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A DISCONTINUOUS GALERKIN METHOD
WITH NONOVERLAPPING DOMAIN DECOMPOSITION
FOR THE STOKES AND NAVIER-STOKES PROBLEMS

VIVETTE GIRAULT, BÉATRICE RIVIÈRE, AND MARY F. WHEELER

Abstract. A family of discontinuous Galerkin finite element methods is for-
mulated and analyzed for Stokes and Navier-Stokes problems. An inf-sup
condition is established as well as optimal energy estimates for the velocity
and L2 estimates for the pressure. In addition, it is shown that the method
can treat a finite number of nonoverlapping domains with nonmatching grids
at interfaces.

1. Introduction

This paper is devoted to the numerical analysis of a discontinuous Galerkin (DG)
method with nonoverlapping domain decomposition, of order k = 1, 2 or 3 for
solving the steady incompressible Stokes and Navier-Stokes systems of equations.
The finite elements are defined on conforming triangular meshes in each subdomain.
In each triangle, the finite elements discretizing the velocity are polynomials of
degree k with no continuity requirement between triangles and the finite elements
discretizing the pressure are polynomials of degree k−1, also totally discontinuous.
Boundary conditions are not imposed on the finite element spaces. The viscous
part of the operator is put into a variational form with a jump term on all triangle
interfaces, so that it is always elliptic. The jump term corrects the discontinuity of
the velocity at the interfaces and it corrects the nonzero value of the velocity on the
boundary. This paper considers both nonsymmetric and symmetric formulations.
In the case where the bilinear form is nonsymmetric, there is no restriction on the
coefficient of the jump term.

The zero divergence constraint is imposed by a form that is locally conservative
away from subdomain interfaces. This form coincides with the standard form up to
an extra jump on interfaces that is introduced for satisfying the inf-sup condition.
This extra jump is not needed if there is no domain decomposition. We analyze
the discrete Stokes problem by establishing a uniform discrete inf-sup condition
for the pressure. This is vital for proving optimal estimates for the velocity and
pressure. The nonlinear convection term of the Navier-Stokes equation is discretized
by adapting to totally discontinuous velocities the upwind scheme introduced by
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Lesaint and Raviart [17] for solving the transport of neutrons. We analyze the
nonlinearity by proving uniform Lp estimates for the discrete velocity. This enables
us to prove the existence of discrete solutions and error estimates.

We assume a fixed number of subdomains. At interfaces of subdomains, the
triangulations need not match, but we assume that one is a refinement of the
other. This restriction, which does not arise when solving a diffusion or convection-
diffusion equation, is used for proving the inf-sup condition. Relaxing altogether
this restriction in the proof does not seem straightforward. But this is not surpris-
ing, if we had enforced continuity at subdomain interfaces by a Lagrange multiplier,
we would have had two multipliers (the other one being the pressure), and when
there is more than one multiplier, these are usually related; see, e.g., Girault,
Glowinski, López and Vila [11]. However, this is only a sufficient condition and it
may not be necessary.

There exist in the literature many finite element approximations of the steady
incompressible Stokes and Navier-Stokes problems. The reader can refer to Girault
and Raviart [12] and Pironneau [21] for a good description and study of a wide
collection of schemes. But to our knowledge, there is very little literature on com-
pletely discontinuous Galerkin methods for solving numerically the incompressible
Navier-Stokes flows in the primitive variables. Of course, there are the noncon-
forming finite element schemes of Crouzeix and Raviart [7], Fortin and Soulié [9]
and Crouzeix and Falk [6], but their velocities must be continuous at the k Gauss
points on triangle sides, whereas we impose here no continuity requirement at all.
Thus implementing our scheme is much easier. Moreover, it lends itself readily
to nonoverlapping domain decomposition. It has the great advantage over mor-
tar elements in that it does not require Lagrange multipliers on the subdomain
boundaries.

We refer to [27, 22, 23, 15, 24] for solving diffusion and convection-diffusion
equations by discontinuous Galerkin methods. In [3], Becker, Hansbo and Stenberg
discretize a Laplace equation with domain decomposition by means of a symmetric
bilinear form and two penalty terms on each subdomain interface. Finally, up-
winding the convective term of the Navier-Stokes equations by the Lesaint-Raviart
method is now well known. We refer to [12, 21] for a thorough study. The reader
can refer to [2] (respectively, [16]) for solving the Stokes (respectively, the Navier-
Stokes) systems by approximating the velocity by discontinuous polynomials that
are pointwise divergence-free, approximating the pressure by continuous polyno-
mials. In [5], the authors propose and analyze a discontinuous Galerkin method
for the Stokes problem written in terms of velocity, gradient of velocity tensor and
pressure.

The outline of the paper is as follows. The Stokes and Navier-Stokes problems
are stated and their regularity is discussed in Section 2. The scheme for the Stokes
problem is introduced in Section 3. Section 4 is devoted to the proof of the inf-sup
condition and Section 5 to a priori estimates for the Stokes problem. Section 6
contains the main points of the discrete Navier-Stokes problem. Conclusions are
given in the final section.

2. Model Stokes and Navier-Stokes problems

Let Ω be a Lipschitz domain of R2. Let f ∈ H−1(Ω)2 and µ > 0. The solution
(u, p) ∈ H1(Ω)2 × L2(Ω) of the stationary homogeneous Stokes problem for an
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incompressible viscous fluid confined in Ω satisfies

− µ∆u +∇p = f , in Ω,(2.1)
∇ · u = 0, in Ω,(2.2)

u = 0, on ∂Ω.(2.3)

Since p is uniquely defined up to an additive constant, we also assume that
∫

Ω
p = 0.

With the above assumptions, this problem has a unique solution u ∈ H1
0 (Ω)2, p ∈

L2
0(Ω) [12], where

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω},

L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

q = 0}.

However, in what follows, we shall need that both the gradient of u and the pressure
p have a trace on line segments. For this, it suffices for instance that the data f
belong to L4/3(Ω)2. Indeed, Grisvard establishes in [14] that if Ω is a Lipschitz
polygon (i.e., a polygon with no slits) and f ∈ L4/3(Ω)2, then the solution (u, p)
of (2.1)–(2.3) belongs to W 2,4/3(Ω)2 ×W 1,4/3(Ω) with continuous dependence on
‖f‖L4/3(Ω). Thus each component of the gradient of u has a trace on a line segment
e, this trace belongs to W 1/4,4/3(e) and by Sobolev’s imbedding, W 1/4,4/3(e) ↪→
L2(e). Therefore, the trace of each component of the gradient of u on a line segment
e is well defined and belongs to L2(e). The same result holds for the trace of the
pressure. Note that both results are sharp.

The Stokes system is a linearized version of the Navier-Stokes system of equa-
tions, where (2.1) is replaced by

(2.4) −µ∆u+ u · ∇u+∇p = f , in Ω,

and (2.2), (2.3) are unchanged. Here,

(2.5) u · ∇u =
2∑
i=1

ui
∂u

∂xi

is the convection term. It can be shown that (2.4), (2.2), (2.3) always has a solution
(not necessarily unique) (u, p) ∈ H1

0 (Ω)2 × L2
0(Ω); see for example [12], Lions [19]

or Temam [25]. As far as regularity is concerned, note that by virtue of the Sobolev
imbedding in two dimensions: H1(Ω) ↪→ Lp(Ω) for any real number p <∞:

(2.6) ∀v ∈ H1
0 (Ω), ‖v‖Lp(Ω) ≤ Sp‖∇v‖L2(Ω),

we have that u · ∇u belongs in particular to L4/3(Ω)2. Therefore applying the
above regularity of the Stokes problem to

−µ∆u+∇p = f − u · ∇u,

we see that, if f belongs to L4/3(Ω)2, then every solution (u, p) of (2.4), (2.2),
(2.3) belongs also to W 2,4/3(Ω)2 ×W 1,4/3(Ω). Both problems will be analyzed for
f ∈ L4/3(Ω)2. But of course optimal error estimates will require more regularity.
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Ω1 Ω2

γ

Figure 1. Example of two subdomains where γ2
h is a subgrid of γ1

h.

3. Notation and preliminaries

To simplify, we shall present here a domain decomposition into two subdomains
but the analysis below applies to an arbitrary (but fixed) number of subdomains.
From now on, we assume that Ω is a Lipschitz polygon partitioned into two sub-
domains Ω1 and Ω2, both Lipschitz polygons, with interface γ (which is also a
polygonal line), i.e., Ω = Ω1∪γ∪Ω2 (see Figure 1). For i = 1, 2, let E ih be a regular
family of triangulations of Ω̄i, consisting of triangles of maximum diameter h. Let
hE denote the diameter of a triangle E and ρE the diameter of its inscribed circle.
By regular, we mean (see Ciarlet [4]) that there exists a parameter σ > 0 such that

(3.1) ∀E ∈ E ih, i = 1, 2,
hE
ρE

= σE ≤ σ.

Strictly speaking, we should distinguish all parameters by an index i, but we shall
usually suppress this index, to alleviate notation. We denote by Γih the set of all
edges of E ih that do not lie on γ, set Γh = Γ1

h ∪ Γ2
h and denote by γih the set of

edges of E ih that lie on γ. At the interface γ, the two meshes E ih are related by two
assumptions specified in Section 4:

(i) the assumption H1 that states that either γ1
h is a subgrid of γ2

h or γ2
h is a

subgrid of γ1
h.

(ii) the assumption H2 of local quasi-uniformity on γ.
For any nonnegative integer k and number r ≥ 1, recall the classical Sobolev

space on a domain O ⊂ R2

W k,r(O) = {v ∈ Lr(O) : ∀|m| ≤ k, ∂mv ∈ Lr(O)},

where ∂mv are the partial derivatives of v of order m. It is a Banach space for the
graph norm, which we denote by ‖·‖Wk,r(O). In view of the regularity considerations
of the previous section, we define

X = {v ∈ L2(Ω) : ∀E ∈ Eh, v|E ∈ W 2,4/3(E)},
M = {q ∈ L2

0(Ω) : ∀E ∈ Eh, q|E ∈W 1,4/3(E)}.

For an integer k ≥ 0, the usual Sobolev norm (resp. seminorm) ofHk(O) = W k,2(O)
is denoted by ‖ · ‖k,O (resp. | · |k,O), the L2 norm corresponding to k = 0. If O = Ω
and if there is no ambiguity, we simply write ‖ · ‖k (resp. | · |k). We refer to Adams
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[1] or Lions and Magenes [18] for the definition of the norm of Hs(Ω), for real s > 0.
The norm associated with X is the “broken” norm

||| · |||2k =
∑
E∈Eh

‖ · ‖2k,E .

