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A QUASI–MONTE CARLO SCHEME
FOR SMOLUCHOWSKI’S COAGULATION EQUATION

CHRISTIAN LÉCOT AND WOLFGANG WAGNER

Abstract. This paper analyzes a Monte Carlo algorithm for solving Smolu-
chowski’s coagulation equation. A finite number of particles approximates the
initial mass distribution. Time is discretized and random numbers are used
to move the particles according to the coagulation dynamics. Convergence is
proved when quasi-random numbers are utilized and if the particles are rela-
beled according to mass in every time step. The results of some numerical
experiments show that the error of the new algorithm is smaller than the error
of a standard Monte Carlo algorithm using pseudo-random numbers without
reordering the particles.

Introduction

Models of coalescence (i.e., coagulation, gelation, aggregation, agglomeration,
accretion, etc.) mainly stem from the work of Smoluchowski on coagulation pro-
cesses in colloids [15, 16]. Smoluchowski proposed the following infinite system of
differential equations for the evolution of the number N0c(i, t) of clusters of mass i
for i = 1, 2, 3 . . .:

(1)
∂c

∂t
(i, t) =

1
2

∑
1≤j<i

K(i− j, j)c(i− j, t)c(j, t) −
∑
j≥1

K(i, j)c(i, t)c(j, t).

Here N0 is the total number of clusters at time t = 0, so that
∑
i≥1 c(i, 0) = 1, and

K(i, j) is the coagulation kernel. Numerical solution of the Smoluchowski’s coag-
ulation equation is a difficult task for deterministic methods, so several stochastic
algorithms have been proposed [8, 3, 17, 7, 11, 14, 2, 4]. The Monte Carlo (MC)
schemes take a system of test particles which interact and form clusters according
to the dynamics described in (1). Random numbers are used to find out which clus-
ters interact and to determine the size of the new clusters. Despite the versatility
of MC methods, a drawback is their slow convergence. An approach to accelera-
tion is to change the choice of random numbers used. Quasi–Monte Carlo (QMC)
methods use quasi-random numbers instead of pseudo-random numbers and can
achieve better convergence in certain cases [5].

The efficiency of a QMC method depends on the quality of the quasi-random
points that are used. These points should form a low-discrepancy point set. We
recall from [13] some basic notations and concepts. If s ≥ 1 is a fixed dimension,

Received by the editor November 11, 2002 and, in revised form, March 14, 2003.
2000 Mathematics Subject Classification. Primary 65C05; Secondary 70-08, 82C80.
Computation was supported by the Centre Grenoblois de Calcul Vectoriel du Commissariat à
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then Is := [0, 1)s is the s-dimensional half-open unit cube and λs denotes the s-
dimensional Lebesgue measure. For a point set X consisting of x0, . . . ,xN−1 ∈ Is
and for a Lebesgue-measurable subset Q of Is we define the local discrepancy by

DN (Q,X) :=
1
N

∑
0≤p<N

cQ(xp)− λs(Q),

where cQ is the characteristic function of Q. The discrepancy of the point set X is
defined by

DN (X) := sup
Q
|DN (Q,X)|,

the supremum being taken over all subintervals of Is. The star discrepancy of X is

D?
N (X) := sup

Q?
|DN (Q?, X)|,

where Q? runs through all subintervals of Is with one vertex at the origin. The
idea of (t,m, s)-nets is to consider point sets X for which DN (Q,X) = 0 for a large
family of intervals Q. Such point sets should have a small discrepancy. For an
integer b ≥ 2, an interval of the form

s∏
r=1

[
ar
bdr

,
ar + 1
bdr

)
,

with integers dr ≥ 0 and 0 ≤ ar < bdr for 1 ≤ r ≤ s, is called an elementary
interval in base b. If 0 ≤ t ≤ m are integers, a (t,m, s)-net in base b is a point
set X consisting of bm points in Is such that DN(Q,X) = 0 for every elementary
interval Q in base b with measure λs(Q) = bt−m. The sequence analog of this
concept is as follows. If b ≥ 2 and t ≥ 0 are integers, a sequence x0,x1, . . . of points
in Is is a (t, s)-sequence in base b if, for all integers n ≥ 0 and m > t, the points
xp with nbm ≤ p < (n+ 1)bm form a (t,m, s)-net in base b. The following result is
shown in [12].

