Derived polynomials and central series
	4.2. Nilpotency of the Galois group of a polynomial

	5. Computing nilpotent Galois groups
	6. Conclusions
	7. Acknowledgments
	References

