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FAILURE OF THE DISCRETE MAXIMUM PRINCIPLE
FOR AN ELLIPTIC FINITE ELEMENT PROBLEM

ANDREI DRĂGĂNESCU, TODD F. DUPONT, AND L. RIDGWAY SCOTT

Abstract. There has been a long-standing question of whether certain mesh
restrictions are required for a maximum condition to hold for the discrete
equations arising from a finite element approximation of an elliptic problem.
This is related to knowing whether the discrete Green’s function is positive for
triangular meshes allowing sufficiently good approximation of H1 functions.
We study this question for the Poisson problem in two dimensions discretized
via the Galerkin method with continuous piecewise linears. We give examples
which show that in general the answer is negative, and furthermore we extend
the number of cases where it is known to be positive. Our techniques utilize
some new results about discrete Green’s functions that are of independent
interest.

1. Introduction

Let D ⊂ R2 be a bounded polygonal domain. We consider the Poisson problem

(1.1)
{−∆u = f,

u = ũ,

on D,
on ∂D,

where ũ ∈ C0(∂D) and f is in an appropriate space to be described later. It is
an elementary fact that the following maximum principle – which we shall refer
to occasionally as the boundary maximum principle – holds for the homogeneous
problem (f = 0):

(1.2) ||u||∞,D ≤ ||ũ||∞,∂D.

This can be regarded as a consequence of the positivity of the Green’s function
G(x, y):

(1.3) Gy(x) > 0, for all x ∈ D,

where Gy(·) = G(·, y) solves (1.1) with f = δy (point mass at y) and Gy |∂D =
0. See [6] for results regarding the positivity of the Green’s functions for elliptic
problems.
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Given a triangulation Th of D, we define the following spaces:

Mh =M(Th) = {u ∈ C0(D̄) : u|T is linear for each T ∈ Th},(1.4)
M0,h =M0(Th) = {u ∈ Mh : u|∂D = 0}.(1.5)

The discrete problem associated to (1.1) via the Galerkin method is: Find uh ∈ Mh

such that

(1.6)
{
a(uh, v) = 〈f, v〉 ,
uh − ũh ∈M0,h,

for all v ∈M0,h,

where

(1.7) a(u, v) =
∫
D

∇u · ∇v,

ũh is a given function in Mh and 〈·, ·〉 : M∗h ×Mh → R is the dual pairing. By
analogy with the continuous case we denote by Ghy the discrete Green’s function,
namely the solution of (1.6) with ũh = 0 and f = δy.

Let Pi, 1 ≤ i ≤ n (resp. n+ 1 ≤ i ≤ n+m), be the vertices of the triangulation
which belong to the interior (resp. boundary) of D, and let B = {φi ∈ Mh : 1 ≤
i ≤ n + m} be the nodal basis for Mh (i.e., φi(Pj) = δij). With this notation, if
u ∈ M0,h then u =

∑n
i=1 uiφi and u(Pi) = ui; hence u can be represented as the

vector U = (u1, u2, . . . , un)t. The system (1.6) is rewritten in matrix form as

(1.8) A U = B

where A = (aij)1≤i,j≤n is the stiffness matrix, i.e., aij = a(φj , φi), and the right-
hand side B = (b1, . . . , bn)t is given by

(1.9) bi = 〈f, φi〉 −
n+m∑
j=n+1

ũh(Pj)aij .

As in the continuous case, we address mainly the question of whether

(1.10) Ghy(x) > (or ≥) 0, for all vertices x, y in the triangulation.

We discuss the implication “(1.10)⇒ uh satisfies the boundary maximum principle
(1.2)” in Section 4.

Definition 1.1. We call an edge e * ∂D of the triangulation Th nonnegative if
the sum of the two angles opposite to it is ≤ π; otherwise it is negative.

The discrete system for −∆ can be viewed as a resistance network, where each
edge is replaced by a resistor. It will turn out (cf. Corollary A.2) that the conduc-
tivity (the reciprocal of the resistance) of a given edge e is nonnegative iff e is a
nonnegative edge.

Matrix theoretic considerations give rise to the following well-known condition
which implies (1.10):

Condition 1.2 (Interior edge condition). All interior edges are nonnegative. (By
“interior” we mean that neither of its vertices lies on the boundary.)

Condition 1.2 is implied by an earlier version (“all angles are ≤ π/2”) which
appears in [2], and it is found as formulated on page 78 in [10] and other articles
on the subject that followed (to select just a few: [4], [7], [12], [3]). A more relaxed
version of Condition 1.2 has been obtained in [7]; it allows for the existence of
slightly negative edges (the sum of the opposite angles has to be bounded by π+ ε
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for some ε > 0) but adds restrictions involving a larger neighborhood of each edge.
This result has been extended to three dimensions in [5].

Other versions of a discrete maximum principle are discussed in the literature:
first one can ask whether – as in the continuous case – discrete harmonic functions
satisfy

(1.11) ||u||∞,D′ ≤ ||ũ||∞,∂D′ , for every mesh− subdomain D′.

It is shown in [4] that for higher order Lagrange elements the maximum principle
(1.11) holds only under very strong geometrical constraints. Finally, in [8] a weaker
discrete maximum principle is shown to hold under quite general conditions on the
mesh (quasi-uniformity) and arbitrary degree polynomials, namely

(1.12) ||u||∞,D ≤ C||ũ||∞,∂D,
where C > 0 is independent of the resolution h.