Lemma 1. Let X be a (t,m, s)-net in base b. For any elementary interval Q′ ⊂
Is−1 in base b and for any xs ∈ Ī,

|Dbm(Q′ × [0, xs), X)| ≤ bt−m.

The effectiveness of QMC methods has limitations. First, while they are valid
for integration problems, they may not be directly applicable to simulations, due
to the correlations between the points of a quasi-random sequence. This problem
can be overcome by writing the desired result as an integral. This leads to a second
limitation: the improved accuracy of QMC methods may be lost for problems in
which the integrand is not smooth. It is necessary to take special measures to make
optimal use of the greater uniformity associated with quasi-random sequences. This
is achieved here through the additional step of reordering the particles at each time
step. The aim of the paper is to construct and investigate a QMC method for
Smoluchowski’s coagulation equation. In Section 1 we present a particle scheme
using quasi-random numbers for the solution of the equation. In Section 2 we prove
the convergence of the method, as the number of simulated particles increases. In
Section 3 we carry out numerical experiments based on a comparison of the method
with a standard MC scheme.
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1. The algorithm

We assume that the coagulation kernel K(i, j) is nonnegative and symmetric

K(i, j) ≥ 0 and K(i, j) = K(j, i).

Multiplying (1) by i and summing over all i, indicates that mass is conserved

(2)
d

dt

∑
i≥1

ic(i, t) = 0,

provided an interchange of summation order on the right is valid. We refer to [9]
for a study of existence, unicity, and conservation of mass of solutions. Rather than
approximating the density of clusters c(i, t), one can approximate the mass density
f(i, t) := ic(i, t), which satisfies the following equation for i = 1, 2, 3 . . .:

(3)
∂f

∂t
(i, t) =

∑
1≤j<i

K̃(i− j, j)f(i− j, t)f(j, t)−
∑
j≥1

K̃(i, j)f(i, t)f(j, t),

where

K̃(i, j) :=
K(i, j)
j

.

Equation (3) has been used in [2] for constructing a stochastic algorithm for Smolu-
chowski’s coagulation equation. If E ⊂ N? := {1, 2, 3, . . .}, let σE denote the se-
quence

σE(i) =

{
1 if i ∈ E,
0 otherwise.

Equation (3) can be given the form

(4)
d

dt

∑
i≥1

f(i, t)σE(i) =
∑
i,j≥1

K̃(i, j)f(i, t)f(j, t) (σE(i + j)− σE(i))

for any E ⊂ N?. We denote by f0 the initial data. We may assume

(5)
∑
i≥1

f0(i) = 1.

We choose integers b ≥ 2,m ≥ 1 and we put N := bm. We use a low-discrepancy
sequence X = {x0,x1, . . .} ⊂ I3 for QMC approximation. We assume that X is a
(t, 3)-sequence in base b for some t ≥ 0. If Xn := {xp : nN ≤ p < (n+ 1)N} and if
π′ denotes the projection defined by π′(x1, x2, x3) = (x1, x2), we assume that π′Xn

is a (0,m, 2)-net in base b. We write δj for the unit mass at j

δj(i) =

{
1 if i = j,

0 otherwise.

A sample J0 of N particles j0,0, . . . , jN−1,0 is chosen such that

f0 :=
1
N

∑
0≤k<N

δjk,0 ≈ f0.

It means that the point set J0 has a small star f0-discrepancy (see below); e.g., if
we assume a monodisperse initial condition

f0(1) = 1, f0(2) = f0(3) = · · · = 0,
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we set
j0,0 = · · · = jN−1,0 = 1.

We assume that the kernel K̃(i, j) is bounded and we put

K̃∗ := sup
i,j≥1

K̃(i, j).

We choose a time step ∆t such that ∆tK̃∗ < 1. Computations are still possible for
unbounded kernels; see Section 3. We set tn := n∆t and fn(i) := f(i, tn). If we
assume that we have a point set Jn of N particles j0,n, . . . , jN−1,n such that

(6) fn :=
1
N

∑
0≤k<N

δjk,n ≈ fn,

we compute fn+1 in three steps.
• Relabeling the particles.

j0,n ≤ j1,n ≤ · · · ≤ jN−1,n.

