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IMPROVED METHODS AND STARTING VALUES TO SOLVE
THE MATRIX EQUATIONS X ±A∗X−1A = I ITERATIVELY

IVAN G. IVANOV, VEJDI I. HASANOV, AND FRANK UHLIG

Abstract. The two matrix iterations Xk+1 = I ∓ A∗X−1
k A are known to

converge linearly to a positive definite solution of the matrix equations X ±
A∗X−1A = I, respectively, for known choices of X0 and under certain re-
strictions on A. The convergence for previously suggested starting matrices
X0 is generally very slow. This paper explores different initial choices of X0

in both iterations that depend on the extreme singular values of A and lead
to much more rapid convergence. Further, the paper offers a new algorithm
for solving the minus sign equation and explores mixed algorithms that use
Newton’s method in part.

1. Introduction

Solving the matrix equations X + A∗X−1A = I and X − A∗X−1A = I is a
problem of practical importance. These two equations were studied in [1], [5], [6],
[7]. They arise in control theory [1], [7], dynamic programming, and statistics, for
example (see the references given in [15]). The second equation (with the minus
sign) arises specifically in the analysis of stationary Gaussian reciprocal processes
over a finite interval [7]. Finally, following [11], trying to solve special linear systems
leads to solving nonlinear matrix equations of the above types as follows: For a

linear system Mx = f with M =
(

I A
A∗ I

)
positive definite we can rewrite

M = M̃ + diag[I −X, 0] for M̃ =
(

X A
A∗ I

)
. Clearly

M̃ =
(

X A
A∗ I

)
=
(

I 0
A∗X−1 I

) (
X A
0 X

)
.

Such a decomposition of M̃ exists if and only if X is a positive definite solution
of the matrix equation X + A∗X−1A = I. Solving the linear system M̃y = f is
equivalent to solving two linear systems with a lower and upper block triangular
system matrix. To compute the solution of Mx = f from y, the Woodbury formula
can be applied.

We write B > 0 (B ≥ 0) if the matrix B is Hermitian positive definite (semi-
definite). If B − C is Hermitian positive definite (semidefinite), then we write
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B > C (B ≥ C). This defines a partial order on the set of Hermitian ma-
trices. Moreover, if B ≥ C in the sense that B − C is positive semidefinite,
then X∗BX ≥ X∗CX for any nonsingular matrix X since X∗(B − C)X ≥ 0
by Sylvester’s law of inertia.

In this paper we generalize the iterative methods [6], [7], [3], [15]. We propose
new rules to choose the iteration start X0 for computing a positive definite solution
of the matrix equations

(1) X +A∗X−1A = I

and

(2) X −A∗X−1A = I,

where I is n × n identity matrix and A is a given square matrix. Theoretical
properties of the solutions to equations (1) and (2) have been studied in several
papers [1], [5], [6], [7], [3], [15]. Engwerda, Ran, and Rijkeboer [5] have proved
that if equation (1) has a solution, then it has a maximal positive definite solution
XL and a minimal positive definite solution Xs, such that for any solution X ,
XL ≥ X ≥ Xs. Note that there may be no other solutions but XL and Xs to (1).
We show that if ‖A‖ ≤ 1

2 for the `2 induced operator matrix norm ‖.‖, then the
solution XL is the unique positive definite solution of (1) with 1

2I ≤ XL ≤ I, and
that Xs is the unique positive definite solution of (1) with O ≤ Xs ≤ 1

2I. In [3],
[15] the convergence rate of numerical algorithms for solving these two equations
has been analyzed.

In this paper we describe starting values for iterations that ensure quick conver-
gence to a positive definite solution of (1) and (2), respectively, when A is nonsin-
gular. The rates of convergence for the proposed starting matrices X0 depend on
one parameter α or β that is derived from the singular values of A. A new method
for solving (2) will be proposed, as well as mixed methods that rely in part on New-
ton’s method. Numerical examples will be discussed and the results of experiments
given. We use ‖A‖ to denote the `2 induced operator norm of the matrix A, i.e.,
‖A‖ = σ1(A), where σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) ≥ 0 are the singular values of A
in nonincreasing order and ρ(A) is the spectral radius of A. Throughout the paper
we use the fact that σ2

n(A)I ≤ AA∗ and A∗A ≤ σ2
1(A)I in our partial order.

2. The matrix equation X +A∗X−1A = I

Here we discuss equation (1) and consider new starting values for the iteration
proposed by [6].

Specifically we consider

(3) Xk+1 = I −A∗X−1
k A, k = 0, 1, 2, . . . , X0 = αI,

1
2
≤ α ≤ 1.

Our theorems give sufficient condition for the existence of a solution of (1).

Theorem 2.1. Assume that the equation (1) has a positive definite solution. Then
the iteration (3) with X0 = αI, 1

2 < α ≤ 1, and

(4) α(1 − α) ≤ σ2
n(A)

defines a monotonically decreasing matrix sequence which converges to the maximal
positive definite solution XL of equation (1).
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Proof. To prove convergence of the sequence {Xk} defined by (3) and (4), we first
show that X0 ≥ X for any positive definite solution X of (1). The formulas (3)
and (4) imply that A∗A ≥ α(1 − α)I and

X0 +A∗X−1
0 A = αI +

1
α
A∗A ≥ αI + (1 − α)I = I = X +A∗X−1A.

