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EXISTENCE AND ASYMPTOTIC STABILITY
OF RELAXATION DISCRETE SHOCK PROFILES

MAO YE

ABSTRACT. In this paper we study the asymptotic nonlinear stability of dis-
crete shocks of the relaxing scheme for approximating the general system of
nonlinear hyperbolic conservation laws. The existence of discrete shocks is es-
tablished by suitable manifold construction, and it is shown that weak single
discrete shocks for such a scheme are nonlinearly stable in L2, provided that
the sums of the initial perturbations equal zero. These results should shed
light on the convergence of the numerical solution constructed by the relaxing
scheme for the single shock solution of the system of hyperbolic conservation
laws. These results are proved by using both a weighted norm estimate and a
characteristic energy method based on the internal structures of the discrete
shocks.

1. INTRODUCTION

We investigate the asymptotic stability of the numerical approximation of the
following Riemann problem for the general system of nonlinear conservation laws

u_, x <0,

(1.1) ur + Fu)e = 0,u(z,0) = uo(z) = { uy, x>0,

where u = u(z,t) € R™, F is a smooth nonlinear mapping from R™ to R™, and
us are two constant vectors in R™. We assume that the system () is strictly
hyperbolic in the sense that at each state u € R™ the Jacobian VF (u) has m real
and distinct eigenvalues

Ar(u) < Ao(u) < -+ < A (u)

with corresponding left and right eigenvectors [, and r,, respectively, and the
characteristic field is either genuinely nonlinear or linearly degenerate in the sense
of Lax [12]; i.e., for p = 1,...,m, the eigenvector r, satisfies s\, -7, = 1 or
VA - = 0. We normalize the eigenvectors so that [,,r., = d,. and we denote the
m x m matrices L(u), R(u) and A(u) by

Lu) = (L), .. (@)D R(u) = (r1(u), ..., 7 (w)),
A(U) = diag(Al (u)a BN )\m(u))
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Lax [12] showed that the Riemann problem (LI]) has a solution consisting of at
most (m+ 1) constant states separated by shock waves, centered rarefaction waves,
and contact discontinuities, provided that the shock strength |ui — u_| is suitably
small.

Assume that the Riemann problem (I.I)) has a k-shock wave solution

wen={ 17 S5
corresponding to the k-th genuinely nonlinear field. Here the constant states ui
and the shock speed s satisfy the Rankine-Hugoniot condition
Flu) - Fluy) = s(u- —uy)
and the Lax entropy condition
Ap(ug) < s < Ap(u-).

We approximate (L)) with the relaxing scheme proposed by Jin and Xin [9],

W g (0 — ) = gpdb (ugyy —2u) bupy) =0,
1 i
(1.2) v]"+ -0 +3 A( Ujpr — Uj_ 1)_%‘4 (vF: Yj+1 _21]3 +v]71)

= /ﬁ(F(u;’H) — v}’“).

r is sufficiently large, u7 is the approximation of u(z;, t”) z; = jAx and t" = nAt,
Ax and At are the spatlal and temporal grid sizes. \ = h is sufficiently small, which
satisfies the Courant-Friedrichs-Lwey (CFL) condition

Asup [A,(u)| < 1.
I

A =al and Az = a2]. The relaxing scheme (2) satisfies the strict subcharacter-
istic condition which implies stability in some sense.

A relaxation discrete shock profile connecting (u_, F(u_)) and (u4, F(uy)) is a
special solution of the difference equation (IZ) in the form

Ug—ny — Uz + %(UIH —Vp_1) — 2hA (u1 11— 2Uy + uz—1) =0,
(13) Uxfn — Ug + %A(uerl — Ug— 1) (szrl - 2’01 + Uxfl)
= K(F (ug—y) — Uﬂc—n)

with
lim (g, 0,) = (s, F(us)),
T— 400
im (ug,vs) = (u—, F(u-)).

When 7 is a rational number, z € {nn + m|n,m € Z}; if n is an irrational number,
x € R. Let u_ and w4 satisfy the Rankine-Hugoniot condition

Flu_) = Fluy) = s(u_ - uy).

The discrete shock speed 7 is related to s on the condition that As = 7. In this
paper we require that this discrete shock can be observed on the original grid;
therefore, we assume that n = p/q is rational. Thus, the discrete shock profiles
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which we have studied are the solutions of the difference equations satisfying

It — ot B (W — W) — E AT (G, — 207 + 67 ) =0,
Pt — i+ AP — O ) — g AT (YT — 20T + YT )
(14) = K(F(g}+1) =g,
(d);lq’w;lQ) = ( ?—npﬂw?—np)v
(¢5,05) = (ux, f(ut)), j — Foo.

The study of the existence and stability of discrete shock profiles is important for
understanding the convergence behavior of numerical shock computations. In the
study of discrete conservation laws, Jennings [10] showed the stability of discrete
shock profiles of general scalar first-order monotone schemes. The existence of
discrete shock profiles of high order scalar difference scheme was established in
[4, 8] recently. For the study of the system of conservation laws, the existence of
discrete shock profiles of finite-difference methods which are accurate to first order
for systems of conservation laws was established by Majda and Ralson [21] using the
center manifold construction and by Michelson in [22]. Liu and Xin [16][17] studied
the nonlinear stability of discrete shock profiles of system of conservation laws. Liu
and Yu [19] 20] studied the case of more general shock speeds. There are several
authors who have studied the stability of shock profiles; see [2, Bl [ [6, 25, 26]. In
the study of discrete relaxation conservation laws, most works have concentrated
on the scalar case, such as Liu, Wang and Yang [13] [[4] [5]. In this paper, we will
concentrate on the case of systems. Stability theorems of discrete shock profiles
follow. Their existence will be proved in section 2. Note that we assume that \ is
suitably small in all the following theorems.

Theorem 1.1. Suppose that (1) is a strictly hyperbolic system and that the k-
characteristic field is genuinely nonlinear. Let (¢;,v;) be the stationary discrete
shock profile of (L3) connecting (u—, f(u_)) and (uy, f(uy)). Assume further that

(1.5) Yoo (U — ¢, 0] — ;) =0,

(1.6) e=luyr —u_| <ec

and

(1.7) Yo (W)U = 657 o] — ) S e
Jj=—0o0

for some (suitably small) positive constants c1 and cz2. Then, there exists a unique
global solution (u},v}}) to the relazing scheme with initial data (u),vY), and it
satisfies

o0

(18) im S (up = 652 Jop — ) =0,
Jj=—0o0

Theorem 1.2. Suppose that (1) is a strictly hyperbolic system and that the k-
characteristic field is genuinely nonlinear. Let ( ?,w;’) be the nonstationary dis-
crete shock profile of ([3) connecting (u—, f(u—)) and (uy, f(uy)). Assume that
K s suitably large,

(1.10) e=luy —u_| <y
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and
o0

(1.11) >+ (g = 01, ) — 9I1?) < e

j=—00
for some (suitably small) positive constants ¢y and co. Then there exists a unique
global solution (u},v}) to the relazing scheme with initial data (u?,vg), and it
satisfies

o0

(1.12) i > (ug = oF P oy —yp?) =0,
Jj=—00

Remark 1.1. For the stationary case, we do not need to assume that « is suitably
large. This condition is only imposed in the nonstationary case due to technical
reasons when we estimate the nonstationary discrete shock profiles in (4.8). How-
ever, this condition also implies that the relaxing scheme (1.2) approximates to the
conservation laws (1.1) more closely.

Remark 1.2. (1.5),(C7),(1.9) and (CII) imply that the L? norm of initial pertur-
bation is sufficiently small; see [7, [16].

Remark 1.3. Although there are some essential monotone properties in the principal
direction, the multistep phenomena result in some difficulties in studying the L'
stability, which is kept for the future.

