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RECOVERING SIGNALS FROM INNER PRODUCTS
INVOLVING PROLATE SPHEROIDALS

IN THE PRESENCE OF JITTER

DOROTA DA̧BROWSKA

Abstract. The paper deals with recovering band- and energy-limited signals
from a finite set of perturbed inner products involving the prolate spheroidal
wavefunctions. The measurement noise (bounded by δ) and jitter meant as
perturbation of the ends of the integration interval (bounded by γ) are consid-
ered. The upper and lower bounds on the radius of information are established.
We show how the error of the best algorithms depends on γ and δ. We prove

that jitter causes error of order Ω
3
2 γ, where [−Ω,Ω] is a bandwidth, which

is similar to the error caused by jitter in the case of recovering signals from
samples.

1. Introduction and preliminaries

The usual approach to recovery of signals [1], [4], [5], [6], [7], [8], [9], [10] assumes
gathering their samples, which are then combined in some way to get approximate
signals’ values. In practice, the data is contaminated with some noise coming from
an inaccurate sample points reading (called jitter) and from the measurements of
resulting samples. It has been proved [1] that to get satisfactory quality of the
reconstruction, we may need to ensure very small jitter.

In the 1960’s, mainly due to Slepian, Landau and Pollak [14], [20], [22], a new
way of gathering information about signals came into consideration. Instead of
samples, certain inner products involving prolate spheroidal wavefunctions could
be evaluated. Optimality properties of such information have been exhibited in
[8], [10]. The measurement noise has been proved to have smaller influence on the
quality of recovery than in the case of utilising information consisting of signals’
samples [4].

We deal with the recovery of band- and energy-limited signals. We estimate the
loss caused by jitter (meant here as the perturbation of the length of the integration
interval) while using the prolate spheroidal wavefunctions.
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In order to give a precise formulation of the problem, we denote by F the space
of signals of bandwidth [−Ω,Ω],

F =
{
f : R→ C : f(t) =

Ω∫
−Ω

f̂(ω)eitω dω, f̂ ∈ L2[−Ω,Ω]
}
.

We are interested in the signals with limited energy, that is, in the subclass E =
{f ∈ F : f̂ ∈ J}, where J denotes the unit ball in L2[−Ω,Ω]. The reconstruction
of a signal f at a point t0 from the interval [−τ, τ ], τ > 0, can be treated as a
recovery of the linear functional

S : F → C,
S(f) = f(t0),

from information vector ~y ∈ N(f), where N : E → 2C
n

is an information operator
defined by

N(f) =
{
~y ∈ Cn : yk =

τ+Γk∫
−τ+Λk

f(t)wk(t) dt+ ∆k,

‖~Γ‖p1 , ‖~Λ‖p1 ≤ γ, ‖~∆‖p2 ≤ δ
}
.

Here, γ and δ are fixed positive numbers, 1 ≤ p1, p2 ≤ ∞, and ‖ · ‖p denotes the
pth norm in Cn. The functions wk are scaled prolate spheroidal wavefunctions as
precisely defined in Section 3. We shall also use the symbols q1 and q2 to denote
the quantities associated to p1 and p2, i.e.,

1
p1

+
1
q1

= 1,
1
p2

+
1
q2

= 1,

with the convention that 1
∞ = 0.

To recover S(f), we use an algorithm φ : Cn → C, which can be an arbitrary
mapping. We measure the error of φ by its worst performance in the class E:

e(φ, γ, δ) = sup
f∈E

sup
~y∈N(f)

‖S(f)− φ(~y)‖.

Our aim is to find the best possible algorithm. If some φ∗ satisfies

e(φ∗, γ, δ) = inf
φ
e(φ, γ, δ),

we call it an optimal algorithm.
Let A(~y) denote the image under S of the set of all elements from E sharing the

information ~y:
A(~y) = {S(f) : f ∈ E, ~y ∈ N(f)}.

The quantities

r(γ, δ) = sup
~y∈Cn

inf
g∈G

sup
a∈A(~y)

‖g − a‖,

d(γ, δ) = sup
~y∈Cn

sup
a,b∈A(~y)

‖a− b‖,
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where the supremum over the empty set is to mean zero, define a radius and a
diameter of information, respectively. It is well known that

r(γ, δ) = inf
φ
e(φ, γ, δ);

see for instance [18], [19] for the proof. We shall use these relations to estimate
the lower and upper bounds on the error of the optimal algorithm. For more
information on the worst case setting we refer the reader to [19], [23], [24], [25].