One critical question we address here is whether conditions on the mesh other
than quasi-uniformity are needed in order for (1.10) to hold. The discussion at the
end of Section 2 and the results in Section 3 suggest that (1.10) might be true if only
edges near the boundary are nonnegative. In Section 4 we show that in order for the
boundary maximum principle to hold for discrete harmonic functions, in addition
to the Green’s function being nonnegative the nonnegativity of the nonboundary
edges with one vertex on ∂D is relevant. It is not hard to find isolated situations
where (1.10) fails even on a large set; e.g., in Example 2.2(ii) the Green’s function is
negative at half of the interior nodes, and there are known cases (see [7] and Example
3.3(i)) for which it has been shown computationally that the Green’s function has
nonnegative values as the mesh-size goes to zero even if the mesh is quasi-uniform.
In Section 5 we give an example where only one edge near ∂D violates Condition
1.2 and (1.10) fails, again, on a quasi-uniform mesh. Our techniques involve some
new results regarding discrete Green’s functions that are of independent interest,
e.g., Theorem 5.7. Finally, in Section 6 we show that (1.10) holds for a slightly
more general class of meshes.

2. Preliminaries

For the sake of completeness we provide the arguments leading to the implication

(2.1) Condition 1.2 ⇒ (1.10).

For y = Pj the vector G(j) = (Ghy(P1), . . . , Ghy(Pn))t solves

(2.2) A G(j) = B(j),

where

(2.3) B(j)
i =

〈
δPj , φi

〉
= φi(Pj) = δij ,

i.e., (B(j))1≤j≤n is the standard basis for Rn. If we regard the vectors as column
matrices, then the previous equations can be compactly written

(2.4) A
[
G(1), . . . ,G(n)

]
=
[
B(1), . . . ,B(n)

]
= In,

which shows that

(2.5) GPj (Pi) = (A−1)ij .
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In other words, the values of the discrete Green’s function are the corresponding
entries in the inverse of the stiffness matrix A = (aij) if we use the nodal basis.

Throughout this paper we use the following convention: for a matrix B = (bij),
the notation B > (resp. ≥, <,≤) 0 means bij > (resp. ≥, <,≤) 0 for all i, j, and
this applies to vectors also; furthermore, we write B 	 0 for (B ≥ 0 and B 6= 0).

Remark 2.1. If B is a matrix and r is a vector, then

(a) B > 0 iff B s > 0 for all vectors s 	 0;
(b) if B 	 0 and r > 0, then B r 	 0.

A sufficient condition on a symmetric matrix A = (aij) for A−1 	 0 is that A
be a Stieltjes-matrix ; that is, if A is positive definite and

(2.6) aij ≤ 0 for i 6= j,

then A−1 	 0 (cf. Corollary 3.24 in [11]). If in addition A is irreducible, then
A−1 > 0. Since the stiffness matrix A is positive definite and Corollary A.2
implies the equivalence of Condition 1.2 and (2.6), the implication (2.1) now holds.

The following argument suggests that (1.10) holds for more general meshes, and
it is quite likely that the sort of angle condition described here is not essential.
Local error estimates (cf. [9]) indicate that |Gy(x) − Ghy (x)| should be small for
|x − y| not too small. Similarly, if Gy(x) is really large (say for y in the interior),
then the same local techniques imply that Ghy (x) cannot be near zero. Therefore
Ghy(x) should be positive for

(1) y in the interior and x arbitrary.
For y near the boundary (where one assumes Gy vanishes, i.e. Dirichlet conditions),
the fact that the gradient of Gy does not vanish on the boundary (see (4.2)) implies
that Ghy (x) must not vanish if |x− y| is not small, again using local error estimates
as in [9] (one can show that the gradients of Gy and Ghy are sufficiently close). Thus
Ghy(x) should be positive for

(2) y near the boundary and |x− y| not small.
This leaves the case

(3) y near the boundary and |x− y| small.
In case (3) the above simple arguments appear to break down. This suggests that
a good place to look for a counterexample for (1.10) should be in case (3) above
and where at least one edge near the boundary is negative.

In Section 3 we show that, under assumptions which follow naturally from the
discussion above, only edges near the boundary need to be nonnegative for (1.10)
to hold. Section 5 contains examples of a nonpositive discrete Green’s function
and a nonpositive discrete harmonic function with nonnegative boundary values,
essentially showing that the result in Section 3 is sharp.

We would like to add some remarks on the irreducibility of the stiffness matrix A.
One thing to note is that A may not be irreducible even if the mesh is connected,
as shown in the next example.

Example 2.2. Let the domain consist of two unit size squares with sides parallel
to the coordinate axes and joined together by a narrow corridor. More precisely let
D be the interior of the set:

D = ([−1− h1,−h1] ∪ [h1, 1 + h1])× [−1, 1] ∪ [−h1, h1]× [−h, h],
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Figure 1. Here h1 = h and the stiffness matrix is reducible for
this mesh as a(φA, φB) = 0.
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Figure 2. All values in the interior of the right square of the
Green’s function with source in the center of the left square are
negative; here h1 = 3h/2, h = 1/6. Triangles where at least one
value is negative are grey; negative values are magnified 100 times
for enhanced visibility.

where (2h)−1 ∈ N and h1 > 0, and consider on each of the two unit size squares the
uniform triangular mesh of size h, while the corridor is triangulated as in Figure 1.

(i) If h1 = h, then ]AMB = ]ANB = π/2 (refer to Figure 1), and by
(A.2) we get a(φA, φB) = 0; therefore the stiffness matrix has a block
structure, A = blockdiagonal(Al,Ar), where Al (resp. Ar) is the stiffness
matrix corresponding to the union between the left (resp. right) square and
[−h, h]× [−h, h].

(ii) If h1 > h, then a(φA, φB) > 0; hence the edge AB is negative. Numerical
experiments show that by placing a unit mass forcing term at some node
in the left square, all values of the solution to (1.6) with zero boundary
conditions are negative in the right square (see Figure 2).

It should be noted that the domain in Example 2.2(i) depends on h; if we keep h
fixed and refine the mesh for example by cutting each triangle in four equal pieces
similar to the original, then the reducibility goes away.

