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OBSTACLES TO THE TORSION-SUBGROUP ATTACK
ON THE DECISION DIFFIE-HELLMAN PROBLEM

NEAL KOBLITZ AND ALFRED J. MENEZES

Abstract. Cheng and Uchiyama show that if one is given an elliptic curve,
depending on a prime p, that is defined over a number field and has certain
properties, then one can solve the Decision Diffie-Hellman Problem (DDHP)
in F∗p in polynomial time. We show that it is unlikely that an elliptic curve
with the desired properties exists.

1. Introduction

The Discrete Logarithm Problem (DLP) in the multiplicative group F∗q of the
field of q elements, along with the closely related Diffie-Hellman Problem (DHP) and
Decision Diffie-Hellman Problem (DDHP), have been the subject of cryptographic
research for many years. Recall that the DLP is the problem, given g ∈ F∗q and y in
the subgroup generated by g, of finding an integer x such that y = gx; the DHP is
the problem, given g, gx1, gx2 ∈ F∗q , of finding gx1x2 ; and the DDHP is the problem,
given g, gx1 , gx2, gx3 ∈ F∗q , of determining whether or not x3 ≡ x1x2 (mod `), where
` is the multiplicative order of g.

The authors of [3] consider the DDHP in the multiplicative group F∗p of a prime
field. They show that if one is given an elliptic curve, depending on p, that is
defined over a number field and has certain properties, then one can solve any
instance of the DDHP in F∗p in polynomial time. They conjecture the existence of
elliptic curves with the desired properties. However, the purpose of this paper is to
give evidence that the elliptic curves needed in [3] do not exist.

We emphasize that, even if the curves in the conjecture in [3] existed, the result
claimed in that paper would not be of practical value unless a reasonable algorithm
could be developed to find them. The authors of [3] did not consider this question,
and we also will ignore the question of how to find these curves in the unlikely event
that they exist.

We now describe the contents of the paper. In §2 we put the purported result of
[3] in the context of Maurer’s work on the equivalence of the DHP and the DLP. In
§3 we introduce elliptic curves over number fields. In order to make everything as
self-contained and readable as possible, our treatment of this subject is informal.
For details and proofs we refer the reader to Silverman’s two volumes [21, 22]. In
§4 we list the properties of the elliptic curves that are conjectured in [3] to exist,
and we outline the algorithm in [3] for solving the DDHP in F∗p.
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In §5 we discuss the Uniform Boundedness Conjecture (now a theorem), and we
investigate the claim in [3] that as the prime ` −→ ∞ there should exist elliptic
curves defined over number fields of degree < (log `)O(1) having points of order
` with coordinates in that number field. From the literature on the subject we
conclude that this claim is most likely false, although at present mathematicians
are not able to prove that it is false.

In §6 we describe the connection between torsion points on elliptic curves and
the so-called modular curves. This section, like §3, is informal and contains no
proofs. In §7 we describe the cases ` = 5, 7, 11.

In §8 we put aside the question of the degree of the number field that we looked
at in §5, and instead we ask about the size of the discriminant of the elliptic curve
and the size of the coordinates of the torsion points. We prove that the first of these
is polynomially bounded in terms of the second, and we prove a partial converse—
that the norm of the y-coordinate of a torsion point is bounded by the square root
of the norm of the discriminant of the curve. We then give reasons why one expects
the discriminant of the curve (and therefore also the coordinates of the torsion
points) to grow exponentially with `.

In the conclusion we ruminate on the different types of conditional results in
cryptography and end with a warning about the danger to the credibility of the
research community if we ascribe any validity at all to a result that is contingent
upon mathematicians’ inability to prove that a certain type of curve does not exist.

2. Maurer’s result

The definitions of the DLP, DHP and DDHP given in §1 can be extended to
arbitrary finite cyclic groups. It is clear that the DDHP reduces in polynomial
time to the DHP, and the DHP reduces in polynomial time to the DLP. Polynomial
time reductions of DLP to DHP, or of DHP to DDHP, are not known. There
are, however, some groups G in which the DLP is believed to be intractable but
where the DLP can be reduced in polynomial time to the DHP in G; examples
include arbitrary cyclic groups of order n where φ(n) is smooth (see [1]). There are
also some groups in which no polynomial time algorithms for the DHP are known,
but where the DDHP can be solved in polynomial time; examples include certain
supersingular elliptic curves and certain elliptic curves of trace 2 (see [11]). Finally,
we note that Shoup [20] has proved lower bounds of the form Ω(

√
n) for the DLP,

DHP and DDHP in generic groups of prime order n. (A generic group is one whose
elements have random labelings and which comes equipped with an efficient oracle
for performing the group operation.) Shoup’s result provides some evidence for the
intractability of the DLP, DHP and DDHP in groups that are used in cryptography.