We shall prove that for sufficiently small γ

r(0, 0) +A1Ω
3
2 γ +Bδ

2
+O(γ3 + δ2) ≤ r(γ, δ) ≤ r(0, 0) +A2Ω

3
2 γ +Bδ.

The constants A1 and A2 are independent of Ω, γ and δ. The same refers to B

when wk are suitably chosen. Jitter causes error of order Ω
3
2 γ, which is similar to

the error caused by jitter in the case of recovering signals from samples. In both
cases the condition Ω

3
2 γ < 1 should be satisfied to get the radius of information

small enough. It may force γ to be very small, since Ω may even exceed 216.

2. Prolate spheroidal wavefunctions

This section presents some facts concerning the prolate spheroidal wavefunctions.
Given positive number c, we consider the differential equation

(1− t2)u′′(t)− 2tu′(t) + (κ− c2t2)u(t) = 0.

It is well known [2] that the values of the parameter κ such that the equation has
a nonzero solution can be ordered

0 < κ0(c) < κ1(c) < · · · ,
and when κ = κk(c), there exists exactly one solution

vk : [−1, 1]→ R

such that
∫ 1

−1 |vk(t)|2 dt = 1 and vk(1) ≥ 0. Let us set c = Ωτ and define the prolate
spheroidal wavefunctions by

φk(t) =
1√
τ
vk

(
t

τ

)
, k = 0, 1, . . . , t ∈ [τ, τ ].

Theorem 1.
(1) The functions φk continuously depend on Ω and τ . For fixed c = Ωτ they

can be extended to entire functions.
(2) Each function φk is an energy-limited signal of bandwidth [−Ω,Ω].
(3) The functions φk are even for even k and odd for odd k.
(4) The following eigenrelations are satisfied:

τ∫
−τ

Ω
π

Sinc(Ω(t− s))φk(s) ds = λkφk(t),

τ∫
−τ

eiΩ t
τ sφk(s) ds = αkφk(t),

where t ∈ C, λk ↘ 0 when k →∞, and |αk|2 = 2πτ
Ω λk.
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(5) The functions φk are orthonormal in the space L2[−τ, τ ] and orthogonal in
L2[−∞,∞], and

∫∞
−∞ |φk(t)|2 dt = 1

λk
.

Here and in what follows Sinc(x) is defined by

Sinc(x) =
sin(x)
x

, x 6= 0; Sinc(0) = 1.

It should be noted that vk, λk, αk, κk depend on c and φk depends on Ω and τ .
To simplify the notation, we do not point it out. The above theorem was proved in
[8], [22]; see also [2], [3], [9], [11], [12], [13], [14], [15], [16], [17], [20], [21] for a more
complete treatment.

The following lemma will be used in the next section to get an upper bound on
the radius of information.

Lemma 1. For each k = 0, 1, . . .

φk(τ) =

√
c

2τ
d lnλk

dc
=

√
Ω
2

d lnλk
dc

.

Proof. According to [3], [20] we have
2
c
v2
k(1) =

d lnλk
dc

.

This combined with vk(1) =
√
τφk(τ) > 0 and c = Ωτ gives the desired formula. �

The next two lemmas provide tools for establishing the upper bounds on the
derivatives of φk at τ . We shall use them in the next section.

Lemma 2. Let us fix c and κk and set a = κk−c2
2 , b = c2

2 and xj = v
(j)
k (1)

vk(1) . Then

x0 = 1,
x1 = a,

x2 =
a2

2
− a

2
− b,

xj =
(
a

j
− j − 1

2

)
xj−1 − 2b

j − 1
j

xj−2 − b
(j − 1)(j − 2)

j
xj−3,

for j = 3, 4, . . . .

Proof. The function vk is a solution of the differential equation

(1− t2)u′′(t)− 2tu′(t) + (κ− c2t2)u(t) = 0

with κ = κk. Therefore

(1 − t2)v(2)
k (t)− 2tv(1)

k (t) + (κk − c2t2)vk(t) = 0.(1)

This yields

(1 − t2)v(3)
k (t)− 4tv(2)

k (t) + (κk − c2t2 − 2)v(1)
k (t) = 0.(2)

We shall prove by induction that the following equation holds for j = 3, 4, . . .:

(1 − t2)v(j+1)
k (t)− 2jtv(j)

k (t) + (κk − c2t2 − j(j − 1))v(j−1)
k (t)

− 2(j − 1)c2tv(j−2)
k (t)− (j − 1)(j − 2)c2v(j−3)

k (t) = 0.(3)

It can be verified for j = 3 by differentiating the equation (2). Let us assume that
(3) is valid for some j. Then by differentiation we get it for j+ 1. By the definition
of a, b and xj , the lemma follows by setting t = 1 in (1), (2) and (3). �
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Lemma 3. Let a, b and xj be defined as in Lemma 2. If

β = max{|a|, |b|} > 2,

then

|xj | ≤ (j − 1)!βj for j = 1, 2, . . . .