The difficulty of constructing a “normal” mesh that gives a reducible stiffness
matrix may be related to the following remark.
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Remark 2.3. If the mesh is connected, then the stiffness matrix that includes the
boundary nodes

Ã = (a(φj , φi))1≤i,j≤m+n,

which is related to the Neumann problem, is irreducible.

Proof. Suppose Ã is reducible. Since it is symmetric, this implies it can be written
as

Ã =
[

A1 0
0 A2

]
.

Let u ∈ Mh be defined to be 1 at the nodes corresponding to the rows in A1 and
0 at all the other nodes, and let U = (u(P1), . . . , u(Pm+n))t. Since

m+n∑
j=1

a(φj , φi) = 0, for all 1 ≤ i ≤ m+ n,

we get AU = 0; hence ∫
∇u · ∇u = UtAU = 0.

This makes u constant on each triangle, and the connectivity of the mesh now
implies that u is a constant, thus contradicting the assumption. �

3. Reduction of the interior edge condition

to close-to-boundary edges

The main result of this section— Theorem 3.2—shows that if we are able to prove
by other means (e.g., along the lines of the heuristic arguments in the previous
section) that for a quite general class of meshes the discrete Green’s function is
positive for singularities x ∈ D lying away from ∂D, and if we assume that the
edges near the boundary are nonnegative, then the discrete Green’s function is
positive everywhere.

We start with a preliminary

Lemma 3.1. Let A ∈ Rn×n be a symmetric nonsingular matrix having the follow-
ing structure (which corresponds to a splitting Rn = Rn1 ⊕ Rn2):

(3.1) A =
[

e H
Ht F

]
,

with H ≤ 0 (resp. H � 0), e nonsingular and e−1 ≥ (resp. >) 0. We further
assume that for all f ∈ Rn2

(3.2) f ≥ 0 (resp. f 	 0) implies A−1

[
0
f

]
≥ (resp. > ) 0.

Then A−1 ≥ (resp. >) 0.

Proof. We prove only the strict inequalities, i.e., the ones in parentheses, since
the proof in the nonstrict version goes along the same lines. Let bt = (et, f t) ∈
Rn1⊕Rn2 be a nonnegative vector, and let xt = (ut,vt) ∈ Rn1⊕Rn2 be the solution
to

(3.3) A x = b.



FAILURE OF THE DISCRETE MAXIMUM PRINCIPLE FOR ELLIPTIC FEM 7

We rewrite the system above as

(3.4)
{

E u + H v = e,
Ht u + F v = f ,

which is equivalent to

u = e−1 (e−H v) ,(3.5) (
F−Hte−1H

)
v = f −Hte−1e.(3.6)

Condition (3.2) implies that if f 	 0 and e = 0, then x > 0, in particular v > 0.
Since this is true for any f 	 0, Remark 2.1(a) now implies that

(3.7)
(
F−Hte−1H

)−1
> 0.

If we now take f = 0 and e 	 0, the hypotheses and Remark 2.1(a) again imply
that e−1e > 0, and by Remark 2.1(b) and −H 	 0 we get that −Hte−1e 	 0.
Now by (3.7) we get v > 0. Thus −H v 	 0, and finally u > 0 follows by (3.5)
and e−1 > 0. �

Suppose the collection of indices corresponding to interior nodes of the triangu-
lation is divided into two disjoint sets

(3.8) {1, . . . , n} = Iext ∪ Iint.

Motivated by the discussion in the previous section, the notation above is intended
to suggest the interpretation: i ∈ Iext (resp. Iint) means “Pi is close to (resp. far
from) ∂D”, but we do not make any formal assumption related to this meaning.
Let A be the “global” stiffness matrix. Following the index splitting (3.8), we get a
corresponding splitting of A as in Lemma 3.1, with e (resp. F) being the stiffness
matrix associated to the basis elements φi with i ∈ Iext (resp. i ∈ Iint) and H the
matrix containing the other entries:

(3.9) Hij = a(φj , φi), with i ∈ Iext, j ∈ Iint.

Theorem 3.2. Suppose all edges with one vertex in Iext and the other one either
in Iext or in Iint are nonnegative in the sense of Definition 1.1.

(i) If Ghx ≥ 0 for all x ∈ Iint, then Ghx ≥ 0 for all x ∈ D.
(ii) If Ghx > 0 for all x ∈ Iint and the matrices A and e are irreducible, then

Ghx > 0 for all x ∈ D.

Proof. Again we only prove (ii) as (i) is similar. The hypothesis and Corollary
A.2 imply H ≤ 0 and e has nonpositive nondiagonal entries, which makes e an
irreducible Stieltjes matrix; hence e−1 > 0. Since A is irreducible, it follows that
H 6= 0. Since “Ghx > 0 for all x ∈ Iint” translates into (3.2) in matrix language (cf.
Remark 2.1(a)), Lemma 3.1 now applies, and we conclude that A−1 > 0. �

The heuristic argument in Section 2 and the usefulness of Theorem 3.2 are sup-
ported by the numerical experiments in Example 3.3(ii). First we revisit an example
from [7]:

Example 3.3. Let a = ei
θ
2 ,b = e−i θ2 (so that ](a,b) = θ) and let D be the convex

hull of the rhombus with corners 0,b,a + b,a.
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Figure 3. The mesh T6; the sharp angle of the rhombus is θ = π/8.