This ensures convergence of the scheme; see Lemma 5.
• Coagulation. We define gn+1 by

1
∆t

(∑
i≥1

gn+1(i)σE(i)−
∑
i≥1

fn(i)σE(i)
)

=
∑
i,j≥1

K̃(i, j)fn(i)fn(j) (σE(i+ j)− σE(i)) , for any E ⊂ N?,

and so∑
i≥1

gn+1(i)σE(i) =
1
N

∑
0≤k<N

(
1− ∆t

N

∑
0≤`<N

K̃(jk,n, j`,n)
)
σE(jk,n)

+
∆t
N2

∑
0≤k,`<N

K̃(jk,n, j`,n)σE(jk,n + j`,n).
(7)

• QMC integration. Let ck,` be the characteristic function of

Rk,` :=
[
k

N
,
k + 1
N

)
×
[
`

N
,
`+ 1
N

)
and χnk,` denote the characteristic function of Ink,` :=

[
0,∆tK̃(jk,n, j`,n)

)
.

For any E ⊂ N?, define

(8) Cn+1
E (x) :=

∑
0≤k,`<N

ck,`(x1, x2)
((

1− χnk,`(x3)
)
σE(jk,n)

+ χnk,`(x3)σE(jk,n + j`,n)
)
, x ∈ I3,

then

(9)
∑
i≥1

gn+1(i)σE(i) =
∫
I3
Cn+1
E (x)dx.

We obtain fn+1 by

∀E ⊂ N?
∑
i≥1

fn+1(i)σE(i) =
1
N

∑
nN≤p<(n+1)N

Cn+1
E (xp).
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The last steps of the algorithm may be summarized as follows. Let us denote

k(x) := bNxc, x ∈ I.
Then for nN ≤ p < (n+ 1)N ,

jk(xp,1),n+1 =

{
jk(xp,1),n + jk(xp,2),n if xp,3 < ∆tK̃

(
jk(xp,1),n, jk(xp,2),n

)
,

jk(xp,1),n otherwise.

2. Convergence analysis

We now establish a convergence result for the QMC algorithm. As is usual
with particle method error estimates, convergence is shown in a weak sense. First
we need to adapt the basic concepts of QMC methods to the present study. Let
s ≥ 1 be a fixed dimension. A sequence consists of an s-dimensional array of terms
u(i) ∈ R, where i ∈ N?s. Let g be a sequence of nonnegative terms such that

(10)
∑

i∈N?s
g(i) = 1.

For a point set J consisting of j0, . . . , jN−1 ∈ N?s and for an arbitrary set E ⊂ N?s
we define the local g-discrepancy by

DN (E, J ; g) :=
1
N

∑
0≤k<N

σE(jk)−
∑
i∈E

g(i),

where σE denotes the sequence

σE(i) =

{
1 if i ∈ E,
0 otherwise.

The star g-discrepancy of the point set J is defined by

D?
N (J ; g) := sup

h∈N?s
|DN(Eh, J ; g)|,

where

Eh :=

{
∅ if hr = 1 for some r, 1 ≤ r ≤ s,∏s
r=1{1, 2, . . . , hr − 1} otherwise.

For a sequence u and for j, j′ ∈ N?s, let T rj u be the array defined by

T rj u(i) := u(i1, . . . , ir−1, jr, ir+1, . . . , is),

and ∆r
j,j′u := T rj′u− T rj u. If R = {q1, . . . , qr} ⊂ S := {1, . . . s}, we set

TRj u := T q1j · · ·T
qr
j u and ∆R

j,j′u := ∆q1
j,j′ · · ·∆

qr
j,j′u.

We put Tju := T Sj u and ∆j,j′u := ∆S
j,j′u. For j = (j1, . . . , js), we denote j+ :=

(j1 + 1, . . . , js + 1) and ∆ju := ∆j,j+u. The variation of u is defined by

V s(u) :=
∑

j∈N?s
|∆ju|,

and the lower variation of u is the sum

V∗(u) :=
s∑
r=1

∑
R⊂S

#R=r

V r(TR
c

1 u),
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where Rc denotes the complement of R in S. If u may be extended to infinity, we
define the upper variation of u as

V ∗(u) :=
s∑
r=1

∑
R⊂S

#R=r

V r(TR
c

∞ u).