We denote the product space by X = X2. Let D(O) denote the space of infinitely
differentiable functions with compact support on O and D′(O) the space of distri-
butions on O. We recall that, by definition, for v = (vi)i, ∇v =

(
∂vi
∂xj

)
i,j

and ∇v n
is the product of the matrix ∇v by the vector n. Let e denote a segment of Γih
shared by two triangles Ek and El of E ih; we associate with e, once and for all, a
unit normal vector ne directed from Ek to El and we define formally the jump and
average of a function φ on e by

[φ] = (φ|Ek)|e − (φ|El)|e, {φ} =
1
2

(φ|Ek)|e +
1
2

(φ|El)|e.

If e is adjacent to ∂Ω, then ne is the unit normal n exterior to Ω and the jump
and the average of φ on e coincide with the trace of φ on e. If e is a segment of γ1

h,
we denote by n1 the outward normal to Ω1 and we set

[φ] = (φ|Ω1)|e − (φ|Ω2 )|e, {φ} =
1
2

(φ|Ω1 )|e +
1
2

(φ|Ω2 )|e.

Then, we introduce the following bilinear forms onX×X andX×M , respectively:

a(u,v) =
∑
E∈Eh

∫
E

∇u : ∇v

−
∑

e∈Γh∪γ1
h

∫
e

{∇u}ne · [v] + ε∗
∑

e∈Γh∪γ1
h

∫
e

{∇v}ne · [u],(3.2)

b(v, p) = −
∑
E∈Eh

∫
E

p∇ · v +
∑
e∈Γh

∫
e

{p}[v] · ne +
∑
e∈γ1

h

∫
e

pγ [v] · n1,(3.3)

where pγ is the trace of p on the coarser mesh, i.e.,

pγ =
{
p|Ω1 if γ2

h is a subgrid of γ1
h,

p|Ω2 if γ1
h is a subgrid of γ2

h,

and on each segment e of γ1
h, the contribution of ∇u|Ω2 and ∇v|Ω2 stands for the

piecewise gradient on each triangle of E2
h adjacent to e. The parameter ε∗ takes the

constant value +1 or −1. We also introduce the jump term

(3.4) J0(u,v) =
∑

e∈Γh∪γ1
h

σe
|e|

∫
e

[u] · [v],

where |e| denotes the measure of e. We assume throughout the paper one of the
following cases:

(Ca) If the parameter ε∗ = 1, then the jump coefficient can be simply equated
to 1 on all edges. In practice, it could be useful to put more weight on some edges,
but it is sufficient for the analysis to have σe ≥ σ0, independent of h.

(Cb) If the parameter ε∗ = −1, then the jump coefficient cannot be arbitrary.
On one hand, it must be bounded below by σ0 > 0 and above by σm. The analysis
will show that it has to be sufficiently large. But in practice, its precise choice is
delicate: if it is too large, the matrix of the discrete system will be ill-conditioned.
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Remark 3.1. The form b defined by (3.3) can also be written

b(v, p) = −
∑
E∈Eh

∫
E

p∇ · v +
∑

e∈Γh∪γ1
h

∫
e

{p}[v] · ne +
ε

2

∑
e∈γ1

h

∫
e

[p][v] · n1,

where

ε =
{

1 if γ2
h is a subgrid of γ1

h,
−1 if γ1

h is a subgrid of γ2
h.

The extra jump term on γ is added so that all jump terms on γ disappear when one
subdivision is a subset of the other. This is used for proving the inf-sup condition
while doing domain decomposition.

Remark 3.2. Note that in (3.2), (3.3) and (3.4) each edge of Eh is counted exactly
once. We have chosen the mesh γ1

h on the interface γ, but this choice is arbitrary
and we could have chosen γ2

h, in which case the jumps should be defined from Ω2

to Ω1.

Remark 3.3. Note that if u and v both belong to H1
0 (Ω)2, then formally

a(u,v) =
∫

Ω

∇u : ∇v and b(v, p) = −
∫

Ω

p∇ · v,

which are the standard bilinear forms associated with the Stokes problem.

With these forms, we consider the following variational problem: Find u ∈ X
and p ∈M , solution of

µ (a(u,v) + J0(u,v)) + b(v, p) =
∫

Ω

f · v, ∀v ∈X,(3.5)

b(u, q) = 0, ∀q ∈M.(3.6)

Remark 3.4. Note that all functions v in X satisfy

−
∑
E∈Eh

∫
E

∇ · v +
∑

e∈Γh∪γ1
h

∫
e

[v] · ne = 0.

Therefore we can relax the zero mean-value constraint in (3.6); i.e., (3.6) is equiv-
alent to

b(u, q) = 0, ∀q ∈ Q = {q ∈ L2(Ω) : ∀E ∈ Eh, q|E ∈W 1,4/3(E)}.

Remark 3.5. The case ε∗ = 1 yields a nonsymmetric bilinear form a and corresponds
to the generalization of the NIPG method [23] whereas the case ε∗ = −1 yields a
symmetric bilinear form a and is the generalization of the SIPG method [27].

We denote by V the kernel of b in X :

V = {v ∈ X; ∀q ∈M, b(v, q) = 0}.

Lemma 3.6. Let f ∈ L4/3(Ω)2. If (u, p) is the solution of (2.1)–(2.3), then (u, p)
satisfies the variational problem (3.5), (3.6) and conversely.

Proof. Let (u, p) be the solution of (2.1)–(2.3). Then ∇ · u = 0 and [u] · ne = 0
on each edge e, since u ∈ H1

0 (Ω)2. Therefore, u satisfies (3.6). Let us multiply
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(2.1) by v ∈ X and apply Green’s formula in each E. As u ∈ W 2,4/3(Ω)2 and
p ∈ W 1,4/3(Ω), we have∫

Ω

(−µ∆u+∇p) · v =
∑
E

∫
E

(−µ∆u+∇p) · v

=
∑
E

(∫
E

(µ∇u : ∇v − p∇ · v)−
∫
∂E

(µ∇unE − pnE) · v
)
,

where nE is the outward normal to ∂E. But since µ∇une − pne are continuous
across each interior edge, we have

(µ∇une − pne)|e = {µ∇une − pne}|e = {µ∇u}|ene − {p}|ene.
Therefore,∫

Ω

f · v =
∑
E

∫
E

(µ∇u : ∇v − p∇ · v)

−
∑

e∈Γh∪γ1
h

∫
e

{µ∇u}ne · [v] +
∑

e∈Γh∪γ1
h

∫
e

{p}[v] · ne.

This coincides with (3.5) because the jump of u is zero on each interior edge e, the
jump of p is zero on each edge e of γ1

h and u vanishes on each boundary edge e.
Conversely, let (u, p) be a solution to (3.5), (3.6). First, let E belong to Eh and

choose v ∈ D(E)2, extended by zero outside E. Then, (u, p) satisfies in the sense
of distributions

−µ∆u+∇p = f , ∇ · u = 0, in E.(3.7)

Next consider v ∈ C1(Ē)2 such that v = 0 on ∂E, extended by 0 outside E, and
∇v · nE = 0 on ∂E except on one side e. We multiply (3.7) by v and integrate by
parts:

µ

∫
E

∇u : ∇v −
∫
E

p∇ · v = µ

∫
E

∇u : ∇v −
∫
E

p∇ · v + µε∗
∫
e

{∇v}ne · [u],

which is equivalent to ∫
e

{∇v}ne · [u] = 0.

Since {∇v}ne is arbitrary, [u] = 0. If e belongs to the boundary ∂Ω, this implies
that u|Ω = 0. Thus u ∈ H1

0 (Ω)2. Finally, let v ∈ C1(Ē)2, with v = 0 on ∂E except
on one side e, extended by 0 outside. First, we assume that e does not belong to
the interface, i.e., e ∈ Γh. We have

µ

∫
E

∇u : ∇v −
∫
E

p∇ · v − µ
∫
e

∇unE · v +
∫
e

pv · nE

= µ

∫
E

∇u : ∇v −
∫
E

p∇ · v − µ
∫
e

{∇u}ne · [v] +
∫
e

{p}[v] · ne,

which implies ∫
e

(−µ∇unE + pnE) · v =
∫
e

{−µ∇unE + pnE} · v.

Since v is arbitrary, this means that the quantity −µ∇unE + pnE is continuous
across e. Therefore, −µ∆u+∇p = f in both subdomains Ω1 and Ω2. Next, let e
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belong to the interface γ1
h, and assume that γ1

h is a subgrid of γ2
h. The case where

γ2
h is a subgrid of γ1

h is handled exactly the same way. If E belongs to E1
h, we have

−µ
∫
e

∇unE · v +
∫
e

p|Ω1v · nE = −µ
∫
e

{∇u}nE · v +
∫
e

p|Ω1v · nE ;

therefore ∇unE is continuous across e. Similarly, if E belongs to E2
h, we have∫

e

p|Ω2v · nE =
∫
e

p|Ω1v · nE ,

which implies that the jump of p across e is zero. Thus, −µ∆u+∇p = f in Ω. �

Remark 3.7. Note that the jump term J0 plays no part in this proof and therefore
the statement of Lemma 3.6 is valid even if J0 is suppressed from (3.5).

In order to approximate u and p, we introduce two finite-dimensional spaces
Xh ⊂X and Mh ⊂M , such that

Xh = {vh ∈ X : ∀E ∈ Eh, vh ∈ IP k(E)}, Xh = Xh ×Xh,

Mh = {qh ∈M : ∀E ∈ Eh, qh ∈ IP k−1(E)}.

With these spaces, the discrete scheme is: find (U , P ) ∈Xh ×Mh such that

∀vh ∈ Xh, µ (a(U ,vh) + J0(U ,vh)) + b(vh, P ) =
∫

Ω

f · vh,(3.8)

∀qh ∈Mh, b(U , qh) = 0.(3.9)

We denote by V h the kernel of b in Xh:

V h = {vh ∈ Xh; ∀qh ∈Mh, b(vh, qh) = 0},

and we observe that, as in the continuous case, we can relax the zero mean-value
constraint in (3.9). We shall address in the next section the existence and unique-
ness of the solution.

