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NUMERICAL SCHEMES FOR THE SIMULATION
OF THE TWO-DIMENSIONAL SCHRÖDINGER EQUATION

USING NON-REFLECTING BOUNDARY CONDITIONS

XAVIER ANTOINE, CHRISTOPHE BESSE, AND VINCENT MOUYSSET

Abstract. This paper adresses the construction and study of a Crank-Nicol-
son-type discretization of the two-dimensional linear Schrödinger equation in
a bounded domain Ω with artificial boundary conditions set on the arbitrarily
shaped boundary of Ω. These conditions present the features of being differ-
ential in space and nonlocal in time since their definition involves some time
fractional operators. After having proved the well-posedness of the continuous
truncated initial boundary value problem, a semi-discrete Crank-Nicolson-type
scheme for the bounded problem is introduced and its stability is provided.
Next, the full discretization is realized by way of a standard finite-element
method to preserve the stability of the scheme. Some numerical simulations
are given to illustrate the effectiveness and flexibility of the method.

1. Introduction

This paper is devoted to the numerical computation of the solution u to the
two-dimensional linear Schrödinger equation with constant coefficients

(1.1)
{

(i∂t + ∆)u(x, t) = 0 ∀(x, t) ∈ R2 × R∗+,
u(x, 0) = u0(x) ∀x ∈ R2,

where u0 designates the initial datum, ∆ is the Laplace operator defined by ∆ =
∂2
x1

+ ∂2
x2

, and x = (x1, x2) stands for the space variable. This kind of equation has
many technological applications, e.g., in quantum mechanics (modeling of quan-
tum devices [5]), in electromagnetic wave propagation [21], in underwater acoustics
(paraxial approximations of the wave equation [28]) or in optics (Fresnel equation
[19]). When a non-linear perturbation is added, it can be used to model some
problems arising in plasmas or relativistic physics but also for beam propagation
in non-linear Kerr media [10]. For all these reasons, the construction of efficient
numerical schemes for solving (1.1) represents an important stake.

A standard discretization for system (1.1) is given by the well-known implicit
Crank-Nicolson scheme. To bound the computational domain, one usually imposes
a boundary condition of the Dirichlet or Neumann type. However, when the wave u
impinges the fictive boundary on which this boundary condition is set, some visible
spurious reflections occur [12] and are prejudicial to the numerical observation of
the propagation phenomenon. Then, one must consider a larger computational
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domain which can be difficult to handle numerically, especially for multidimensional
calculations. Therefore, a usual adopted solution consists in imposing a more sui-
table boundary condition on the fictive boundary which does not affect the solution
in the interior domain by not generating any undesirable parasistic reflected waves.
Numerous works have been devoted to this problem in the one-dimensional case.
The ideal boundary condition, also often called exact, may be simply designed by
the Laplace or Fourier transform [4], [6], [8], [9], [11], [14]. The resulting condition
is then non-local in time and involves a temporal fractional derivative operator of
order 1/2. The time discretization of this convolution operator is then very delicate
to achieve since an unsuitable discretization may destroy the underlying stability of
the interior Crank-Nicolson scheme [24] and lead to an ill-posed problem. Several
solutions have been considered to remedy to this problem [1], [4], [6], [7], [8], [11],
[13], [14], [26], [27].

Studies concerning the construction of the exact boundary condition in two di-
mensions have received less attention, and only a few developments have recently
been achieved. To the best of the authors’ knowledge, the analysis has been re-
stricted only to some canonical geometries such as the half-plane [12], [13], [20],
[23] or the circular (and cylindrical) cases [19], [17], [25] since the construction can
be developed (as in the one-dimensional case) by the classical Fourier or Laplace
analysis. Unfortunately, these conditions appear to be non-local both in space and
time and hence lead to a prohibitive computational cost even if it can be reduced
with the help of a fast evaluation algorithm (see, e.g., [23], [25]). A prospective
direction has been the design of some fully localized approximate boundary con-
ditions (also called artificial boundary conditions) involving only some differential
operators [1], [12], [13], [20]. Even if these conditions are efficient, they may gener-
ate some unphysical reflections at the boundary which can be due, for instance, to
the presence of singularities in the geometry of the domain (generally a rectangular
domain). Moreover, there are only a few results concerning the well-posedness of
the resulting truncated initial boundary value problems. We have recently proposed
in [3] an alternative approach to the ones cited above which allows us to construct
a hierarchy of artificial boundary conditions for an arbitrarily shaped boundary.
These conditions are non-local in time but present the interesting feature of being
local in space, this point being essential from a practical point of view since the ap-
proximation of the problem by a finite-difference or finite-element method leads to
the resolution of a linear system defined by a sparse matrix. Therefore, in Section 2
we propose a brief review of the main results stated in [3]. Next, we study the trun-
cated initial boundary value problem with one of the previous artificial boundary
conditions. The uniqueness of the solution is then proved as well as the decay of the
total energy associated to the system. In the third section, we investigate the well-
posedness of the semi-discrete problem discretized by the Crank-Nicolson scheme.
The fractional time operators arising in the definition of the artificial boundary
conditions are approximated by some quadrature formulas previously derived for
the one-dimensional case [4]. The essential result of this section is that the decay of
the energy is preserved at the semi-discrete level, implying hence the stability of the
whole scheme. The two main ingredients used for the proof are the microlocal high-
frequency character of the approximation of the artificial boundary conditions and
the use of the Z-transform. In a fourth section, we propose the full discretization
of the system by a conforming finite-element method providing hence the stability
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of the fully discrete problem. Several numerical simulations are performed next to
show the effectiveness of the approach.

2. Artificial boundary conditions for the Schrödinger equation

In this section, we briefly recall the main results concerning the construction of
some artificial boundary conditions for the two-dimensional Schrödinger equation
[3]. These conditions have been derived as some high-frequency microlocal approx-
imations of the exact Dirichlet-Neumann (DN) pseudodifferential operator. They
present the interesting feature of being differential in space. As a consequence, their
implementation in a finite-element solver does not modify the sparse structure of
the resulting linear system to solve. Moreover, they are non-local with respect to
the time variable and involve some fractional derivative and integral time operators.