Hence
(X0 −X)−A∗X−1(X0 −X)X−1

0 A ≥ 0
and

(X0 −X)−
[
A∗X−1

0 (X0 −X)X−1
0 A+A∗X−1

0 (X0 −X)X−1(X0 −X)X−1
0 A

]
≥ 0.

Since A∗X−1
0 (X0 − X)X−1(X0 − X)X−1

0 A is congruent to the positive definite
inverse X−1 of X , we have A∗X−1

0 (X0 −X)X−1(X0 −X)X−1
0 A ≥ 0. Looking at

the previously displayed inequality, we conclude then that

(5) (X0 −X)−A∗X−1
0 (X0 −X)X−1

0 A = C

and C ≥ 0 as well. In (5) put Y := X0 − X for brevity. The equation (5)
Y − A∗X−1

0 Y X−1
0 A = C is a Stein equation [13], which has a unique solution if

and only if λr λ̄s 6= 1 for any two eigenvalues λr and λs of X−1
0 A. If ρ(X−1

0 A) < 1
for the spectral radius ρ, then Y is the unique solution. In addition if C ≥ 0, then
Y ≥ 0 [13].

Since 1
2 < α ≤ 1, we have ρ(X−1

0 A) = ρ( 1
αA) < 2ρ(A). It is known [6] that if the

equation (1) has a positive definite solution, then ρ(A) ≤ 1
2 . Hence ρ(X−1

0 A) < 1
by our assumption and consequently X0 ≥ X .

Secondly, if Xk ≥ X > 0, then Xk+1 − X = I − A∗X−1
k A − I + A∗X−1A =

A∗(X−1 −X−1
k )A ≥ 0 and thus Xk ≥ XL, where XL denotes the largest possible

positive definite solution; see [5].
Thirdly, we prove that the sequence of iteration matrices {Xk}, defined by (3)

and (4), is decreasing. Using (4), we know that α(1 − α)I ≤ A∗A. Thus X1 =
I − A∗A

α ≤ αI = X0. For X2 we obtain X2 = I − A∗X−1
1 A ≤ I − A∗X−1

0 A = X1.

If we assume that Xk+1 ≤ Xk, then X−1
k+1 ≥ X

−1
k and thus

Xk+1 = I −A∗X−1
k A ≤ I −A∗X−1

k−1A = Xk.

Hence the sequence {Xk} is monotonically decreasing. It is bounded from below by
the matrix XL, hence it is convergent to a matrix X̂ that satisfies X̂ = I−A∗X̂−1A,
i.e., X̂ solves (1) and X̂ ≥ XL. But XL is the maximal solution. Thus X̂ = XL. �

Theorem 2.2. Let A be a nonsingular matrix. Then the iteration (3) with start
X0 = αI, 1

2 < α < 1, and α defined by (4) converges more rapidly than the iterative
method Yk+1 = I −A∗Y −1

k A with Y0 = I. Specifically we have

‖Xk −XL‖ < ‖Yk −XL‖ for all k.

Proof. It is known that Xk converges from above to XL (Theorem 2.1) and that Yk
converges to XL [6]. If A is nonsingular, then σn(A) > 0 and there exists a number
α ∈ (1

2 , 1) such that α(1 − α) ≤ σ2
n(A). Thus X0 = αI < I = Y0. And therefore

X1 = I −A∗X−1
0 A < I −A∗Y −1

0 A = Y1.

Assuming that Xk < Yk, we have

Xk+1 = I −A∗X−1
k A < I −A∗Y −1

k A = Yk+1.
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Consequently,

XL ≤ Xk < Yk for all k

and

‖Xk −XL‖ < ‖Yk −XL‖. �

Definition ([12, Section 9]). Let {xk}∞k=1 be a sequence of vectors xk ∈ Rn that
converges to x∗. Then

R1 = lim
k→∞

sup k

√
‖xk − x∗‖

is called an R-multiplier of this sequence. The convergence rate of {xk} is called
R-linear if 0 < R1 < 1, and R-sublinear (sublinear) if R1 = 1.

The following theorem has been proved in [9].

Theorem 2.3. For all k ≥ 0,

‖Xk+1 −XL‖ ≤ ‖X−1
L A‖2‖Xk −XL‖.

Moreover,

lim
k→∞

sup k
√
‖Xk −XL‖ ≤ (ρ(X−1

L A))2.

If ρ(X−1
L A) < 1, then the convergence of (3) is R-linear and if ρ(X−1

L A) = 1,
then its convergence rate is sublinear.

Theorem 2.4. Let A have the singular values σ1, σ2, . . . , σn with 1
2 ≥ σ1 ≥ σ2 ≥

· · · ≥ σn ≥ 0, and assume the numbers α̃, β̃ ∈ [1
2 , 1] are such that α̃ (1 − α̃) = σ2

n

and β̃ (1− β̃) = σ2
1 . Then

(i) For γ ∈ [α̃, 1] and X0 = γI, the sequence {Xk} in (3) is monotonically
decreasing and converges to the maximal positive definite solution XL of
(1). If γ = α̃, then the iteration (3) converges faster than the same iteration
with any other γ ∈ (α̃, 1].

(ii) For γ ∈ [ 1
2 , β̃] and X0 = γI, the sequence {Xk} in (3) is monotonically

increasing and converges to a positive definite solution Xβ of (1).
(iii) If γ ∈ (β̃, α̃) and σ1 <

1
2 , then the sequence {Xk} with X0 = γI converges

to a positive definite solution Xγ of (1).
(iv) XL is the unique positive definite solution of (1) with 1

2 I ≤ XL ≤ I.

In Theorem 2.4 we show that withX0 = β̃I in part (ii) we achieve faster convergence
in (3) than with any other X0 = γI for γ ∈ [1

2 , β̃).