Remark 1.4. Only partial results are obtained, i.e., when 7 is a rational number, and
there is no complete understanding if 7 is an arbitrary number. For a diophantine
number [19], we need to use the Green function of the relaxing scheme, which is
not very clear up to this point.

The outline of this paper is as follows. In Section 2, we study the existence of
relaxation discrete shock profiles using the Majda-Ralston [21] theorem. Then, we
obtain some good properties of the shock profiles using the theorems of Liu-Xin
[T6]. In Section 3, we study the L? stability of stationary discrete shock profiles
using the suitable weighted functions proposed by Liu-Xin in [I7]. In Section 4,
we study the L? stability of nonstationary discrete shock profiles using the idea of
vertical estimate.

2. EXISTENCE OF DISCRETE SHOCK PROFILES

To establish the existence of discrete shock profiles for the relaxation scheme,
we will use the center manifold construction proposed by Majda-Ralston [21]. Let
T :RY — RY be a smooth map and let zg € RY be a fixed point of T such that
the following conditions are satisfied.

(1) There are neighborhoods p and p of zg in RY such that T maps u diffeo-
morphically onto u’.

(2) T fixes a smooth m-dimensional manifold {2 containing .

(3) The algebraic eigenspace of dT'(xg) associated with the eigenvalue 1 is the
span of the tangent space of Q, T';,,(Q?) and a vector x satisfying

(2.1) dT (zo)x = x + 7,

where r € T';,, () and r # 0.
(4) dT(xo) has no eigenvalues in the set {z : |z] =1,z # 1}.
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(5) Hypotheses (2) and (3) imply that given ¢’ > 0, there is a 6 > 0 such
that when z € Q and |z — o] < 0, the eigenvalues of dT'(z) lying in
|z — 1| < ¢" are 1 with multiplicity m and real §(z) with multiplicity 1
where g(z) € C*(2), and VG - 7|z, > 0.
We summarize the center manifold construction for such an operator in the
following proposition.

Proposition 2.1 ([21]). Assume that the map T satisfies condition (1)—(5). Then
there is an € > 0 such that if t— € Q,B(z_) > 1 and |x_ — xo| < €, then
(1) there is a C* segment ~y,_ beginning at x_ such that T ~y,_ C ~._ and
ﬂj Tﬁj%c, =T,
(2) foranyx € y,_,x # x_, the sequence T?x,j = 0,1, ... converges to x4 € {2
with B(xy) < 1,
(3) if the limit of T7x in (2) does not depend on z, then Uj=o Tiv, =T, isa
Cl curve segment beginning at x— € Q, B(x_) > 1, and ending at 1 € Q,
Bley) <1.

Remark 2.1. Ttem (3) is guaranteed here by the Rankine-Hugoniot condition and
the Lax entropy condition Ag(u—) > s > Ap(u4), and uy is uniquely determined
by u_. This will be clear in the remainder of this section.

Our strategy is using this proposition to prove the existence of discrete shock
profiles of the u component first and then the v component. It follows from equation

([L3) that

A A1
(2.2) 5(%“ —Vp_1) = 5/12 (U1 — 2Ug + Uz—1) — (Ug—ry — Ua),
so the second equation of (I3) yields

2 (Wat1—n — Vo—1-n) — 5 (Va1 — Vo—1) + )\TfA(u;C-‘rQ — 22Uy + Uy _2)
(2.3) _%A% [% (Vat2 = Vz) = AMVg41 — Vz—1) + %(vz — Vg—2)]
= 5 (F(usy1-n) = Fluz-1-9)) — K_Q)\(U:Hl—n — Vp—1-p):
For simplicity, we only consider n = % and ¢ > 0, and the other cases are similar.
Some remarks about the case of s > 0 will also be given later. Substituting (Z2)
into (Z3)), scaling the step size as Az/q, and writing @; = u(jAz/q), we have the
following equation,

Al A1 - 1 FR
(24) [SAZA+ k) + A ]Gj12041 + [(1 = AF)(L + 5) +1 = AZAdj1q41
A1 A1 1
542+ k) + 5 A ]G50 — [1+ KlGy4q +[22A4% — 2N A = 1]ij4 g1

1. A - - 1 .
+ VA - NAZaj40 — 5 FlF (U2g41) = F(tj41)] = [AAZ — N Aliij 1 2q+2,

| >
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So we can rewrite (2.4)) as

_ TP N A1 1 _ _
U2q4+-2 = H 1[514é (1 + /i) + §Aé]U,2q+1 + H 1D’U,q+1 —H 1[1 + I{]’U,q
A A
+ H—l[aA% (1+k)+ §A%]u1 + H 'Biy,
A N - e
- §/£H HF (tiag 1) = F(an)] + H ™' Bl
= G(ﬂl, e ,ﬂ2q+1).
Define the matching map associated with (Z4), T : R™(24+1) — Rm(2a+1) a9
’&,1 ’0,2
Ug U3
T =
U2g 41 G(ua, . .., lizg41)

The notation u in R™(24+1) is denoted by

u

for u € R™ and let A = {uJu € R™}. Using the nonlinear marching map T, it
is obvious that proving the existence of the w component discrete shock profiles is
equivalent to finding the initial data

Ui
c Rm(2q+1)
a2q+1
such that
Uy
lim 77 : =u,,
j—o0
a2q+1
Uy
lim 7Y . =u_.
j——o0
a2q—i—1

We only need to check whether T satisfies the five conditions at the beginning of
this section.

(1) Obviously, Tu = u. Let ps = {u| \;(u) = s}, up € us, v denote a sufficiently
small neighborhood of ug. Under the subcharacteristic condition, it is clear that T
satisfies the first and second conditions.
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(2) Suppose that A\;(ug) = s and Ay is genuinely nonlinear. Then the algebraic
eigenspace of dT'(ug) belonging to the eigenvalue 1 is m + 1-dimensional, which is
spanned by the vectors

{rj(uo)}ity U{er(uo)},
where
€1 (uo) = (r(uo), 2rk(uo), - ., (2¢ + )re(uo)),
(dT'(ug))r; = rj and dT(ug)er = e1 + ri.

Proof. Since

0 I

dT(u) = o0

H™'A H™'B H_.lC H_.lD H'E ... H'F
the eigenvalues 7Z satisfy the equality
det[Z%1F — 727" 0 + 29 E 4+ Z9D + Z97'C + ZB + A] = 0.
When Z =1,
F-H+E+D+C+B+A=0,
SO
det[(Z —1)(2¢F—(2¢+ 1)H + (¢ + 1)E+ gD + (¢ — 1)C+ B) + O(Z — 1) = 0;
ie.,
det[(Z — 1)k(1 — A\gF'(u)) + O(Z — 1)*] = 0.
Write

Ak
A1

OF (u)U ! = Ab—1 ,
Akt1

Am
S0)
(Z —1)™det[Uk(1 — \gF' (u)) U~ +0(Z —1)] = 0,
and when A (ug) = s, we have 1 — AgAi(ug) = 0, and the first part follows. Since
H'A+H'B+H 'C+H 'D+H 'E+H 'F=1I,
it is easy to check that dT'(u)r; = r; and

277@

dT(u0)61 = : =e] +rg.
(2q + 1)y,

(2q + 2)7%
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Remark 2.2. For \s = % and s > 0, whatever the relations between ¢ and p, the
eigenvalue equation will be

(2.5) det[A+ ZTPC + ZPB + ZD + ZTPE + Z?1F — Z?TTP | = 0.

Then we can check the condition (2) in exactly the same way. When s < 0, we can
also show this with a little modification.