(i) We consider the three line mesh Tn on D obtained by first cutting D with
equidistant lines parallel to a and b, respectively, and then by slicing each of
the n2 resulting small rhombi along its long diagonal (the one parallel to the
x-axis; see Figure 3). The mesh is obviously quasi-uniform. Condition 1.2
is violated as approximately 1/3 of the edges are negative. It is shown in [7]
that there exists θ0 ∈ (0, π/2) such that for θ ∈ (θ0, π/2] the corresponding
Green’s function Gn is positive for all n > 0 (however, the discussion in
Section 4 implies that the boundary maximum principle is violated if θ <
π/2). Furthermore it is stated that for θ < θ0 = π/4 there are cases where
the Green’s function is nonpositive. Our computations show that, indeed,
for θ = π

4 we have µ(n) = minx,y∈DGnx(y) < 0 but limn→∞ µ(n) = 0, and
for θ < π

4 there are strong indications that limn→∞ µ(n) < 0. Hence this
is a natural example of a nonpositive Green’s function on a quite “tame”
quasi-uniform mesh (see also Example 3.4).

(ii) We modify the mesh Tn from (i) by transforming all negative edges near
the boundary into positive ones. More precisely let 0 ≤ k ≤ n/2 be an
integer; we obtain the mesh Tn,k by doing the initial partitioning into n2

rhombi as in (i) and then cutting all rhombi in the first k layers near the
boundary along their short diagonal and the rest of the rhombi along their
long diagonal (see Figure 4). Denote by Gn,k the Green’s function of the
resulting grid and by

µ(n, k) = min
x,y∈D

Gn,kx (y).

From (i) we know that if θ < θ0, then µ(n, 0) < 0. If k = n/2, then
Condition 1.2 is satisfied; hence µ(n, n/2) = 0 (Gn,k is zero on ∂D). Denote
by

k(n) = min{0 ≤ k ≤ n/2 : µ(n, k) = 0};

0 0.5 1 1.5 2

−0.2

0

0.2
P 

Figure 4. The mesh T8,2; the sharp angle of the rhombus is θ = π/8.
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Figure 5. The evolution of k(n) for θ = π/10, π/8.

that is, k(n) is the width of the thinest layer for which the Green’s function
is nonnegative. Our goal is to compute the function k(n). Numerical ex-
periments performed with θ = π

8 and θ = π
10 , 20 ≤ n ≤ 40, suggest that if

the Green’s function has negative values, then the minimal value is obtained
with the unit mass located at

P = P (n, k) =
k

n
(a + b),

(refer to Figure 4); more precisely

µ(n, k) = min
x∈D

Gn,kP (x).

Note that P is the point with the largest number of connections: 7. Thus
we compute k(n) by looking only at Gn,kP . Our numerical computations
suggest that k(n) is bounded; more precisely there is a constant K = K(θ)
such that k(n) = K for n ≥ N(θ). We got K( π10 ) = 15, N( π10 ) = 63 and
K(π8 ) = 10, N(π8 ) = 24, as can be read from Figure 5 In both cases we
computed up to n = 300.

We restate the results of the experiment (take h = 1/n): for the class of
meshes considered, if h is small enough, the Green’s function is nonnegative
if only edges lying in a thin boundary layer of width Kh are nonnegative,
with K depending on the chunkiness parameter of the mesh (see [1] or
Section 5 for a precise definition).

We conclude this section with the following example.

Example 3.4. Let Ω = [0, 1]×[0, 1], and let S be the linear (orientation preserving,
to make a choice) transformation that takes D into Ω. The mesh Tn,k is mapped
under S onto a mesh on the square denoted by Un,k, which has only nonnegative
edges. Then Gn ◦ S is the Green’s function for the following operator on Ω:

Lu = ∇ · (A∇u)
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with

A =
1

sin2 θ

[
1 − cos θ

− cos θ 1

]
.

Notice that a priori the mesh Un,k is “nice” for all 0 ≤ k ≤ n/2 and that A is
positive definite and well conditioned as long as θ stays away from 0 (its eigenvalues
are 1 ± cos θ). However, if θ < π/4, then Example 3.3 implies that whether the
maximum principle is satisfied or not as n → ∞ depends strongly on k; namely
for k < K(θ) it does not hold, while for k ≥ K(θ) it does, at least for the two θ’s
considered.

4. The discrete maximum principle

In this section we discuss the conditions under which the discrete analogue of
(1.2) follows from (1.10).

In the continuous homogeneous case there are three ingredients for proving (1.2)
from (1.3):

• the integral representation of the solution u = U(g) yields

(4.1) u(x) = −
∫
∂D

∂Gx
∂ν

(χ)g(χ)dχ def= [U(g)](x);

• on the boundary we have

(4.2)
∂Gx
∂ν

< 0, on ∂D;

• U(1) = 1, and hence

(4.3) −
∫
∂D

∂Gx
∂ν

= 1, ∀x ∈ D.

It follows that the operator norm C0(∂D) U→ C0(D) is

(4.4) |||U ||| =
(

sup
x∈D

∫
∂D

∣∣∣∣∂Gx∂ν
(y)
∣∣∣∣ dy) = 1

which implies (1.2).
We now turn our attention to the discrete homogeneous (f = 0) problem (1.6).

The following property is equivalent to the discrete version of (1.2):

(4.5) ũh|∂D ≥ 0⇒ uh ≥ 0 on D, for all ũh ∈Mh.

If we regard the boundary function as a column vector in B ∈ Rm with

B = (b(Pn+1), . . . , b(Pn+m))t,

then the right-hand side of the defining homogeneous linear system is (see also
(1.9)) r = −H ·B, where H ∈ Rn×m,

(4.6) Hij = a(φi, φn+j), for 1 ≤ i ≤ n, 1 ≤ j ≤ m.
The discrete analogue of (4.1) is

(4.7) U = −A−1H B.

Since we want U ≥ 0 for all B ≥ 0, it is necessary and sufficient that

(4.8) A−1H ≤ 0.
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Since A−1 > 0 is just a restatement of (1.10), a sufficient condition for (4.5) to
hold is

(4.9) H ≤ 0.

By Corollary A.2 in Appendix A, statement (4.9) is equivalent to the following
condition on the mesh:

Condition 4.1 (Boundary edge angle condition). Each edge with one vertex in
the interior and the other one on the boundary is nonnegative.