One can prove that if u has a bounded lower variation, then u may be extended
to infinity and has a bounded upper variation. The next lemma is a version of the
classical Koksma-Hlawka inequality. The proof follows the general outline of the
proof of the Koksma-Hlawka inequality given by Zaremba [18].

Lemma 2. Suppose g is a nonnegative sequence such that
∑

i∈N?s g(i) = 1. If
u is a sequence of bounded lower variation and if J is a point set consisting of
j0, . . . , jN−1 ∈ N?s, then∣∣∣∣ 1

N

∑
0≤k<N

u(jk)−
∑

i∈N?s
u(i)g(i)

∣∣∣∣ ≤ V ∗(u)D?
N (J ; g).

The following lemma is an analogue of a result previously given in the continuous
case [10] and can be proved with similar arguments.

Lemma 3. Let u be a sequence of bounded lower variation. For 1 ≤ r ≤ s, let pr
and 1 ≤ k0,r ≤ k1,r ≤ · · · ≤ kpr ,r be integers. For n = (n1, . . . , ns) with integers
nr, 0 ≤ nr < pr, let

Fn := {kn1,1, . . . , kn1+1,1} × · · · × {kns,s, . . . , kns+1,s}
and in, jn ∈ Fn. Then∑

n

|u(jn)− u(in)| ≤ V∗(u)
s∏
r=1

pr

s∑
r=1

1
pr
.

We now go back to the convergence analysis of the QMC algorithm. We define
the error at time tn as the star fn-discrepancy of the point set Jn. For h ∈ N? let
σh denote the sequence σEh . We introduce the truncation error

εnh :=
1

∆t

∑
i≥1

(fn+1(i)− fn(i))σh(i)−
∑
i,j≥1

K̃(i, j)fn(i)fn(j) (σh(i + j)− σh(i)) ,

the additional error

enh :=
∑
i,j≥1

K̃(i, j)fn(i)fn(j) (σh(i+ j)− σh(i))

−
∑
i,j≥1

K̃(i, j)fn(i)fn(j) (σh(i+ j)− σh(i)) ,

and the integration error

dnh :=
1
N

∑
nN≤p<(n+1)N

Cn+1
h (xp)−

∫
I3
Cn+1
h (x)dx,

where Cn+1
h := Cn+1

Eh
; see (8). We have the recurrence formula

(11) DN (Eh, Jn+1; fn+1) = DN (Eh, Jn; fn)−∆tεnh + ∆tenh + dnh .
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The truncation error is bounded as follows:

(12) |εnh| ≤
∑
i≥1

∫ tn+1

tn

∣∣∣∣∂2f

∂t2
(i, t)

∣∣∣∣ dt.
Next we have an upper bound for the additional error.

Lemma 4. If for every i, j ≥ 1 the sequences K̃(i, ·) and K̃(·, j) are of bounded
variation, then

|enh| ≤
(

sup
i≥1

V (K̃(i, ·)) + sup
j≥1

V (K̃(·, j)) + 3K̃∗
)
D?
N (Jn; fn).

Proof. Let uh denote the array

uh(i, j) := K̃(i, j) (σh(i+ j)− σh(i)) , i, j ∈ N?.
Then

enh =
1
N

∑
0≤k<N

(
1
N

∑
0≤`<N

uh(jk,n, j`,n)−
∑
j≥1

uh(jk,n, j)fn(j)
)

+
∑
j≥1

(
1
N

∑
0≤k<N

uh(jk,n, j)−
∑
i≥1

uh(i, j)fn(i)
)
fn(j),

and the result follows from Lemma 2. �

Finally, we need to bound the integration error.

Lemma 5. If the sequence K̃ is of bounded lower variation, then

|dnh | ≤
(

2 + ∆t
(
4V∗(K̃) + 3K̃∗

)) 1
bb(m−t)/3c

.