(3) (Nonresonance condition) If Ao is sufficiently small, for A < Ao, there is a
d1 > 0 such that, for |u — ug| < 41, there is no eigenvalue of d7T'(u) in the set
{Z:1Z|=1,Z #1}.

Proof. The eigenvalues must satisfy the equation
A

A A ,
73 a?(1+ k) + 5a% = 5RAj) = 2% (a® — Na)

+ Zq+1(2Aa% —2X%a — 1)+ Z9((1 - a%A)(z + k)= ZT7 1+ k)

+Z(\a—Xa?) + (Za

l\>|>/

1 A
§(1+ﬁ)+2a2+ m\)

for j =1,...,m. If there exist a Z = €% for suitably small ) satisfying the equation,
we can divide the equation by Z97! to get

Z‘I'H(%a%(l + k) + %a% - %/@)\-) — Z9%2(\a? — Ma)
+22(2xa* —2X%a— 1)+ Z((1 —a? N (2 +K)) — (1 + k)

+ 2% 9(\%a — Xa?) + Zl_q(%

1 A A
5(1+/€)+—a% + —kA;) =0
2 2
for j =1,...,m. Let A = 0. The equation will be
72— 24K Z+1+K=0.

It is impossible that Z = e, so by perturbation analysis, I\g, for A < Ao,
there is a §; > 0 such that |u — ug| < d1; eigenvalues do not belong to the set
{Z:1Z]=1,Z # 1}. O

Remark 2.3. If k is sufficiently large, divide the equation by &, and let A — 0. We
have the equation Z = 1, which is a contradiction too.

Remark 2.4. For As = %, s > 0, the eigenvalue equations are

A A A
Ea%( +kK )+§a% —l——/@)\j - (1+/@)Zq_p+(/\2a—)\a%)Zp
(1= a?A)(2+ K)Z9 + (2xa? — 2)%a — 1) Z9HP
A Al A 2 1 y2 N2+
+(§a2(1+ﬁ)+§ a? —5/@)\]-)Z 7 —(Aa? — N\a)Z°1P =0,
for j =1,...,m. Setting A — 0, we obtain the equation

Z% — (24 R)ZP + (1 + k) = 0.
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Thus €% are solutions if |Z] =1, n € Z. Substituting these solutions into the

original equation, we get the equation

2gmn A A S4gmn
(—2\%a — ﬁa%/\)el2 P4 (?%a% +Ma— Em\j)ez4 »
A A
+ (Ma+ §a%/€ + Em\j> =0.

This is impossible if n # kp, so we get a contradiction.

(4) There are d2 > 0 and r2 > 0 such that, for |[u — ug| < Jz, there are only
m + 1 eigenvalues of dT'(u) lying in |Z — 1| < ro. These eigenvalues are given by
1,1,...,1,8(u), and B(u) is real and satisfies

(a) B(u) = 1 whenever \g(u) = s,

(b) Vuf - 7 (u)|u=u, > 0 under the subcharacteristic and CFL conditions.

Proof. The first statement is guaranteed by (2) and (3), and (a) comes from (2)
immediately. Assume that g > 1(the case ¢ = 1 is similar). Then

det[Ur(1 — \gF' (u))5~ ' + R(B(u) — 1) + O(B(u) — 1)?] = 0,

where
A1 AL A 1 2
R =2q(2¢ — 1)(§A2 (1+k)+ §A2 - §/<;A) —(2¢+1)2q(AA2 — \=A)

+(g+1)q(2AA% —2X2A — 1) + (g — 1)(1 — A*)(2+ k)

—(g—1(g—2)(1 + &)
Now expanding along the first row, one gets that
(2.6) k(1 = AgAk(w) + [PAa? k — 22X e (1) + 2¢°N2a + 2k — 2 — 2k

+ gAML ()] (B(w) = 1) + O(B(u) — 1)* = 0.
Set
T = q2/\a%/@ +2¢°X%a -2 — k.

Then 71 > 0 under the subcharacteristic and CFL conditions. Thus the coefficient
of (B(u) — 1) is positive when u = wg in equation (Z8). By the implicit function
theorem, 392, when |u—ug| < d2, there is a unique real smooth function 5(u) with
B(ug) = 1 provided that A;(ug) = s. From equation (Z@l), we have
ARV A - Tk

vuﬁ(u) : Tk|u:u0 = 7

=g - O

Remark 2.5. For As = £, s > 0, equation (28) becomes
k(p — Mg (u)) + [(2qp — p* — p)r — 2p* — q(2¢ — DA (u) + 2¢°Na
+ ¢®kAa?)(B(u) — 1) + O(B(u) — 1) = 0.

When u = ug, the coefficient of S(u) is also positive under the subcharacteristic
and CFL conditions. Thus we can prove the existence of the real function 3(u).
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Remark 2.6. 71 > 0 and equation (Z6) are crucial for showing the strict mono-
tonicity of the principal characteristic speed at the discrete shock profile and the
asymptotic behavior of the discrete shock profiles. This monotonicity is crucial to
our stability analysis (see [16]).

Remark 2.7. We need to assume that A is suitably small, and it also implies that
q is suitably large.

So, we have established the existence of entropy satisfying discrete shock profiles
of the u-component. Furthermore, by Proposition 2.1 of Liu-Xin in [16], we have
the following proposition.

Proposition 2.2. There exists a family of discrete shock profiles ¢7 of @4 con-
necting u— and uy, provided that uy satisfy the entropy condition, € = |u_ — u|
is suitably small and the subcharacteristic condition is satisfied. Furthermore, the
discrete shock profiles ¢ have the following properties for j = 0,%1,...:

Ae(@5) > Ak(djt1),
[Ae(95) — 8| < cue,
2|5 — dj1] < Me(@5) — Ae(@y41) < esldj — djqal,
VE(9j)(dj41 — ¢5) = s(¢j+1 — &) + O(€)[ b1 — o5,
G541 — 205 + ¢j-1| < caeldjpr — @51,
csete oIl < N () — A(djg1) < creecsclil]
coce—c10clil < [ — ut| < gy ee—ciacldl
c12|¢j — Gjrql < Ael95) = Me(Djtq) < ci3ld — jgql,

VEF($i)(@jrq — ¢j) = 8(djrq — ¢j) + O(6)|Dj1+q — &5,
|§j+q — 205 + j—ql < cra€ldjtq — 4

where c1,...,c14 are positive constants independent of € and j.

Combining the above proposition and following Liu, Wang and Yang [13], we
can also find the discrete shock profiles of the v component. To this end, summing
the first equation of (I3)) over = from y — 2N + 1 to y — 1 with step size (2), we
have

y—1

2
Vy—2N = Uy + X Z (Uxfn - Uz)
r=y—2N+1
y—1
1
+ A> Z [(ug — ug—1) = (Ugy1 — ug)].
r=y—2N+1

Since |ug—zy — Ua| < cAp(tg—ny) — Me(uz)) and Y20 (Ap(ta—zy) — Ak(usz)) <

O(1)e, then >°¥°  (up—s, — ug) converges. Hence, v,_an converges as N — oo
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for any y, which implies that limg;_ 1+ v, = F(u+). Thus v, can be expressed as

0
2
(27) Uy = V— + X Z (ux+2m71 - uz+2m71777)
m=—o00o
0
1
+ Az Z (uerQm - 2ux+2m71 + um+2m72)~
m=—o00

Similarly, as for Corollary 2.1 of Liu and Xin [T6], we can also have the following
theorem.