Proof. If 1
2 ≥ σ, note that the equation x(1 − x) = σ2 always has the positive

solution 1
2 +

√
1
4 − σ2. Since f(x) = x(1− x) is monotonically decreasing on [1

2 , 1],

we conclude that for all real α, β with 1
2 ≤ β ≤ β̃ ≤ α̃ ≤ α ≤ 1 the inequalities

α(1 − α) I ≤ σ2
n(A)I ≤ AA∗ ≤ σ2

1(A)I ≤ β(1− β) I

are satisfied.
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(i) For γ ∈ [α̃, 1] we consider the matrix sequence (3). In particular

X0 := γI ≥ α̃I ≥ β̃I,

X1 = I − 1
γ
A∗A ≤ I − 1

γ
α̃(1− α̃)I ≤ I − 1

γ
γ(1− γ)I = γI,

X1 = I − 1
γ
A∗A ≥ I − 1

β̃
A∗A ≥ I − 1

β̃
β̃(1− β̃)I = β̃I.

Hence X0 ≥ X1 ≥ β̃I.
Assuming that β̃I ≤ Xk ≤ Xk−1, we obtain for Xk+1

Xk+1 = I −A∗X−1
k A ≤ I −A∗X−1

k−1A = Xk

and

Xk+1 = I −A∗X−1
k A ≥ I − 1

β
A∗A ≥ I − 1

β̃
β̃(1 − β̃)I = β̃I.

Hence the sequence {Xk} is monotonically decreasing and bounded from below by
the matrix β̃I. Consequently the sequence {Xk} converges to a positive definite
solution of (1).

Next we prove that Xk converges to XL. First, assume α̃ > 1
2 . In Theorem 2.1

we saw that for any positive definite solution X of (1) we must have X ≤ α̃I ≤ γI
for any γ ∈ [α̃, 1].

Hence XL ≤ γI = X0.
Assume that XL ≤ Xk. For Xk+1 compute

Xk+1 −X = A∗(X−1 −X−1
k )A ≥ 0.

Thus {Xk} converges to XL for γ ∈ [α̃, 1].
Now we prove that the iteration (3) with X0 = α̃I is converging faster than

the same iteration with γ ∈ (α̃, 1]. We denote by {X ′k} the matrix sequence (3)
with initial matrix X0 = α̃I and by {X ′′k } the matrix sequence with X0 = γI for
γ ∈ (α̃, 1]. We shall prove that

X
′

k < X
′′

k and ‖X
′

k −XL‖ < ‖X
′′

k −XL‖

for k = 0, 1, . . ..
At the start we have X

′

0 = α̃I < γI = X
′′

0 .
Assuming that X

′

k < X
′′

k , we obtain

X
′

k+1 = I −A∗(X ′k)−1A < I −A∗(X ′k)−1A = X
′

k+1.

Hence XL ≤ X
′

k < X
′′

k for k = 0, 1, . . ..
Secondly, if α̃ = 1

2 , then β̃ = 1
2 . This implies σ1 = · · · = σn = 1

2 , i.e., A = 1
2W for

a unitary matrix W with W ∗W = I. Clearly A = 1
2W is normal. If A is normal and

σ1 ≤ 1
2 , then X1 = 1

2

[
I + (I − 4A∗A)

1
2

]
and X2 = 1

2

[
I − (I − 4A∗A)

1
2

]
always

satisfy the equation (1) and X1 = XL, while X2 = Xs [6]. Consequently in our
case we have X1 = XL = X2 = Xs = 1

2I.
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(ii) For γ ∈
[

1
2 , β̃
]

we have

X0 := γI ≤ β̃I ≤ α̃I,

X1 = I − 1
γ
A∗A ≥ I − 1

γ
β̃(1− β̃)I ≥ I − 1

γ
γ(1− γ)I = γI,

X1 = I − 1
γ
A∗A ≤ I − 1

α̃
A∗A ≤ I − 1

α̃
α̃(1− α̃)I = α̃I.

Hence X0 ≤ X1 ≤ α̃I.
Assuming that Xk−1 ≤ Xk ≤ α̃I, we compute

Xk+1 = I −A∗X−1
k A ≥ I − A∗X−1

k−1A = Xk

and

Xk+1 = I −A∗X−1
k A ≤ I − 1

α̃
A∗A ≤ I − 1

α̃
α̃(1 − α̃)I = α̃I.

Hence the sequence {Xk} is monotonically increasing and bounded above by the
matrix α̃I. Consequently the sequence {Xk} converges to a positive definite solution
Xβ of (1).

(iii) For γ ∈ (β̃, α̃), we have

β̃I < X0 = γI < α̃I.

Assuming that β̃I < Xk < α̃I we see that

Xk+1 = I −A∗X−1
k A < I − 1

α̃
A∗A ≤ I − 1

α̃
α̃(1 − α̃)I = α̃I,

and

Xk+1 = I −A∗X−1
k A > I − 1

β̃
A∗A ≥ I − 1

β̃
β̃(1 − β̃)I = β̃I.

Consequently β̃I < Xk < α̃I, for k = 0, 1, . . ..
Now consider

‖Xk+1 −Xk‖ = ‖A∗(X−1
k−1 −X

−1
k )A‖ = ‖A∗X−1

k−1(Xk −Xk−1)X−1
k A‖

≤ ‖A‖2‖X−1
k−1‖‖X

−1
k ‖‖Xk −Xk−1‖ <

(
‖A‖
β̃

)2

‖Xk −Xk−1‖.