2.1. Artificial boundary conditions for a general surface. Let Ω be a two-
dimensional regular bounded computational domain with a smooth boundary Γ.
We denote by n the outwardly directed unit normal vector to Ω. Let us designate
by s the anticlockwise directed curvilinear abscissa along Γ and κ(s) the curvature
at this point. We set ∆Γ = ∂2

s as being the Laplace-Beltrami operator. Concerning
the time operators, let ∂1/2

t and I1/2
t be, respectively, the fractional derivative and

integral operators of half-order [15] defined by

(2.1) ∂
1/2
t ψ(t) =

1√
π

d

dt

∫ t

0

ψ(w)√
t− w

dw, I
1/2
t ψ(t) =

1√
π

∫ t

0

ψ(w)√
t− w

dw.

These are non-local convolution operators. Under this notation and according to
[3], we have the following proposition.

Proposition 2.1. The Schrödinger equation with an artificial boundary condition
of DN type of order m/2, with m ∈ {1, . . . , 4}, is defined by the initial boundary
value problem

(2.2) (DNm/2)


(i∂t + ∆)u = 0, (x, t) ∈ Ω× R∗+,
∂nu+ Tm/2u = 0, (x, t) ∈ Γ× R∗+,
u (x, 0) = u0(x), x ∈ Ω,

where Tm/2, m ∈ {1, . . . , 4}, are pseudodifferential in time and differential in space
operators given by

T1/2u = e−iπ/4∂
1/2
t u, T1u = T1/2u+

κ

2
u, on Γ× R∗+,

T3/2u = T1u− eiπ/4
(
κ2

8
+

1
2

∆Γ

)
I

1/2
t u, on Γ× R∗+,

T2u = T3/2u+ i

(
κ3

8
+

1
2
∂s(κ∂s) +

∆Γκ

8

)
Itu, on Γ× R∗+.

These conditions (which are symmetrical in the sense of L2(Γ)) are constructed
in the high-frequency regime. This is the essential point of all the construction of
the above artificial boundary conditions developed in [3]. More precisely, let us
denote by ξ and τ the respective covariables of s and t by the Fourier transform.
Following [3], we introduce the M quasi-hyperbolic zone as the set H of points
(s, t, ξ, τ) defined by

(2.3) H =
{

(s, t, ξ, τ), τ + ξ2 < 0
}
.
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Figure 1. Time evolution of the error between the exact and ap-
proximate normal derivatives at the point (−10, 0) for a gaussian
distribution propagating in D(0, 10).

The pair M = (1, 2) makes precise the inhomogeneities present between the ξ and
τ dual variables. The construction of the artificial boundary conditions is then
developed under the (microlocal) assumption that the points (s, t, ξ, τ) are in H.
They characterize the propagative part of the wave u. Two other regions can be
also defined: the M quasi-elliptic region E given by

E =
{

(s, t, ξ, τ), τ + ξ2 > 0
}
,

which corresponds to the evanescent (exponentially decreasing) part of u and the
M quasi-glancing zone which is the complementary set G of E ∪H. This last region
is reduced to {0} if the wave u is not tangentially incident to Γ. At this point of the
paper, we always assume that the frequencies are defined in the quasi-hyperbolic
zone H. This assumption is not always valid but it is fulfilled if we assume that
the evanescent part of the wave has vanished and hence that E is also reduced to
{0}. This assumption is numerically illustrated in Figure 1 where we can see that
the exact operator is well approximated.

To show the efficiency of these conditions from a continuous point of view, we
can compute the theoretical error between the normal derivative trace of the exact
solution ∂nu|Γ to the initial boundary value problem (1.1) and the approximate
normal derivative trace computed by −Tm/2u. To this end, we plot (using a sym-
bolic computer algebra system) on Figure 1 the time evolution of ∂nu + Tm/2u in
logarithmic scale at the boundary point (−10, 0) for a gaussian initial datum

(2.4) u0(x) = e−5ix1−(x2
1+x2

2),

travelling in the (−1, 0) direction in the disk D(0, 10) (centred at the origin and
of radius R = 10). This point has been chosen since it generally represents a
realistic upper bound to the reflection observed at any other point, the wave being
of maximal magnitude at this point. In the ideal case (by considering instead the
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exact condition), this difference would vanish. Here, some small spurious reflections
occur. As can be observed, increasing the order of the artificial boundary condition
results in enhancement of the accuracy. This indicates that these conditions yield
very satisfactory approximations and, moreover, that the second-order artificial
boundary condition gives the most accurate results. This also confirms that the
high-frequency hypothesis is satisfied: the frequencies are defined in the M quasi-
hyperbolic zone H.

Using the pseudo-inverse operator of the DN operator, we can also derive some
artificial conditions of DN type. This may be useful for the development of dual
formulations for mixed finite element approximations (which are not investigated
here), those based on the DN operator being more suitable for a primal weak
formulation (the point of view adopted in Section 4). To illustrate this remark, we
only give the artificial boundary condition of the DN type of order 3/2:

(2.5) u+ (eiπ/4I1/2
t − iκ

2
It + e−3iπ/4

(
1
2

∆Γ +
3
8
κ2

)
I

3/2
t )∂nu = 0 on Γ× R∗+,

where Iαt is the fractional integral time operator of order α [15].

2.2. Study of the truncated initial boundary value problem. Let us con-
sider the Schrödinger equation set in the whole-space of propagation with an initial
condition

(2.6)
{

(i∂t + ∆)u = 0, (x, t) ∈ R2 × R∗+,
u(x, 0) = u0(x), ∀x ∈ R2.

For reasons linked to the numerical approximation by a finite-difference scheme in
the time domain, the study is restricted to the case of a bounded time interval [0, T ],
where the maximal time T is supposed to be given. A classical result then gives the
existence and uniqueness of the solution to the initial boundary value problem (2.6)
and the conservation with respect to the time of the associated energy in L2(R2)-
norm. Here, the space of square integrable functions L2(D) is equipped with the
norm ‖·‖0 if D = R2 or ‖·‖0,Ω if D = Ω. More precisely, the following result holds.