Theorem 2.3. There exists a family of discrete shock profiles (¢7,47) of (L),
connecting (u—, f(u_)) and (uy, f(uy)), provided that uy satisfy the entropy con-
dition, € = |u_ — uy| is suitably small and the subcharacteristic condition is satis-
fied. Furthermore, the discrete shock profiles ¢ have the following properties for
7=0,£1,...andn=0,1,...:

Ae(87) > A(@]41),
|/\k(¢?) - 5| < Che,
02|¢;L - ¢;L+1| < )‘k((b?) - )\k( ;L+1) < 03|¢§L - ¢§L+1|7

VF(67) (911 — ¢7) = s(df11 — ¢7) + O0(e)|d], 1 — 91,
|67 — 267 + 67y | < Caeldly — o7,
Cseecocli—rsnl < M (D7) = A (@f41) < CreZecscli—rsnl
C966*6106|j*)\5"\ < |¢;l —u =+ | < 0116670126”7)‘5"‘,
|67% — g7 < Crs(Ak(¢7) — Me(9741)), n > 1,

where C1, ...,Ci3 are positive constants independent of €, j and n.

Remark 2.8. It is not difficult to show that there exists a family of stationary
discrete shock profiles and these profiles satisfy the above properties too.

3. L? STABILITY OF STATIONARY DISCRETE SHOCK PROFILES

In this section, we will prove Theorem 1.1. Let (u},v}') be a solution of the
relaxing scheme with initial data satisfying (1.5)—(1.7), which is assumed to exist
up to n < my < +o0o. Denote the stationary discrete shock profile (¢, ) as

(W1 — b)) — 3 AT (i1 — 20; + dj—1) =0,
SA(Gj41 — bj1) — 3AE(1hj1 — 205 + ¥_1) = w(F(¢5) — ¥5),
liInj~>:|:oo (¢ja wj) = (u:tv f(u:t))
Let

uj = uj = ¢j,0j = vj = Pj.
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Then

—n+1 —n =1 —n

n A _
oy =0+ SA(E . - 0y -

Let Q(uj*' ¢;) = F(uj™) = F(¢;) — VF(¢;)u;™". Then |Q(uj™, ¢;)| <

J 5

o1 |12§L+1|2 when v is in any bounded set. Formally let @} = > a}, so
u} =47 —aj_y and
n — A = = ~n—+1 AT A 1an ~m ~1n
(31) Pj :—E(Uj+1+’l)j):uj —u] —5A2(uj+1—2u] +u‘]71)
Immediately, we have
Pn+1 Pn i Pn /\2A ~m ~n AT
B2 B =B B g e 7 205 T )
AA=
BRI
AR An+1 ~n41 AK ~n+1 ~n+1
+ mVF(%)(Uj —ayTy) + mVF(%H)(UjH —ayt)
A
= —m[f‘@(u?“v b;5) + nQ(u?ﬂ, Pj+1)]-

Use the notation

Lj = L)), Aj = M¢j), R = R(9;), 07 = Q(uf, 6;)-
We rewrite the system (B.2) in terms of the characteristic variables
(3.3) Pl = R; P}, i} = R;if,

and letting p = /\a%7 we have the equation

2

pn+1 pn K 5n | ~n ~n ~n
(34) Pjn _Pj +]_—|—/$Pj —m(uj+2—2uj +’U,j_2)

ILL ~ ~ ~
B
4 AR A‘(~n+1 _ ~n+1) + AR A (~n+1 o ~n+1)
21 +r) IV T T gy e T
AR

— ~n+1
= mAj(Lj_i_l — Lj_l)RjU,? + 6?,
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where
"—LA AALRu’”r1 LL(R- —2R; + Rj_o)u’;
TR TR A1 1y V2 T AT 2
Ak - i i
- n L.AR.P™
(1+ )L AJFR A]JrlAJru +2(1+/€) J RJ J
/\71& A_L;Rj_1A_ u”“—f—LL-(Rz—Rz_g)(ﬂ”—m 5)
2(1+x) - 41+ w) I T T
MQ ~T ~n AR ~n-+1
+4(1+ )Lj(Rj+2_Rj)(uj+2_uj) m/\ A L A_ Ru
‘LL ~
— — LA _R;.A_P"
* (1+ oy Lt B iALE] +2(1+,@) AR A-Fj
+/\7L Ay RN AL L Rjul LL-(@’%HM'P“).
2(1+ k)’ ! 21+ k) 7V j+1

Here, we have used the notation
Ayfy=fivi— Ji
A_fj= [ = fi-1,
Aofj = fit1— fi-1,
Afj=fiv1=2f; + fi-1,
N

Thus, to prove Theorem 1.1, we need to derive the basic prior L? estimate of the
solution of (3.4). Denote the weight as WW; which will be defined later. It is used so
the terms of the principal direction control the transverse terms. Now we need some
basic energy estimates. Assume 2P]'W; x (84), and denote |u?|, = (u?.Wju?)%,
because

Z 2Pn Pn+1 pj'_n)

PR WIS DAt
J

2

M PN ~n ~n ~7
Z —72(1 ) PyW(u}, o — 245 + uj_s)
J

1_}_& Z g+1 J+1 ijl)(ﬁ%l_ﬂ;’l—l)

2

M P D ~ ~
+ m Z(P;ﬁrl - P;il)Wj_l(u?Jrl — ugtl),
J
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> - 1 +KPJnWj(15j+1 — 2P + Pj1)

= 5@ 2B = FYWs + W) (Pl = F)

0] ~ ~

Let
M? — i — @ N™ — g . — qn
o= Wi UG, Ny = Uy T UG

After summation by parts,

(35) Z|Pn+1 2 Z|Pn|2

~n|2
w

1+/<c Z j+1AOWN

+L)Z(Pgn+1 P)(Wj+ W) (P — PF)

21+«
- Z [Pt =P
J
p ; ;
=3 B = BNy
j

ILL ~ ~
C PPAW. P"
+2(1+n)zj: 5 WL

- Z T+ r ~g+1VV1+1 +P Wi)Aj1(a ?11 - a;‘lﬂ)

AK = n
+y T D Wilki Ly — Lj—y)Rjaj ™

+) 2PrWel

J

Because of BI), we have the identities

@t = (1 - )y + Pp + LR+1uj+1+ LRJ ad g,
@i -t = (1—p)M} + Py - P

+ 5 (Lj+1 Rty — LiRj1jy )
+

NI’; wl’;

(Lj+1Rjuf — LiR;uj_y).
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Next, assume ZQ?HWj x ([34), because of the identities

2K ~n+1
W; P”
Z 1 + K ]

1275

2I</ "'n n -~
= Z Hwyagtt —ap - ng(R p1lyyy — 2R + R qaj )

1+ k& i
_ K ~n+1 ~n+1 K
214_%] W Zl_FEUJWU

+Z—A+ aw; At Al

1+I€ZA+ WIW;Lj (Rt — 2R; 07 + Ry @)

—+ m Z A+U W =+ Wj+1)A+U

K
1+ &

WL AL RA @)
J

QWL ARy A

K
1+k

ﬂ?Wj LJAR]ﬂ?
J
and

I 141
;—m W;(Njy — Niy)

2

2
1% +~n n H n n
:_7§:A "W AGNT + —— N NN

201 +r) & T j+2(1+f€)zj: P

2 2
1% Z _ P Z _
+ m : ’U,?JrlA_;_Wijn + m : U;LIA_WJ‘N;L,

~n+1 APn
z]: 1—|—/£J Wi

M ~n PN

+Z—A+’U,nW A+Pn+z ]+1A+W A_;,_P
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Combining these terms and performing summation by parts, we get

(3.6) 23 artt WPt =2 A, P
J J
—2) ATayw; P!