Remark 3.8. If U ∈ Xh satisfies (3.9), i.e., U ∈ V h, then for all E ∈ Eh, not
adjacent to γ ∫

∂E

{U} · nE = 0,

but if E is adjacent to γ and e is the side of E on γ, we have∫
∂E

{U} · nE −
ε

2

∫
e

[U ] · nE = 0.

Thus the discrete mass is conserved on each triangle E that is not adjacent to the
interface. As mentionned in the introduction, the factor of ε in the definition of b is
added to prove the inf-sup condition. Indeed, if there is no domain decomposition,
i.e., no interface, then the analysis goes through with the following b, which is what
one expects:

b(v, p) = −
∑
E∈Eh

∫
E

p∇ · v +
∑
e∈Γh

∫
e

{p}[v] · ne.

In this case, the mass is conserved on all elements.
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Finally, let us recall the approximation properties of Xh and Mh. Recall that
the meshes E ih are regular (see (3.1)). For each integer k ≥ 1, it is easy to construct
an operator rh ∈ L(L2

0(Ω);Mh), such that, for any E ∈ Eh,

(3.10) ∀q ∈ IP k−1(E),
∫
E

q(rh(p)− p) = 0,

and for any real number s ∈ [0, k],

(3.11) ∀q ∈ Hs(Ω) ∩ L2
0(Ω), ‖q − rh(q)‖0,E ≤ ChsE |q|s,E .

For each k = 1, 2, 3, there exists an operator Ri
h ∈ L(H1(Ωi)2;Xh(Ωi)), where

Xh(Ωi) denotes the space Xh restricted to Ωi, such that for any E ∈ Eh,

∀v ∈ H1(Ωi)2, ∀qh ∈ IP k−1(E),
∫
E

qh∇ · (Ri
h(v)− v) = 0,(3.12)

∀v ∈ H1(Ωi)2, ∀ interior e of Γih, ∀qh ∈ IP k−1(e)2,

∫
e

qh · [Ri
h(v)] = 0,

(3.13)

∀v ∈ H1
0 (Ωi)2, ∀e ∈ ∂Ωi, ∀qh ∈ IP k−1(e)2,

∫
e

qh ·Ri
h(v) = 0,(3.14)

∀s ∈ [1, k + 1], ∀v ∈ Hs(Ωi)2, |v −Ri
h(v)|1,E ≤ Chs−1

E |v|s,∆E ,(3.15)

where ∆E is a suitable macro-element containing E. When k = 1, ∆E = E. The
case k = 1 follows from [7], k = 2 from [9] and k = 3 from [6]. It also follows from
Girault and Scott [13] that, for m = 0 or 1, for any t ≥ 2, for s ∈ [1, k + 1],

(3.16) ∀v ∈ W s,t(Ωi)2, |v −Ri
h(v)|Wm,t(E) ≤ Chs−mE |v|W s,t(∆E).

Furthermore, each triangle E ∈ Eih has at least one side e such that

(3.17) ∀v ∈ H1(Ωi)2,

∫
e

(Ri
h(v)− v) = 0.

This property is obvious when k = 1 and it holds on all edges e of Γih∪γih, because in
this case there is only one degree of freedom per edge and it is defined by |e|−1

∫
e
v.

When k = 2, (3.17) also holds on all edges e of Γih ∪γih, because it is a consequence
of formulas (19) and (49) of reference [9]. When k = 3, for most practical meshes,
it holds on all edges e of Γih ∪ γih, with the exception of the interior edges of the
configuration on Figure 2. But as the boundary edges of this configuration satisfy

Figure 2. Special configuration for k = 3.
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(3.17), each triangle in this configuration has an edge where (3.17) holds. An easy
consequence of (3.17) is the following lemma.

Lemma 3.9. Assume that E ih satisfies (3.1). Then there exists a constant C inde-
pendent of h, such that

(3.18) ∀v ∈ (H1
0 (Ωi))2, (

∑
e∈Γih

1
|e| ‖[v −R

i
h(v)]‖20,e)1/2 ≤ C|||∇(v −Ri

h(v))|||0,Ωi .

4. An inf-sup condition

For proving an inf-sup condition, we must choose a norm on X that is more
appropriate than the broken H1 norm. In the exact case, X = H1

0 (Ω) and the
intrinsic norm is the H1 seminorm. But clearly, this is not a norm on Xh and
completing this seminorm with the L2 norm does not represent sufficiently well the
jumps on the edges. Therefore, we propose to complete the seminorm with the
jump term J0. This idea is not new, it has already been used by Wheeler in [27].
Thus, we define the norm

(4.1) ∀vh ∈Xh,
[
|vh|
]

=

(∑
E∈Eh

‖∇vh‖20,E + J0(vh,vh)

)1/2

.

If there is no domain decomposition, the inf-sup condition follows directly from the
properties of Rh stated in Section 3. But a special proof is required if there is
domain decomposition with nonmatching grids. In this case, we need the following
assumptions.

Hypothesis H1: Either γ1
h is a subgrid of γ2

h or γ2
h is a subgrid of γ1

h.
Hypothesis H2: There exist two constants L1 and L2 independent of h such that

for any pair of segments e1 ∈ γ1
h and e2 ∈ γ2

h such that |e1 ∩ e2| > 0, we have

(4.2)
|e1|
|e2|
≤ L1 and

|e2|
|e1|
≤ L2.

Remark 4.1. Since by assumption, γ1
h is a subgrid of γ2

h or vice versa, then one of
the two constants L1 or L2 is one; but this precise value is not used here.

Then, we have the following preliminary result.

Lemma 4.2. Let the mesh Eh satisfy (3.1) and (4.2). Let v ∈ H1(Ω)2, let k = 1, 2
or 3 and let Rh(v) denote the operators R1

h(v) in Ω1 and R2
h(v) in Ω2 satisfying

(3.13)–(3.17). Then there exists a constant C that depends only on k, L1, L2 and
the constant σ of (3.1) such that
(4.3)

∀ph ∈Mh,

∣∣∣∣∣∣
∑

e∈Γh∪γ1
h

∫
e

{ph}[Rh(v)− v] · ne

∣∣∣∣∣∣ ≤ C‖ph‖0,D12 |||∇(Rh(v)− v)|||0,D12 ,

where D12 = D1 ∪D2 and Di denotes the union of elements of E ih adjacent to γ.

Proof. Consider∣∣∣∣∣∣
∑
e∈γ1

h

∫
e

{ph}[Rh(v)− v] · ne

∣∣∣∣∣∣ ≤
∫
γ

|{ph}[Rh(v)− v] · n1|,
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since the contribution of the left-hand side of (4.3) to the edges e of Γh is zero by
virtue of (3.13). Expanding {ph} and [Rh(v)− v] · n1, we can write∫

γ

|{ph}[Rh(v)− v] · n1|

≤ 1
2

(∫
γ

|ph|Ω1 |‖(Rh(v)− v)|Ω1‖+
∫
γ

|ph|Ω1 |‖(Rh(v)− v)|Ω2‖

+
∫
γ

|ph|Ω2 |‖(Rh(v)− v)|Ω1‖+
∫
γ

|ph|Ω2 |‖(Rh(v)− v)|Ω2‖
)
,

where ‖ · ‖ denotes here the Euclidean norm. To bound the first integral, let e ∈ γ1
h

and let E ∈ E1
h be adjacent to e; we have∫

e

|ph|Ω1 |‖(Rh(v)− v)|Ω1‖ ≤ ‖ph|Ω1‖0,e‖(Rh(v)− v)|Ω1‖0,e

≤ Ĉ|e||E|−1/2‖ph‖0,E‖R̂h(v)− v̂‖0,ê,

because p̂h belongs to a finite-dimensional space on Ê. Here Ĉ denotes various
constants independent of h. On one hand, by the trace theorem,

‖R̂h(v)− v̂‖0,ê ≤ Ĉ‖R̂h(v)− v̂‖1,Ê.

On the other hand, Ê has one side on which (3.17) holds. Therefore, as in
Lemma 3.9, there exists a constant Ĉ such that

(4.4) ‖R̂h(v)− v̂‖0,ê ≤ Ĉ|R̂h(v)− v̂|1,Ê .

Hence, reverting to E and applying (3.1), we obtain∫
e

|ph|Ω1 |‖(Rh(v)− v)|Ω1‖ ≤ Ĉ‖ph‖0,E‖∇(Rh(v)− v)‖0,E .

Thus denoting by D1 the row of elements of E1
h adjacent to γ, we derive∫

γ

|ph|Ω1 |‖(Rh(v)− v)|Ω1‖ ≤ Ĉ‖ph‖0,D1 |||∇(Rh(v)− v)|||0,D1 .

Similarly, denoting by D2 the row of elements of E2
h adjacent to γ, we bound the

fourth integral by∫
γ

|ph|Ω2 |‖(Rh(v)− v)|Ω2‖ ≤ Ĉ‖ph‖0,D2 |||∇(Rh(v)− v)|||0,D2 .

To bound the second integral, consider again e ∈ γ1
h; we can write∫

e

|ph|Ω1 |‖(Rh(v)− v)|Ω2‖ ≤ ‖ph|Ω1‖0,e(
∑
j

‖Rh(v)− v‖20,ej )
1/2,

where j runs over all segments ej of γ2
h that intersect e. Thus,∫

e

|ph|Ω1 |‖(Rh(v)− v)|Ω2‖ ≤ Ĉ|e||E|−1/2‖ph‖0,E(
∑
j

|ej |
|e| |Rh(v)− v|21,Ej )

1/2

≤ ĈL
1/2
2 ‖ph‖0,E|||∇(Rh(v)− v)|||0,∪jEj ,
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by virtue of (4.2), where Ej denotes the element of E2
h that is adjacent to ej and

the union runs over all ej of γ2
h that intersect e. Hence∫

γ

|ph|Ω1 |‖(Rh(v)− v)|Ω2‖ ≤ ĈL
1/2
2 ‖ph‖0,D1 |||∇(Rh(v)− v)|||0,D2 .

Similarly, applying the first inequality in (4.2), the third integral is bounded by∫
γ

|ph|Ω2 |‖(Rh(v)− v)|Ω1‖ ≤ ĈL
1/2
1 ‖ph‖0,D2 |||∇(Rh(v)− v)|||0,D1 .

Collecting these bounds, we obtain∣∣∣∣∫
γ

{ph}[Rh(v)− v] · n1

∣∣∣∣
≤ 1√

2
Ĉ(1 + L1 + L2)1/2‖ph‖0,D1∪D2 |||∇(Rh(v)− v)|||0,D1∪D2 .