While hardness of the DLP in a group G is necessary for the security of discrete
logarithm cryptographic schemes in G (since otherwise an adversary can compute
private keys from public keys), it is generally not sufficient. For example, the
ElGamal public-key encryption scheme [6] in the group F∗p is not semantically secure
against passive attacks. This type of security would mean that an adversary is
unable to recover any partial information about the plaintext from the public key
and ciphertext. In the ElGamal encryption scheme, a user’s public key is ga, where
g is a generator of F∗p and a ∈ [1, p−1] is the user’s private key. A message m ∈ Fp is
encrypted to c = (gk,mgak), where k is randomly selected from [1, p−1]. Even if the
DHP (and thus also the DLP) in F∗p is intractable, a passive adversary can deduce
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partial information about m from c and ga—namely, the adversary can compute
the Legendre symbol (mp ). On the other hand, the ElGamal encryption scheme in
a prime-order subgroup G of F∗p can be proven to be semantically secure against
passive attacks under the assumption that the DDHP in G is intractable. Recently,
Cramer and Shoup [4] introduced an ElGamal-like encryption scheme which they
proved semantically secure against active attacks (where the adversary is given
the decryptions of polynomially many ciphertexts of her own choosing) assuming
the intractability of the DDHP in G. For other cryptographic applications of the
DDHP, see the survey article of Boneh [2].

Maurer [16] proved the polynomial time equivalence of the DLP and DHP in
groups G of prime order ` under the assumption that certain elliptic curves exist
and can be efficiently found. Namely, if one is given an elliptic curve E defined
over F` such that E(F`) is cyclic and #E(F`) is (log `)c-smooth (i.e., the largest
prime factor of #E(F`) is at most (log `)c), then the DLP in G can be reduced
in polynomial time to the DHP in G. The coefficients of the elliptic curve E
comprise a polynomial size “hint” depending only on ` that, once known, allows
one to solve any instance of the DLP in any group G of order ` in polynomial time
given a Diffie-Hellman oracle for G. It is not known if this hint exists; however,
heuristic arguments about the distribution of smooth integers in the Hasse interval
[`−2

√
`+1, `+2

√
`+1] suggest that such hints do exist. Even if the hint does exist,

it is not known how to find it in polynomial time—an exhaustive search would, in
general, take O(`c) time. Nevertheless, Maurer’s result can be viewed as providing
some evidence for the equivalence of the DLP and DHP.

A natural question that is still open is whether there exist polynomial size hints,
depending only on `, that, once known, allow one in polynomial time to solve any
instance of the DLP in any group of order `. Observe that the restriction on the
size of the hint is important, since otherwise a table of logarithms for F∗p suffices.
The question is also of interest with DLP replaced by DHP or DDHP. In [3], Cheng
and Uchiyama consider this question for the DDHP when the group is a subgroup
of prime order ` in F∗p; their hint depends on both ` and p. The basic idea of [3] is
to use elliptic curves over number fields to reduce these DDHP instances to DDHP
instances in certain elliptic curve over finite fields where the DDHP is known to be
solvable in polynomial time (see [10], [11] and [24]).

3. Background on elliptic curves

Let F be a field of characteristic not equal to 2 or 3, and let a and b be elements
of F such that the discriminant ∆ = 4a3 + 27b2 is nonzero. By an elliptic curve E
defined over F we mean the equation

(1) y2 = x3 + ax+ b.

The condition ∆ 6= 0 says that the cubic polynomial on the right has distinct
roots; that means that the curve does not have any singular points and cannot be
transformed into a rational curve. By E(F ) we mean the set of all points with
coordinates in F that satisfy (1), along with the so-called point at infinity, denoted
O. This set E(F ) forms an abelian group with zero-element O. More generally, if
L is any field containing F , we let E(L) denote the group consisting of points with
coordinates in L that satisfy (1), along with the point at infinity. Then E(F ) is a
subgroup of E(L).



2030 NEAL KOBLITZ AND ALFRED J. MENEZES

Now suppose that F = K is a number field, that is, a finite extension of the
field Q of rational numbers. A point of finite order on E(K) is called a torsion
point. We let Etors(K) ⊂ E(K) denote the subgroup of all torsion points; by the
Mordell-Weil theorem, we know that this is always a finite group.

Suppose that we have an elliptic curve (1) defined over Q with integer coefficients
a and b. We can reduce its equation modulo primes p and consider the resulting
equation over the field Fp of p elements. The result is not necessarily an elliptic
curve, however, because the discriminant ∆ might reduce to zero modulo p. This
is called bad reduction. In the case when ∆ ≡ 0 (mod p), the points of the reduced
curve (excluding the singular point) still form a group, but the group is isomorphic
to one we already knew about before we were working with elliptic curves. Namely,
there are three possible groups that occur:

(a) (additive bad reduction) the additive group F+
p ;

(b) (split multiplicative bad reduction) the multiplicative group F∗p;
(c) (nonsplit multiplicative bad reduction) the subgroup of elements of order

p+ 1 in the multiplicative group F∗p2 of the quadratic extension.

A simple example of these possibilities is given by the elliptic curve y2 = x3+ax2+p
(note that this is not quite of the form (1), but it can easily be transformed to the
form (1) by a linear change of the x-variable). If a = 0, we get additive reduction
at p; if a is a quadratic residue in F∗p, we get split multiplicative reduction at p; and
if a is a nonresidue, we get nonsplit multiplicative reduction at p.