K ~n+1 ~n+1 K -n on
+Zl+ U WJJ Zl+,€ujWJuj
J J

K +~n +~n
+ZmA ’LLjoA uj

ZM PW,Li(Rjpa @)y — 2R;07 + Ry_1 @ ;)

1 + K
MW LA R A
K -n ~
- 1+r ujoLjA,RjA,u
J

: m Zﬁ? AW

Z AW AGNT + Z NPW;N}

2
_H
(1—1—/@ (1—1—/@)
2

+mzu]+lA+WNn Z A WN”

+ Z A+u"W A_;,_Pn + Z j+1A+W A_;,_P

n+1 +1 ~n—+1
]+1W+1 +u Wj)A]’+1A+Uj

1+HZ&"WL AR;iL

— Z —A+ @ W; AP

_ ~n+1 n+1 ~n+1 n
*ZH Wi Ao Ly Ry ™ +2) i) ey,
J

J

Let 7 be an O(1) number to be decided. Combining (BH) and B8]), we get

E(n+1)—E(n)+L=R+X,
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where

E(TL + 1) = Z[|Pn+l|2 + 27"U,n+1W Pn—i—l + 7_ |~7L+1| ]
J
B(n) = Y (1P} + 20 W, P} + 7= =
j

AR

n

pn |2 M PN 530
P! |'w =+ m %:AJer (W] + Wj+1)A+Pj

KT

+ ST AW AT + T 3 NPW,NT
J

1+k - 2(1+ k)

TKUW

—_— MW, + W) M
+2(1+H)z‘]: j( ]+ ]+1)

X =) [P — P”|2— Z . AgWNT
J
2

_ ny M NT praw, pr
(1+ ZAOP W;_1N; 2(1+,@)2;PJ AW, P!

- U 4 -

Tk ZP]-HW]'A]‘A()LJ‘R]'U;L + 27’2 A ’LL;LWJP]TL
J

TR ZA+ BWiLi(Rjp @)y, — 2R;0% + Ry_1@) )

1—|—/@

TR
1+k

WW LA RyA 07 + ZAW W;AgNT
J

)
WZ%HAWN mZ“a AW

ZA+a"WA+P” T Zu]+1A+WjA+p]n

1+/<c

Z AT @I W AP + Z 2P] + 270 )Wl

J%35>
J

D (PFaWigr + PPW)A Ay as*
i

1—|—/@

)\/<;
1+ kK

R=-

TR . . TR - -

TEA n+1 +1 ~n+1
“11n Z( PWin + Al T WA AalT
J

TAK
1+ &k

Z @t TWA ALy Ryl
J

The terms in R are labelled as R;, and the terms in X are labelled as X;. L is
positive, so it makes the small perturbation to the discrete shock profile decay to
zero. We want to show that R produces a negative term of |’l];-l+1|w if we choose
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the weight W carefully. We can do that, because the discrete shock profiles have
the strong compressibility property. The other terms of R and X can be estimated
by L and the positive term of |u"+1|w depending on the properties of W; and ¢;.
For this purpose, some terms in R should be changed.

— AR ~n Hn AK DN
Ry Z I RPj (Wi — WA Pj + Z 1750 A WA M
J
H n 1Y ~n
- Z Pfyy 4 PPWa Ay [(1 - p) M) + 5 (Li+1Rj1215

_ p
—LjRj+1uj+1)+ 5 (Li+1Ryu — LiRj-1aj_y)),

= TRA o n
Ri= 1 zj:ujJrl(Wj-i-lAj-i-l - WiA;)a;*

TAK
1+k

~nt+1 ~nt1
E ar  ALWiA Ay ay
J

Because the scheme is implicit, ﬁj" is controlled by L; very well, and a;“rl will
appear in the transverse terms. We need to change the terms which have u”":

J
= TR ~ ~ T/@M ~nt1
:7§:A+ AW, AT — E:AJr an AWt
Rs 301 r) : uj f u;

+ TRU ﬂnJrlAW ~n+1
21+ k)
5 _ Thp +qn +2n 27—5“ +5n 7 +1
Rs = 1+KZA W;L;AR; AT} — ZA W;L; AR; i}
T’W AW L ARG
2(1+ k)

Now, combining the above terms, we have

= Z T AW A — WiAy) + AW, A B0 L R + S AW,

TAK

+= WL JARJa T 4+ ——
1+k

~n+1 ~n+1
Zuj A+WjAj+1A+’U,j
J

TR - - TR
— ) ATTAWATGY —
+2(1+/<;)zj: A e A

Z At A AW, art

TR
1—|—/@

ZN MW, L;AR; AT G ”—2TWZA+ WL AR @

WitiAj — WjA; P"+Z M

AR -
“1rn Z(P ‘1 PWini A [(1— )M + §(Lj+1Rj+2U§L+2
J

- 1% - ~
— LjR]‘Jrfu;LJrl) + E(LjJrleu;L — Ljijluyil)].
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Label the above terms as R;, where ¢ is from 1 to 9. We want to show that R is
negative, so choosing the weights [16]

W; = diag{wi j, w2, ..., Wm,;},
as
j—1
W, = L ]1_[ (1 _CQMM)’M ak
Al i——o00 Apui
and
Wi =1,

we have the following lemma.

Lemma 3.1 ([16]). Let W; be the weights defined above. Then we can choose ci,,
and cg,,, appropriately so that

Wip1 = W; = O01)(Ak,j — Ak,j+1) Wi,
Wit1 = 2W; + W1 = O(e)(Mk,j — Ak,j+1) Wi,
and
AWjpaAji = WiA) + AW;A; (L1 — Lj-1)R;
A

+ g(WjJrl = 2Wi 4+ Wim1) < =5 kg = Ak )W,

provided that € is suitably small.

The position to show is that the transverse terms are controlled by the terms of
the principal direction. Using Lemma [3J] we have these estimates of Ry and Ry

Z |~n+1 2

D, Hn |2
Ry <— 5(/\k,j - /\k,j+1)1 o z]: |P}" -

_ A
Ry <— §(>\k,j kyj+1)

>

We only need to estimate X1, X6, X12, X135, and the other terms can be handled
easily. It follows from ([B4) that

DL AT
J

5k B M2 B N M4
<7E pr? 0172 P, — pPr? Ol—g N7
_4(1+H)j|j|w+ ()(1+H)j|j+l j|w+ ()1_’_Hj|]|w

2 ~n+1 2
o Tl + o )

+0(6) Y (Mg = Aegr)|ag T + 001 Z e [2-

J

Set

M(ny) = sup Z|u”|2+Z|P” %

nn1
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and assume that M (ny) is small enough. Clearly, we have

sup ([a}| + |P}]) < M(na),
n<ni,j

and because

(3.7)

057 < oM)(|af ™ — @ P+ (kg — M)l ),
immediately, by Theorem [2.3] we have

) Ll <o Z

1+« (A’”

~n+12 "f/ﬁ4
Mg+ S +0(6) )

1+/<;|
Ky n
+0(1)Y T kg = Awg+1) Mj Ak
j
2 ~ ~
+0(1)Z Trn [k = Akge) (P — PRI
2 P2
+O(1)Z T 7 ks = Aegr) Bl
+ 2 ] 2 n+1|2
+O(e)zj:1+—H|A @5 lh + > O()M (n) 1+ |MJ |
SO

w
Z'pjnH o pjnﬁv
J

5K

<7 n |2
- 4(1+1€)2]:|P o +0(1

+ n|2

nu2

+0(1)y ——
J

M2
1+k

+ % Z(Akd

M) @G
j

+O) T S P+ 00 T
J

2
1—|—/<;| jl
K

§ M(m 2L|M;+1|§U.