Proposition 2.2. If the initial datum satisfies u0 ∈ L2(R2), then the initial bound-
ary value problem (2.6) admits one and only one solution u ∈ C([0, T ], L2(R2)).
Furthermore, we have the time conservation of the total energy of the system

‖u(t)‖0 = ‖u0‖0 ∀t ∈ [0, T ] .

If u is restricted to Ω and if we assume that the initial datum u0 is compactly
supported in Ω, this equality becomes an inequality which yields the decay of the
energy on Ω. This property has to be preserved for the truncated initial boundary
value problem with an artificial boundary condition, this one being often called an
absorbing boundary condition. The result is embedded in the following proposition.

Proposition 2.3. Let us assume that the assumption of high frequency is satisfied
for the wave u and the fictive boundary Γ. If the initial datum satisfies u0 ∈ L2(Ω)
and if u is solution on [0, T ] to the initial boundary value problem (2.2), then u is
unique and is defined in C([0, T ], L2(Ω)). Moreover, the solution fulfils the inequality

(2.7) ‖u(t)‖0,Ω ≤ ‖u0‖0,Ω ∀t ∈ [0, T ] .
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Proof. The proof is only detailed for the second-order artificial boundary condition
(DN2), the involvement of any other condition of lower order being immediately
deduced from the following proof. Let us prove that the decay of the energy is
satisfied for any time T̃ ∈ ]0, T ]. Let ũ(., t) be the function equal to u(., t) for
t ∈ [0, T̃ ] and extended by 0 for R\[0, T̃ ]. Hence, in the distribution sense, we have
the equations

• ∂tũ(x, t) =
{
∂tu(x, t)− u(x, T̃ )δT̃ (t) + u(x, 0)δ0(t), t ∈ [0, T̃ ],
0, t ∈ ]−∞, 0[ ∪ ]T̃ ,+∞[,

• ∆ũ(x, t) =
{

∆u(x, t), t ∈ [0, T̃ ],
0, t ∈ ]−∞, 0[ ∪ ]T̃ ,+∞[,

• ∂nũ+ T2ũ = 0, (x, t) ∈ Γ× R.
Then system (2.2) may be rewritten as

(2.8)

 (i∂t + ∆)ũ(x, t) = −iu(x, T̃ )δT̃ (t) + iu(x, 0)δ0(t), (x, t) ∈ Ω× R,
∂nũ(x, t) + T2ũ(x, t) = 0, (x, t) ∈ Γ× R,
ũ (x, 0) = u0(x), x ∈ Ω.

Multiplying the Schrödinger equation appearing in (2.8) by −iũ(x, t) and next using
the Green formula on Ω, we get the weak variational equation∫

Ω

∂tũ(x, t)ũ(x, t)dΩ − i
∫

Γ

∂nũ(x, t)ũ(x, t)dΓ + i ‖∇ũ(t)‖20,Ω

= −
∫

Ω

u(x, T̃ )ũ(x, t)δT̃ (t)dΩ +
∫

Ω

u0(x)δ0(t)ũ(x, t)dΩ.

Taking the real part of the above equation, integrating according to the time t on
R, remarking that ũ(x, t = ±∞) = 0 and that ‖ũ(t)‖0,Ω = ‖u(t)‖0,Ω , ∀t ∈ [0, T̃ ],
we deduce the equality∥∥∥u(T̃ )

∥∥∥2

0,Ω
− ‖u0‖20,Ω = 2<

(
i

∫
Γ×R

∂nũ(x, t′)ũ(x, t′)dΓdt′
)

= −2<
(
i

∫
Γ×R

T2ũ(x, t′)ũ(x, t′)dΓdt′
)
.

Hence, if we prove that the quantity appearing in the right-hand side of the above
equation is negative, then we have proved the result of the proposition.

Let us consider the following splitting of the artificial boundary condition into
five terms:

2<
(
i

∫
Γ×R

T2ũ(x, t′)ũ(x, t′)dΓdt′
)

= <
(
i

∫
Γ×R

κ|ũ(x, t′)|2dΓdt′
)

+ <
(∫

Γ×R

κ2

4
e−iπ/4I

1/2
t′ ũ(x, t′)ũ(x, t′)dΓdt′

)
+ <

(∫
Γ×R

i
(

2e−iπ/4∂1/2
t′ ũ(x, t′)− eiπ/4∆ΓI

1/2
t′ ũ(x, t′)

)
ũ(x, t′)dΓdt′

)
−<

(∫
Γ×R

(
κ3

4
+

∆Γκ

4
)It′ ũ(x, t′)ũ(x, t′)dΓdt′

)
+ <

(∫
Γ×R

κIt′∂sũ(x, t′)∂sũ(x, t′)dΓdt′
)
.

(2.9)
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The first term of the right-hand side vanishes and the second one is treated using
the fact that the half-order integral operator is positive in the sense of operators
with memory [5], [4].

Lemma 2.4. Let f ∈ H−1/4(0, t), then function f̃ , extension of f by 0 on
]−∞, 0[ ∪ ]t,+∞[, satisfies the inequality

<
(∫

R
e−i

π
4 I

1/2
t′ f̃(t′)f̃(t′)dt′

)
≥ 0.

The determination of the sign of the third term is more delicate and is obtained
as follows. Let us recall that τ and ξ designate the respective covariables of t′ and
s by the Fourier transform and let ̂̃u be the Fourier transform of ũ. The Plancherel
theorem implies that we have

<
(∫

Γ×R
i
(

2e−iπ/4∂1/2
t′ ũ(x, t′)− eiπ/4∆ΓI

1/2
t′ ũ(x, t′)

)
ũ(x, t′)dΓdt′

)
=
∫
R×R
<
(
A(ξ, τ)

∣∣∣̂̃u(ξ, τ)
∣∣∣2) dξdτ,

where symbol A is defined by

A(ξ, τ) = i

(
2e−iπ/4

√
iτ + eiπ/4

ξ2

√
iτ

)
.