Since ‖A‖ < 1
2 and β̃ > 1

2 are assumed here, it follows that {Xk} is a Cauchy se-
quence of positive definite matrices in the Banach space Cn×n. Hence this sequence
has a positive definite limit Xγ with β̃I ≤ Xγ ≤ α̃I.

(iv) Let X̃ be any positive definite solution of (1) such that 1
2I ≤ X̃ ≤ I. We

have to prove that X̃ = XL.
It was proved in [5] that X = XL is the unique solution for which X + λA is

invertible for all |λ| < 1. Thus we want to prove that det(X̃ + λA) 6= 0 for |λ| < 1.
Note that if λ = 0, then det(X̃ + λA) = det(X̃) 6= 0.
If λ 6= 0, then

det(X̃ + λA) = det(X̃) det(I − (−λ)X̃−1A)

= (−λ)n det(X̃) det
(

1
−λI − X̃

−1A

)
.
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Hence det(X̃ + λA) = 0 if and only if 1
−λ is an eigenvalue of the matrix X̃−1A.

For the two matrices X̃ and A we have 1
2I ≤ X̃, X̃−1 ≤ 2I, and ‖A‖2 = σ2

1(A) =
β̃(1− β̃) ≤ 1

4 . Thus

|λ−1| =
∣∣∣∣ 1
−λ

∣∣∣∣ ≤ ρ(X̃−1A) ≤ ‖X̃−1A‖ ≤ ‖X̃−1‖‖A‖ ≤ 1.

And det(X̃ + λA) = 0 can only hold for |λ| ≥ 1. Hence X̃ + λA is nonsingular
for |λ| < 1. But XL is the unique solution with this property. Hence X̃ = XL. �
Remark. One can quickly see how important it is to choose a good starting matrix
X0 for the iteration (3) by looking at the “left edge” of the inequality α(1−α) I ≤
σ2
n(A)I ≤ AA∗ ≤ σ2

1(A)I ≤ β(1 − β) I, for example. Assume that A = 1
2W for a

unitary matrix W with W ∗W = I. To solve (1) in this case, Theorem 2.4 suggests
that we use X0 = 1

2I as a start for (3). Clearly X0 is the unique solution of (1);
i.e., X0 = XL = Xs. If we modify the coefficient α = 1

2 of I used in X0 only very
slightly, we obtain convergence in the sense that ‖Xk+1 − Xk‖ ≤ tol = 10−10 for
a randomly generated orthogonal 3-by-3 matrix W after the following number of
iterations.

number of number of number of
α iterations α iterations α iterations

0.500000 1 0.500027 3843 0.500047 11723
. . . 1 0.500030 5695 0.600000 70709
0.500022 1 0.500035 8076 0.700000 70713
0.500023 623 0.500041 10167 0.800000 70711
0.500024 1528 0.500046 11492 0.900000 70713

This shows how slow the convergence of (3) is in general and how crucial it is to
find a good starting matrix X0 for the iteration (3).

From the theorem above we obtain

(6) lim
k→∞

sup k
√
‖Xk −XL‖ ≤ lim

k→∞
sup k

√
q2k‖X0 −XL‖ = q2,

where q = ‖A‖
β̃

. It is well known [12] that if q < 1, then the convergence rate of the
iteration procedure (3) is R-linear and if q = 1, then the convergence rate of the
iteration procedure (3) is sublinear.

Theorem 2.5. The iterative method (3) with X0 = β̃I (with β̃ defined as in (ii)
of Theorem 2.4) converges more rapidly than the same method with any X0 = γI

for γ ∈
[

1
2 , β̃

)
.

Proof. We denote the matrix sequence defined by (3) and X0 = β̃I by {X ′k} and

the matrix sequence defined by (3) and X0 = γI for γ ∈
[

1
2 , β̃

)
by {X ′′k }. We show

that
‖X

′

k −XL‖ < ‖X
′′

k −XL‖
for k = 0, 1, . . ..

According to conditions (i) and (ii) of Theorem 2.4, the two sequences {X ′k} and
{X ′′k } are monotonically increasing and bounded above by XL. It is sufficient to
prove that X

′

k > X
′′

k for k = 0, 1, . . ..
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Obviously X
′

0 = β̃I > γI = X
′′

0 .
Assuming X

′

k > X
′′

k , we have

Xk+1

′
= I −A∗(X−1

k )
′
A > I −A∗(X−1

k )
′′
A = (Xk+1)

′′
.

Thus XL ≤ X
′

k > X
′′

k for all k = 0, 1, . . .. �
Theorem 2.6. If A is nonsingular and ‖A‖ = σ1(A) ≤ 1

2 , then the minimal
positive definite solution Xs of equation (1) is the unique solution with 0 < Xs ≤ 1

2I.

Proof. It is known that X̃ is a solution of (1) if and only if Ỹ = I − X̃ is a solution
of the equation Y + AY −1A∗ = I [5]. Moreover, if Xs is the minimal solution of
(1), then YL = I −Xs is the maximal solution of Y +AY −1A∗ = I.