X and X712 should be dealt with more carefully. We can estimate these terms as
Xo < (21 + O+ O0(W)ruz) Y |PP2 +

Nlw

wa n
ZI %
J

%Z(/\m Mg @ % +

X12_1

“Z (Mg = Aega)| AT,
n n 7-2 n|2
ESM AL AR W
j

M2
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By Lemma B.1] we have

_ A . A N
Xis < g D kg = Argr)la e, + 3 > ks = M) [P,
J J
AR
1+k

(O(e) + M(M))Z(IM"IQ +agtt —atly)

2
a u” 7|2 H pn Hn |2
DT 2 = Gl + 0O 2 IR — P

Two typical terms can be estimated as follows:

Z |ﬂ?+1Wij(Rj+1 —R; )AJ+1( ]ill _ a;}+1)|

<O(1) Yk = M)l LWy (@ — apth)|
J

1 ~n an
< Z 15 Mg = M) [5G + ZO ajf —ay e,
Z |~n+1 WijH;l+1|

<O) Y IWyag Hjay Tt —apfi P + ZO (Akj = M) 5 LG,

DM (ny) Y gt — @il + O(e )Z(/\k,j = Megan)ag G
i i

Set 7 = If € and A are suitably small, we will obtain

4(12-@)'
A ~n n 530
E(n+1) - E(n)+ 7 D Oy = Mege)ll@ T + PP+ 0 D 1P,
J J

DD _lag = afali + Y 1PF = Prals + Dl —aji] <o.
j j i

Since the weights are bounded by some positive constants, if € and A are suitably
small, we have the basic a priori estimate.

Proposition 3.2 (A priori estimate). Let (@™, P") be a solution of (34) for n <
n1. Then there ezists a positive constant C independent of n1 and € such that for
ny <y

(3.9) D (a2 + 1B + Y0 > kg — Awgeallla]® + PP

J n<ngz J
+ > D PP+ 1P — PR+ Jay —aj P < 0 llag) + [Py,
n<ng j J

provided that e, A\ and M (ny) are suitably small.

In fact, if the initial data is small enough, i.e., M(0) is small enough, then (39)
is true a little longer and hence forever by the standard continuity argument. Then
the following proposition holds.
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Proposition 3.3. Assume that ¢ and M(0) are suitably small. Then the problem
B.4) has a unique global solution (u}, PJ). For any n > 0,

(3.10) Supz (17> + PP ?) +ZI/\m Mg |12 + [P} ]

+ Z |Pjn|2 + |Pjn - Pj+1|2 + |@} — 7] < CM(0)?,
Jn
where C is a positive constant independent of n and j.

Now it remains to estimate the v , because

AA
(3.11) 1+ R)TH = T + ATN(T]yy — 207 + 07 ,) — (@ — )

+K(VF(¢;)u; ) + kO(L)]af 2.

Multiply the above equation by 17;” , and perform summation by parts. Immedi-
ately, we have the estimate

Z|Un+1|2 VZ|” 2+ 0(1) Z'U —v]+1| <CZ|u —u]+1|

provided that A and M (0) are suitably small, where v < 1. Note that O(1) and C
are independent of n. Combining this with (310), we have the global estimate

o I+ 00) 1] ~ o7 < CFF )
j,n

from above. Under the assumption of initial conditions, similarly to [16], we have

1imoo[z [ult — ¢;|* + [v] — 1;]*] = 0.
J

n—-+

This is our Theorem

4. L? STABILITY OF NONSTATIONARY DISCRETE SHOCK PROFILES

In this section we will prove the L? stability of the single discrete shock profile.
Here we assume the discrete shock speed s > 0 (the case of s < 0 can be handled
by a little modification). Because of the complex structure of the nonstationary
discrete shock profile, the method discussed in the last section cannot be used, so
we use the idea of vertical estimate. As before, let ( 7 w;’) be the single discrete
shock profile in the k-field of the equilibrium system as follows:

k k 1
éf’nﬂ ¢n+—(¢?+1_ ?71)_ﬁA(]+1 207 +¢7_1) =
k 1
(1) U AT 1) — e A — 207 )

— W(F(6) ) ).
The definition of u}, P}, Pj” is the same as in the stationary case. Also let

_ pnpn An _ pnsn
= R} P}',u; = Rju;.
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Immediately, we have

2

530 K = W B _ ~
(4.2) Pt proy T U rTEy (o — 207 +0_y)
M n
“2aam) Py — 2P + PPLy)
AK
+1 +1 +1
EE TS A A Y
Ak n+1/~n+1 ~n+1
T A e @ )
1 n+1 n n pn
:1—|—/§(Lj _Lj)Rij
A
e T - BRI e,
where
(43) 6? _OAT)AJFAYL—HA L"+1Rn+1 n+1
7L"A
* 2(1+ k) 7 +R}P
A n+1 n+1An+1
gl AR A
+(1>\T)Ln+lA Rn"'lA?i‘llA L"+1Rn+1 n+1
ﬁ“*lﬁ LR A
K
UAT)AWA LM AR gn
Wy
+mA L (R oufyo — 2R7UT + RY_5uj )
—i—LL”( n o — RM)an
A1 1 ) 3 e T B )
2
t eyl Bl - BT
+mA+Ln(RJ+1 1 — 2R} P! + RY_ PJ )
2(1+ oy i A= Hj
KA
+1 +1 +1
_mL? (07 + 07
Note that
A1
(4.4) P} R”+1 n+1 - R} n_gAg(R?Hﬂ?H 2RI + R il

1)-

1283
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Next, assume 2l5jn x ([£2). Then performing summation by parts leads to

1) D DN D 2K D
TN S/ aeD ST il A T Sl
J J J J

I pn PN |2
+mZ|Pj+1 - Py
J
12 5
n n n
+D W(Pj+l — PIL1)N;
i

AR n+1 n+1\ o
+Zl+/€PJn(AJ’ - AFDE

AR pn pny A N+1 n+1 pn n pn
iy > (Pfyy + PN AL Py — AT LY PR

)\/ﬁ: SN =Sn n ~n n ~Nn
+ T (=) 2 (Pl + PAGEN (L Ry — Ly R )
j
/\IQ/.L ISn ISn An+1 Ln+1Rn ~n LnJran ~n
T Z( 1+ PPATL (L) Ry ag g — LT R 07 )
J
ﬂz pn pn An+1 LnJran ~ _Ln+1Rn~n
+2(1+ﬁ) _ (Pily + PPN (L5 RY_qafy — Ly Rjag)
J

2 ~ ~
_ n A+ 7rnpnpn
=D o DATLIRY P
J

AR =gl n+1 pn+l~n+1
+21+KP;LA], Ao LI R
J

pn_n
+) 2Ppel.
J
The key part to deriving the above equation is
Jj+1 Jj+1 j+1 J

AR i n DN AN ~n ~n
I:Zm( j+1A +1+PjA +1)(u +1_u4+1).
J

Because

g+l _gntl — pno 15]," + ALY P A+L?15j”

Ujp1 —Y; j+1 G+ T
o n+lpn ~n n+lpn ~n
+ 5 (L5 By, — LTy Ry 7y )
n+lpn~n _ rnt+lpn ~n o
+ (L} RYa; — LY Ry ah)(1— )

+ SR — LT Ry,
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I :Z AR (P +1 T pn)A?jr‘llA+]5jﬂ
J
+> 11 (Pfuq + POATHIATLY PRy — ATLY PR
J
+ Z ﬁ—ﬂm(pgnﬂ + PPN (LT Ry a) — Ly Ry ) (1 — )
j
]+1R jr2 i)

AR n pn n ~n I
3 T (B + PN (L R 3

AR .
D T (P + PPN (L Ry iy — Ly Ry ")2

Next, 2&;”'1 x ([£2) can be rewritten using summation by parts:
(4.6) 22 attiprtt — QZa”P" + QZ )P
~n+1 2 ar 2
T ;m'