Let us study the sign of A with respect to ξ and τ . We recall that the approximation
is microlocally developed under the assumption that the frequencies belong to the
M quasi-hyperbolic zone τ + ξ2 < 0. Therefore, the following two cases appear:

• If τ > 0, we may write A as A(ξ, τ) = i
(
2
√
τ + ξ2/

√
τ
)
, and then we have

< (A(ξ, τ)) = 0.
• If τ < 0, then A(ξ, τ) = 2

√
−τ − ξ2/

√
−τ , but since the frequencies are

defined in the anisotropic cone H, we can write that
√
−τ − ξ2/

√
−τ > 0.

As a consequence, we obtain A(ξ, τ) >
√
−τ ≥ 0.

From this study, we can see that the third term of (2.9) is negative. Finally, the
last two terms vanish if we use the Plancherel theorem on the time variable. This
ends the proof concerning the decay of the energy (2.7). Uniqueness is simply a
consequence of this inequality. �

3. Stable semi-discrete Crank-Nicolson-type schemes

for the Schrödinger equation

with a high-frequency artificial boundary condition

A well-known, second-order and stable numerical scheme to approximate the
linear Schrödinger equation in the whole-space (2.6) is given by the implicit Crank-
Nicolson scheme. However, when the spatial domain is truncated by the introduc-
tion of a fictive boundary, an unsuitable discretization of the artificial boundary
condition (and, more specifically, of time-fractional operators) can lead to loss of
stability of the interior scheme (see, e.g., Mayfield [24]). For this reason, sev-
eral works have been devoted to solving this problem in the one-dimensional case
[4], [7], [8], [11], [14], [27]. We propose here an unconditionally stable time semi-
discretization of the truncated boundary value problem (2.2) for the Crank-Nicolson
scheme. It is based on some previous results developed in the one-dimensional case
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[4] using the principle of images [16] for the discretization of the fractional oper-
ators. After having recalled these results, we construct the semi-discrete scheme
associated to (2.2). To prove the stability of the proposed scheme, we make some
recalls on the Z-transform of a signal which will be often used in the rest of this
paper. Then we get the semi-discrete version of Proposition 2.3.

3.1. Preliminary results. In the rest of this paper if δt designates a time step,
tn = nδt stands for the n-th time step, where n ∈ N. We denote by un an ap-
proximate value of u at time tn. If we consider the one-dimensional Schrödinger
equation, one can prove that the exact and artificial boundary conditions are the
same. Then we have the representation of the normal derivative trace as a function
of the trace by the relation

(3.1) ∂nu = −e−iπ/4∂1/2
t u, (x, t) ∈ Γ× R∗+,

where Γ represents a point of R. If we consider the Schrödinger equation set on
an interval ]a, b[, associated to an initial condition u0 such that Supp(u0) ⊂ ]a, b[
and imposing the boundary condition (3.1) on Γ = {a, b}, it is possible to design
some suitable quadrature schemes for the operators I1/2

t and ∂
1/2
t which allow us

to preserve the stability of the semi-discrete Crank-Nicolson scheme [4], [14].

Proposition 3.1. If {fn}n∈N designates a sequence of complex values approximat-
ing {f(tn)}n∈N, then the approximations of ∂1/2

t f(tn) and I
1/2
t f(tn) are given by

the numerical quadrature formulas

(3.2) I
1/2
t f(tn) ≈

√
2δt
2

n∑
k=0

αkf
n−k

and

(3.3) ∂
1/2
t f(tn) ≈ 2√

2δt

n∑
k=0

βkf
n−k,

where (αk)k∈N and (βk)k∈N designate the sequences defined by{
(α0, α1, α2, α3, α4, α5, · · · ) = (1, 1,

1
2
,

1
2
,

3
8
,

3
8
, · · · ),

βk = (−1)kαk ∀k ≥ 0.

In fact, the above discretizations correspond to the fractional trapezoidal rules
given, for instance, in [22]. This is finally quite natural since the Crank-Nicolson
scheme is derived from the usual trapezoidal quadrature formula.

To have a more concise writing of the schemes developed below, we will often
use the discrete convolution ? of two complex sequences (fn)n∈N and (gn)n∈N:

(fn ? gn)n =
n∑
k=0

fkg
n−k.

The proof of some results will require the use of the Z-transform of a signal and
some of its standard properties [29]. Let us recall that if (fn)n∈N is a given sequence
of complex values, we denote by Z(fn) the complex-valued function defined for
|z| > R(Z(fn)) by

Z(fn)(z) =
+∞∑
n=0

fnz
−n,
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where R(Z(fn)) is the radius of convergence of the Legendre series Z(fn). Ac-
cording to this definition, one can prove the property of summation of two delayed
sequences

(3.4) Z(fn+1 ± fn)(z) = (z ± 1)Z(fn)(z)− zf0.

For two singular parts of the Legendre series Z(fn) and Z(gn) defined for |z| >
R(Z(fn)) and |z| > R(Z(gn)), respectively, we can introduce the Z-transform of
the discrete convolution fn ? gn. More precisely, if |z| > max(R(Z(fn)), R(Z(gn))),
then the formula

(3.5) Z(fn ? gn) = Z(fn)Z(gn)

holds. Finally, we recall the Plancherel theorem for the Z-transform.

Lemma 3.2. Let Z(fn) and Z(gn) be two Z-transforms defined for |z| > R(Z(fn))
and |z| > R(Z(gn)), respectively. Then, if R(Z(fn)) < 1 and R(Z(gn)) < 1, we
have the result

(3.6)
∞∑
n=0

fngn =
1

2π

∫ 2π

0

Z(fn)(eiϕ)Z(gn)(eiϕ)dϕ.

To these few properties about the Z-transform we add some useful results on
the coefficients αn and βn into the following lemma [4].

Lemma 3.3. Let (αn)n∈N and (βn)n∈N be the two sequences introduced in Proposi-
tion 3.1. Then, for all complex numbers z with |z| > 1, we have the two expressions

Z(αn)(z) = i

√
1 + z

1− z and Z(βn)(z) = −i
√

1− z
1 + z

.