Similar definitions apply to an elliptic curve defined over a number field K,
except that instead of reducing modulo a prime number, we reduce modulo a prime
ideal of K, and instead of Fp we work with the residue field of that ideal.

Occasionally it is necessary to use a more general form of the equation of an
elliptic curve over a field F , namely

(2) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

If the characteristic of the field F is not 2 or 3, then this equation can be transformed
into (1) by a linear change of variables. However, sometimes one might not want
to do this. For example, the equation y2 + y = x3 over Q is equivalent to the
equation y2 = x3 + 16. (In the first equation just replace y by 1

8y −
1
2 and x by

1
4x; then multiply through by 64.) The second equation has additive bad reduction
at the prime 2, whereas the first equation is a perfectly good elliptic curve modulo
2. In general, we do not say that an elliptic curve has bad reduction at p if it is
possible to transform its equation into one that has discriminant prime to p. In that
case we refer to the latter equation and its discriminant as the minimal equation
and minimal discriminant (see p. 172 of [21] for more information on minimal
equations and discriminants). Thus, the discriminant of the equation y2 = x3 + 16
is 6912 = 28 · 33, but its minimal discriminant is 27. The elliptic curve given
by y2 = x3 + 16 has bad reduction only at 3, because its minimal equation has
discriminant divisible only by the prime 3.

We next explain what a complex-multiplication (CM) curve is. If E is an elliptic
curve (1) defined over a number field (or any subfield of C), its complex points
E(C) may be regarded as the complex plane modulo a certain lattice L; that is,
two complex numbers are considered equivalent if their difference is in the lattice.
We write E(C) ≈ C/L. The equivalence classes of the complex plane modulo L can
be visualized by means of a fundamental parallelogram for L. This is a parallelogram
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Figure 1. Fundamental parallelogram of a lattice, and a torus.

two of whose sides are basis vectors for L emanating from the origin. Every complex
number is equivalent modulo L to a point of the parallelogram, and no two points
of the interior of the parallelogram are equivalent to one another. However, the
points opposite one another on the perimeter of the parallelogram do differ by a
lattice element. Thus, the opposite sides of the parallelogram should be viewed as
“glued together” with equivalent points joined. The resulting geometrical shape is
a torus, depicted in Figure 1.

If we replace L by a multiple cL, where c is a nonzero complex number, this does
not change the elliptic curve (more precisely, the two elliptic curves are said to be
isomorphic). Thus, without loss of generality we may suppose that L = Zτ + Z
is generated by the number 1 and a complex number τ having positive imaginary
part.

The Weierstrass ℘-function and its derivative are used to construct a one-to-one
correspondence between the points of the complex plane modulo L and the complex
points of the elliptic curve E given by (1). Under this correspondence, the group
law on the elliptic curve comes from the obvious additive group structure on C/L
(namely, vector addition of complex numbers modulo the lattice).

We say that an elliptic curve with lattice L has complex multiplication if there
exist nontrivial complex numbers α (“nontrivial” means α 6∈ Z) such that αL ⊂ L.
It is easy to show that if such α exist, then the set of all α such that αL ⊂ L forms
a subring of the ring of integers of a certain imaginary quadratic field. This field is
called the CM-field of the curve. For example, the curve y2 = x3 + ax has complex
multiplication by the Gaussian integers; its CM-field is Q(i). Similarly, the curve
y2 = x3 + b has CM-field Q(ζ), where ζ = (−1 +

√
−3)/2. It should be noted that

CM-curves are rare, in the sense that a random equation (1) almost certainly will
give a non-CM curve.

4. The DDHP algorithm of Cheng and Uchiyama

In this section we outline the algorithm of Cheng and Uchiyama [3] for solving
the DDHP in the multiplicative group of a prime field. We begin by listing the
properties that must be satisfied by the number field K and the elliptic curve E in
[3].

Let p and ` be primes with `|p− 1. By “polynomial size” we mean of bitlength
(log p)O(1). (Since p is usually polynomial in `, we shall sometimes write (log `)O(1)

instead.) Concerning K, one needs both its degree over Q and the coefficients



2032 NEAL KOBLITZ AND ALFRED J. MENEZES

of a generating polynomial to have polynomial size. Next, the elliptic curve E
must be defined over K and have points of order ` with coordinates in K that all
have polynomial size. In [3] the authors claim that the coefficients of their curve
E do not have to satisfy a polynomial bound; however, in §8 we shall prove that
their assumption regarding polynomial size torsion points in fact implies that the
coefficients of E also have polynomial size. Finally, all of the prime ideals of K
dividing p must have degree 1 (that means that the residue field is Fp), E must
have split multiplicative bad reduction at p (i.e., at some prime ideal u of K dividing
p), and the points of order ` must not reduce modulo p to the singular point.