2K
E + 2 _ E ~n+1 A+ [ R’ﬂ+1“n+1

] + K Z Ata nL RJJrlﬂ]Jrl R;lﬂ;l + R;’Llﬁ;’lfl)

Z WILTALRIA T
J

1+/<c
_ ““ Z%L”A RIA-
T WL AR
1+r

1+I€Z|U’J+1_u1

p +~ p 2
=Y S ATE(NI = NP )+ ) NT
2122(1-1—,%) (Nj1 2(1+/<;)zj:| i

H +~n A pn H s pn

2
~n+1A An—i—l n+1 ~n+1A+Ln nPn
] Z 1 + K R

)\’@ gt AN+l n+1l pntl~ n+1 antlen
= m@ APTIAGLTTIRT +2J:2 e
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The only term which we should be careful of is

J = Z

_ ~n+1 n pn+1~ n+1 ~n
Z 1_|_,€ ay (LR — 4

Ln(Rj-i-lu]—i-l Rn n+Rn ay ))

:Zmﬁ?+l|2_z ~n2+z_|A+ n|2
j J

~n+1 +r7rnpn+l n+1
N Z 1+ ) ATLTR;™
H/.L . -
J

HHZN @ LM (RY 7,y — 2RI + R0 y)

2 u . _
ar WLIA_RIA_@)
J

_ Ii,u Z~nLnARn n

It follows from (3] + 7 x ([E6) that
(4.7) E(n+1)— E(n)+ L(n) = R(n),

where
KT

~ 1
)

E(n+1) =Y [1PIY2 4 20a0 T Pt 4
J
_ PN |2 ~n pn KT 2
E(n)fZ[|Pj| + 27l P +—1+K|uj ],
J

2 n|2
1+I€Z|j| 1+I€Z|]+1 P|
AR n+1 n+1 H 2

+1+/<;Z(/\’W — Mo+ 1B
Z|ﬁn+1 ﬁn2
1—|—I€
2
TH,U’ n2 TH n|2
NT
S g DI

TAK n+l ntl Y antl)2
+ 1+I€ XJ:(A J )\k ]+1) k,j |
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and

Z|Pn+1 Pn|2 Z%Aopn]\[n

AR n DN 1 1 1 n n pn
“Tin Z(P]+1 + PPNH(LS = Ly PRy — ALY PP
J

AK
~ T (U= DB+ POATE (L5 Ry — LI Ry, i)
J
AR . S . ) i
- 2(1+ k) Z(Pjn“ + PPN (LT Rl — L RS0 )
J

Aﬂﬂ’ n PN noogn n~n
e Z(PJ Yy + PN R - LY RyaT)
J

2 - ~ K -
nA+7rnpnpn n +1 +1 +1~n+1
—I—g —P-A L7 R P}" + T n E PjA? AOL? R;L u?
J

+ 272 AT PP 42 Z ”.’“A*L?R;?“a;’“

TISJ‘LL - - -
1+ﬁ§3A*"L (R 1y — 2R7G] + Ry 4] )
TR

1+k

LA LRy AT + m“ Z”LL”A RIA_@}

wa

Z ay LT ARG + Z At ai Ao N

21+/<;

N

“n+1 A+ 70 pnpn TAK ~n+1 ) n+l n+1 pn+l~n+l
quj ATLIRIP! + 1+H2uj AN LT R
J J

AK ~ +1 +1
S B0 AR,
nF#k
B TAK Z ~n+1(An+1 An+1 n+1 +Z n+1 +Pn) n
1+ 1] s J+1
nF#k

Label the terms in R(n) as Ry, ..., Ros. Actually, we only need to handle the terms

which have ugH' among which the most difficult terms are R1g and R19. We have

A
(48) Ly =LY+ (L — LYy
A
= (14 0()VL(S}) x (6] = ¢ + Z (@41 — 6}-1))
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and the identity

A
[nJrl " AT( LT Ln
i j+§ 7 (L = L)

n As A
= Lj+1 B L;L + 7( ?Jrl - ;L,l) + 5(/\? — S)(L;LJFI — ;L,l)~

According to the discrete shock profile equation (&1l), we have

A
§|¢?+1 - ¢§L1| < C(/\Z,j - Z,jJrl)-

It is obvious that

2Tk N A _
Rig+ Rig = T Zu;b-i-l[L;H-Z _ L;L-’rl + §A;L+1(L;L:-11 _ L;lel)]R;L-i-lu;L-i-l
J

T)"% ~n+1 n+2 n+1 n+1~n+1
—1+HZuj (L32 =200 + LRI Tal+h,

Because
n+2 _ gnel A(F( n+1) _ F( n+1)) _ AA%( ntl _ggntl 4 n+1)
¢j ¢j 92 ¢j+1 ¢j71 2 ¢j+1 ¢j ¢j71
An n A
=5 Wi - Vi = W =) + 5 A(S 12 — 205 + 65 )
A1
= SAR e — U — 2000 — U+ 0 — Ya)
and by Theorem 23] we have
n+2 n+1 A n+1 n+1
o7 — o+ 55(¢j+1 - i)
< O(E)O‘k;l - Ak;-lu) + TO‘}JI - Akj’il)'
Combining the above inequalities, we obtain
ATK n+1 n+1 \|~n+12
(4.9) Ryg + Ri9 < zj: m@\w = Mool |

TR +1 +1 \|sn+1)2
ST DA AN L
Jin#k
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provided that x is suitably large, which is a reasonable assumption. Set
W) = sup (3135 + 3 |2,
nEm J

and assume a priori that M (n;) is suitably small. Then clearly we have

Under this prior assumption, the other terms can be estimated as in the stationary
case. The details are skipped. Now we reach the following inequality.

E(n+1) — E(n)

ATK n+1 n+1 ~n+1 2
+ 0 +r) zj:()‘k,j = Apg)lun |

AK n+1 n+l \| Hn (2
+mz(%] = Neg) 1P|

4.1 -
(4.10) O 7P+ 521 = B
+Z|u"“ RIS WA
j J
somZ(Az# L) Zr"*”

J n#k

The waves in the transversal directions are bounded by the last term on the right-
hand side of the above equation. We should estimate the transversal term. Here
we will use the idea of vertical estimate, and the remaining part of this section is
the estimate about this term.

It was mentioned in [16] that the estimates on transversal waves are technically
quite involved due to the wave interactions and the fact that our shocks are non-
stationary. The idea of vertical estimate is to relate a sum along time-like discrete
segments to a sum over all the grid points in a strip of the space-time plane.

Suppose p > k. It is the same with another case. For any fixed index jj, we
define the k-th time-like grid line originated at (jo,0) to be

J(Go) = {(n,jn)lin = jo+ (1 =1)p for (I =1)lg| <n <llg[,l=1,2,...}.