Consider the equation Y +AY −1A∗ = I. Since ‖A‖ ≤ 1
2 there exist α̃, β̃ ∈ [1

2 , 1]
such that α̃ (1− α̃) = σ2

n(A) and β̃ (1− β̃) = σ2
1(A), respectively. According to

Theorem 2.4 (iv), the maximal positive definite solution YL is the unique solution
of Y +AY −1A∗ = I with 1

2I ≤ YL < I.
Assume X̃ 6= Xs is any solution of (1) with 0 < X̃ ≤ 1

2 I. Then Ỹ = I − X̃ 6=
YL is a solution of Y + AY −1A∗ = I with 1

2 I ≤ Ỹ < I. Hence the equation
Y + AY −1A∗ = I has two different solutions YL and Ỹ . Since YL is the unique
solution with 1

2 I ≤ YL < I, we must have YL = Ỹ , or X̃ = Xs.
ThereforeXs is the unique positive definite solution of (1) with 0 < Xs ≤ 1

2I. �

3. The matrix equation X −A∗X−1A = I

The more general equation

(7) X −A∗X−1A = Q

has been considered in [3], [7], [9]. El-Sayed [3] has considered this equation with
Q = I and has proposed the iterative method Xk+1 = I + A∗X−1

k A with X0 = I
for computing a positive definite solution. El-Sayed [3] has proved the following
theorem.

Theorem 3.1. If ‖A‖ = σ1(A) < 1, then the equation X − A∗X−1A = I has a
positive definite solution X.

Levy and Ferrante [7] have described an iterative algorithm for computing the
positive definite solution of this equation and they have related this matrix equation
to an algebraic Riccati equation of the type arising in Kalman filtering. They have
proved that the equation above has a unique positive definite solution and that for
every matrix A the iteration Xk+1 = Q + A∗X−1

k A with X0 = Q converges to the
unique positive definite solution X+ of (7).

Guo and Lancaster [9] have studied convergence results for the iterative method
considered by Levy. The following theorem has been proved [9].

Theorem 3.2. The iteration

Xk+1 = Q+A∗X−1
k A, k = 0, 1, 2, . . . with X0 = Q

satisfies
‖X2k −X+‖ ≤ ‖X−1

+ A‖2‖X2k−1 −X+‖
for all k ≥ 1. Moreover

lim
s→∞

sup s
√
‖Xs −X+‖ ≤ (ρ(X−1

+ A))2 < 1.

Here X+ denotes the unique positive definite solution of equation (2).
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Since ρ(X−1
+ A) < 1, the convergence of the above iteration is R-linear.

We present two iterative methods for computing the positive definite solution
of equation (2). The first method uses the same iteration formula as El-Sayed’s
method, but it uses a different initial matrix X0 with improved convergence. The
second method is new and apparently even faster.

As our first method we consider the iteration

(8) Xk+1 = I + A∗X−1
k A, k = 0, 1, 2, . . . with X0 = αI.

First we prove a theorem.

Theorem 3.3. Let α ≥ 1 be the real number with

(9) α(α − 1) = σ2
n(A).

Then the iteration sequence {Xk} defined by (8) with X0 = αI converges to the
positive definite solution X+ of equation (2).

Proof. Note that the equation x(x − 1) = σ2 always has one real solution

1
2

+

√
1
4

+ σ2 ≥ 1.

Consider the iteration

(10) Yk+1 = I +A∗Y −1
k A, k = 0, 1, 2, . . . , Y0 = I.

Then Y1 = I +A∗A and X1 = I + 1
αA
∗A. It is well known [7] that the inequalities

Y0 = I ≤ Y2 ≤ · · · ≤ Y2k ≤ · · · ≤ Y2s+1 ≤ · · · ≤ Y3 ≤ Y1 = I +A∗A

hold for the sequence {Yk}.
We have two cases: A is singular or A is not. If A is singular, then σn(A) = 0

and subsequently α = 1 in (9). In this case the two matrix sequences {Yk} and
{Xk} are identical, i.e., Yk = Xk, k = 1, 2, . . . . If A is nonsingular, then α > 1
since A∗A > 0. Hence I = Y0 < X0 = αI and

I +A∗A = Y1 > I +
1
α
A∗A = X1.

For α we have α(α − 1)I ≤ A∗A and therefore X0 ≤ X1. Hence

Y0 < X0 ≤ X1 < Y1.

Moreover, X2 > Y2 since X1 < Y1, and similarly X3 < Y3 and so on. Thus we have

(11) Y2p < X2p ≤ X2p+1 < Y2p+1 for all p

and

(12) X2p+2 ≤ X2p+1 for all p.

According to (11) and (12), we obtain

(13) Y2p+2 < X2p+2 ≤ X2p+1 < Y2p+1 for all p.

The two subsequences {Y2k} and {Y2k+1} are monotone increasing and decreas-
ing, respectively. They converge to the positive definite solution of the equation
X − A∗X−1A = I. Consequently, the subsequences {X2k} and {X2k+1} converge
to the same limit. �
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Theorem 3.4. Let A be nonsingular. Then the iteration (8) with X0 = αI for
α(1 − α) = σ2

n(A) converges to the positive solution of (2) and there exists an
integer s, s ≤ k, such that

‖Xs −A∗X−1
s A− I‖ < ‖Yk −A∗Y −1

k A− I‖
for all k.

Proof. Combining (11) and (13), we write

‖Xk+1 −Xk‖ < ‖Yk+1 − Yk‖
for k = 0, 1, . . .. Since

‖Xk+1 −Xk‖ = ‖I +A∗X−1
k A−Xk‖

= ‖Xk −A∗X−1
k A− I‖

and

‖Yk+1 − Yk‖ = ‖I +A∗Y −1
k A− Yk‖

= ‖Yk −A∗Y −1
k A− I‖,

we have
‖Xk −A∗X−1

k A− I‖ < ‖Yk −A∗Y −1
k A− I‖.