Now suppose that we wish to solve the DDHP in the subgroup of order ` in F∗p.
That is, we are given an element g ∈ F∗p of order `, gx1, gx2 and gx3, and we wish
to determine whether or not x3 ≡ x1x2 (mod `). Let Ẽ denote the singular elliptic
curve over Fp obtained by reducing E modulo u. Since Ẽ has split multiplicative
bad reduction at u, Ẽns(Fp) ∼= F∗p, where Ẽns denotes the non-singular points on
Ẽ. Moreover, an isomorphism φ : F∗p −→ Ẽns(Fp) can be efficiently computed.
Next, one lifts the points A = φ(g), A1 = φ(gx1), A2 = φ(gx2), A3 = φ(gx3) to
`-torsion points B, B1, B2, B3 in E(K). (This can be accomplished by first lifting
to points over the field of p-adic numbers—see [3] for details.) Now let r be a
prime such that ` divides r− 1, ` > 4

√
r, and E has good reduction at some prime

ideal v dividing r. Let E′ denote the elliptic curve over Fr obtained by reducing E
modulo v, and let C, C1, C2, C3 ∈ E′(Fr) be the points obtained by reducing B,
B1, B2, B3 modulo v. Since ` > 4

√
r, the only multiple of ` in the Hasse interval

[r − 2
√
r + 1, r + 2

√
r + 1] is r − 1. Since ` divides #E′(Fr), we conclude that

#E′(Fr) = r − 1. Since r < `2, it follows that `2 does not divide r − 1. Thus, as
observed by Joux [10], the Tate pairing 〈P, P 〉 for points P of order ` in E′(Fr)
is a nontrivial `th root of unity in F∗r . Finally, to solve the original DDHP, one
computes 〈C1, C2〉 = 〈C,C〉x1x2 and 〈C,C3〉 = 〈C,C〉x3 ; we have x3 ≡ x1x2 (mod
`) if and only if 〈C1, C2〉 = 〈C,C3〉.

5. Degree of the number field

One of the great achievements of the theory of elliptic curves over number fields
was the complete proof of the Uniform Boundedness Conjecture (UBC). This re-
markable conjecture (now a theorem) says that there exists a bound B(d), depend-
ing only on the degree of the number field, such that the torsion subgroup of any
elliptic curve E over any number field K of degree d has no more than B(d) el-
ements. The first major result in the direction of proving the UBC was Mazur’s
theorem for d = 1 (i.e., K = Q) in 1978 [17]. Mazur proved that B(1) = 16 and
that 7 is the largest prime that can be the order of a point in Etors(Q).

The d = 2 case of the UBC was proved fourteen years later by Kamienny [12].
It turns out that when ` is a prime greater than 13, there cannot be a point of
order ` in Etors(K) for any quadratic field K. Soon after, the UBC was proved for
some larger values of d and then finally in [18] for all d. Merel [18] also proved the
bound ` ≤ d3d2

for d > 1 for primes dividing the order of the torsion subgroup, and
Oesterlé soon showed how to improve this bound to ` ≤ (3d/2 + 1)2 (see [8]). The
Oesterlé bound is the best result that has been proved without any restriction on
the elliptic curves.
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Recall that in [3] the authors conjecture that as ` −→ ∞ there exist number
fields K of degree < (log `)O(1) and elliptic curves E over K having points of
order `. The authors cite Oesterlé’s bound as support for this conjecture, and say:
“Fortunately, the current research seems to indicate that the maximum possible
number of torsions over a number field grows exponentially with the degree of the
number field.”

But a more dispassionate examination of the literature reveals a somewhat dif-
ferent picture. In addition to Oesterlé’s bound, specialists have been able to prove
that

(1) if there is a prime of additive bad reduction, then ` < 48d (Flexor-Oesterlé
[7]);

(2) for curves with good reduction everywhere one has ` < 1977408d logd;
and, more generally, if there is a bound s on the number of prime ideals
of K where the curve has bad reduction, then there exists a constant cs
depending only on s such that ` < csd log d (Hindry-Silverman [8]);

(3) for a fixed curve E, considered over varying extension fields of its field of
definition, there exists a constant c depending on E such that ` < cd log d
(Masser [15]).

What about the other direction? What families of E(K) are known with points
of large prime order? The strongest result currently known comes from fixing a
curve E and then considering the same curve over field extensions K of its field
of definition. In this way one can obtain points of prime order ` where ` is only
≈
√
d. (The reason is that the x-coordinate of a point of order ` satisfies the `th

division polynomial, which has degree (`2 − 1)/2; thus, one usually has to go to
a O(`2)-degree extension to get the coordinates of such a point.) It is an open
question [23] whether or not there exists a family of elliptic curves over number
fields K that have a K-point of prime order ` with ` growing faster than

√
degK.

Several experts in the area have suggested that the order ` of a torsion point,
even if it does not satisfy an upper bound as small as

√
d, is likely at least to

satisfy a polynomial upper bound. This is stated explicitly by S. David1 and more
tentatively by Hindry and Silverman.2

If ` is bounded by a polynomial in d, then the strategy in [3] immediately fails.
As we shall see in §8, that is not the only reason for why the torsion-subgroup
approach is likely to fail. But first we give some background on modular curves.