Proof. We proceed by induction. For j = 1 the inequality holds. As x2 = a2

2 −
a
2 −b

and

a2

2
− a

2
− b ≤ a2

2
− a

2
≤ β2 + β

2
≤ β2,

a2

2
− a

2
− b ≥ −a

2
− b ≥ −β

2
− β ≥ −β2,

we have |x2| ≤ β2. Since x3 = 1
6a

3 − 2
3a

2 + 1
2a−

5
3ab+ b, it follows that

|x3| ≤
1
6
β3 +

2
3
β2 +

1
2
β +

5
3
β2 + β < 2β3.

We now know that the lemma holds for j = 1, 2, 3. For any j ≥ 4 we assume that
|xi| ≤ (i− 1)!βi holds for all i < j. Then from Lemma 2 we get

|xj | ≤
(
β

j
+
j − 1

2

)
(j − 2)!βj−1 + 2β

j − 1
j

(j − 3)!βj−2

+ β
(j − 1)(j − 2)

j
(j − 4)!βj−3

= (j − 1)!βj−2

[
β2

j(j − 1)
+ β

(
1
2

+
2

j(j − 2)

)
+

1
j(j − 3)

]

≤ (j − 1)!βj−2

(
β2

12
+

3
4
β +

1
4

)
≤ (j − 1)!βj .

The proof is complete. �

Corollary 1. Let βk = max{|κkc − c|, c}, where c ≥ 2. Then

|φ(j)
k (τ)| ≤ (j − 1)!

(
Ωβk

2

)j
φk(τ) for j = 1, 2, . . . .

Proof. Since

φ
(j)
k (τ) =

1√
τ

1
τ j
v

(j)
k (1),

by Lemma 3 we get∣∣∣∣φ(j)
k (τ)
φk(τ)

∣∣∣∣ =
|φ(j)
k (τ)|
φk(τ)

≤ 1
τ j

(j − 1)!

(
max

{∣∣∣∣κk − c22

∣∣∣∣, c22
})j

= (j − 1)!
(

Ωβk
2

)j
. �
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3. Estimation of the radius of information

We are now in a position to define the functions wk. As was mentioned before,
they are scaled prolate spheroidal wavefunctions, i.e,

wk = Wk−1φk−1, k = 1, . . . , n,

where the quantities Wk−1 are arbitrary positive numbers.
We remind the reader that an optimal algorithm using the exact information

(γ = δ = 0) [18] is given by

φ∗(~y) =
n∑
k=1

yk
φk−1(t0)
Wk−1

.

We shall now estimate the error of φ∗ for arbitrary γ and δ.

Lemma 4. Let φ∗ be defined as above. Then

e(φ∗, γ, δ) ≤ r(0, 0) + sup
f∈E

‖~Γ‖p1≤γ
‖~Λ‖p1≤γ

n−1∑
k=0

Ak(f,Γk+1,Λk+1) |φk(t0)|+Bδ,

where

Ak(f,Γk+1,Λk+1) =
∫

[−τ−|Λk+1|,−τ]
∪ [τ,τ+|Γk+1|]

|f(t)φk(t)| dt,

B =

∥∥∥∥∥
[
φ0(t0)
W0

, . . . ,
φn−1(t0)
Wn−1

]T∥∥∥∥∥
q2

.

Proof. We have

e(φ∗, γ, δ) ≤ sup
~y∈Cn

sup
f∈E
~y∈N(f)

|S(f)− φ∗(~y)|

≤ sup
f∈E

∣∣∣∣∣S(f)−
n∑
k=1

( τ∫
−τ

|f(t)wk(t)| dt
)
φk−1(t0)
Wk−1

∣∣∣∣∣
+ sup

f∈E
‖~Γ‖p1≤γ
‖~Λ‖p1≤γ

n−1∑
k=0

( ∫
[−τ−|Λk+1|,−τ]
∪ [τ,τ+|Γk+1|]

|f(t)wk+1(t)| dt
)
|φk(t0)|
Wk

+ sup
‖~∆‖p2≤δ

∣∣∣∣ n−1∑
k=0

∆k+1
φk(t0)
Wk

∣∣∣∣
= r(0, 0) + sup

f∈E
‖~Γ‖p1≤γ
‖~Λ‖p1≤γ

n−1∑
k=0

Ak(f,Γk+1,Λk+1) |φk(t0)|+Bδ.