Consequently there exists an integer s ≤ k for which

‖Xs −A∗X−1
s A− I‖ < ‖Yk −A∗Y −1

k A− I‖. �
Theorem 3.5. Assume that equation (2) has a positive definite solution X and
that

(14) σ2
n(A)

(
σ2
n(A) + 1

)
≥ σ2

1(A)

and

(15) β(β − 1) = σ2
1(A).

Then the iteration

(16) Xk+1 = I +A∗X−1
k A, k = 0, 1, 2, . . . , X0 = βI,

converges to the positive definite solution X+ of (2) and there exists an integer
s, s ≤ k, with

‖Xs −A∗X−1
s A− I‖ < ‖Yk −A∗Y −1

k A− I‖
for all k.

The proof is similar to the proofs of Theorems 3.3 and 3.4: Consider the se-
quences {Xk} defined by (16) and {Yk} defined by (10). From (14) it follows that
X0 ≤ Y1, and, according to (15), we obtain X1 ≤ X0. Hence

Y0 ≤ X1 ≤ X0 ≤ Y1.

Therefore

Y2p ≤ X2p−1 ≤ X2p ≤ Y2p+1 for all p

and

Y2p+2 ≤ X2p+1 ≤ X2p ≤ Y2p+1 for all p.

Thus the sequence {Xk} converges to the positive definite solution X+.
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For our second method we consider the iteration

(17) Xk+1 =
1
2

(Xk + I +A∗X−1
k A), k = 0, 1, 2, . . . , X0 = I +A∗A.

Theorem 3.6. For every Xk in the iteration sequence defined by (17), we have
I ≤ Xk ≤ I +A∗A.

Proof. We know that I ≤ X0 ≤ I +A∗A. Suppose that I ≤ Xk ≤ I +A∗A. Then

A∗X−1
k A ≤ A∗A,

I +A∗X−1
k A ≤ A∗A+ I.

Since Xk ≤ I +A∗A, we have

Xk + I +A∗X−1
k A ≤ 2(I +A∗A),
Xk+1 ≤ I +A∗A.

Moreover
I +Xk ≥ 2I,

1
2

(Xk + I +A∗X−1
k A) ≥ 1

2
(Xk + I) ≥ I,

Xk+1 ≥ I. �

Theorem 3.7. Let X+ be the positive definite solution of (2). Consider the matrix
sequence {Xk} that is defined by (17). Assume that Xk ≥ X+ holds for one integer
k. Then Xk ≥ Xk+1.

Proof. Levy [7] has shown that equation (2) has a unique positive definite solution
X+ with I ≤ X+ ≤ I +AA∗. Thus X0 ≥ X+.

For X1 we compute

X1 =
1
2

(X0 + I +A∗X−1
0 A) ≤ 1

2
(X0 + I +A∗X−1

+ A) =
1
2

(X0 +X+) ≤ X0.

Assuming that Xk ≥ X+, we have

Xk+1 =
1
2

(Xk + I +A∗X−1
k A) ≤ 1

2
(Xk + I +A∗X−1

+ A) =
1
2

(Xk +X+) ≤ Xk.

�

Theorem 3.8. Let X+ be the positive definite solution of (2) and assume that
‖X−1

+ A‖‖X−1
k A‖ < 1 where the matrices Xk are defined by (17). Then the iterative

method (17) converges at least linearly to X+.

Proof. For Xk+1 −X+ we have

Xk+1 −X+ =
1
2

(Xk −X+ +A∗(X−1
k −X

−1
+ )A)

=
1
2

(Xk −X+ +A∗X−1
+ (X+ −Xk)X−1

k A).

Therefore

(18) ‖Xk+1 −X+‖ ≤
1
2
‖Xk −X+‖

(
1 + ‖X−1

+ A‖ ‖X−1
k A‖

)
.

Since ‖X−1
+ A‖ ‖X−1

k A‖ < 1, we compute

q =
1
2
(
1 + ‖X−1

+ A‖ ‖X−1
k A‖

)
< 1
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as a bound for the convergence rate of (17). Thus the matrix sequence {Xk}
converges to X+. �
Corollary 3.9. Let X+ be the positive definite solution of (2) and assume that
‖X−1

+ A‖ ‖A‖ < 1. Then the iteration (17) converges to X+.

4. Numerical experiments

We have carried out numerical experiments for computing a positive definite
solution of equations (1) and (2) in MATLAB on a PENTIUM computer and on a
SUN workstation. We have used the methods described in Sections 2 and 3. Guo
and Lancaster [9] have considered using the Newton method for finding positive def-
inite solutions of the above equations. Newton’s method for our problems involves
a large amount of computations per iteration. Lancaster and Guo [9] estimate that
the computational work per iteration for Newton’s method and this problem is
roughly 10 to 15 times that of the iterative method (3) with α = 1. We compare
our iterative methods for various starting matrices with Newton’s method and also
derive experimental data for mixed iteration schemes for solving (1) and (2).

As a practical stopping criterion for the iterations we use

ε1(Z) = ‖Z +ATZ−1A− I‖∞ ≤ tol

and
ε2(Z) = ‖Z −ATZ−1A− I‖∞ ≤ tol ,

respectively, for various values of tol; i.e., the same criterion that we have used in
our earlier Remark on the sensitivity of the optimal value of α in (3).