6. The modular curves X(`), X1(`), and X0(`)

In §3 we described the connection between lattices Zτ + Z and elliptic curves.
The purpose of this section is to discuss the curves that parameterize the set of all
elliptic curves having a point of order `.

Let Γ denote the group of all 2×2 matrices with integer entries and determinant
1 (Γ is often denoted SL2(Z)). For each ` one can consider the subgroup consisting
of all matrices that are congruent modulo ` to the identity matrix. This subgroup
is denoted Γ(`). We also define two intermediate subgroups, denoted Γ0(`) and
Γ1(`). A matrix γ ∈ Γ is said to be in Γ0(`) if its lower-left entry is divisible by `,

1“Notons toutefois que ces majorations semblent indiquer que l’ordre de la torsion ne devrait
dépendre que polynomialement du degré du corps et non exponentiellement comme c’est le cas en
ce moment en [18]” ([5], p. 107).

2“Il est naturel de demander s’il existe une borne polynomiale en d” ([8], p. 97).
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and it is said to be in Γ1(`) if its lower-left entry is divisible by ` and its diagonal
entries are congruent to 1 modulo `. In other words, a matrix γ ∈ Γ that reduces
modulo ` to a matrix of the form(

∗ ∗
0 ∗

)
,

(
1 ∗
0 1

)
,

(
1 0
0 1

)
belongs respectively to Γ0(`), Γ1(`), Γ(`). We obviously have the inclusions

Γ(`) ⊂ Γ1(`) ⊂ Γ0(`) ⊂ Γ.

For prime ` the index of the first of these groups in the second is `, the index of
the second in the third is ` − 1, and the index of the third in the fourth is ` + 1.
In particular, Γ1(`) is a subgroup of Γ of index `2 − 1. (Note: Sometimes Γ and
Γ0(`) are defined as the quotient of the above groups by the 2-element subgroup{
±
(

1 0
0 1

)}
; in that case Γ1(`) is a subgroup of Γ of index (`2 − 1)/2.)

Given a lattice L in the complex plane that is generated by complex numbers ω1

and ω2, we define the action of the group Γ on the pair of generators by the usual

matrix operation on a vector. That is, for γ =
(
a b
c d

)
, we get a new basis for the

same lattice as follows: (
a b
c d

)(
ω1

ω2

)
=
(
aω1 + bω2

cω1 + dω2

)
.

In particular, the basis
(
τ
1

)
for a lattice of the form L = Zτ +Z is transformed to

the basis
(
aτ + b
cτ + d

)
. If we want our lattice to have one basis element equal to 1, we

can scale the lattice L by 1
cτ+d to get the equivalent lattice Zγ(τ) + Z, where γ(τ)

is defined as

(3) γ(τ) =
aτ + b

cτ + d
.

It is easy to check that γ(τ) has positive imaginary part if τ does; so (3) gives an
action of the group Γ on the complex upper half-plane H. To summarize: for any
γ ∈ Γ, the lattice Zγ(τ) +Z is obtained from the lattice Zτ +Z by change of basis
and then scaling by the second element of the new basis. This lattice gives the
same elliptic curve (i.e., an isomorphic one) as the old lattice.

In this way we get a one-to-one correspondence between isomorphism classes
of elliptic curves defined over C and equivalence classes of numbers in the upper
half-plane H, where τ ′ is said to be equivalent to τ if τ ′ = γ(τ) for some γ ∈ Γ.

Now let us consider torsion points. The complex curve E(C) has `2 points of
order `. Under the correspondence between the elliptic curve and the complex plane
modulo the lattice Zτ + Z, the points of order ` correspond to the `2 elements of
the lattice Z

(
τ
`

)
+Z

(
1
`

)
regarded modulo Zτ +Z. These are the `2 equally spaced

points of a fundamental parallelogram for the lattice Zτ + Z (see Figure 2).
If our element γ ∈ Γ actually lies in Γ(`), then notice what happens to the basis

τ
` ,

1
` of the lattice of torsion points:

(4)
(
a b
c d

)( τ
`
1
`

)
=

(
aτ
` + b

`

cτ
` + d

`

)
=

(
τ
` + a−1

` τ + b
`

1
` + c

` τ + d−1
`

)
.
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τ

Figure 2. Points of order 5 in the fundamental parallelogram of
a lattice Zτ + Z.

But since ` divides a− 1, b, c, and d− 1, it follows that modulo the lattice Zτ + Z

these elements are equivalent to

(
τ
`
1
`

)
. In other words, the group Γ(`) preserves

not only the elliptic curve, but also a basis of the points of order `.
Similarly, if γ ∈ Γ is actually in Γ1(`), then we see from (4) that one torsion

element 1
` is taken to itself (more precisely, to the number 1

` +
(
c
`τ + d−1

`

)
, which

differs from 1
` by a lattice element). That is, Γ1(`) preserves not only the elliptic

curve, but also a point of order `. Just as Γ-equivalence classes of points in the
complex upper half-plane H correspond to elliptic curves, the Γ1(`)-equivalence
classes of H correspond to pairs consisting of an elliptic curve and a point of order
` on it.