Using these results, we can establish a quadrature formula for the integral It
which is consistent with the approximations of I1/2

t and ∂
1/2
t , given previously in

Proposition 3.1.

Proposition 3.4. For each integer n ∈ N, let fn be an approximation of f(tn). A
numerical quadrature formula for Itf(tn) is then given by

(3.7) Itf(tn) ≈ δt

2

n∑
k=0

δkf
n−k,

where (δk)k∈N is the sequence defined by (δ0, δ1, δ2, δ3, . . . ) = (1, 2, 2, 2, . . . ). More-
over, the Z-transform of the sequence (δk)k∈N is given by

Z(δn)(z) = −1 + z

1− z ,

for any complex number z fulfilling |z| > 1.

Remark 3.5. For an initial datum vanishing on Γ, the quadrature formula (3.7)
exactly coincides with the trapezoidal rule. This is in fact quite natural since the
Crank-Nicolson scheme is derived from this last quadrature rule. This is coher-
ent with formula (3.2) for the fractional integral operator. Furthermore, formulas
(3.2), (3.3), and (3.7) satisfy the analogous semi-discrete versions of continuous
operational relations of composition: ∂1/2

t It = It∂
1/2
t = I

1/2
t . By recursivity and

using the Z-transform, we can even deduce from a discrete point of view that we
also have Iα/2t = (I1/2

t )α, for α ∈ N. This relation can be useful for increasing the



1788 X. ANTOINE, C. BESSE, AND V. MOUYSSET

order of the DN artificial boundary conditions or for designing the semi-discrete
schemes associated to the DN artificial boundary conditions (2.5).

3.2. Stable semi-discrete Crank-Nicolson-type schemes. As mentioned
above, the interior scheme used is the Crank-Nicolson scheme. To define the semi-
discrete scheme, we introduce the following notation:

un+ 1
2 =

un+1 + un

2
, an+ 1

2 =
βn+1 ? u

n+1 + βn ? u
n

2
,

b
n+ 1

2
γ =

αn+1 ? ∂
γ
s u

n+1 + αn ? ∂
γ
s u

n

2
, γ ∈ {0, 1, 2},

and

d
n+ 1

2
γ =

δn+1 ? ∂
γ
s u

n+1 + δn ? ∂
γ
s u

n

2
, γ ∈ {0, 1}.

In the rest of this paper, we denote by SDm/2, m ∈ {1, ..., 4}, the time semi-discrete
version of the initial boundary value problem (2.2) given for n ∈ [0, N ] by

(SDm/2)


i
un+1 − un

δt
+ ∆un+ 1

2 = 0, x ∈ Ω,

∂nu
n+ 1

2 + T sdm/2u
n+ 1

2 = 0, x ∈ Γ,
u0 = u0, x ∈ Ω,

where N is the number of time intervals, Nδt = T . We have set T sdm/2 as the semi-
discrete approximation of the continuous artificial operator Tm/2 by the Crank-
Nicolson scheme. These operators are given by

T sd1/2u
n+ 1

2 = e−iπ/4
√

2
δt
an+ 1

2 , n ∈ [0, N ],

T sd1 un+ 1
2 = T sd1/2u

n+ 1
2 +

κ

2
un+ 1

2 , n ∈ [0, N ],

T sd3/2u
n+ 1

2 = T sd1 un+ 1
2 − eiπ/4

√
δt

2

(
κ2b

n+ 1
2

0

8
− b

n+ 1
2

2

2

)
, n ∈ [0, N ],

and

T sd2 un+ 1
2 = T sd3/2u

n+ 1
2 + i

δt

2

(
(
κ3

8
+

∆Γκ

8
)dn+ 1

2
0 +

1
2
∂s(κd

n+ 1
2

1 )
)
, n ∈ [0, N ].

Let us recall that the statement of the proof of Proposition 2.3 has been given
under the assumption of high frequency. Here, the stability result for the semi-
discrete scheme also uses a similar semi-discrete assumption. We suppose that the
frequencies are some elements of a semi-discrete M quasi-hyperbolic zone Hsd (see
Definition 3.7). We introduce this technical notation in the proof of the proposition
below.

Under the notation above, we have the analogous semi-discrete version of Propo-
sition 2.3 for the SDm/2 scheme, m ∈ {1, . . . , 4}.

Proposition 3.6. The schemes SDm/2, m ∈ {1, . . . , 4}, are unconditionally stable
under the semi-discrete high-frequency assumption (see Definition 3.7). Moreover,
if (un)n∈[0,N ] designates the solution to problem SDm/2, then it satisfies the energy
inequality ∥∥un+1

∥∥
0,Ω
≤
∥∥u0
∥∥

0,Ω
∀n ∈ [0, N − 1].
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Proof. The proof is only given for the scheme SD2, the other demonstrations being
immediately deduced from the following one. We consider the first equation of SD2

that we multiply by −iun+ 1
2 and next integrate on the finite-computational domain

Ω according to x. An application of the Green formula yields∫
Ω

∣∣un+1
∣∣2 − |un|2 + 2i=

(
un+1un

)
2δt

dΩ + i
∥∥∥∇un+ 1

2

∥∥∥2

0,Ω

= −eiπ/4
√

2
δt

∫
Γ

an+ 1
2un+ 1

2 dΓ − i
∫

Γ

κ

2

∣∣∣un+ 1
2

∣∣∣2 dΓ

+ ieiπ/4
√
δt

2
(
∫

Γ

κ2

8
b
n+ 1

2
0 un+ 1

2 dΓ−
∫

Γ

b
n+ 1

2
2

2
un+ 1

2 dΓ)

+
δt

2

∫
Γ

(
κ3

8
+

∆Γκ

8
)dn+ 1

2
0 un+ 1

2 dΓ− δt

4

∫
Γ

κd
n+ 1

2
1 ∂sun+ 1

2 dΓ.