Proof. The integration error may be written as follows.

dnh = DN (Qnh,0, X
n)−DN (Qnh,1, X

n) +DN (Qnh,2, X
n),

where

Qnh,0 :=
⋃

0≤k,`<N
jk,n<h

Rk,` × I,

Qnh,1 :=
⋃

0≤k,`<N
jk,n<h

Rk,` × Ink,` and Qnh,2 :=
⋃

0≤k,`<N
jk,n+j`,n<h

Rk,` × Ink,`.

We have
DN (Qnh,0, X

n) = DN (π′Qnh,0, π
′Xn) = 0,

since π′Qnh,0 is a disjoint union of elementary intervals in base b, with measure b−m

and π′Xn is a (0,m, 2)-net in base b. Let κnh,α for α = 1, 2 denote the functions

κnh,1(x1, x2) :=
∑

0≤k,`<N
ck,`(x1, x2)K̃(jk,n, j`,n)σh(jk,n),

κnh,2(x1, x2) :=
∑

0≤k,`<N
ck,`(x1, x2)K̃(jk,n, j`,n)σh(jk,n + j`,n),
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for (x1, x2) ∈ I2. Then,

Qnh,α =
{
x ∈ I3 : x3 < ∆tκnh,α(x1, x2)

}
, for α = 1, 2.

Let d1, d2 be integers such that d1 + d2 ≤ m − t. For a = (a1, a2) with integers
0 ≤ a1 < bd1, 0 ≤ a2 < bd2 we put

Ra :=
[
a1

bd1
,
a1 + 1
bd1

)
×
[
a2

bd2
,
a2 + 1
bd2

)
,

and, for α = 1, 2,

Qn
h,α

:=
⋃
a

Ra ×
[
0,∆t inf

Ra

κnh,α

)
, Q

n

h,α :=
⋃
a

Ra ×
[
0,∆t sup

Ra

κnh,α

)
,

∂Qnh,α =
⋃
a

Ra ×
[
∆t inf

Ra

κnh,α,∆t sup
Ra

κnh,α

]
,

where the unions are over all a = (a1, a2) with 0 ≤ a1 < bd1 , 0 ≤ a2 < bd2. We have

Qn
h,α
⊂ Qnh,α ⊂ Q

n

h,α and Q
n

h,α \Qnh,α ⊂ ∂Q
n
h,α,

hence

DN (Qn
h,α
, Xn)− λ3(∂Qnh,α) ≤ DN (Qnh,α, X

n) ≤ DN(Q
n

h,α, X
n) + λ3(∂Qnh,α).

By Lemma 1 it follows that∣∣DN (Qn
h,α
, Xn)

∣∣ ≤ bd1+d2+t−m and
∣∣DN (Q

n

h,α, X
n)
∣∣ ≤ bd1+d2+t−m.

Besides,

λ3(∂Qnh,α) =
∆t

bd1+d2

∑
a

(
sup
Ra

κnh,α − inf
Ra

κnh,α

)
.

Let uh,α for α = 1, 2 denote the arrays

uh,1(i, j) := K̃(i, j)σh(i), uh,2(i, j) := K̃(i, j)σh(i + j), i, j ∈ N?,
so that, for α = 1, 2,

κnh,α(x1, x2) = uh,α(jk(x1),n, jk(x2),n).

Let Fna be the point set

Fna := {ja1bm−d1 ,n, . . . , j(a1+1)bm−d1−1,n} × {ja2bm−d2 ,n, . . . , j(a2+1)bm−d2−1,n}.
Since the particles are labeled according to mass,

(x1, x2) ∈ Ra ⇒ (jk(x1),n, jk(x2),n) ∈ Fna ,
and consequently

sup
Ra

κnh,α − inf
Ra

κnh,α ≤ max
Fna

uh,α −min
Fna

uh,α.

Applications of Lemma 3 yield∑
a

(
max
Fna

uh,1 −min
Fna

uh,1

)
≤ V∗(K̃)

(
bd1 + bd2

)
+ K̃∗bd2 ,∑

a

(
max
Fna

uh,2 −min
Fna

uh,2

)
≤ V∗(K̃)

(
bd1 + bd2

)
+ K̃∗

(
bd1 + bd2 − 1

)
.

By choosing d1 = d2 = b(m− t)/3c, we obtain the desired result. �
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We can combine the previous bounds to derive an upper bound for the error at
time tn.