In the case of Γ0(`), what gets preserved is not a point of order ` but rather
a subgroup of order `. That is, if γ ∈ Γ0(`) in (4), then the multiples of 1/` get
permuted, and the subgroup made up of these multiples is preserved. Thus, the
Γ0(`)-equivalence classes of H correspond to pairs consisting of an elliptic curve
and a subgroup of order `.

For any of the groups Γ, Γ(`), Γ1(`), Γ0(`), we can construct a fundamental
domain for its action on H. This means that we find a region D with the property
that every point ofH is equivalent to a point ofD and no two points of the interior of
D are equivalent to one another. Some points on the boundary of D are equivalent
to one another, so we can visualize the fundamental domain as “glued together”
by joining the equivalent points on its boundary. The simplest case is Γ, where the
fundamental domain D0 can be taken to be the part of the vertical strip of width
1 centered on the y-axis that is above the unit circle. A fundamental domain D for
a subgroup of Γ can be constructed by putting together D0 along with its images
γ−1
i D0, where γi ∈ Γ runs through a set of coset elements of Γ modulo the subgroup

in question. In the case of Γ0(`) there are `+1 such coset elements, and in the case
of Γ1(`) there are (`2 − 1)/2. In Figure 3 we see a fundamental domain for Γ0(3),

where we have taken coset elements γ1 =
(

1 0
0 1

)
, γ2 =

(
0 1
−1 0

)
, γ3 =

(
1 1
−1 0

)
,

γ4 =
(

1 0
1 1

)
.

It is a basic result of the theory of modular curves that the fundamental domains
can be regarded as algebraic curves defined over Q. The curves coming from Γ(`),
Γ1(`), and Γ0(`)—after they are “compactified” by adding some “cusps,” which are
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-1/2 0 1/2-1

D

Figure 3. A fundamental domain D for Γ0(3).

a finite number of points not corresponding to elliptic curves3—are denoted X(`),
X1(`), and X0(`). We shall be mainly interested in X1(`), which, as we have seen,
parameterizes elliptic curves along with a torsion point of order `. More precisely, if
a (noncusp) point of X1(`) has coordinates in a number field K, then it corresponds
to an elliptic curve defined over K that has a point of order ` that is also defined
over K. (A K-point of X0(`) corresponds to an elliptic curve defined over K with
a subgroup of order ` that is defined over K. What that means is that we have to
take an extension L of K to get a point P of order `, but at least we can say that if
any automorphism in Gal(L/K) is applied to P , the new point will still be in the
subgroup generated by P .)

In [17] Mazur completely described all torsion subgroups that can occur on an
elliptic curve over Q. In particular, he proved that for primes ` > 7 there are no
elliptic curves over Q with a point of order `. Mazur proved this fundamental result
by studying the family of curves X1(`). Because of the correspondence between
noncusp Q-points on X1(`) and elliptic curves defined over Q with a point of order
` with coordinates in Q, his result can be given as a statement about rational points
on the curvesX1(`): if ` is a prime greater than 7, then X1(`) has no rational points
except cusps. Thus, Mazur’s theorem is the modular curve analogue of Fermat’s
Last Theorem, which, of course, can be stated in the form: if ` is a prime greater
than 2, then the curve x` + y` = 1 has no rational points except the trivial ones
(1, 0) and (0, 1).

Recalling the discussion of the Uniform Boundedness Conjecture in §5, we can
state the result in [18] (as improved by Oesterlé) as follows: for ` > (3d/2 + 1)2 the
curve X1(`) has no noncusp K-points for any degree-d number field K. In order to
appreciate the power of the UBC, the reader should notice the contrast with the
family of Fermat curves. Already when d = 2, very little is known about points on
high-degree Fermat curves with coordinates in quadratic number fields.

The curves X0(`) and X1(`) become quite complicated as ` increases. One
measure of the complexity of a curve is its genus: a rational curve has genus 0,
an elliptic curve has genus 1, and a hyperelliptic curve of the form y2 = x2g+1 +
a2gx

2g + · · · + a1x + a0 has genus g. The complex points of a genus-g curve form

3In Figure 3 the fundamental domain has cusps at 0, −1, and ∞.
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Figure 4. A Riemann surface with five handles.

a so-called Riemann surface with g “holes” or “handles.” In Figure 1 we saw a
genus-1 curve (an elliptic curve). The complex points of a genus-5 curve are shown
in Figure 4.

The exact formulas for the genus of modular curves are a little complicated
(see [19]). Asymptotically the genus of X0(`) is ∼ 1

12 `, and the genus of X1(`) is
∼ 1

24`
2. Thus, if ` is a 160-bit prime, the curve X1(`), considered over the complex

numbers, looks like a Riemann surface with about 2315 handles! It is this daunting
object that would have to have a point of reasonable size if the elliptic curve in the
Cheng-Uchiyama algorithm existed.