This proves (4.3). �

Remark 4.3. More generally, if vh ∈Xh satisfies only the analogue of (3.17), then
(4.3) is replaced by

(4.5) ∀ph ∈Mh,

∣∣∣∣∣∣
∑

e∈Γh∪γ1
h

∫
e

{ph}[vh − v] · ne

∣∣∣∣∣∣ ≤ C‖ph‖0,Ω|||∇(vh − v)|||0.

Indeed, the jumps on the interior edges of Γh vanish when (3.13) holds. If we only
have (3.17), then∣∣∣∣∣∑

e∈Γh

∫
e

{ph}[vh − v] · ne

∣∣∣∣∣ ≤ C‖ph‖0,Ω|||∇(vh − v)|||0.

Remark 4.4. Similarly,

(4.6)

∣∣∣∣∣∣
∑
e∈γ1

h

∫
e

[ph][Rh(v)− v] · ne

∣∣∣∣∣∣ ≤ C‖ph‖0,D12 |||∇(Rh(v)− v)|||0,D12 .

Now we can address the existence and uniqueness of (3.8), (3.9). Since it is a
square system of linear equations in finite dimension, it suffices to prove that f = 0
implies U = 0 and P = 0. We choose vh = U . In the nonsymmetric case, this
implies that a(U ,U) = 0 and J0(U ,U) = 0, and thus U = 0. In the symmetric
case, we make the following assumption.

Hypothesis H3: There exists a constant K > 0, independent of h, such that

(4.7) ∀vh ∈Xh, a(vh,vh) + J0(vh,vh) ≥ K
[
|vh|
]2
.

In the nonsymmetric case, K = 1. In the symmetric case, a standard proof [27]
shows that H3 holds if H2 is valid and the coefficients σe in (3.4) are sufficiently
large (but independent of h). Hence in both cases, b(vh, P ) = 0 for all vh in Xh.
We shall see that P = 0 by virtue of Theorem 4.5.

So far, we have not used the fact that γ1
h is a subgrid of γ2

h (or vice versa). But
now we shall use it for proving the inf-sup condition, so we make this assumption
from now on.
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Theorem 4.5. Let the mesh Eh satisfy (3.1) and Hypotheses H1 and H2. Then,
there exists a constant β∗ > 0, independent of h, such that

(4.8) inf
ph∈Mh

sup
vh∈X̃h

b(vh, ph)[
|vh|
]
‖ph‖0

≥ β∗,

where

X̃h = {vh ∈ Xh : ∀e ∈ Γh,
∫
e

qh · [vh] = 0, ∀qh ∈ IP k−1(e)2}.

Proof. We shall prove that for any ph in Mh, there exists vh in X̃h such that

b(vh, ph) ≥ β∗1‖ph‖20,(4.9) [
|vh|
]
≤ β∗2‖ph‖0,(4.10)

with constants β∗1 > 0 and β∗2 > 0 independent of h, ph and vh. Clearly, this will
imply (4.8). Let ph ∈ Mh. The idea of the proof is to use the inf-sup condition
that holds separately in each Ωi and to correct it suitably in order to account for
the interface. For this, we split ph into two functions with zero mean value in Ωi
plus two constant functions in Ωi. Thus we define

p̄ih =
1
|Ωi|

∫
Ωi

ph, p̃ih = ph|Ωi − p̄ih, p̃h|Ωi = p̃ih, p̄h|Ωi = p̄ih.

Since p̃ih ∈ L2
0(Ωi) and the spaces H1

0 (Ωi)2, L2
0(Ωi) satisfy the exact inf-sup condi-

tion (see for example [12]), there exists ṽi ∈ H1
0 (Ωi)2 such that

(4.11) −∇ · ṽi = p̃ih, |ṽi|1,Ωi ≤
1
β
‖p̃ih‖0,Ωi .

Define ṽih = Ri
h(ṽi) and define ṽh by ṽh|Ωi = ṽih. Then ṽh ∈Xh and satisfies

−
∑
E∈Eh

∫
E

(∇ · ṽh)p̃h =
∫

Ω

(p̃h)2,(4.12)

(
∑
E∈Eh

|ṽh|21,E)1/2 ≤ C1

β
‖p̃h‖0,Ω,(4.13)

∀e ∈ Γh, ∀q ∈ IP k−1(e)2,

∫
e

q · [ṽh] = 0, i.e., ṽh ∈ X̃h,(4.14)

∀e ∈ γih, ∀q ∈ IP k−1(e)2,

∫
e

q · ṽih = 0,(4.15)

with a constant C1 independent of h and β. To simplify, take ε = 1. The case
ε = −1 is treated similarly.

b(ṽh, p̃h) = ‖p̃h‖20 +
∑
e∈γ1

h

∫
e

p̃1
h(Rh(ṽ1)−Rh(ṽ2)) · n1.

(Recall that n1 is the normal on γ, exterior to Ω1.) But in view of (3.14),∫
e

p̃1
hRh(ṽ1) · n1 = 0;
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and since γ2
h is a subgrid of γ1

h, then on each ej of γ2
h that is contained in e, p̃1

h is
a polynomial of IP k−1. Therefore (3.14) implies also that∑

j

∫
ej

p̃1
hRh(ṽ2) · n1 = 0.

Note that this is the only instance where we use Hypothesis H3. Thus,

(4.16) b(ṽh, p̃h) = ‖p̃h‖20.
As far as the piecewise constant functions are concerned, note that p̄h ∈ L2

0(Ω)
because ph ∈ L2

0(Ω), i.e., p̄1
h|Ω1|+ p̄2

h|Ω2| = 0. Take v̄ = αρ, α to be chosen, where
ρ is a function in C2(Ω̄)2, with compact support in Ω such that

∫
γ
ρ · n1 = 1. Let

q̄h ∈ L2
0(Ω) such that

q̄h =
{
q̄1
h in Ω1, q̄1

h constant,
q̄2
h in Ω2, q̄2

h constant.

We want to find α so that for all q̄h defined as above,

−
∫

Ω

(∇ · v̄)q̄h =
∫

Ω

p̄hq̄h,

i.e.,

−
∫

Ω1

(∇ · v̄)q̄1
h −

∫
Ω2

(∇ · v̄)q̄2
h = |Ω1|p̄1

hq̄
1
h + |Ω2|p̄2

hq̄
2
h.

Applying Green’s formula and using the continuity of v̄, this becomes

−(q̄1
h − q̄2

h)
∫
γ

v̄|Ω1 · n1 = |Ω1|p̄1
hq̄

1
h + |Ω2|p̄2

hq̄
2
h.

As v̄ = αρ and
∫
γ
ρ · n1 = 1, this holds if

−α(q̄1
h − q̄2

h) = |Ω1|p̄1
hq̄

1
h + |Ω2|p̄2

hq̄
2
h.

Let us multiply this equation by |Ω2| and use the fact that |Ω1|q̄1
h + |Ω2|q̄2

h = 0.
This yields

−q̄1
hα|Ω| = |Ω1||Ω|q̄1

hp̄
1
h, i.e., α = −|Ω1|p̄1

h.

We can cancel by q̄1
h because if q̄1

h = 0, then q̄h = 0. Thus,

(4.17) |α| = |Ω1|1/2‖p̄1
h‖0,Ω1 ≤ |Ω1|1/2‖ph‖0,Ω1 .

For any E ∈ Eh, define Rh(v̄) ∈ IP 1(E)2 by
∫
e(Rh(v̄)− v̄) = 0 on the three edges

e of E (i.e., these are the degrees of freedom of the Crouzeix-Raviart element of
degree 1). Then Rh(v̄) ∈ X̃h. Set

vh = δṽh +Rh(v̄) ∈ X̃h, where δ > 0 is to be chosen.

Thus,

b(vh, ph) = δb(ṽh, p̃h) + δb(ṽh, p̄h) + b(Rh(v̄), p̃h) + b(Rh(v̄), p̄h).

First, (4.14) and (4.15) imply

b(ṽh, p̄h) = −
∑
E∈E1

h

p̄1
h

∫
E

∇ · ṽh −
∑
E∈E2

h

p̄2
h

∫
E

∇ · ṽh

= −p̄1
h

∑
E∈E1

h

∫
∂E

ṽh · nE − p̄2
h

∑
E∈E2

h

∫
∂E

ṽh · nE = 0;
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next

b(Rh(v̄), p̄h) = b(Rh(v̄)− v̄, p̄h) + b(v̄, p̄h),

b(v̄, p̄h) = ‖p̄h‖20,Ω,(4.18)

and it can be easily checked that

b(Rh(v̄)− v̄, p̄h) = 0.

Finally,

b(Rh(v̄), p̃h) = b(Rh(v̄)− v̄, p̃h)− α
∑
E∈Eh

∫
E

p̃h∇ · ρ,

since ρ is continuous. Therefore (4.17) implies

(4.19) |b(v̄, p̃h)| ≤ |α|
∑
E∈Eh

‖p̃h‖0,E
√

2|ρ|1,E ≤ |Ω1|1/2‖p̄1
h‖0,Ω1

√
2K1‖p̃h‖0,Ω,

where K1 = |ρ|1,Ω. We also denote K2 = |ρ|2,Ω. Next

b(Rh(v̄)− v̄, p̃h) = −
∑
E∈Eh

∫
E

p̃h∇ · (Rh(v̄)− v̄) +
∑
e∈Γh

∫
e

{p̃h}[Rh(v̄)− v̄] · ne

+
∑
e∈γ1

h

∫
e

(p̃h)γ [Rh(v̄)− v̄] · n1;

and it follows from the definition of Rh(v̄) and (4.17) that

|
∫
E

p̃h∇ · (Rh(v̄)− v̄)| ≤ ‖p̃h‖0,E
√

2ĈhE |v̄|2,E

≤
√

2ĈhE‖p̃h‖0,E|Ω1|1/2‖p̄1
h‖0,Ω1 |ρ|2,E .

Therefore

(4.20)
∑
E∈Eh

|
∫
E

p̃h∇ · (Rh(v̄)− v̄)| ≤
√

2ĈK2h|Ω1|1/2‖p̃h‖0,Ω‖p̄1
h‖0,Ω1 .