Taking the real part of this last equation, summing on the indices n ∈ [0, N ] (for
the sake of brevity, N > 0 designates any integer lying in the time discretization
interval), and using a few algebraic manipulations, we get
(3.8)∥∥uN+1

∥∥2

0,Ω
−
∥∥u0
∥∥2

0,Ω

2δt
= −<

(
ei
π
4

√
1

2δt

N∑
n=0

∫
Γ

an+ 1
2un+ 1

2 dΓ

)

+<
(
iei

π
4

√
δt

2

N∑
n=0

∫
Γ

κ2

8
b
n+ 1

2
0 un+ 1

2 dΓ

)

+<
(
iei

π
4

√
δt

2

N∑
n=0

∫
Γ

(
i
an+ 1

2

δt
− b

n+ 1
2

2

2

)
un+ 1

2 dΓ

)

+<
(
δt

2

N∑
n=0

∫
Γ

(
κ3

8
+

∆Γκ

8
)dn+ 1

2
0 un+ 1

2 dΓ

)
−<

(
δt

4

N∑
n=0

∫
Γ

κd
n+ 1

2
1 ∂sun+ 1

2 dΓ

)
.

In order to prove the decay of the energy associated to the system, we show that
each term of the right-hand side of the above equation is negative.

Let us consider the first term of the right-hand side of (3.8). To suitably use
the Parseval equality (3.6), we need to extend the finite sequence (un)0≤n≤N to
an infinite sequence without modifying the quantities to estimate. To this end, we
introduce the new sequence (vNn )n∈N defined by

vNn =
{
un, if n ≤ N + 1,
(−1)kuN+1, if n = N + 1 + k, k > 0.

We can then define the complex-valued sequences (fn)n and (gn)n:

(3.9) fn =
βn+1 ? v

N
n+1 + βn ? v

N
n

2
and gn = vNn+ 1

2
=
vNn+1 + vNn

2
.

An immediate calculation shows that we have

fn = an+ 1
2 , if n ≤ N, and gn =

{
un+ 1

2 , if n ≤ N,
0, if n ≥ N + 1.

From the property (3.4) of the Z-transform and since the initial datum is compactly
supported, we have the relations

Z(fn)(z) =
z + 1

2
Z(βn)(z)Z

(
vNn
)

(z) and Z(gn)(z) =
z + 1

2
Z
(
vNn
)

(z).
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From the expression of Z(βn)(z) given in Lemma 3.3, the Parseval formula (3.6)
yields

+∞∑
n=0

fngn =
N∑
n=0

an+ 1
2un+ 1

2 =
1

2π

∫
[0,2π[

Z(fn)(eiϕ)Z(gn)(eiϕ)dϕ

=
1

2π

∫
[0,2π[

∣∣∣∣eiϕ + 1
2

∣∣∣∣2Z(βn)(eiϕ)
∣∣Z(vNn )(eiϕ)

∣∣2 dϕ .
The application z 7→ (1− z)/(1 + z) being a homography which maps D(0, 1) onto
{<(z) ≥ 0}, we deduce that <

(
ei
π
4Z(βn)(eiϕ)

)
≥ 0 ∀ϕ ∈ [0, 2π[. Finally, we get

<
(
ei
π
4

√
2
δt

N∑
n=0

∫
Γ

an+ 1
2un+ 1

2 dΓ

)
= <

(
ei
π
4

√
2
δt

∫
Γ

+∞∑
n=0

fngndΓ

)
,

providing hence the negativity of the first term.
The second term is treated as follows. Let us denote by ûn the Fourier transform

on Γ of un according to the curvilinear abscissa s, the covariable being always quoted
ξ. Considering then the second and third terms of the right-hand side of (3.8), the
Plancherel theorem yields (after an integration by parts)

(3.10)

+<
(
iei

π
4

√
δt

2

N∑
n=0

∫
R

αn+1 ? κ̂un+1(ξ) + αn ? κ̂un(ξ)
16

κ̂un+ 1
2 (ξ)dξ

)

+<

ieiπ4√δt

2

N∑
n=0

∫
R

i ân+ 1
2 (ξ)
δt

+ ξ2

̂
b
n+ 1

2
0 (ξ)

2

 ûn+ 1
2 (ξ)dξ

 .

Let (f̂n)n∈N and (ĝn)n∈N be the Fourier transforms of the sequences (fn)n∈N and
(gn)n∈N, respectively, given by (3.9). Moreover, let (hn(ξ))n∈N be the complex-
valued sequence given by

hn(ξ) =
αn+1 ? v̂Nn+1 + αn ? v̂Nn

2
.

From this last relation, we have hn =
̂
b
n+ 1

2
0 , if n ≤ N . Using property (3.5) on the

Z-transform of a convolution, we deduce that

Z(f̂n)(z) =
z + 1

2
Z(βn)(z)Z(v̂Nn )(z),

Z(ĝn)(z) =
z + 1

2
Z(v̂Nn )(z),

Z(hn)(z) =
z + 1

2
Z(αn)(z)Z(v̂Nn )(z),

with Z(βn)(z) and Z(αn)(z) given in Proposition 3.1. An application of the Par-
seval formula on the sequence (vNn )n∈N allows us to write the first term of (3.10) as

(3.11)

<

ieiπ4√δt

2

+∞∑
n=0

∫
R

αn+1 ? κ̂vNn+1(ξ) + αn ? κ̂vNn (ξ)
16

κ̂vN
n+ 1

2
(ξ)dξ


= −<

eiπ4
2π

√
δt

2

∫
[0,2π[×R

[
1
8

√
1 + z

1− z

∣∣∣∣ (z + 1)
2
Z(κ̂vNn (ξ))(z)

∣∣∣∣2
]
|z=eiϕ

dϕdξ

 .
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But since the application z 7→ (1 + z)/(1 − z) is a homography from D(0, 1) onto
{<(z) ≥ 0} and which maps C1 onto iR, we have

arg

eiπ4 [√1 + z

1− z

]
|z=eiϕ

 ∈ [0, π
2

]
.