�
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If an f belongs to E, then |f(t)| ≤
√

2Ω. Furthermore, the eigenrelations pre-

sented in Theorem 1 yield |φk(t)| ≤
√

Ω
πλk

. Hence

Ak(f,Γk+1,Λk+1) ≤
√

2
πλk

Ω(|Γk+1|+ |Λk+1|).

This can be improved if γ is small enough.

Lemma 5. If f ∈ E, c ≥ 2 and

Ωγ <
2

maxi=0,...,n−1 βi
,

then

Ak(f,Γk+1,Λk+1) ≤ 2

√
d lnλk

dc
Ω(|Γk+1|+ |Λk+1|).

Proof. Since |f(t)| ≤
√

2Ω and φk is odd for odd k and even when k is even, we
obtain

Ak(f,Γk+1,Λk+1) ≤
√

2Ω

τ+|Λk+1|∫
τ

|φk(t)| dt+

τ+|Γk+1|∫
τ

|φk(t)| dt.

Expanding φk in the Taylor series and applying Corollary 1, we get
τ+|Γk+1|∫
τ

|φk(t)| dt ≤
τ+|Γk+1|∫
τ

∞∑
j=0

|φ(j)
k (τ)|
j!

(t− τ)j dt

= |φk(τ)||Γk+1|+
∞∑
j=1

|φ(j)
k (τ)|

(j + 1)!
|Γk+1|j+1

≤ |φk(τ)||Γk+1|+
2|φk(τ)|

Ωβk

∞∑
j=1

(Ωβk
2 |Γk+1|)j+1

j(j + 1)

= |φk(τ)||Γk+1|+
2|φk(τ)|

Ωβk

(
x+ ln(1− x)1−x

)
,

where x = Ωβk
2 |Γk+1|. The last equation holds since x < 1 is guaranteed by the

assumptions. As ln(1−x) < 0 for x ∈ [0, 1), it follows that x+(1−x) ln(1−x) ≤ x.

According to Lemma 1, we have |φk(τ)| =
√

Ω
2

d lnλk
dc . Consequently

τ+|Γk+1|∫
τ

|φk(t)| dt ≤ 2|φk(τ)||Γk+1| = 2

√
Ω
2

d lnλk
dc

|Γk+1|.

The same argument applies to the integral
∫ τ+|Λk+1|
τ

|φk(t)| dt. The proof is com-
plete. �

We can now establish an upper bound on the radius of information.

Theorem 2. Assume that c ≥ 2 and Ωγ < 2
maxi=0,...,n−1 βi

. Then

r(γ, δ) ≤ r(0, 0) +AΩ
3
2 γ +Bδ,
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where

A =
4√
c

∥∥∥∥∥
[√

d lnλ0

dc
v0

(
t0
τ

)
, . . . ,

√
d lnλn−1

dc
vn−1

(
t0
τ

)]T∥∥∥∥∥
q1

,

B =

√
Ω
c

∥∥∥∥∥
[

1
W0

v0

(
t0
τ

)
, . . . ,

1
Wn−1

vn−1

(
t0
τ

)]T∥∥∥∥∥
q2

.

Proof. The theorem follows from Lemmas 4 and 5 and the definitions of φk and
c. �

One may ask whether the estimate in Theorem 2 is sharp. To answer this, we
shall show a lower bound on the radius of information. The basic idea of getting it
is to find two functions sharing the same information. Then we shall use them to
estimate the diameter of information and finally the radius of information.

The following assumptions will be needed in the remainder of this section. They
are a consequence of the proof technique, and all, except the first one, state some
limitation on the size of γ. The goal of the last one is to guarantee that the functions
φk, k = 0, . . . , n− 1, are nonnegative in the interval [τ − γ, τ + γ].

A0. c ≥ 2,

A1. Ωγ ≤ π

12
,

A2. Ωγ ≤ 2‖[λ0β0, . . . , λn−1βn−1]T ‖p1

maxi=0,...,n−1 βi
,

A3. Ωγ ≤ 1
maxi=0,...,n−1 βi

,

A4. Ωγ such that ∀k=0,...,n−1∀t∈[1− 2Ωγ
c ,1+ 2Ωγ

c ] vk(t) ≥ 0.