In addition, applying (4.5) to this choice of Rh and adding ( 4.20), we obtain

(4.21) |b(Rh(v̄)− v̄, p̃h)| ≤ ĈhK2|Ω1|1/2‖p̃h‖0,Ω‖p̄1
h‖0,Ω1 ,

with a constant Ĉ that does not depend on h. Collecting the relations (4.16), (4.18),
(4.19) and (4.21), we derive

b(vh, ph) ≥ δ‖p̃h‖20,Ω + ‖p̄h‖20,Ω −
√

2K1|Ω1|1/2‖p̄1
h‖0,Ω1‖p̃h‖0,Ω

−ĈhK2|Ω1|1/2‖p̄1
h‖0,Ω1‖p̃h‖0,Ω

≥ δ‖p̃h‖20,Ω + ‖p̄h‖20,Ω −
√

2K1|Ω1|1/2
1
2

(λ‖p̄1
h‖20,Ω1

+
1
λ
‖p̃h‖20,Ω)

−ĈhK2|Ω1|1/2
1
2

(λ′‖p̄1
h‖20,Ω1

+
1
λ′
‖p̃h‖20,Ω), λ > 0, λ′ > 0,

≥ ‖p̃h‖20,Ω(δ −
√

2
2
K1|Ω1|1/2

1
λ
− ĈhK2

2
|Ω1|1/2

1
λ′

)

+‖p̄h‖20,Ω(1−
√

2
2
K1|Ω|1/2λ− Ĉ

h

2
K2|Ω1|1/2λ′).
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Choose for instance λ and λ′ so that√
2

2
K1|Ω1|1/2λ+ Ĉ

h

2
K2|Ω1|1/2λ′ =

1
2

;

for example

λ =
1

2
√

2
1

K1|Ω1|1/2
, λ′ =

1
2ĈhK2|Ω1|1/2

.

Then, the coefficient of ‖p̃h‖20,Ω is δ− 2K2
1 |Ω1| − Ĉ2h2K2

2 |Ω1|. Choose for instance
δ = 2K2

1 |Ω1|+ Ĉ2h2K2
2 |Ω1|+ 1

2 . Then,

b(vh, ph) ≥ 1
2
‖p̃h‖20 +

1
2
‖p̄h‖20 =

1
2
‖ph‖20.

This establishes (4.9) with β∗1 = 1
2 . There remains to bound

[
|vh|
]
. We first bound

(
∑

E∈Eh |vh|
2
1,E)1/2:

|vh|1,E ≤ (2K2
1 |Ω1|+ Ĉ2h2K2

2 |Ω1|+
1
2

)|ṽh|1,E + |Rh(v̄)|1,E .

But (3.15) with s = 1 and k = 1 implies

|Rh(v̄)|1,E ≤ C2|v̄|1,E ≤ C2|Ω1|1/2‖p̄1
h‖0,Ω1 |ρ|1,E .

Then,

|||∇vh|||0 ≤ (
C2

3

β2
+ C2

4 )1/2‖p̃h‖0,

where

C3 =
√

2C1(
1
2

+ |Ω1|(2K2
1 + h2Ĉ2K2

2 )), C4 =
√

2C2|Ω1|1/2K1.

We now bound J0(vh,vh). Since J0 is a seminorm and vh is the sum of Rh(v̄)
and δṽh, it suffices to bound J0(ṽh, ṽh) and J0(Rh(v̄),Rh(v̄)). As ṽi ∈ H1

0 (Ωi)2,
we can write

J0(ṽh, ṽh) ≤ 2
2∑
i=1

∑
e∈Γih∪γih

σe
|e| ‖ṽ

i −Ri
h(ṽi)‖20,e.

Lemma 3.9 and (4.4) together with (3.15) with s = 1 and (4.13) imply that

δJ0(ṽh, ṽh)1/2 ≤ C5

β
‖p̃h‖0,Ω,

with a constant C5 independent of h and β. The argument for bounding
J0(Rh(v̄),Rh(v̄)) is a combination of Lemmas 3.9 and 4.2. Let e ∈ γ1

h; we have∑
e∈γ1

h

1
|e| ‖[Rh(v̄)]‖20,e =

∑
e∈γ1

h

1
|e| ‖[Rh(v̄)− v̄]‖20,e.

Then proceeding as in Lemma 4.2, we write
σe
|e| ‖[Rh(v̄)]‖20,e =

σe
|e|
∑
j

∫
e∩ej
‖(Rh(v̄)− v̄)|Ω1 − (Rh(v̄)− v̄)|Ω2‖2

≤ 2σe
|e| ‖(Rh(v̄)− v̄)|Ω1‖20,e + 2σm

∑
j

|ej |
|e|

1
|ej|
‖(Rh(v̄)− v̄)|Ω2‖20,ej

≤ 2σe
|e| ‖(Rh(v̄)− v̄)|Ω1‖20,e + 2L2σm

∑
j

1
|ej|
‖(Rh(v̄)− v̄)|Ω2‖20,ej ,
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where j runs over all segments ej of γ2
h that intersect e. Therefore∑

e∈γ1
h

1
|e| ‖[Rh(v̄)]‖20,e ≤ Ĉ|||∇(Rh(v̄)− v̄)|||20,D1∪D2

,

with a constant Ĉ that depends on L2, but not on h. If e ∈ Γih, we use the argument
of Lemma 3.9. Then, (3.15) with s = 1, k = 1 and (4.17) imply

J0(Rh(v̄),Rh(v̄))1/2 ≤ C6‖p̄1
h‖0,Ω1 ,

where C6 = ĈK1|Ω1|1/2. Hence

J0(vh,vh)1/2 ≤ (
C2

5

β2
+ C2

6 )1/2‖ph‖0,Ω.

This proves (4.10) with β∗2 = (C
2
3
β2 + C2

5
β2 + C2

4 + C2
6 )1/2. �

Remark 4.6. Theorem 4.5 establishes the inf-sup condition for two subdomains. It
can be extended by induction to a fixed number of subdomains.

Remark 4.7. An immediate consequence of the inf-sup condition (4.8) is [12]: for
any ph in Mh, there exists a unique vh in X̃h such that

∀wh ∈ V h,
∑
E∈Eh

∫
E

∇vh : ∇wh + J0(vh,wh) = 0,

b(vh, ph) = −‖ph‖20,
[
|vh|
]
≤ 1
β∗
‖ph‖0.

The next corollary shows that the inf-sup condition allows one to construct a
good approximation operator.

Corollary 4.8. Under the assumptions of Theorem 4.5, there exists an approxi-
mation operator P h ∈ L(H1

0 (Ω)2; X̃h) such that for any s ∈ [1, k + 1]:

∀v ∈ H1
0 (Ω)2, ∀qh ∈Mh, b(P h(v)− v, qh) = 0,(4.22)

∀v ∈ (Hs(Ω) ∩H1
0 (Ω))2,

[
|P h(v)− v|

]
≤ Chs−1|v|s,Ω,(4.23)

∀v ∈ H1
0 (Ω)2, ∀e ∈ Γh, ∀q ∈ IP k−1(e)2,

∫
e

[P h(v)− v] · q = 0.(4.24)

Proof. For k = 1, 2 or 3, let v ∈ H1
0 (Ω)2 and let Rh(v) be the interpolant of v in

Xh satisfying (3.12)–(3.15), defined separately in Ω1 and Ω2. Then, we define

P h(v) = Rh(v) + ch,

where ch ∈ X̃h satisfies

∀qh ∈Mh, b(ch, qh) = b(v −Rh(v), qh).

Theorem 4.5 implies that ch ∈ X̃h exists and[
|ch|
]
≤ 1
β∗

sup
qh∈Mh

b(v −Rh(v), qh)
‖qh‖0

.
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Furthermore,

b(v −Rh(v), qh) ≤
√

2‖qh‖0,Ω|||∇(v −Rh(v))|||0 + |
∑
e∈Γh

∫
e

{qh}[v −Rh(v)] · ne|

+ |
∑
e∈γ1

h

∫
e

(qh)γ [v −Rh(v)] · n1|.

With Lemma 4.2 and Remark 4.4, this becomes

|b(v −Rh(v), qh)| ≤ C‖qh‖0|||∇(v −Rh(v))|||0.
Then (4.23) follows from the argument used in bounding J0(Rh(v̄),Rh(v̄)) in
Lemma 3.9 and the approximation properties of Rh, and (4.24) follows from (3.13)
and the fact that ch ∈ X̃h. �

5. Error estimates

In this section, we derive optimal a priori error estimates in the energy norm
of the error for the velocity field and the L2 norm of the error for the pressure.
A third estimate gives an optimal convergence rate for the L2 norm of the error
in the velocity field for the symmetric formulation (ε∗ = −1) and a nonoptimal
convergence rate for the nonsymmetric formulation.

Theorem 5.1. Let k = 1, 2 or 3 be the degree of the polynomials in the defini-
tion of Xh and assume that the solution (u, p) of problem (2.1)–(2.3) belongs to
Hk+1(Ω)2 × Hk(Ω). Then, if the triangulation satisfies (3.1) and Hypotheses H1
and H2, and if H3 holds, the solution (U , P ) of (3.8), (3.9) satisfies the error
estimate

(5.1)
[
|u−U |

]
≤ Chk(|u|k+1 +

1
µ
|p|k),

where C is independent of h and µ.

Proof. Let U I = P h(u) and PI = rh(p). Denote χ = U − U I , ξ = P − PI . The
errors χ and ξ satisfy the equations

µ(a(χ,v) + J0(χ,v)) + b(v, ξ) = µ(a(u −U I ,v) + J0(u−U I ,v))
+b(v, p− PI), ∀v ∈Xh,

b(χ, q) = b(u−U I , q), ∀q ∈Mh.

Set v = χ and q = ξ. Then dividing by µ, the two error equations become by
virtue of (4.22) and (4.7):

K
[
|χ|
]2 ≤ a(χ,χ) + J0(χ,χ) = a(u−U I ,χ) + J0(u−U I ,χ) +

1
µ
b(χ, p− PI).

Then, we only need to bound the three terms a(u − U I ,χ), J0(u − U I ,χ) and
1
µb(χ, p− PI). By definition,

a(u−U I ,χ) =
∑
E∈Eh

∫
E

∇(u −U I) : ∇χ−
∑

e∈Γh∪γ1
h

∫
e

{∇(u−U I)}ne · [χ]

+ε∗
∑

e∈Γh∪γ1
h

∫
e

{∇χ}ne · [u−U I ]

= T1 + T2 + T3.



DG DOMAIN DECOMPOSITION FOR STOKES AND NAVIER-STOKES 71

Using Cauchy-Schwarz and the approximation result (4.23), we have

T1 ≤
∑
E∈Eh

‖∇(u−U I)‖0,E‖∇χ‖0,E ≤
K

8
|||∇χ|||20 + C|||∇(u −U I)|||20

≤ K

8
|||∇χ|||20 + Ch2k|u|2k+1.