4.1. Numerical experiments on solving X + ATX−1A = I. We have tested
iteration (3) with different initial matrices X0 for solving equation (1)
X +ATX−1A = I and a number of n× n matrices A.

Example 1. Consider the matrix

A =

 0.471 0.002 0.04
0.002 0.472 −0.002
−0.04 −0.001 0.471

 .

Here ‖X−1
L A‖ = 0.72 and ρ(X−1

L A) = 0.71. With tol := 10−10, we have com-
puted XL using (3) for different starting values of α: Method (3) with α = 1 needs
32 iterations; for α = 0.672, 28 iterations. If α = 1

2 , then 33 iterations are required,
and setting α = 0.657 takes 27 iterations.

According to Theorem 2.3 and formula (6), method (3) has R-linear convergence.
There are values of α for which the iteration converges slightly faster than for α = 1
or α = 1

2 .

Example 2 ([9, Example 7.2]). Consider the normal matrix

A =

 0.2 0.2 0.1
0.2 0.15 0.15
0.1 0.15 0.25

 .

We have ‖A‖ = 1
2 and ρ(X−1

L A) = 1. For tol := 10−8 we compute XL by using
(3) with different starting values α: When α = 1 or α = 0.99, then 7071 or 7070
iterations are required. Guo and Lancaster [9] carry out experiments with the same
matrix A. The Newton method in [9] needs twelve iterations to find XL with the
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same tolerance tol. Method (3) with α = 1
2 has sublinear convergence and it needs

only five iterations, which use a small fraction of the effort with Newton’s method.

Example 3. Consider the matrix

A =
Ã

2‖Ã‖
,

where

Ã =

 0.1 −0.15 −0.2598076
0.15 0.2125 −0.0649519

0.2598076 −0.0649519 0.1375

 .

The matrix Ã was considered by Zhan [15, Example 1]. We have ‖A‖ = 1
2 ,

‖X−1
L A‖ = 1 and ρ(X−1

L A) = 1. We use tol := 10−7 here. The method (3) with
α = 1 needs 2398 iterations. α = 0.807 takes 2397 iterations. And method (3) with
α = 1

2 needs only eleven iterations. The Newton method [9] needs nine iterations
for computing XL for the same stopping accuracy. If tol is chosen smaller than
10−6, however, then Newton’s method does not converge in finite time.

Example 4. Consider the equation Z + Z−1 = Q, where Q is the circulant ma-
trix Q = circ(4,−1, 0, . . . , 0,−1). This equation is equivalent to (1) with X =
Q−

1
2ZQ−

1
2 and A = Q−

1
2 .

Thus ‖A‖ = 1
2 , ‖X−1

L A‖ = 1, and ρ(X−1
L A) = 1. We use tol := 10−8. The

method (3) with α = 1 needs 7070 iterations and for α = 1
2 it needs ten iterations.

The Newton method needs twelve iterations.
Examples 2, 3, and 4 show that method (3) with α = 1

2 takes slightly fewer
iterations than the Newton method when ρ(X−1

L A) is equal to or very close to 1.
On top of this, the method (3) requires much less computational work per iteration
than the Newton method.

4.2. Numerical experiments on solving X−ATX−1A = I. Here we try to solve
X − A∗X−1A = I by using iterations (8), (16), and (17) and Newton’s method
[9]. In [9] Guo and Lancaster state that Newton’s method has local quadratic
convergence if it can be used with an initial matrix X0 that is sufficiently close to
the unique positive definite solution X+ of (2). Specifically, we experiment with
mixed algorithms that use our iterations first to approximate X+ roughly and then
accelerate convergence by using Newton’s method.

Example 5. Consider the matrix

A =
(
−3.47 3.47
−2.89 −3.47

)
.

We have ‖X−1
+ A‖ = 0.95 and ρ(X−1

+ A) = 0.9. Here we set tol := 10−8. Method
(8) with α = 1 needs 100 iterations, while for α = 4.944 only 87 iterations are
required to find X+. Method (17) with X0 = I + ATA needs thirteen iterations.
Here we have ‖X−1

+ A‖‖X−1
k A‖ < 1 for all k = 0, 1, . . . , 13 and method (17) is much

faster than method (8).
As an experiment of a mixed algorithm, we have carried out six iterations with

each of the two methods (8) and (17), followed by Newton’s method with X6 as the
start. The results are given in Table 1. The first column indicates the method and
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Table 1.

6 iterations using: Newton iterations ε2(X̃)

(8) with X0 = I 4 6.07× 10−11

(8) with X0 = 4.944I 3 2.94× 10−13

(17) 3 2.99× 10−15

its start. The second column contains the number of further iterations in Newton’s
method until obtaining X̃ with error ε2(X̃) ≤ 10−10.

The combination of (17) with Newton’s method is more effective than the other
combinations because it takes the fewest Newton iterations and achieves the best
accuracy.

Example 6. Consider the matrix

A =
1.41
‖Ã‖

Ã,

where Ã is the matrix from Example 3.