Roughly speaking, the next lemma says that φk(τ) is close to the mean value of
the function φk on the interval [τ − Γk+1, τ + Γk+1].

Lemma 6. If c ≥ 2, Γk+1 ≥ 0 and ΩβkΓk+1 < 1, then
τ+Γk+1∫
τ−Γk+1

φk(t) dt ≥ φk(τ)Γk+1

(
2− 1

11
(ΩβkΓk+1)2

)
≥ 21

11
φk(τ)Γk+1.

Proof. The Taylor expansion of φk combined with Corollary 1 yields∣∣∣∣∣
τ+Γk+1∫
τ−Γk+1

φk(t) dt− 2φk(τ)Γk+1

∣∣∣∣∣
=

∣∣∣∣∣
τ+Γk+1∫
τ−Γk+1

( ∞∑
j=0

φ
(j)
k (τ)
j!

(t− τ)j
)

dt− 2φk(τ)Γk+1

∣∣∣∣∣
=
∣∣∣∣2 ∞∑
j=1

φ
(2j)
k (τ)

(2j + 1)!
Γ2j+1
k+1

∣∣∣∣
≤ φk(τ)

2
Ωβk

∞∑
j=1

2(Ωβk
2 Γk+1)2j+1

2j(2j + 1)
.
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We set x = Ωβk
2 Γk+1 and note that

∞∑
j=1

2x2j+1

2j(2j + 1)
= 2x+ (1− x) ln(1− x)− (1 + x) ln(1 + x) ≤ 4

11
x3

since x ∈ [0, 1
2 ). Consequently,∣∣∣∣∣
τ+Γk+1∫
τ−Γk+1

φk(t) dt− 2φk(τ)Γk+1

∣∣∣∣∣ ≤ (ΩβkΓk+1)2

11
φk(τ)Γk+1

≤ 1
11
φk(τ)Γk+1,

and the lemma follows. �

The task is now to find two functions sharing the same information and whose
difference at some point t0 is of order Ω

3
2 γ.

Lemma 7. Define

α =
1

2‖[λ0β0, . . . , λn−1βn−1]T ‖p1

,

f1(t) =
√

2Ω Sinc(Ω(t− τ − αγ)),

f2(t) =
√

2Ω Sinc(Ω(t− τ + αγ))

and assume that δ = 0 and let conditions A0–A4 hold. Then the functions f1, f2

belong to E and N(f1) ∩N(f2) 6= ∅.

Proof. Since

√
2Ω Sinc(Ωt) =

1√
2Ω

Ω∫
−Ω

eitω dω,

we get f1, f2 ∈ E. In order to show that N(f1)∩N(f2) 6= ∅, we need to find a vector
~Γ such that ‖~Γ‖p1 ≤ γ and

τ−Γk∫
−τ

f1(t)wk(t) dt =

τ+Γk∫
−τ

f2(t)wk(t) dt,

for all k = 1, . . . , n. By the definition of wk and Theorem 1 we can rewrite the
above equation as

π

Ω
λk−1

(
φk−1(τ + αγ)− φk−1(τ − αγ)

)
=

τ+Γk∫
τ

Sinc(Ω(t− τ + αγ))φk−1(t) dt+

τ∫
τ−Γk

Sinc(Ω(t− τ − αγ))φk−1(t) dt,

where k = 1, . . . , n. According to A1 and A4 both integrants are nonnegative.
Without loss of generality we assume that Γk ≥ 0. Expanding φk−1 in the Taylor
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series and applying Corollary 1 and property A2, we get
π

Ω
λk−1

(
φk−1(τ + αγ)− φk−1(τ − αγ)

)
≤ 2π

Ω
λk−1φk−1(τ)

∞∑
j=0

(αβk−1Ωγ
2 )2j+1

2j + 1

=
2π
Ω
λk−1φk−1(τ) arctanh

αβk−1Ωγ
2

.

On the other hand, by A1, A3, and Lemma 6 it follows that
τ+Γk∫
τ

Sinc(Ω(t− τ + αγ))φk−1(t) dt+

τ∫
τ−Γk

Sinc(Ω(t− τ − αγ))φk−1(t) dt

≥ 3
π

τ+Γk∫
−τ−Γk

φk−1(t) dt ≥ 63
11π

φk−1(τ)Γk.