Proposition. If the sequence K̃ is of bounded lower variation, then

D?
N (Jn; fn) ≤ ectnD?

N (J0; f0) + ∆t
∑
i≥1

∫ tn

0

ec(tn−t)
∣∣∣∣∂2f

∂t2
(i, t)

∣∣∣∣ dt
+
(

4V∗(K̃) + 3K̃∗ +
2

∆t

) ectn

cbb(m−t)/3c
,

where

c := sup
i≥1

V (K̃(i, ·)) + sup
j≥1

V (K̃(·, j)) + 3K̃∗.

Proof. The result follows from recurrence formula (11), used in conjunction with
inequality (12) and the bounds in Lemmas 4 and 5. �

Remark. The proposition indicates a convergence order of O(1/N1/3), which is
worse than the O(1/N1/2) of MC schemes. The examples below show a QMC
method’s convergence rate of O(1/N2/3) which is better than the random con-
vergence. In addition the upper bound in the proposition grows linearly with the
number of time steps, but this growth is not observed in computational experiments.

3. Numerical examples

The purpose of this section is to numerically validate the QMC algorithm de-
scribed above. In our experiments, the number base b is taken to be 3 and the
low-discrepancy sequence X is a (0, 3)-sequence in base 3 constructed by Faure [6].
It has long been recognized that three particular kernels K(i, j) are mathematically
tractable [1]: for a monodisperse initial configuration f0 = δ1, explicit solutions of
Smoluchowski’s coagulation equation are available. In the following we restrict our
consideration to the kernels K(i, j) = 1 and K(i, j) = i + j (note that the latter
does not satisfy the hypothesis of the proposition). In both cases we can compute
the error D?

N (Jn; fn) of the algorithm and we can compare it with the error given
by the Monte Carlo scheme proposed in [2]. Assuming that the methods produce
approximately O(1/N q) +O((∆t)r) errors, one can estimate the exponents q and
r from plots of the error versus N or ∆t. If

C(t) :=
∑
i≥1

c(i, t) =
∑
i≥1

f(i, t)
i

,

then N0C(t) is the total number of clusters at time t. At time tn, C(tn) is approx-
imated according to (6) as

C(tn) ≈ 1
N

∑
0≤k<N

1
jk,n

.

We can study the accuracy of this approximation.
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Figure 1. K(i, j) = 1. MC (left) vs. QMC simulations (right)
for P = 100, 200, 400, 800, 1, 600, 3, 200, and 6, 400 time steps.
Thick lines correspond to small time steps.

3.1. K(i, j) = 1. In this case, the exact solution of (3) with a monodisperse initial
condition is

(13) f(i, t) =
4i

(t+ 2)2

(
t

t+ 2

)i−1

.

We compute the solution up to time t = 1.0 with N particles and P time steps. The
numerical parameter N varies between 34 and 313, and P varies between 1 × 100
and 26 × 100. In order to reduce scatter, the error is averaged as

DN,P :=
1

100

100∑
m=1

D?
N (Jmp; fmp),

where p = P/100. Figure 1 is a plot of the error DN,P as a function of N on a
log-log scale. We see that the QMC method achieves a better rate of convergence
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Figure 2. K(i, j) = 1. Left: linear fits to the error as a function
of N for P = 6, 400 time steps. Comparison of MC (dashed) and
QMC (solid) simulations. Right: linear fit to the error as a function
of P for QMC simulations with N = 313 particles.



A QUASI–MONTE CARLO SCHEME FOR SMOLUCHOWSKI’S EQUATION 1963

6 8 10 12
Log3 N

-10

-8

-6

-4

-2

Log3 EN,P

6 8 10 12
Log3 N

-10

-8

-6

-4

-2

Log3 EN,P

Figure 3. K(i, j) = 1. MC (left) vs. QMC simulations (right) for
P = 1, 000, 2, 000, 4, 000, 8, 000, 16, 000, and 32, 000 time steps.
Thick lines correspond to small time steps.

of the error to zero with increase of N ; this more rapid convergence is only tangible
for small ∆t.