7. The examples ` = 5, 7, 11

When ` = 5 or 7, the modular curve X1(`) is a rational curve. That is, all
elliptic curves over a number field K with a point of order ` in Etors(K) can be
parameterized by a single variable t ∈ K. In each case an explicit equation of the
elliptic curve corresponding to t is given by Silverman. Namely, for ` = 5 we have
(see [22], p. 278 and [14])

(5) y2 + (t+ 1)xy + ty = x3 + tx2, ∆ = −t5(t2 + 11t− 1).

For ` = 7 we have (see [21], p. 223 and [14])

(6)
y2 + (1 + t− t2)xy + (t2 − t3)y = x3 + (t2 − t3)x2,

∆ = t7(t− 1)7(t3 − 8t2 + 5t+ 1).

When ` = 11, the modular curve X1(11) is itself an elliptic curve. It has a very
simple equation:

(7) s2 − s = t3 − t2.
In other words, all elliptic curves over a number field K with a point of order 11 in
Etors(K) can be parameterized by two variables t, s ∈ K satisfying (7). An equation
of the elliptic curve corresponding to a point (t, s) on the curve (7) is given in [22],
p. 279:

(8) y2 + (st+ t− s2)xy + s(s− 1)(s− t)t2y = x3 + s(s− 1)(s− t)tx2.

On each curve (5), (6), (8) the point P = (0, 0) is an `-torsion point.
Since the X1(11) case is more typical than the cases ` = 5, 7 (where the modular

curve is rational), we decided to compute the discriminant of the curve (8) as a
polynomial in t and s and then examine its norm from Q(t, s) to Q(t). Note that any
polynomial in t and s can be reduced to the form a(t)+sb(t) using (7), and the norm
of this element is (a(t) + sb(t))(a(t) + (1− s)b(t)) = a(t)2 + a(t)b(t) + (t2− t3)b(t)2.
We found that the norm of the discriminant factors as a power of t times a power
of t− 1 times an irreducible quintic:

Norm(∆) = −t34(t− 1)22(t5 − 18t4 + 35t3 − 16t2 − 2t+ 1).
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8. Coefficients, discriminants, coordinates —

how big are they?

We first prove that there is a close relation between the size of the coordinates
of the torsion points and the size of the coefficients and discriminant in (1).

Theorem 1. Let E be an elliptic curve with equation (1). If E(K) has a point of
prime order `, then the bitlength of the discriminant of E is bounded by a constant
times the maximal bitlength of the coordinates of the torsion points. In the other
direction, if ` > d + 1 (where d = [K : Q]), then the norm from K to Q of the
y-coordinate of a torsion point is an integer bounded by the square root of the norm
of the discriminant.

Proof. Let P1 = (x1, y1) and P2 = (x2, y2) be two torsion points such that P1 6=
±P2, that is, x1 6= x2. We have y2

1 = x3
1+ax1+b and y2

2 = x3
2+ax2+b. Subtracting,

we immediately solve for a and b:

a =
y2

1 − y2
2

x1 − x2
− (x2

1 + x1x2 + x2
2), b = y2

1 − x3
1 − ax1.

Since ∆ = 4a3 + 27b2, this proves the first assertion. We remark that a similar
proof would apply for ` large if the equation of the curve were given in the more
general form (2) with coefficients a1, a2, a3, a4, a6. We would just have to choose five
torsion points P1, P2, P3, P4, P5 in general position (that is, no three on a line and
Pi 6= ±Pj) and solve a 5×5 linear system to express the ai in terms of polynomials
in the coordinates of the Pi.

The second assertion in the theorem follows from Exercise 8.11(a) of [21]. In
the notation there, ν denotes the valuation corresponding to a prime ideal of K,
and rν =

[
1
`−1ordν(`)

]
(here [ · ] is the greatest integer function). The assumption

d < ` − 1 implies that rν = 0, and then the exercise gives for nonzero y: 0 ≤
ordν(y2) ≤ ordν(∆). Since this holds for any prime ideal of K, we conclude that y
is an algebraic integer and |Norm(y2)| ≤ |Norm(∆)|, as claimed. �

We remark that, roughly speaking, the bitlength of the norm of an element y ∈ K
is at most d times the bitlength of y. (A more precise statement would have to
take into account the bitlength of the basis elements of K over Q in terms of which
y is written as a d-tuple.) But it is possible for the norm to have much smaller
bitlength. For example, in the field K = Q(

√
2) an element a + b

√
2 has norm

a2−2b2, which has bitlength bounded by 1 + 2 max(bitlength(a), bitlength(b)). On
the other hand, a large power of 1 +

√
2 has large bitlength, but its norm is ±1.

Thus, we cannot conclude from Theorem 1 that the bitlength of y is polynomially
bounded whenever the bitlength of the discriminant is.