We complete the proof by finding a vector ~Γ such that ‖~Γ‖p1 ≤ γ and

2π
Ω
λk−1φk−1(τ) arctanh

αβk−1Ωγ
2

≤ 63
11π

φk−1(τ)Γk.

To this end we set Γk = 2λk−1βk−1αγ. Then ‖~Γ‖p1 = γ and the inequality above
reduces to the inequality

arctanh
αβk−1Ωγ

2
≤ 126

11π2

αβk−1Ωγ
2

,

which is valid since A2 implies αβk−1Ωγ
2 ≤ 1

2 . �

The following result is a counterpart of Theorem 2.

Theorem 3. Under the assumptions A0–A4 we have

r(γ, δ) ≥ 1
2

(
r(0, 0) +AΩ

3
2 γ +Bδ

)
+O(γ3 + δ2),

where

A =
√

2
2

max{| Sinc′(Ω(t0 − τ))|, | Sinc′(Ω(t0 + τ))|}
‖[λ0β0, . . . , λn−1βn−1]T ‖p1

,

B =

√
Ω
c

∥∥∥∥∥
[

1
W0

v0

(
t0
τ

)
, . . . ,

1
Wn−1

vn−1

(
t0
τ

)]T∥∥∥∥∥
q2

.

Proof. We define f1 and f2 as in Lemma 7. Since N(f1) ∩ N(f2) 6= ∅, we have

d(γ, 0) ≥ |S(f1)− S(f2)|
=
√

2Ω| Sinc(Ω(t0 − τ − αγ))− Sinc(Ω(t0 − τ + αγ))|

=
√

2| Sinc′(Ω(t0 − τ))|
‖[λ0β0, . . . , λn−1βn−1]T ‖p1

Ω
3
2 γ +O(γ3).

By considering the functions

g1(t) =
√

2Ω Sinc(Ω(t+ τ − αγ)),

g2(t) =
√

2Ω Sinc(Ω(t+ τ + αγ))
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and reasoning as in the proof of Lemma 7, we obtain that N(g1) ∩ N(g2) 6= ∅ and
consequently

d(γ, 0) ≥
√

2| Sinc′Ω(t0 + τ)|
‖[λ0β0, . . . , λn−1βn−1]T ‖p1

Ω
3
2 γ +O(γ3).

Hence d(γ, 0) ≥ 2AΩ
3
2 γ+O(γ3). By [4] we also have r(0, δ) = r(0, 0) +Bδ+O(δ2).

We complete the proof by observing that

r(γ, δ) ≥ 1
2
r(0, δ) +

1
2
r(γ, 0) ≥ 1

2
r(0, δ) +

1
4
d(γ, 0).

�

We summarise Theorems 2 and 3 in the following final result.

Theorem 4. Let assumptions A0–A4 be satisfied. Then

r(0, 0) +A1Ω
3
2 γ +Bδ

2
+O(γ3 + δ2) ≤ r(γ, δ) ≤ r(0, 0) +A2Ω

3
2 γ +Bδ,

with quantities A1, A2, B defined by the equations

A1 =
√

2
2

max{| Sinc′(Ω(t0 − τ))|, | Sinc′(Ω(t0 + τ))|}
‖[λ0β0, . . . , λn−1βn−1]T ‖p1

,

A2 =
4√
c

∥∥∥∥∥
[√

d lnλ0

dc
v0

(
t0
τ

)
, . . . ,

√
d lnλn−1

dc
vn−1

(
t0
τ

)]T∥∥∥∥∥
q1

,

B =

√
Ω
c

∥∥∥∥∥
[

1
W0

v0

(
t0
τ

)
, . . . ,

1
Wn−1

vn−1

(
t0
τ

)]T∥∥∥∥∥
q2

.

Remark. In order to make the radius of information sufficiently small, we may need
to ensure that AΩ

3
2 γ < 1 where A ∈ [min{A1, A2},max{A1, A2}]. The quantities

A1 and A2 depend only on c and although they are not very close, the last theorem
carries a negative message to practical applications. Usually relatively small values
of c are of interest. Taking c ≈ 3 and n not too big, but causing r(0, 0) to be small
enough, we get A1 ≈ 0.1. As we mentioned before, Ω can even exceed 216 which
leads to the inequality γ < 10

224 .
The measurement errors affect the radius of information r(γ, δ) depending on

the way in which the functions w1, . . . , wn are scaled. Taking for example W0 =
· · · = Wn−1 =

√
Ω, we get rid of the parameter Ω in the constant B.
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