As a consequence, the quantities given by (3.11) are negative.
The treatment of the second term of (3.10) is more complicated. Let us recall

that in the continuous case, the keypoint for obtaining the decay of the energy in
Proposition 2.3 lies in the fact that the points (s, t, τ, ξ) belong to the M quasi-
hyperbolic zone H. Let us try to transpose this property to the semi-discrete
problem. From Definition 2.3, a quadruplet (s, t, ξ, τ) ∈ T ∗(Σ) is inH if −τ−ξ2 > 0
(or equivalently <

(
−τ − ξ2

)
> 0 and =

(
−τ − ξ2

)
= 0). Let PΓ(∂t, ∂s) be the

pseudodifferential operator of symbol−τ−ξ2; it can be written as PΓ : f 7→ PΓ(f) =
(i∂t + ∆Γ) f and corresponds to a tangential Schrödinger equation. The semi-
discrete scheme being of Crank-Nicolson type, the differential equation ∂tf(t) = g(t)
is approximated at a point tn+ 1

2
= (tn + tn+1)/2 by

f(tn+1)− f(tn)
δt

=
g(tn+1) + g(tn)

2
.

Consequently, PΓ is approximated by the operator P̃Γ defined by

P̃Γ : f 7→ P̃Γ(f) = i
f(tn+1)− f(tn)

δt
+ ∆Γ

f(tn+1) + f(tn)
2

.

Using the Fourier transform on Γ and the Z-transform of the sequence (f(tn))n∈N,
we then introduce the “semi-discrete symbol” of P̃Γ

i
z − 1
δt
− ξ2 z + 1

2
.

The assumption on the symbol of PΓ: −τ − ξ2 > 0, becomes for P̃Γ at the semi-
discrete level

<
(
i
z − 1
δt
− ξ2 z + 1

2

)
> 0 and =

(
i
z − 1
δt
− ξ2 z + 1

2

)
= 0.

This leads to the following definition.

Definition 3.7. A quadruplet (s, n, ξ, z) is said to be in the semi-discrete M quasi-
hyperbolic zone Hsd if it satisfies

<
(
i
z − 1
δt
− ξ2 z + 1

2

)
> 0 and =

(
i
z − 1
δt
− ξ2 z + 1

2

)
= 0.

This analysis being done, the second term of (3.10) may be rewritten as

(3.12) <
(
iei

π
4

√
δt

2

+∞∑
n=0

∫
R

(
i
f̂n(ξ)
δt

+ ξ2 ĥn(ξ)
2

)
ĝn(ξ)dξ

)
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or yet using the Plancherel theorem for the Z-transform

<
(
ei
π
4

2π

√
δt

2

∫
[0,2π[×R

[
σ(z)

(
i
1− z
2δt

+ ξ2 z + 1
4

) ∣∣∣Z (v̂Nn (ξ)
)∣∣∣2]

|z=eiϕ
dϕdξ

)

= −
∫

[0,2π[×R

[
<
(
ei
π
4

2π

√
δt

2
σ(z)

2

)

×<
(
i
z − 1
δt
− ξ2 z + 1

2

) ∣∣∣Z (v̂Nn (ξ)
)∣∣∣2]

|z=eiϕ
dϕdξ

+
∫

[0,2π[×R

[
=
(
ei
π
4

2π

√
δt

2
σ(z)

2

)

×=
(
i
z − 1
δt
− ξ2 z + 1

2

) ∣∣∣Z (v̂Nn (ξ)
)∣∣∣2]

|z=eiϕ
dϕdξ,

where the complex-valued function σ is defined by

σ(z) =
z + 1

2

√
1 + z

1− z .

But by assumption and following Definition 3.7, the property (s, n, ξ, z) ∈ Hsd
implies that

<
(
i
z − 1
δt
− ξ2 z + 1

2

)
> 0 and =

(
i
z − 1
δt
− ξ2 z + 1

2

)
= 0.

Moreover, since 2σ(z) = |z + 1|
√

1− z2/ |z − 1| at z = eiϕ, we have arg(1 − z2)
= −ϕ + sign(sinϕ)π/2. As a consequence, it follows that if ϕ ∈ [0, 2π], then
arg(1 − z2) ∈

[
−π

2
,
π

2

]
and

<
(
ei
π
4

√
δt

2
σ(z)

2

)
≥ 0.

From this result, quantity (3.12) is negative and consequently so is the second term
of (3.10).

Let us consider now the fourth term of the right-hand side of (3.8). By a similar
approach as above, the application of the Z-transform allows us to get the new
following expression of this term by using the Parseval equality

δt

2

∫
Γ

(
κ3

8
+

∆Γκ

8
)<(

1
2π

∫ 2π

0

[
Z(δn)(eiϕ)

∣∣∣∣1 + eiϕ

2

∣∣∣∣2 ∣∣Z(vNn )(eiϕ)
∣∣2]
|z=eiϕ

dϕ)dΓ.

But since the expression Z(δn)(z) = −(1 + z)/(1− z) is imaginary for z = eiϕ, this
term vanishes. Finally, the last terms of the right-hand side of (3.8) may be treated
as the previous one. Then, it is identically equal to zero.

From this analysis, we get the decay of the energy, hence ending the proof of the
proposition. �

Remark 3.8. All this paper is concerned with the trapezoidal rule and the associated
Crank-Nicolson scheme. However, higher-order interior schemes can be developed
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to increase accuracy. This has the direct effect of modifying the numerical quadra-
ture scheme for the convolution operator and the above proofs. However, using a
similar approach should yield close results using the same kind of arguments as for
the proof of stability. We refer to [22] where other kinds of discretization rules for
Volterra-type operators are derived.