For any integer n, 0 < n < Ng — 1, because the terms which have P can be
estimated easily, we multiply the p-th equation in (@2Z) by 2122_';1 and sum by parts
over j from —oo to j, and n from 1 to N¢g — 1. Under the assumption of the prior
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estimate, we obtain the inequality

(4.11)
Ng—1 jn Ng—1 jn Ng—1 K p
n+1 2 ~n+1\2
PRI S UMD DN Dl e CHMED Dl s A G
n=0 j=-—o0 n=0 j=—o0 n=0
Ng—1 cikp Ng—1 jn
AntL n+1 1 2
+ Z 1_,_,% ijn _S)(u/wn 1_’_% Z Z u,j—l)
n=0 j=—o0
Nqg—1 jn Nqg—1 jn ok
2 0 n—i—l ~n \2
1—|—/<; Z Z N, J| +Z Z 1_|_,<; g uu,j)
n=0 j=-—o0 n=0 j=—o0
Nqg—1 jn Ng—1 oo
1 D 1 1
DI AR AU S s RLA
n=0 j=—o0 n=0 j=—oo
Ng—1 o Ng—1 oo
+1  \~ntlantl anth 2
+ Z 1+,.@<M—AZ,J-,,+1>UZ,% (@ 1 = Upy,) +O(1) Z Z | Mj|
n=0 n=0 j=—o0
Ng—1 /L2 Ng—1 2
+ 2(1_,_@ u7J77+1N/7Jn - Z 2(1+ﬁ)ﬂz,j7zN;7,jn,+l
n=0 n=0

Ng—1

+O(1) Z Z (Pﬁu Pn + Z 1+ ujn+1(P/ZJn+1 P/len)

Ng—1 400 Ng—1 400
+0() 30 >0 O - NELIIE o) 30 YT 1At
n=0 j=—o0 n=0 j=-—o0

where cg, c1, co are positive constants. Let

n TR ~N
(4.12) (En ) =Py %+ 2ral P+ 1+—H|um|2
and 7 = 4(1+ 3 We have
Nq 1 jn Ng—1

(4.13) Z > UEL? E")]+ﬁz PN

n=0 j=—o0

Ng—1
+ Co E |112ng + (the same remaining terms)
Ng—1  jn

1) Z Z [|.75;Lj|2 + |]5;f;rl - ]5/7]|2] + (the same remaining terms),

n=0 j=—o0
where Cy is a positive constant. Hence, we should estimate
Nq 1 +oo Ng—1

a3 N - BT e o

n=0 j=—o0
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Immediately, we have
Nq 1 jn Ng—1

(@15) = 3" 3 U - (5, + 1iﬁpzrzzf

n=0 j=—o0

1 Jjo+Np 1 Jjo—p 3k 1 N—-1 q
_ EN{ZQ__ EO» 2 oo - nq+a
= _Z: ( HJ) = _z; ( /MJ) +4(1+,€)q _0(p2::1 man
Jj=—00 J=—0Q n= «
N—-1 p—-1
1 ng 21
g 2= 12 E )T
n=0 (=0
and
1 nq 2 3K ~ng 2
(4.16) ;(Emjnq—ﬁ) > 4(1_,_,@) (uu,an 5)
SO
3k Ng—1 N1 el 1
(4.17) — —|~Z+ji|2 =D a) (B e
A1 +k) = 1,20 s=0 g
3K 1=

q
ém[g EZ: aph)? —qZ Uy g

The last term on the right can be estimated as

N-1 q
nq+a
Z pz H’]nq _qz N]nq ﬁ
n=0 a=1
N—-1 g N—-1 ¢
— ~ng+ao ~nq 2 ~ng+a _ ~nq ~ngq
=p Z(ul"vjnq - uﬂvjnq) + 2p Z(uﬂvjnq ulhjnq)uﬂvjnq
n=0 a=1 n=0 a=1
N—-1p—1 N-1p-—-1
~ng ~ng 2 ~ng ~ng ~ng
-4 (ulivjnq_ﬂ - uﬂvjnq) - 2(] (ulhjnq—ﬁ - uH7j7zq)ulf«7jnq
n=0 =0 n=0 =0
N-1
(1) . 2, O() S yontl  n 2 ng 2
= 5 Z(UZJ UZJ-H) + 5 Z( ZJ ZJ) +90 ( quwq)
Jm Jsm n=0
o) o Ot
= 5 (UZJ uZJJrl) + 5 Z( Z] o uZJ)
Jn Jmn
N—-1 ¢
~ng+
0D D () + ol
n=0 a=1
oa . . O) xpntl _ on 32
=5 (@ j =ty j41)° + 5 Z(“Z? — g, )
Jj.m j,n
Ng—1

+6 > (@507 + ol
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so choosing suitably small §, we have

Ng—1
> @i < o(E()
n=0
Ng—1 [e’s)
+O(1) o D N = ATl
n=0 j=—o0
Ng—1 oo
+0(1) Y Y @t -yl
n=0 j=—o0
Ng—1 oo
+o() > > jartt —an
n=0 j=—o0
Ng—1 [e’s)
(4.18) +o) Y. N pr, - PP

n=0 j=—o0

Ng—1

+O() Y an (Pl =Pl
n=0
Ng—1 [e’s)

OB S A AR

n=0 j=—o0

Ng—1 Ng—1
+O(1) Y g Ny, —OM) Y N
n=0 n=0

Ng—1
+O) D a5 =5
n=0

Apply Cauchy’s inequality to the above equation and use previous estimates

Ng—1

> (@rih? < 0(1)E(©)

n=0
+O(1) Y > O = Al
+0(1) Do laf —af?

oo
+0(1) > faytt —ar?

[Pty = P2
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Multiply both sides by A? . —\?

one will obtain

; and sum over jg from —oo to co. Consequently

k,jo k,jo+

Nq—

Z(Ak jo ,j0+1 Z Hjn

Jo _
Ng—1 oo
n=0 j=—o0

Ng—1 o)

92, D laf -
n=0 j=-—o0

Ng—1 o)

~n+1 ~n2
0> D It -l

n=0 j=-—o0

Ng—1 oo

€) Z Z |Pliy = PP
n=0 j=—o0

Ng—1 oo

DS

n=0 j=—oo
According to the properties of the discrete shock profile,
Ng—1
D 2N - D@
n=0 j

Ng—1

_ +1 +1 ~n41\2
Z Z (kg = M) (@55,)
jo n=0
Ng—
+1
= (1 + O(E)) Z(Ak Jo Jo-‘rl Z Z]n
Jo n=0
Combining this estimate, we have
~n+1
(4.19) DR - A @

in
< O(E(0) +0(e) D (NH = NeFi Dy
in
€) Z |7:‘;L+1 - 7:‘?|2
Z |~n+1 n|2
]
O(e )ZI o — PP

€) Z |Pr2.
Jmn



1294 MAO YE

Similarly for pu < k; therefore, summing over p yields

(4.20) DOOEE = AEL) D (@)’

7,n n#k
< O()E(0) + 0(e) > _(AE = apth Hjay ™2
7,n
+0(e)Y_|ay — TP +0(e) Y lajtt —ayf?
7,n Jn
+O(e) Z |pjn+1 - pjn|2
7,n
+0(e) Y|P
7,n
It follows that
S ORE = AL Do a@nh?
in n#k
< 0(9B(0) +0() (5" = Mgyl
J,n
+0() Y iy — a2+ 0(e) Y fapt! —ap?
in J.n

+0(e)Y_|Ppy, — PP
Jm

+0(e) Y|P
Jm

After this estimate, combining (L10), we prove the following basic estimate.

Proposition 4.1 (A priori estimate). Let (@, P) be the solution of @2) for ny <
n1. Then there exist positive constants C,cy independent of n1 and € such that

1 “nt1
E(n2) + Y Op5 = xi)last?

Jjn<nz
+ D R = AR
Jjn<ng
+CO[ Z |P]n|2+ Z |Pj7:-1 _Pjn|2
(4.21) jn<ns jn<na
- T o
Jjn<no
+ D IMPP D INPP
Jjn<ng Jjm<nz
< CE(0)

for all no < nq, provided that €, A and M(nl) are suitably small and K is suitably
large.
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By standard continuity argument, the following proposition exists.

Proposition 4.2. Assume that e,% and M(0) are suitably small. Then problem
B2) has a unique global solution (W7}, 15]-") satisfying

sup E(n) + Y (At = ApEiD[a 2+ > PR+ > Py, - PP
J,n Jm J,n

Y fantt —a P+ > MR+ INF2 < OM(0)?
Jim Jim Jn
for any n > 0, where C is a positive constant independent of n and j.

With this estimate, as before, we can get the L? estimate of v}, which is Theorem
1.2
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