We claim that the discriminant of the elliptic curve is likely to be at least expo-
nentially large. In the cases ` = 5, 7, 11 (see §7) we already see the trend toward
large discriminants. To find a curve with the properties needed in [3], we must
choose t to be a root modulo p (more precisely, modulo a prime ideal of K dividing
p) of the irreducible quadratic (for ` = 5), cubic (for ` = 7), or quintic (for ` = 11)
that appears in the factorization of ∆ or Norm(∆). (Although the discriminant
vanishes mod p when t ≡ 0 or 1 mod p, those values cannot be used, because the
torsion subgroup would collapse into the singular point, as we see from the formulas
for iP given below.) The discriminant of the curve is of order t7 for ` = 5, t17 for
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` = 7, and t30.5 for ` = 11 (here we take the square root of the norm, in view of the
remark following the proof of Theorem 1). The powers of t seem to be growing at
least linearly, and perhaps quadratically, with `.

There are two other heuristic arguments that suggest that the discriminant ∆
grows rapidly with `. First, as mentioned in §5, Hindry and Silverman [8] proved
that if the number of prime divisors of ∆ is bounded, then ` = O(d log d) (with the
constant in the big-O depending on the bound). Thus, if ` grows much faster than
polynomially in d, as assumed in [3], it is likely that the number of prime divisors
of ∆ would grow rapidly.

In addition, the proof of the second part of Theorem 1 shows that Norm(∆)
is divisible by the square of the norm of the y-coordinate of the torsion point
iP = (xi, yi) for all ` − 1 values of yi, i = 1, . . . , ` − 1 (unless yi = 0). This does
not, of course, imply that Norm(∆) has `−1 distinct divisors. It is conceivable, for
instance, that yi and yj frequently differ by a factor that is a unit of K, in which
case they have the same norm. We have very limited data on this question, but
what we have seems to indicate that |Norm(yi)| and |Norm(yj)| rarely coincide. In
the three cases ` = 5, 7, 11 where we computed the multiples of P we have

P = (0, 0), 2P = (−t, t2), 3P = (−t, 0), 4P = (0,−t), 5P = O

on the curve (5) of §7;

P = (0, 0), 2P = (t2(t− 1), t3(t− 1)2), 3P = (t(t− 1), t(t− 1)2),

4P = (t(t− 1), t2(t− 1)2), 5P = (t2(t− 1), 0), 6P = (0, t2(t− 1)), 7P = O

on the curve (6); and

P = (0, 0), 2P = (t3(t− 1)(t− s),−st3(t− 1)(t− s)2),

3P = (−st(t− s), s2t2(t− s)), 4P = (t4(t− 1), t6(t− 1)2),

5P = (t2(t− 1)(t− s), t2(t− 1)2(t− s)2), 6P = (t2(t− 1)(t− s), t4(t− 1)2(t− s)),
7P = (t4(t− 1),−st5(t− 1)), 8P = (−st(t− s), s2t(t− s)2),

9P = (t3(t− 1)(t− s), 0), 10P = (0, t4(t− 1)(t− s)), 11P = O

on the curve (8). In the case ` = 11 the norms of the y-coordinates of iP , 1 ≤ i ≤ 10,
are

0, −t10(t− 1)7, −t9(t− 1)4, t12(t− 1)4, t6(t− 1)8,

−t9(t− 1)6, −t12(t− 1)3, t8(t− 1)6, 0, −t9(t− 1)4.

For ` = 5, 7, 11 we see that, considered as polynomials in Q[t], most of the elements
Norm(y2

i ) give distinct divisors of Norm(∆).

9. Conclusion

Our analysis of the attempted attack in [3] shows once again that one has to
be very careful about using elliptic curves over number fields K. Any curve that
has enough points of the desired sort is likely to be computationally intractable.
In the present case the attackers needed a large number of torsion points. In
earlier cases, such as the algorithm analyzed in [9], the cryptanalysts needed high
rank. Experience over the last few years has given reason for skepticism about the
possibility of using the structure of the group of K-points of an elliptic curve to
mount a successful assault on a cryptosystem.
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Conditional results in cryptography are of various types. Some are proved rig-
orously, except in one place where one needs a widely believed and heuristically
justified mathematical conjecture (e.g., that there is a 1/(log p) probability of pri-
mality of a number in the Hasse interval around p). Another sort of conditional
result is based on an intractability assumption (e.g., that factoring is hard). A third
type of conditional theorem in cryptography uses an assumed property of a primi-
tive (e.g., randomness of a hash function). Finally, there is the type of conditional
result that is based on a conjecture for which the only justification is that it has
not yet been proven to be false: “Mathematicians are unable to prove that X does
not exist, so I’ll conjecture that X does exist.” If cryptographers start accepting
“results” based on assumptions of the last type, then we risk losing credibility.

In some of the nonsciences it is common for mathematics to be used in bizarre
ways that would horrify a mathematically educated person. (A famous example of
this from political “science” is discussed in [13].) In contrast, in any self-respecting
branch of science, researchers are expected to adhere to high standards of reason-
ableness in their use of mathematics. Thus, when reading a paper in cryptography
that depends upon a basic mathematical assumption, we should insist on seeing
convincing evidence that that assumption is likely to hold. Of course, it is natural
for cryptographers to be intrigued when a paper advertises itself as “the first at-
tempt to apply the. . .Uniform Boundedness Conjecture in cryptography.” However,
we must not forget that if the key assumption is mathematically implausible, then
the claimed result cannot be accepted as scientifically valid.
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