Let Lh(u) denote the standard Lagrange interpolant of degree k defined separately
in Ω1 and Ω2 and let us insert it in the second integral term:∫
e

{∇(u−U I)}ne · [χ]=
∫
e

{∇(u− Lh(u))}ne · [χ]+
∫
e

{∇(Lh(u)−UI)}ne · [χ].

Let e be a segment of γ1
h. Expanding the first integral and applying the argument

of Lemma 4.2, we obtain with the same notation∣∣∣∣∫
e

{∇(u− Lh(u))}ne · [χ]
∣∣∣∣ ≤ 1

2
Ĉ(1 + L2)1/2(|u− Lh(u)|21,E

+h2
E|u− Lh(u)|22,E +

∑
j

(|u− Lh(u)|21,Ej + h2
Ej |u− Lh(u)|22,Ej ))

1/2 σ
1/2
e

|e|1/2 ‖[χ]‖0,e.

Similarly,∣∣∣∣∫
e

{∇(Lh(u)−U I)}ne · [χ]
∣∣∣∣ ≤ 1

2
Ĉ(1 + L2)1/2(|Lh(u)−UI |21,E

+
∑
j

|Lh(u)−U I |21,Ej )
1/2 σ

1/2
e

|e|1/2 ‖[χ]‖0,e.

Therefore,∣∣∣∣∣∣
∑

e∈Γh∪γ1
h

∫
e

{∇(u−U I)}ne · [χ]

∣∣∣∣∣∣ ≤ Ĉ(|||∇(u − Lh(u))|||20 + |||∇(Lh(u)−U I)|||20

+
∑
E∈Eh

h2
E |u− Lh(u)|22,E)1/2J0(χ,χ)1/2.

Hence the estimate (4.23) and the standard approximation properties of Lh yield

|T2| ≤
K

8
J0(χ,χ) + Ch2k|u|2k+1.

The third term has the same structure as the one studied in Lemma 4.2 because
the degree of {∇χ}ne is k − 1; thus it satisfies the bound

|T3| ≤ C|||∇χ|||0,D12 |||∇(u −U I)|||0,D12 ≤ K

8
|||∇χ|||20 + Ch2k|u|2k+1.

Using Cauchy-Schwarz inequality, the jump term is bounded by virtue of (4.23):

J0(u−U I ,χ) ≤ K

8
J0(χ,χ) + CJ0(u−U I ,u−U I) ≤

K

8
J0(χ,χ) + Ch2k|u|2k+1.

Finally, the term involving the pressure reduces to

1
µ
b(χ, p− PI) =

1
µ

∑
e∈Γh

∫
e

{p− PI}[χ] · ne +
1
µ

∑
e∈γ1

h

∫
e

(p− PI)γ [χ] · ne,
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owing to (3.10) and the fact that each component of ∇ · χ ∈ IP k−1(E). Its right-
hand side is similar (but simpler than) T2; the first term is bounded by

1
µ

∣∣∣∣∣∑
e∈Γh

∫
e

{p− PI}[χ] · ne

∣∣∣∣∣ ≤ Ĉ

µ

(
‖p− PI‖20 +

∑
E∈Eh

h2
E |p− PI |21,E

)1/2

J0(χ,χ)1/2

≤ K

8
J0(χ,χ) +

C

µ2
h2k|p|2k.

(5.2)

Similarly

(5.3)
1
µ

∣∣∣∣∣∣
∑
e∈γ1

h

∫
e

(p− PI)γ [χ] · ne

∣∣∣∣∣∣ ≤ K

8
J0(χ,χ) +

C

µ2
h2k|p|2k.

Combining all the bounds above, we obtain

K
[
|χ|
]2 ≤ K

2
J0(χ,χ) +

K

4
|||∇χ|||20 + Ch2k(|u|2k+1 +

1
µ2
|p|2k);

therefore [
|χ|
]2 ≤ Ch2k(|u|2k+1 +

1
µ2
|p|2k).

Then (5.1) follows from the triangle inequality and (4.23). �

We now derive an estimate for the pressure.

Theorem 5.2. Under the assumptions and notation of Theorem 5.1, we have

‖p− P‖0 ≤ Chk(µ|u|k+1 + |p|k),

with a constant C independent of h and µ.

Proof. We can write the error equation as follows:

(5.4) ∀v ∈Xh, a(U − u,v) + J0(U − u,v) +
1
µ
b(v, P − PI) =

1
µ
b(v, p− PI).

By virtue of Remark 4.7, there exists vh ∈ X̃h such that

(5.5) b(vh, P − PI) = −‖P − PI‖20,
[
|vh|
]
≤ 1
β∗
‖P − PI‖0,

and in particular∑
E∈Eh

∫
E

∇(U −U I) : ∇vh + J0(U −U I ,vh) = 0,

where U I = P h(u). Therefore, (5.4) with the choice v = vh becomes
1
µ
‖P − PI‖20 = a(U − u,vh) + J0(U − u,vh)− 1

µ
b(vh, p− PI)

=
∑
E∈Eh

∫
E

∇(U I − u) : ∇vh + J0(U I − u,vh)− 1
µ
b(vh, p− PI)

−
∑

e∈Γ∪γ1
h

∫
e

{∇(U − u)}ne · [vh] + ε∗
∑

e∈Γ∪γ1
h

∫
e

{∇vh}ne · [U − u]

= Q1 +Q2 + · · ·+Q5.
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The estimates for Q1, Q2 and Q3 are straightforward. The bound for Q5 is similar,
but simpler than that for T2:

|Q5| ≤ CJ0(U − u,U − u)1/2|||∇vh|||0 ≤
C

β∗
J0(U − u,U − u)1/2‖P − PI‖0.

We then conclude by using (5.1):

|Q5| ≤ Chk(|u|k+1 +
1
µ
|p|k)‖P − PI‖0.

It remains to bound Q4; we write∫
e

{∇(U − u)}ne · [vh] =
∫
e

{∇(U −U I)}ne · [vh] +
∫
e

{∇(U I − u)}ne · [vh].

The second term is bounded as T2 in Theorem 5.1:∣∣∣∣∣∣
∑

e∈Γ∪γ1
h

∫
e

{∇(U I − u)}ne · [vh]

∣∣∣∣∣∣ ≤ CJ0(vh,vh)1/2hk|u|k+1.

The first term vanishes on all segments of Γh because {∇(U −U I)}ne belongs to
IP 2
k−1 and vh belongs to X̃h. Thus it has the same structure as the term studied

in Lemma 4.2:∣∣∣∣∣∣
∑

e∈Γ∪γ1
h

∫
e

{∇(U −U I)}ne · [vh]

∣∣∣∣∣∣ ≤ CJ0(vh,vh)1/2|||∇(U −U I)|||0,D12

≤ CJ0(vh,vh)1/2hk(|u|k+1 +
1
µ
|p|k).

The theorem is then obtained by combining these bounds with the triangle inequal-
ity and (5.5). �

We now address the estimate for the velocity in the L2 norm. The next theorem
shows that the convergence is optimal in the mesh size in the symmetric case (Ca),
but when ε∗ = 1, we lose a power of h. The proof is written under the assumption
that Ω is convex so that for any g ∈ L2(Ω)2, the solution (Φ, ξ) of the dual problem

− µ∆Φ +∇ξ = g, in Ω,(5.6)
∇ ·Φ = 0, in Ω,(5.7)

Φ = 0, on ∂Ω,(5.8)

belongs to H2(Ω)2 ×H1(Ω) with continuous dependence on g, .i.e,

(5.9) ‖Φ‖2 +
1
µ
‖ξ‖1 ≤

C

µ
‖g‖0.

The theorem handles both cases in order to show precisely where the nonsymmetric
formulation loses the factor of h. However, the estimate (5.11) holds without the
convexity assumption (see Lemma 6.2).
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Theorem 5.3. Assume that Ω is convex. Then, under the hypotheses of Theo-
rem 5.1, there exists a constant C, independent of h and µ such that

‖u−U‖0 ≤ Chk+1(|u|k+1 +
1
µ
|p|k), ε∗ = −1,(5.10)

‖u−U‖0 ≤ Chk(|u|k+1 +
1
µ
|p|k), ε∗ = +1.(5.11)

Proof. Consider the dual problem (5.6)–(5.8) with g = U − u. Using Green’s
formula over each element of Eh, we get

‖U − u‖20 =
∑
E

∫
E

(U − u) · (−µ∆Φ +∇ξ)

=
∑
E

∫
E

µ∇(U − u) : ∇Φ−
∑
E

∫
∂E

(µ∇ΦnE) · (U − u)

−
∑
E

∫
E

ξ∇ · (U − u) +
∑
E

∫
∂E

ξnE · (U − u).

The regularity of Φ and ξ implies that [µ∇Φ]|ene = 0 and [ξ]|e = 0 on each interior
edge e. Thus, we have

‖U −u‖20 =
∑
E

∫
E

µ∇Φ : ∇(U −u)−
∑

e∈Γh∪γ1
h

∫
e

{µ∇Φ}ne · [U −u] + b(U −u, ξ).

By subtracting the orthogonality equations

∀vh ∈ Xh, µ(a(U − u,vh) + J0(U − u,vh)) + b(vh, P − p) = 0,
∀qh ∈Mh, b(U − u, qh) = 0,

we obtain for any vh in Xh and qh in Mh

‖U − u‖20 =
∑
E

∫
E

µ∇(Φ− vh) : ∇(U − u)

− (1 + ε∗)
∑

e∈Γh∪γ1
h

∫
e

{µ∇Φ}ne · [U − u]

+ ε∗
∑

e∈Γh∪γ1
h

∫
e

{µ∇(Φ− vh)}ne · [U − u]

+
∑

e∈Γh∪γ1
h

∫
e

{µ∇(U − u)}ne · [vh]

− µJ0(U − u,vh) + b(U − u, ξ − qh)− b(vh, P − p)
= A1 +A2 + · · ·+A7.