4. Finite-element approximation and numerical results

Finite-element approximation is based on weak formulation of the initial bound-
ary value problem (SDm/2)

i

∫
Ω

un+1 − un
δt

ϕdΩ−
∫

Γ

T sdm/2u
n+ 1

2ϕdΓ−
∫

Ω

∇un+ 1
2 · ∇ϕdΩ = 0,

for any test function ϕ ∈ H1(Ω). Since the transparent operator is of memory type,
only the terms involving un+1 arise in the definition of the system, the other terms
being put in the right-hand side of the above equation. The spatial discretization
is made in the classical P1 linear finite-element space

Vh =
{
ϕh ∈ H1(Ωh), ϕh|T ∈ P1, ∀T ∈ Th

}
,

where the bounded computational polygonal domain Ωh =
⋃
T∈Th T is constructed

with the help of a regular triangulation Th. The curvature approximation is devel-
oped by a simple procedure [2] based only on knowledge of the initial mesh. The
finite-element approximation space Vh being a subspace of H1(Ωh), the stability of
the fully discrete scheme is simply a consequence of the stability of the semi-discrete
scheme. The resulting complex sparse and symmetrical linear system is solved by a
conjugate gradient solver accelerated by an incomplete Choleski factorization pre-
conditioner. The convergence is reached in only a few iterations. Finally, we do not
present the spatial finite-difference discretization which has been also implemented.
Indeed, this approach has generally proved to be less efficient; the linear system to
be solved is not symmetrical and the stability of the scheme has not been obtained.

Remark 4.1. If NΓ designates the number of boundary points, then a simple im-
plementation of the time convolution operators would require a computational
cost of about O(NΓN

2
T ) operations. However, fast evaluation algorithms can be

used to reduce it (this is not implemented here). This would give rise to a cost
O(NΓNT logNT ) orO(NΓNT (logNT )2) using the techniques developed in [18], [22],
[23], [25]. Compared for instance to the results obtained in [23], [25] which are in
O(NΓNT logNΓ(logNT )2), this gives a lower complexity. However, this is at the
price of a loss of accuracy since we only consider a high-frequency approximation
of the exact transparent boundary condition [3].

The calculations presented are performed with the following initial datum (2.4)
which (by convolution with Green’s kernel) generates the time gaussian distribution

uex(x1, x2, t) =
i

i− 4t
exp

(
−ix

2
1 + x2

2 + ik0x1 + k2
0it

i− 4t

)
.

For the linear finite-element approximation, two different computational domains
are considered. The first one is the diskD(0, 2.5) centred at the origin (see Figure 2),
and the second one is delimited by a parabola oriented along the x1 axis and ended
by a circular boundary in order to obtain a smooth curve. We take the wave number
k0 = 5. In the first example, the mesh is constituted of 32768 triangles whose areas
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are between 5.4 × 10−4 and 6.4 × 10−4, while in the second case we use 57344
triangles with an area between 5.0 × 10−4 and 0.0108. To have some comparable
results, the time step is fixed to δt = 0.01 in all computations. Even if this time
step is finally not too small, some very satisfactory numerical results have been
obtained. Moreover, the resulting computational complexity of the convolutions
involved is not too penalizing in this case.

To appreciate the efficiency of the first- and second-order artificial boundary
conditions, in Figure 4 we present the evolution of the exact reference solution
at different successive time steps t = 0.25, t = 0.35, and t = 0.50. We observe
an improvement of the accuracy as the order of the artificial boundary condition
increases. As can be seen in Figure 5, there are some unphysical reflections which
appear when the wave strikes the left boundary. This is greatly diminished in
Figure 6 for the second-order condition. Only some small reflections are present
and do not pollute the propagation of the solution (the reference scale is given in
Figure 3 and the error is approximately inferior to 10−3). This confirms that we
can diminish the spurious reflection at the boundary by increasing the order of the
artificial boundary condition (as it was also predicted in the case of the continuous
problem in Figure 1). Moreover, this is realized without any additional cost. The
half-order boundary conditions yield intermediate accuracy. To numerically fulfil
the decay of the energy associated to the system, we compute the L2(Ωh)-norm of
the approximate solution in Figure 7. The results obtained are in agreement with
the predictions of Proposition 3.6. Moreover, we observe that the conditions of
order 3/2 and 2 yield a precise evaluation of the energy while there are some small
errors for the lower-order conditions.

Figure 2. Representation of the gaussian initial distribution.
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10
−2

10
−1

10
0

Figure 3. Level curves distribution of the wave amplitude.
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To complete the error analysis, we compute the relative error
‖ul − uex‖2
‖uex‖2

(t),

where the subscript l = 1/2, 1, 3/2, 2 represents the order of the artificial boundary
conditions. To observe the effects of the artificial boundary conditions on the
dispersive behavior of the solution, we choose the wave number k0 = 0 (see Figure
8). Once again, we note an improvement of the accuracy according to the order
of the artificial boundary conditions. The long time error is essentially due to the
artificial boundary conditions which are not exact. To display the influence of the
propagative part of the solution on the error, we superpose the exact solution for

Figure 4. Evolution of the reference solution at different times:
t = 0.25, t = 0.35, and t = 0.50.

Figure 5. Evolution of the approximate solution at different times
using the first-order artificial boundary condition.

Figure 6. Evolution of the approximate solution at different times
using the second-order artificial boundary condition.
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Figure 7. Evolution of log10 ‖ · ‖2 for both the exact and approx-
imate solutions.

k0 = 5 to this gaussian (see Figure 9). The maximal relative error is located at
time t ≈ 0.5 when the travelling part strikes the boundary. This bump decreases
for smaller time steps. This is linked to the highly oscillating nature of the solution
and to the choice of the computational discretization parameters. The long-time
behavior of the relative error is not really affected.
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Figure 8. Relative error for the gaussian solution k0 = 0.
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Figure 9. Relative error for the superposition of a gaussian solu-
tion (k0 = 0) and the exact solution for k0 = 5.

Finally, in Figure 10 we perform the evolution of the approximate solution at
different times using the second-order artificial boundary condition for the second
computational domain. This shows that the method allows us to treat some prob-
lems involving a general smooth domain of computation. Only some reflections of
small amplitude appear. The behaviour is closed to the one already observed in
the previous case.

Figure 10. Evolution of the approximate solution at times t = 0,
t = 0.5, t = 0.75, t = 1, t = 1.25, and t = 1.5 using the second-
order artificial boundary condition.
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