We conclude this discussion with the following remark.

Remark 4.2. If the discrete Green’s function is nonnegative and the mesh satisfies
Condition 4.1, then uh satisfies the maximum principle (1.2) or its equivalent (4.5).

5. An example of a negative Green’s function

This section is organized as follows: in subsection 5.1 we describe the “bad”
mesh and we state the main result, which we prove in subsection 5.2. In subsection
5.3 we show how one can use the “bad” mesh to violate the maximum principle
(4.5).

5.1. Preliminaries. Let D be (−1, 1) × (0, 1) with a “regular” triangulation Th,
obtained by dividing the domain into equally sized squares of side h with sides
parallel to the coordinate axes and by further cutting each square along its negative
slope diagonal. We then further divide one triangle on the boundary 4NOP (see
Figure 6), namely the one whose right angle is at the origin, in six triangles by
adding three extra nodes, Q = Q(h, ε) = (h4 , εh), R = R(h, ε) = (3h

4 , εh) inside, and
S = S(h) = (h2 , 0) on the boundary (see Figure 7). We thus obtain the triangulation
Th,ε. Note that for ε� 1 the edge QR is negative.

Remark 5.1. For fixed ε the set of triangulations (Th,ε)h is quasi-uniform.

P

y

x

(1,0)

(0,1)

(-1,0) O

N N’

Figure 6. Mesh Th with h = 1
4 ; the filled triangle is further di-

vided as in Figure 7 to obtain the mesh Th,ε.
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The chunkiness γT of a triangle T is defined in [1] (Definition (4.2.16)) to be

(5.1) γT =
diam(T )

sup{ρ : T contains a ball of radius ρ} ,

and similarly the chunkiness of a triangulation T is

γ(T ) = max{γT : T ∈ T }.

Also we denote the (relative) diameter of a triangulation T by

diam(T ) = max{diam(T ) : T ∈ T }/ diam(D).

For a quasi-uniform mesh T , we associate h ≈ diam(T ).

Remark 5.2. For fixed ε the set (γ(Th,ε))h is bounded (the shape-regularitity of the
triangulations Th,ε does not worsen with h→ 0).

We denote by Ghy (resp. Gh,εy ) the discrete Green’s function with singularity at
y ∈ D associated with Th (resp. Th,ε).

We now state the main

Theorem 5.3. There exists an ε0 > 0 such that for all h > 0 sufficiently small,

(5.2) Gh,ε0R (Q) < 0.

(That is, the Green’s function corresponding to a unit mass source at R is negative
at Q).

O PS

N

Q R

N = (0, h)

O = (0, 0)

P = (h, 0)

Q = (h4 , εh)

R = (3h
4 , εh)

S = (h2 , 0)
T1 T2 T3

T4
T5 T6α

γ

Figure 7. Divided triangle T0 near the boundary; the edge QR is negative.
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Numerical computations show that ε0 can be any number 0 < ε0 < 0.0875. Note
that the symmetry of the Green’s function

(5.3) Gh,ε0R (Q) = Gh,ε0Q (R)

implies also that Gh,ε0Q (R) < 0.
Let us introduce some notation. Let (Pi)1≤i≤n be the set of interior vertices

of Th, and we may assume P1 = N . Also let B = {φi}1≤i≤n ⊂ M0(Th) be the
corresponding nodal basis (for Th). Let C = {φQ, φR} ⊂ M0(Th,ε) be obtained by
extending the nodal basis elements of T0 = 4NOP to the whole domain D (T0 is
triangulated as in Figure 7: T0 =

⋃6
i=1{Ti}) by defining them to be 0 on D \ T0.

Then B̃ = B ∪ C is a basis for M0(Th,ε), although not the standard nodal basis.

5.2. Results. The proof of Theorem 5.3 requires a few preliminary results.

Remark 5.4. If ψ ∈ W 1
1 (T ) and φ : T → R, φ is linear and ψ(x) = 0 for x ∈ ∂T ,

then
∫
T
∇φ · ∇ψ = 0 (integration by parts).

Lemma 5.5 (a-orthogonality). φQ and φR are a-orthogonal to M(Th).

Proof. Recall that supp(φQ), supp(φR) ⊂ T0; hence φQ and φR vanish on ∂T0.
On the other hand any function in M(Th) is linear on T0, since T0 is part of the
triangulation Th. The conclusion follows from Remark 5.4. �

We denote by a the 2× 2 stiffness matrix corresponding to φQ and φR, i.e.,

(5.4) aα,β = a(φβ , φα), for α, β = Q,R.

Lemma 5.6. The inverse of a has the form

(5.5) a−1 = a−1(ε) =
ε

δ

[
M −L
−L K

]
with M(ε),K(ε)→ε→0 5, L(ε)→ε→0 1, and δ(ε)→ε→0 24.

We give the proof of Lemma 5.6 in Appendix B.
The following result is essential to the proof of Theorem 5.3. It states that there

is a boundary layer of width O(h) on which the Green’s function is bounded. It
will be applied only to Th. Since this surprising result is of independent interest,
we state it as

Theorem 5.7 (A bound for the value of the Green’s function). Given a domain
D ⊂ R2 and a quasi-uniform set of triangulations (Th)h (diam(Th) ≤ h) of D with
bounded chunkiness (for all h > 0, γ(Th) ≤ γ), and a number K > 0, there exists a
constant C = C(K, γ) such that for all x, y ∈ D both within distance Kh from ∂D
we have

(5.6) ||Ghx||H1 ≤ C
and

(5.7) |Ghx(y)| ≤ C.

In particular

(5.8) |Ghx(x)| ≤ C.
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Proof. As usual we denote by | · |H1 (resp. || · ||H1 ) the H1 seminorm (resp. norm).
In what follows C stands for a generic constant independent of h. Recall that Ghx
satisfies

(5.9)
∫
D

∇Ghx · ∇v = v(x) ∀v ∈ M0,h.