We compute X+ using (8): If α = 1, then 28 iterations are required; if α = 1.721,
i.e., if α is chosen according to Theorem 3.3, then 26 iterations are required.
Computing the solution with (16) and β = 1.996 requires 21 iterations. Here
‖X−1

+ A‖ = 0.706 < 1 and ‖X−1
+ A‖ ‖A‖ = 0.996 < 1. Hence the matrix sequence

defined by (17) converges. It needs only 15 iterations to compute X+.
Again we experiment with mixed iterations: First we make k iterations to achieve
the accuracy tol with one of the methods (8), (16), or (17), and then we continue
with Newton’s method with start Xk until the accuracy of tol := 10−10 is obtained.
The results are given in Tables 2 and 3. Column (a) contains the number of iter-
ations needed by our linearly converging methods to get close to X+ and obtain
ε2(Xk) ≤ tol1. Column (b) contains the number of iterations from there using the
quadratically converging Newton’s method to obtain X̃ with ε2(X̃) ≤ tol2 for the
chosen value of tol2 = tol.

Again the methods (16) and (17) are more effective than (8).

Example 7 ([9, Example 7.4]). Consider the equation Y −B∗Y −1B = Q, where

B =
(

50 20
10 60

)
, Q =

(
3 2
2 4

)
.

This equation is equivalent to (2) with X = Q−
1
2 Y Q−

1
2 and A = Q−

1
2BQ−

1
2 .

We have ‖Y −1
+ B‖ = 1.00007, ‖X−1

+ A‖ = 1.0098, and ρ(Y −1
+ B) = ρ(X−1

+ A) =
0.972. For tol := 10−8, we compute the solution using (8): α = 1 requires 405
iterations, while starting with α = 13.299 needs 380 iterations. For (17) we observe
that ‖X−1

+ A‖‖X−1
k A‖ < 1 for k = 0, 1, . . . , 6. Hence the condition (18) is true.

From (18) it follows ‖X7 − X+‖ ≤ ‖X6 − X+‖. We can continue with Newton’s
method and X7 as its start. After two Newton iterations we arrive at X̃ with
ε2(X̃) = 6.32× 10−11.

We have carried out further experiments on (8): Making 100 iterations with
(8) for α = 1, followed by two iterations with Newton’s method we obtain X̃ with
ε2(X̃) = 9.38×10−9. Alternately we can make 100 iterations with (8) for α = 13.299
and follow with two iterations with Newton’s method to obtain the solution X̃ with
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Table 2.

method (a) (b) ε2(X̃)

tol1 = 0.1 tol2 = 10−10

(8) with X0 = I 3 5 1.07 × 10−15

(8) with X0 = 1.721I 3 3 6.21 × 10−16

(16) with X0 = 1.996I 2 3 6.62 × 10−16

(17) 3 3 1.28 × 10−15

Table 3.

method (a) (b) ε2(X̃)

tol1 = 0.001 tol2 = 10−10

(8) with X0 = I 12 2 5.19× 10−16

(8) with X0 = 1.721I 10 2 8.68× 10−16

(16) with X0 = 1.996I 7 2 1.45× 10−15

(17) 6 2 1.09× 10−15

ε2(X̃) = 2.02 × 10−10. When iterating 85 times with (8) for α = 13.299, followed
by two iterations with Newton, the solution X̃ satisfies ε2(X̃) = 2.78× 10−9.

Hence the convergence rate of (8) depends on our choice of α. There are values
of α for which the combined method takes fewer iterations and achieves the same
accuracy.

Note that we can compute a solution X̃ for this problem by using (17) alone in
only fourteen iterations. The iteration (17) converges for this A, but unfortunately
we cannot prove convergence for (17) and this matrix theoretically.

5. Conclusions

For solving equation (1) A + A∗X−1A = In iteratively, iteration (3) benefits
most from choosing the starting matrix X0 = αI or X0 = βI, where α and β are
defined as in (4) or in Theorem 2.4, respectively, from the extremal singular values
of A.

If A is real, then each iteration step (3) Xk+1 = I − A∗X−1
k A costs 7

3 n
3 flops

per iteration [15]. To find all singular values of A via the Golub–Reinsch algorithm
in order to set up X0 requires about 2 2

3n
3 operations; see, e.g., [8, ch. 5.4.5]. Thus

“preconditioning” the iterations with one SVD of A adds the equivalent of about
one extra iteration step to the whole procedure.

Looking at the examples in Section 4 above, we note no speed-up in Example 1;
all iterations converge in 27 to 33 iterations and not much can be achieved with
an “SVD preconditioned” start X0. However, in Examples 2–4 and in the example
preceding Theorem 2.5, we achieve convergence in 5, 9, 10, and 1 respective iter-
ations from the starting matrix X0 that is suggested from the singular values of
A. In contrast, from suboptimal starting matrices X0 = cIn, we need 7,000, 2,400,
7,000, and 70,000 iterations of (3), respectively, for convergence. Thus for the price
of one extra iteration, we can achieve speed-up factors of around 1,160, 240, 640,
and 35,000, respectively.
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Hence we recommend always starting with the optimal starting matrix of the
form cIn as suggested from A’s SVD to solve (1) A+A∗X−1A = In iteratively via
the standard iteration (3).

When trying to solve the “–” equation (2) A − A∗X−1A = In iteratively, our
experiments show only a slight improvement in the rate of convergence between the
standard iteration (8), even when starting with our optimal α and β values from (9)
or (15) from X0 = αIn or X0 = βIn, and the special iteration (17). This speed-up
is limited to a factor of at most 12 in Examples 5–7 of Section 4.

Thus for solving (2), an “SVD preconditioning” is seemingly of less value than
in the previous “+” equation case (1), though we still recommend it. Moreover we
also suggest experimenting here with mixing standard iterations with subsequent
Newton iterations steps.
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