Next we choose a time step small enough so that time discretization error is
insignificant relative to the Monte Carlo error. The results are displayed in Figure
2-left. The best (in the sense of least squares) straight line fit to the log-log plot of
the data gives for P = 6, 400:

(14) DN,P (MC) ≈ 0.38
N0.51

and DN,P (QMC) ≈ 0.30
N0.67

.

If we choose a large number of particles, the quasi–Monte Carlo error is negligible
relative to time discretization error. So we can estimate the exponent r by a linear
fit to plots of logDN,P versus logP . The results are shown in Figure 2-right: for
N = 313 one obtains

(15) DN,P (QMC) ≈ 0.15 · (∆t)0.99.

In this case one has

C(t) =
2

t+ 2
.

We compute the solution up to time t = 10.0 with N particles and P time steps.
Let CN,P (tn) denote the approximation of C(tn) for 0 < n ≤ P . Here N varies
between 34 and 312, and P varies between 1×1, 000 and 25×1, 000. Figure 3 shows
the curves for the discrete L1 norm

EN,P :=
1

100

100∑
m=1

|C(tmp)− CN,P (tmp)|.

We see that QMC outperforms standard MC for this example.

3.2. K(i, j) = i + j. Here the exact solution of (3) with a monodisperse initial
condition is

(16) f(i, t) =
ii

i!
(1 − e−t)i−1e−i(1−e−t)−t.
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Figure 4. K(i, j) = i+ j. MC (left) vs. QMC simulations (right)
with P = 200, 400, 800, 1, 600, 3, 200, 6, 400, and 12, 800 time
steps. Thick lines correspond to small time steps.

The solution is computed up to time t = 1.0 with N particles and P time steps. The
number N varies between 34 and 313, and P varies between 2× 100 and 27 × 100.
The error is averaged as in the previous model problem. The results are similar to
those for the first example: we see in Figure 4 that the QMC method is superior
to the MC scheme.

The gain in the rate of convergence q is illustrated in Figure 5-left. As in the
previous example, if the time step size is chosen small enough, the log-log scale
allows the plot of an error of the form c/N q to appear as a straight line with slope
−q: for P = 12, 800, one has

(17) DN,P (MC) ≈ 0.46
N0.48

and DN,P (QMC) ≈ 0.60
N0.68

.
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Figure 5. K(i, j) = i + j. Left: linear fits to the error as a
function of N for P = 12, 800 time steps. Comparison of MC
(dashed) and QMC (solid) simulations. Right: linear fit to the
error as a function of P for QMC simulations with N = 313 parti-
cles.
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Figure 6. K(i, j) = i+ j. MC (left) vs. QMC simulations (right)
with P = 3, 200, 6, 400, 12, 800, and 25, 600 time steps. Thick lines
correspond to small time steps.

For a large number of particles (N = 313), the least-squares fit convergence rate of
the QMC method is estimated as

(18) DN,P (QMC) ≈ 0.16 · (∆t)0.86,

as shown in Figure 5-right.
In this case one obtains

C(t) = e−t.
We compute the solution up to time t = 2.0 with N particles and P time steps: N
varies between 34 and 313, and P varies between 25 × 100 and 28 × 100. In Figure
6 we graph the EN,P obtained with MC and QMC strategies: once again QMC
produces more accurate results than MC.

Conclusion

We have analyzed a procedure for solving Smoluchowski’s coagulation equation.
The approach is to use the Monte Carlo method to simulate the aggregation of
clusters. A sample of test particles is chosen and it is assumed that their behavior
is an indicator of the behavior of the medium as a whole. Time is discretized and
since we approximate the mass density, the scheme works with a fixed particle
number N . The standard Monte Carlo method can be quite slow, because its
convergence rate is only O(1/N1/2). We have considered an improvement to this
method by using quasi-random numbers in the implementation of the algorithm. To
make optimal use of the greater uniformity associated with quasi-random sequences
we reorder the particles at each time step. Convergence of the simulation as the
number N increases has been proved. We test our analysis by comparing the
QMC results with two known analytic solutions to the Smoluchowski equation. In
both comparisons, the QMC results have been found to reproduce the expected
distributions. Moreover, the numerical experiments show that the error in the
QMC simulations is significantly less than the corresponding error for a standard
MC simulation.
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