By taking v = Ghx, we get

(5.10) |Ghx|2H1(D) = Ghx(x).

Let η be a segment connecting x with x0 ∈ ∂D with length(η) ≤ Kh. The mean
value theorem on η together with Ghx(x0) = 0 implies

(5.11) Ghx(x) ≤ length(η) · |Ghx|W 1
∞(D) ≤ Kh|Ghx|W 1

∞(D).

Inverse estimates (Theorem 4.5.11 in [1]) imply

(5.12) ||Ghx||W 1
∞(D) ≤ Ch−1||Ghx||H1(D)

since the set (Th)h is quasi-uniform. Putting together (5.10), (5.11), (5.12) and the
fact that || · ||H1(D) ≤ C| · |H1(D) holds for H1 functions that are 0 on ∂D, we get

||Ghx||2H1(D) ≤ C|Ghx|2H1(D)

= CGhx(x)

≤ CKh|Ghx|W 1
∞(D)

≤ CKhh−1||Ghx||H1(D) = CK||Ghx||H1(D),

which implies

(5.13) ||Ghx||H1(D) ≤ CK.

Now by taking v = Ghy in (5.9), we get

(5.14) Ghy (x) =
∫
D

∇Ghx · ∇Ghy ;

hence

(5.15) |Ghx(y)| = |Ghy (x)| ≤ |Ghx|H1(D) |Ghy |H1(D)

by (5.13)

≤ (CK)2.

�

Remark 5.8. To make the argument in Theorem 5.7 work in d ≥ 3 dimensions, we
would need to change the scaling d(x, ∂D) < Kh to

(5.16) d(x, ∂D) < Kh
d
2

in order to accommodate the d-dimensional equivalent of (5.12), which is

(5.17) ||Ghx||W 1
∞(D) ≤ Ch−d/2||Ghx||H1(D).

However, no interior vertices are expected to satisfy (5.16) for d ≥ 3 and small h
since for shape-regular simplices the interior vertices are at least O(h) away from
∂D. This suggests that if x is a mesh node, then Ghx(x) grows infinitely large as
h→ 0 in d ≥ 3 dimensions. In fact we expect that in this case

(5.18) Ghx(x) = O(h2−d) for all x (up to the boundary).

We now proceed to the proof of Theorem 5.3.
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Proof. By Lemma 5.5, φQ and φR are a-orthogonal to all basis functions in B.
Hence the stiffness matrix Ã written in the basis B̃ decouples as

(5.19) Ã =
[

A 0
0 a

]
,

where A is the stiffness matrix corresponding to Th. For f ∈ M∗h equation (1.6)
translates into two systems:

Aκ = b(5.20)
aλ = c,(5.21)

with κ = (κ1, . . . , κn)t ∈ Rn, λ = (λQ, λR)t ∈ R2 and

bi = 〈f, φi〉 , for 1 ≤ i ≤ n,(5.22)
cα = 〈f, φα〉 , for α = Q,R.(5.23)

Accordingly the solution uh can be written as

(5.24) uh =
n∑
i=1

κiφi︸ ︷︷ ︸
u

(1)
h

+λQφQ + λRφR︸ ︷︷ ︸
u

(2)
h

.

Equation (5.20)implies κ =
∑n

i=1 biA
−1ei, where ei is the ith column of the identity

matrix of Rn, and we prefer to regard u(1)
h as

(5.25) u
(1)
h =

n∑
i=1

biG
h
Pi ,

with GhPi being the discrete Green’s function associated with the mesh Th at
Pi, as before.

We now take f to be the unit measure at R (f = δR). Then

b1 = φN (R) = ε,

bi = 0 for 2 ≤ i ≤ n,
cQ = φQ(R) = 0,
cR = φR(R) = 1.

Hence the solution can be written as

(5.26) Gh,εR = εGhN + λQφQ + λRφR.

Its value at Q is

(5.27) Gh,εR (Q) = εGhN (Q) + λQ = ε2GhN (N) + λQ.

Lemma 5.6 and (5.21) imply that

(5.28) λQ = − εL
δ
≈ε→0 −

ε

24
.

Hence

(5.29) Gh,εR (Q) = ε

(
εGhN (N)− L

δ

)
≈ε→0 ε

(
εGhN (N)− 1

24

)
.
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Figure 8. Gh,ε0R with h = 10−1, ε0 = 2.5× 10−2

Recall that by Theorem 5.7, GhN (N) is bounded by a constant C as h → 0, and
there exists ε1 > 0 such that

(5.30) ε <
L(ε)
δ(ε)C

, ∀ε < ε1.

This implies

(5.31) εGhN (N) < εC <
L(ε)
δ(ε)

, ∀ε < ε1.

Thus Gh,εR (Q) < 0. Hence ε0 can be any number in (0, ε1). �

Numerical simulations performed with Matlab suggest that GhN (N) increases
as h ↘ 0 (we can easily show G2h

N (N) < GhN (N)) and converges to a value
G0+
N (N) ≈ 0.3634; the largest value for ε1, i.e., where ε1G0+

N (N) = L(ε1)/δ(ε1), is
approximately 0.0875. Figure 8 shows the graph ofGh,εR for h = 10−1, ε = 2.5×10−2.

We would like to remark on the size of the negative part of Gh,εR . As expected
and confirmed by numerical computations, the Green’s function Gh,εR attains its
maximum at R. By (5.26) we get

(5.32) Gh,εR (R) = ε2GhN (N) + λR.

From (5.21) and (5.5) we obtain

(5.33) λR = ε
K(ε)
δ(ε)

≈ε→0
5ε
24
,
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which implies that for a small but fixed ε0 > 0 the negative part of Gh,ε0R is signif-
icant in size (about 1/5) compared to its positive part as h → 0. This calculation
also points to the observed fact that

(5.34) ||Gh,εR ||L∞ = O(ε).