We choose vh = P h(Φ) and qh = rh(ξ). First, observe that the properties of Φ
and (4.22) imply

b(vh, P − p) = b(P h(Φ)−Φ, P − p) + b(Φ, P − p) = b(P h(Φ)−Φ, rh(p)− p).
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Moreover, comparing with (5.2), we obtain

|b(P h(Φ)−Φ, rh(p)− p)|

≤
√

2
∑
E∈Eh

|P h(Φ)−Φ|1,E‖rh(p)− p‖0,E

+ Ĉ(‖rh(p)− p‖20 +
∑
E∈Eh

hE |rh(p)− p|21,E)1/2J0(P h(Φ),P h(Φ))1/2

≤ C

µ
hk+1|p|k‖U − u‖0,

owing to (4.23) with s = 2 and (5.9). Similarly,

b(U − u, ξ − rh(ξ)) =−
∑
E∈Eh

∫
E

∇ · (U I − u)(ξ − rh(ξ))

+
∑
e∈Γh

∫
e

{ξ − rh(ξ)}[U − u] · ne

+
∑
e∈γ1

h

∫
e

(ξ − rh(ξ))γ [U − u] · n1,

where U I is an interpolant of U of degree k in each element. Then comparing again
the second term with (5.2) and (5.3), we obtain the same bound as above:

|b(U − u, ξ − rh(ξ))| ≤ Chk+1(|u|k+1 +
1
µ
|p|k)‖U − u‖0.

Next, the bound for A1 is straightforward:

A1 ≤ Chk+1(|u|k+1 +
1
µ
|p|k)‖U − u‖0,

A3 is bounded as T2, A4 is bounded as Q4 in Theorems 5.1 and 5.2, and considering
that

(5.12) J0(vh,vh)1/2 = J0(P h(Φ)−Φ,P h(Φ)−Φ)1/2 ≤ Ch|Φ|2,

it yields

|A4| ≤ Chk+1(|u|k+1 +
1
µ
|p|k)‖U − u‖0.

Similarly, by (5.12) and (5.1), we obtain

J0(U − u,vh) ≤ J0(U − u,U − u)1/2J0(vh,vh)1/2 ≤ Chk+1(|u|k+1 +
1
µ
|p|k).

It remains to derive a bound for A2. This term vanishes as ε∗ = −1, and we can
conclude. However, if ε∗ = 1, this term is not zero, and this is where we shall lose
a power of h. Arguing as for Q5 in Theorem 5.2, we derive

|A2| ≤ µCJ0(U − u,U − u)1/2‖Φ‖2,
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and with (5.9) this gives

|A2| ≤ CJ0(U − u,U − u)1/2‖U − u‖0 ≤ Chk(|u|k+1 +
1
µ
|p|k)‖U − u‖0.

This is the dominating term; all the other terms are of order hk+1. �

6. Navier-Stokes problem

We recall the Navier-Stokes system of equations (2.4), (2.2), (2.3):

−µ∆u+ u · ∇u+∇p = f , in Ω,
∇ · u = 0, in Ω,
u = 0, on ∂Ω.

We discretize the Stokes part of the equation with the left-hand side of (3.8), (3.9)
and we address now the discretization of the nonlinear convection term u ·∇u. We
shall use the following upwind discretization of u · ∇z:

c(u; z,θ) =
∑
E∈Eh

(∫
E

(u · ∇z) · θ +
∫
∂E−

|{u} · nE |(zint − zext) · θint

)

+
1
2

∑
E∈Eh

∫
E

(∇ · u)z · θ

− 1
2

∑
e∈Γh∪γ1

h

∫
e

[u] · ne{z · θ}, ∀u, z,θ ∈ X,

(6.1)

where

∂E− = {x ∈ ∂E : {u} · nE < 0},

and the superscript int (resp. ext) refers to the trace of the function on a side
of E coming from the interior of E (resp. coming from the exterior of E on that
side). When the side of E belongs to ∂Ω, then we take the exterior trace to be
zero. The first three terms in the definition of c were introduced in [17] for solving
transport problems; the last term is chosen so that c satisfies (6.6), which ensures
its positivity. It is easy to see that, when u, z,θ ∈ H1

0 (Ω)2, c reduces to

(6.2) c(u; z,θ) =
∫

Ω

(u · ∇z) · θ +
1
2

∫
Ω

(∇ · u)z · θ.

Then we discretize (2.4), (2.2), (2.3) by: find (U , P ) ∈Xh ×Mh such that

∀vh ∈Xh, µ (a(U ,vh) + J0(U ,vh)) + c(U ;U ,vh) + b(vh, P ) =
∫

Ω

f · vh,

(6.3)

∀qh ∈Mh, b(U , qh) = 0.(6.4)

In view of (6.2), the argument of Lemma 3.6 shows that every solution of the
Navier-Stokes problem is also a solution of (6.3), (6.4) and conversely. The first
lemma shows that c has a nice “integration by parts” property.
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Lemma 6.1. The trilinear form c defined by (6.1) satisfies the following “integra-
tion by parts” for all u, z,θ in X:

c(u; z,θ) = −
∑
E∈Eh

( ∫
E

(u · ∇θ) · z +
1
2

∫
E

(∇ · u)z · θ
)

+
1
2

∑
e∈Γh∪γ1

h

∫
e

[u] · ne{z · θ}

−
∑
E∈Eh

∫
∂E−

|{u} · nE |zext · (θint − θext) +
∫

Γ+

|u · n|z · θ,

(6.5)

where Γ+ is the subset of ∂Ω where u · n > 0. In particular, if z = θ, we obtain

(6.6) c(u; z, z) =
1
2

∑
E∈Eh

∫
∂E−

|{u} · nE |‖zext − zint‖2 +
1
2

∫
Γ+

|u · n|‖z‖2 ≥ 0.

Proof. Noting that ∇ · (uzi) = (∇ · u)zi + u · ∇zi, we can write∫
E

(u · ∇z) · θ =
∫
E

∇ · (z ⊗ u) · θ −
∫
E

(∇ · u)z · θ

= −
∫
E

(u · ∇θ) · z +
∫
∂E

(uint · nE)zint · θint −
∫
E

(∇ · u)z · θ.

Therefore

c(u; z,θ) =−
∑
E∈Eh

( ∫
E

(u · ∇θ) · z +
1
2

∫
E

(∇ · u)z · θ
)

+
∑
E∈Eh

∫
∂E−

|{u} · nE |(zint − zext) · θint

− 1
2

∑
e∈Γh∪γ1

h

∫
e

[u] · ne{z · θ}

+
∑
E∈Eh

∫
∂E

(uint · nE)zint · θint.

In the last integral, let us split uint|∂E into

uint = {u}+
1
2

(uint − uext).

Therefore∫
∂E

(uint ·nE)zint · θint =
∫
∂E

{u} ·nEzint · θint +
1
2

∫
∂E

(uint−uext) ·nEzint · θint.

We now sum the last integral over all E and consider the contribution of this sum
to one interior edge e. Assume that e is shared by two triangles E1 and E2, with
exterior normal n1 and n2; we obtain

1
2

∫
e

(u|E1 − u|E2) · n1z|E1 · θ|E1 +
1
2

∫
e

(u|E2 − u|E1) · n2z|E2 · θ|E2)

=
∫
e

[u] · ne{z · θ}.
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The same formula is valid when e is shared on one side by more than one triangle.
It is also valid when e ⊂ ∂Ω because the jump and average coincide with the trace.
Hence

c(u; z,θ) =−
∑
E∈Eh

(
∫
E

(u · ∇θ) · z +
1
2

∫
E

(∇ · u)z · θ)

+
∑
E∈Eh

∫
∂E−

|{u} · nE |(zint − zext) · θint

+
1
2

∑
e∈Γh∪γ1

h

∫
e

[u] · ne{z · θ}

+
∑
E∈Eh

∫
∂E

({u} · nE)zint · θint.

But since {u} is now continuous across the edges, the argument used in [17] gives∑
E∈Eh

∫
∂E−

|{u} · nE |(zint − zext) · θint +
∑
E∈Eh

∫
∂E

({u} · nE)zint · θint

=
∑
E∈Eh

∫
∂E−

|{u} · nE |zext · (θext − θint) +
∫

Γ+

u · nz · θ.

This gives (6.5). Then if we take θ = z and add (6.1) to (6.5), we recover (6.6). �

The next lemma gives an Lp estimate for functions in Xh, in terms of the norm[
| · |
]
. It is stated for any function in the space

(6.7) H1(Eh) = {v ∈ L2(Ω) : ∀E ∈ Eh, v|E ∈ H1(E)}.

Lemma 6.2. Assume that the triangulation satisfies (3.1) and (4.2). Then for
each real number p ∈ [2,∞) there exists a constant C(p), independent of h, such
that

(6.8) ∀v ∈ H1(Eh), ‖v‖Lp(Ω) ≤ C(p)
[
|v|
]
.

Proof. If v were in H1
0 (Ω), then (6.8) would follow from Sobolev’s imbedding (2.6).

Since v does not belong to H1
0 (Ω), the idea of the proof is to associate with v a

suitable function v(h) whose gradient is closely related to ∇v in each E and to
study the difference v − v(h). Thus, we define v(h) in H1

0 (Ω) by

(6.9) ∀w ∈ H1
0 (Ω),

∫
Ω

∇v(h) · ∇w =
∑
E∈Eh

∫
E

∇v · ∇w.

Then

(6.10) ‖∇v(h)‖0 ≤ |||∇v|||0.
Now the proof proceeds by duality: we write

‖v(h)− v‖Lp(Ω) = sup
g∈Lp′(Ω)

∫
Ω(v(h)− v)g
‖g‖Lp′(Ω)

,

where p′ is the dual exponent of p: 1
p+ 1

p′ = 1. For a fixed g in Lp
′
(Ω), let ϕ ∈ H1

0 (Ω)
be the solution of

(6.11) −∆ϕ = g, in Ω, ϕ|∂Ω = 0.
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When p > 4, then p′ < 4
3 and it follows from [14] that ϕ ∈ W 2,p′(Ω) with

(6.12) ‖ϕ‖W 2,p′ (Ω) ≤ C1(p)‖g‖Lp′(Ω).

When p ≤ 4, then p′ ≥ 4
3 and g belongs always to L4/3(Ω). Therefore, we also have

ϕ ∈W 2,4/3(Ω) with
(6.13)
‖ϕ‖W 2,4/3(Ω) ≤ C1(4)‖g‖L4/3(Ω) ≤ |Ω|

1
p−

1
4C1(4)‖g‖Lp′(Ω) = C2(p)‖g‖0,Lp′(Ω).