5.3. A discrete harmonic function, nonnegative on the boundary and with
nonzero negative part. Our next calculation shows that despite the smallness
of Gh,εR as shown in (5.34), its relatively large negative part can influence (4.5) to
fail significantly, even if we let ε→ 0.

Let us define φP ∈ M(Th,ε) to be the nodal basis element associated with P
(i.e., φP (P ) = 1, φP (V ) = 0 for all other vertices V of Th,ε (this corresponds to the
hat function g ∈ C0(∂D) over P ; refer to Figure 7).

We compute the value uh(Q), where uh solves (1.6) with ũh = φP . Let N ′ ∈ R2

denote the point (h, h) (see Figure 7) and assume N ′ has index 2 (i.e., P2 = N ′ in
the previous notation). The only nonzeros in the right-hand sides of the systems
(5.20) and (5.21) are

b1 = −a(φP , φN ),(5.35)
b2 = −a(φP , φN ′) = −1,(5.36)
cR = −a(φP , φR),(5.37)

since φN , φN ′ and φR are the only ones whose support intersects supp(φP ). Equa-
tion (5.25) implies

(5.38) uh = φP + b1G
h
N + b2G

h
N ′ + λQφQ + λRφR,

where (as before) [
λQ
λR

]
= a−1

[
0
cR

]
(5.39)

=
ε

δ

[
M −L
−L K

] [
0
cR

]
(5.40)

=
ε

δ

[
−LcR
KcR

]
.(5.41)

We now compute cR and b1. If we denote by ζ = ζ(ε) the angle ]RNP , then by
formula (A.2)

(5.42) cR = −a(φP , φR) =
sin(α+ ζ)
2 sinα sin ζ

=
2J(ε)
ε

,

with limε→0 J(ε) = limε→0
sin(α+ζ)

sin ζ = 1 (recall that α ≈ ε/4 for ε� 1). Hence

(5.43) lim
ε→0

λQ = − lim
ε→0

2J(ε)
ε

ε

δ
L(ε) = − lim

ε→0

2J(ε)
δ

L(ε) = − 1
12
.

Since supp(φP ) ∩ supp(φN ) = T3 ∪ T6 (remember φN lives on Th), we get

(5.44) b1 = −a(φP , φN ) = −
∫
T3∪T6

∇φP · ∇φN .

One can see that 4NRP converges to a nondegenerate triangle as ε→ 0; hence

(5.45)
∫
T3

∇φP · ∇φN = J1(ε),
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Figure 9. uh with h = 10−1, ε0 = 10−3

with J1(ε) converging to a finite positive value. On T6 the angle θ = ](∇φP , ~OY )
becomes nearly π as ε→ 0; hence∫

T6

∇φP · ∇φN =
1
h

∫
T6

PrY∇φN

=
cos(θ)
h

area(T6)|φN |

=
cos(θ)
h

h

4
h

4
tanα

(
h

2
sinα

)−1

= cos(θ)
1
16

tanα
(

1
2

sinα
)−1

=
cos θ

8 cosα
→ε→0 −

1
8
,

where PrY ~v is simply the orthogonal projection in R2 of the vector ~v ∈ R2 onto
the Y axis. It follows that

(5.46) b1 = −a(φP , φN ) ≈ε→0 J1(ε)− 1
8

;

hence limε→0 b1(ε) is finite. By (5.38)

uh(Q) = b1(ε)GhN (Q) + b2G
h
N ′(Q) + λQ(ε)(5.47)

= ε
(
b1(ε)GhN (N) +GhN ′(N)

)
+ λQ(ε).(5.48)
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Theorem 5.7 implies that GhN (N) and GhN ′(N) are bounded as h→ 0; therefore for
a fixed small enough ε0 and small enough h

(5.49) uh(Q) ≈ − 1
12
.

It follows that the negative part of uh is O(1). In Figure 9, produced using Matlab’s
“pdetoolbox”, we show the graph of uh for h = 10−1 and ε = 10−3. It should be
noted that uh has a local maximum in the interior (atN ′); this is not surprising since
the presence of a negative edge implies that uh is not a convex combination function
(see [3] for details). Furthermore the value uh(Q) is approximately −0.0815 ≈
−1/12.

6. Monotonicity preservation for a class of mesh operations

Throughout this section we call a mesh monotone (resp. strictly monotone) if the
corresponding discrete Green’s function obtained from (1.6) is nonnegative (resp.
positive). It might appear from the preceding sections that it is easy to construct
nonmonotone meshes, but now we show that in fact it is relatively difficult to do
so. Moreover, the same techniques can be used.

The computation needed in the proof of Theorem 5.3 was facilitated by the
decoupling of the stiffness matrix as shown in (5.19). The same idea leads to the
following theorem.

Theorem 6.1. Let Th be a monotone (resp. strictly monotone) mesh on D, and let
Th,1 be the mesh obtained by cutting one mesh-triangle T = 4PQR (of Th) along
the lines NP,NQ and NR, where N ∈ Int (T ) (see upper triangle in Figure 10).
Then Th,1 is monotone (resp. strictly monotone).

RQ

P

S

N

M

Figure 10. A mesh obtained by adding the points M and N to
a monotone mesh remains monotone, even though the edge QR is
negative.
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Proof. As in the proof of Theorem 5.3 we use a hierarchical basis on M0(Th,1),
namely B̃ = B ∪ {φN}, where B is the nodal basis for M0(Th), φN ∈ M0(Th,1)
vanishes on all vertices of Th and φN (N) = 1. By Remark 5.4, a(φN , φ) = 0 for all
φ ∈ B̃, which implies that the stiffness matrix Ã written in the basis B̃ decouples
as

(6.1) Ã =
[

A 0
0 d

]
,

where A is the stiffness matrix corresponding to Th and d = a(φN , φN ) > 0. For
x ∈ D we write Gh,1x =

∑
i λiφi+λNφN , where λ̃ = (λ1, . . . , λn︸ ︷︷ ︸

λt

, λN )t is the solution

of

(6.2) Ãλ̃ = b̃

with b̃ = (b1, . . . , bn︸ ︷︷ ︸
bt

, bN)t defined by bi = φi(x), bN = φN (x). Note that for any x

at least one of the first n bi’s is positive, and there can be no more than four of
them positive and all are nonnegative. Equation (6.2) is equivalent to

λ = A−1b,(6.3)
λN = bN/d;(6.4)

hence λi = Ghx(Pi) for 1 ≤ i ≤ n. Therefore

(6.5) Gh,1x =
∑
i

Ghx(Pi)φi +
bN
d
φN .

This is a nonnegative combination of nonnegative functions; hence Gh,1x is nonneg-
ative. If Gh is positive, then all coefficients Ghx(Pi) in (6.5) are positive, which
makes Gh,1x positive. �

The following corollary, although evident, shows how one can construct monotone
meshes which contain many negative edges (see also Figure 10).

Corollary 6.2. A mesh obtained by inductively cutting triangles as described in
Theorem 6.1 starting with a monotone mesh is monotone.

The extension of the results in this section to higher dimensions is trivial.

Appendix A. Trigonometric formulas for the stiffness matrix

Let e = AB be an edge bordered by two triangles T1 = 4ABC and T2 = 4ABD
in Th. Let A′ ∈ BC and B′ ∈ AC be such that A′A ⊥ BC and B′B ⊥ AC, and
let hA = ||A′A|| and hB = ||B′B||. Denote by α (resp. β, γ, δ) the angle ]BAC
(resp. ]ABC, ]ACB, ]ADB) as described in Figure 11, and denote by ζ the
angle between the vectors A − A′ and B − B′. Furthermore, let σ be the area of
T = 4ABC, a = ||BC||, b = ||CA||, c = ||AB||, and recall that φA (resp. φB) is the
nodal basis function at A (resp. B). Since φA is linear on T1, it follows that

∇φA|T1 ≡
A−A′
h2
A
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B

C

D

B’
A’

A
β

γ

α

δ

ζ

e

Figure 11.

and a similar formula holds for φB . Then∫
T1

∇φA · ∇φB =
∫
T

A− A′
h2
A

· B −B
′

h2
B

dx = σ
cos ζ
hAhB

=
1
2
ahA

cos ζ
hAhB

=
1
2
ahA

cos(π − γ)
hAhB

= −cos γ
2

a

hB

= −cosγ
2

a

c sinα
= −cos γ

2
sinα

sin γ sinα
= −cotγ

2
.

We have used ζ = π − γ and hB = c sinα = a sinγ. Now∫
T1

||∇φA||2 =
σ

h2
A

=
a

2hA
=

a

2c sinβ
=

sinα
2 sinγ sinβ

.

We summarize these formulas in the following lemma.

Lemma A.1. With the notation in Figure 11 we have∫
T1

||∇φA||2 =
sinα

2 sinβ sin γ
,(A.1) ∫

T1∪T2

∇φA · ∇φB = −1
2

(cot γ + cot δ) = − sin(γ + δ)
2 sinγ sin δ

.(A.2)

A simple consequence of formula (A.2) is the following.

Corollary A.2. With the notation from the previous lemma

(A.3) a(φA, φB) ≤ 0 iff γ + δ ≤ π.

Appendix B. Proof of Lemma 5.6

Proof. We use formulas (A.1) and (A.2) in Appendix A to compute the entries in
the stiffness matrix a given by the triangles T1, . . . , T6 (refer to Figure 7). One can
easily see that as ε → 0 all angles outside the quadrilateral OQRP stay bounded
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away from 0 or π; hence their trigonometric functions are bounded and bounded
away from 0. If we define γ = ]QNR, then

a(φQ, φR) = − sin(π − 2α+ γ)
2 sin(π − 2α) sin γ

= − sin(π − 2α+ γ)
4 sinα cosα sin γ

.

(B.1)

Since α(ε) ≈ ε/4 for ε→ 0 and sin(π − 2α+ γ) < 0, equation (B.1) becomes

(B.2) a(φQ, φR) =
L

ε
,

where L = L(ε) and limε→0 L(ε) = − sin(π+γ0)
sin γ0

= 1, where γ0 = limε→0 γ(ε) ∈
(0, π/4) (see Figure 7). We now turn our attention to the diagonal entries:

a(φQ, φQ) =
∑

i=1,2,4,5

∫
Ti

|∇φQ|2(B.3)

= K1(ε) +
∫
T4

|∇φQ|2 +
∫
T5

|∇φQ|2(B.4)

= K1(ε) +
sin(π − 2α)

2 sin2 α
+

sinα
2 sin(π − 2α) sinα

(B.5)

= K1(ε) +
cosα
sinα

+
1

4 sinα cosα
(B.6)

=
1

4 sinα

(
K1(ε) sinα+ 4 cosα+

1
cosα

)
.(B.7)

Hence

(B.8) a(φQ, φQ) =
K(ε)
ε

,

where limε→0K(ε) = 5. Similarly

(B.9) a(φR, φR) =
M(ε)
ε

where limε→0M(ε) = 5. The matrix a takes the form a = 1
εa
′,

(B.10) a′ = a′(ε) =
[
K L
L M

]
and

(B.11) lim
ε→0

a′ =
[

5 1
1 5

]
.

It follows that

(B.12) a−1 =
ε

det(a′)

[
M −L
−L K

]
,

and δ = det(a′)→ 24. �
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