Now (6.11) implies that∫
Ω

(v(h)− v)g = −
∫

Ω

∆ϕ(v(h) − v) = −
∑
E∈Eh

∫
E

∆ϕ(v(h) − v)

=
∑
E∈Eh

∫
E

∇ϕ · ∇(v(h)− v)−
∑
E∈Eh

∫
∂E

∇ϕ · nE(v(h)− v)

= −
∑

e∈Γh∪γ1
h

∫
e

{∇ϕ} · ne[v(h) − v],

owing to (6.9) and the regularity of ϕ. Let p > 4; by the trace theorem and the
regularity properties (3.1) and (4.2) of Eh, we have

(6.14) |
∫

Ω

(v(h)− v)g| ≤ C3(p)(|ϕ|1,Ω + h2/p|ϕ|W 2,p′ (Ω))J0(v, v)1/2.

If p ≤ 4, we use the fact that ϕ ∈W 2,4/3(Ω) and (6.14) is replaced by

|
∫

Ω

(v(h)− v)g| ≤ C3(4)(|ϕ|1,Ω + h1/2|ϕ|W 2,4/3(Ω))J0(v, v)1/2.

With (6.12) and (6.13), this becomes

|
∫

Ω

(v(h)− v)g| ≤ C4(p)‖g‖Lp′(Ω)J0(v, v)1/2.

Therefore
‖v(h)− v‖Lp(Ω) ≤ C4(p)J0(v, v)1/2,

and hence by virtue of (2.6) and (6.10), we have (6.8) with

C(p) = (C4(p)2 + S2
p)1/2. �

Lemmas 6.1, 6.2 and Theorem 4.5 enable us to prove the existence of discrete
solutions and a priori estimates.

Proposition 6.3. Assume that the triangulation satisfies (3.1) and Hypotheses H1
and H2. Then, if H3 holds, for any f in L4/3(Ω)2 and µ > 0, the discrete Navier-
Stokes problem (6.3), (6.4) has at least one solution (U , P ) in Xh ×Mh, and each
solution satisfies the a priori estimates[

|U |
]
≤ C(4)

µK
‖f‖L4/3(Ω),(6.15)∑

E∈Eh

∫
∂E−

|{U} · nE |‖U int −U ext‖2 +
∫

Γ+

|U · n|‖U‖2 ≤ 2
µK

C(4)2‖f‖2L4/3(Ω),

‖P‖0 ≤ C(‖f‖L4/3(Ω) +
[
|U |
]2

),
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where C(4) is the constant of Lemma 6.2 with exponent 4 and C is another constant
that depends on β∗ (see (4.8)) but is independent of h and µ.

We skip the proof because the existence of U is a straightforward application of
Brouwer’s Fixed Point Theorem in the space V h. It is made possible by (6.6) and
(6.8) with exponent 4. Then the existence of P follows from Theorem 4.5.

Now, we turn to error estimates. Let (U , P ) be a solution of (6.3), (6.4), let
(u, p) be a solution of (2.4), (2.2), (2.3), let U I = P h(u) be the operator defined
in Corollary 4.8 and let PI = rh(p) be the operator defined in (3.10). Then taking
the difference between (6.3) and the same equation satisfied by the exact solution,
using (4.22) and setting χ = U−U I , ξ = P −PI , we obtain the following equation:

(6.16)
µ(a(χ,χ)+J0(χ,χ))+c(UI ;χ,χ)+c(χ;U ,χ) = µ(a(u−UI ,χ)+J0(u−UI ,χ))

+ b(χ, p− PI) + c(u −U I ;UI ,χ) + c(u;u−U I ,χ).

Owing to (6.6), the left-hand side is bounded below by
(6.17)

Kµ
[
|χ|
]2 +

1
2

∑
E∈Eh

∫
∂E−

|{UI} ·ne|‖χext−χint‖2 +
1
2

∫
Γ+

|U ·n|‖χ‖2 + c(χ;U ,χ).

Therefore, we must find an upper bound for c(χ;U ,χ).

Lemma 6.4. Assume that the mesh satisfies (3.1) and (4.2). There exists a con-
stant C and for each r > 2, there exists a constant Cr, both independent of h, such
that

(6.18) ∀uh ∈ V h, ∀vh,wh ∈Xh, |c(uh;vh,wh)| ≤ Crh2/r
[
|uh|

][
|vh|
][
|wh|

]
+ C‖wh‖L4(Ω)(‖uh‖L4(Ω)

[
|vh|
]

+ ‖vh‖L4(Ω)J0(uh,uh)1/2).

Proof. Observe that

c(uh;vh,wh) =
∑
E∈Eh

(
∫
E

(uh · ∇vh) ·wh +
∫
∂E−

|{uh} · ne|(vint
h − vext

h ) ·wint
h )

−1
2
b(uh,vh ·wh) +

ε

4

∑
e∈γ1

h

∫
e

[uh] · n1[vh ·wh].

To bound the third term, we use an argument of Girault and Lions [10]. By the
definition of V h, we can write in particular

b(uh,vh ·wh) = b(uh,vh ·wh − qh),

where in each E, qh is the scalar product of two constant vectors c1 · c2:

(vh ·wh − qh)|E = (vh ·wh − c1 · c2)|E = (vh − c1) ·wh + c1 · (wh − c2).

Then arguing as in Corollary 4.8, we derive

|b(uh,vh ·wh)| ≤ C
[
|uh|

]
(
∑
E∈Eh

‖(vh − c1) ·wh‖20,E + ‖c1 · (wh − c2)‖20,E)1/2.

Let us choose

c1 =
1
|E|

∫
E

vh, c2 =
1
|E|

∫
E

wh,
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and for some number r > 2, let us write

‖(vh−c1)·wh‖0,E ≤ ‖vh−c1‖Lr(E)‖wh‖
L

2r
r−2 (E)

≤ C|E|1/r‖∇vh‖0,E‖wh‖
L

2r
r−2 (E)

.

Then summing over all E and applying (6.8) to each component of wh with expo-
nent (2r)/(r − 2), we obtain for any fixed r > 2:

(
∑
E∈Eh

‖(vh − c1) ·wh‖20,E)1/2 ≤ Ch2/r|||∇vh|||0
[
|wh|

]
.

Similarly,
(
∑
E∈Eh

‖c1 · (wh − c2)‖20,E)1/2 ≤ Ch2/r|||∇wh|||0
[
|vh|
]
.

Therefore, for each r > 2, there exists a constant Cr, independent of h, such that

|b(uh,vh ·wh)| ≤ Crh2/r
[
|uh|
][
|vh|
][
|wh|

]
.

For the second term, we have

|
∑
E∈Eh

∫
∂E−

|{uh} · ne|(vint
h − vext

h ) ·wint
h | ≤ CJ0(vh,vh)1/2‖uh‖L4(Ω)‖wh‖L4(Ω).

The last term is bounded as follows:

|
∑
e∈γ1

h

∫
e

[uh] · n1[vh ·wh]| ≤ CJ0(uh,uh)1/2‖vh‖L4(Ω)‖wh‖L4(Ω),

and the first term has the straightforward bound

|
∑
E∈Eh

∫
E

(uh · ∇vh) ·wh| ≤ |||∇vh|||0‖uh‖L4(Ω)‖wh‖L4(Ω).

Then (6.18) follows by collecting all these bounds. �

Remark 6.5. When the first argument of c belongs to V (instead of V h), then only
the first two terms in the expansion of c remain and

|c(u;vh,wh)|≤‖wh‖L4(Ω)(‖u‖L4(Ω)|||∇vh|||0+CJ0(vh,vh)1/2(‖u‖L4(Ω)+h1/2|u|1)),

where the constant C is independent of h. When the first argument of c belongs to
V + V h, then (6.18) is replaced by

|c(u− uh;vh,wh)| ≤ ‖wh‖L4(Ω)(C
[
|u− uh|

][
|vh|
]

+ ‖u− uh‖L4(Ω)|||∇vh|||0)

+ Crh
2/r
[
|u− uh|

][
|vh|
][
|wh|

]
.

As is usual for the Navier-Stokes equations, we introduce the quantity

(6.19) N(h) = sup
vh,wh∈V h

c(wh;vh,wh)[
|vh|
][
|wh|

]2 .

According to Lemmas 6.1 and 6.2, N(h) is bounded by a constant N independent
of h. It is easy to check that the discrete Navier-Stokes problem (6.3), (6.4) has a
unique solution if the data satisfy

N

K2µ2
C(4)‖f‖L4/3(Ω) < 1,

where C(4) is the constant of (6.8) with exponent 4. We have the following error
estimates.
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Theorem 6.6. Under the assumptions of Theorem 5.1 and if the data f and µ
satisfy:

(6.20)
N

K2µ2
C(4)‖f‖L4/3(Ω) ≤

1
2
,

then, the solution (U , P ) of (6.3), (6.4) satisfies the following a priori error esti-
mates: [

|u−U |
]
≤ Chk((1 +

1
µ2

)|u|k+1 +
1
µ
|p|k),(6.21)

‖p− P‖0 ≤ Chk(µ|u|k+1 + |p|k) +
C

µ

[
|u−U |

]
,(6.22)

where (u, p) is the solution of (2.4), (2.2), (2.3) and the constant C depends upon
f , but not on h or µ.

Proof. It follows from (6.20), (6.19) and (6.15) that the factor of µ in the left-hand
side of (6.16) is greater than or equal to

Kµ
[
|χ|
]2(1− N(h)C(4)

K2µ2
)‖f‖L4/3(Ω) ≥

1
2
Kµ
[
|χ|
]2
.

Then substituting this lower bound into (6.16) and dividing both sides by 1
2Kµ, we

obtain[
|χ|
]2 +

1
Kµ

(
∑
E∈Eh

∫
∂E−

|{U I} · nE |‖χext − χint‖2 +
∫

Γ+

|U · n|‖χ‖2)

≤ 2
K

(
a(u−U I ,χ) + J0(u −U I ,χ) +

1
µ
b(χ, PI − p)

)
+

2
Kµ

(c(u−UI ;UI ,χ) + c(u;U I − u,χ)) .

The first group of terms in the right-hand side is estimated in Theorem 5.1 and the
second group of terms is estimated in Remark 6.5. Then the theorem follows from
these two estimates, the approximating properties of P h and the triangle inequality.
The estimate for the pressure follows from the inf-sup condition. �

Of course, if (6.21) holds, then the solution u of the exact problem is unique.
As expected, the L2 error estimate for the symmetric formulation is optimal.

Theorem 6.7. Under the assumptions of Theorem 6.6, and if Ω is convex, there
is a constant C independent of h such that

‖u−U‖0,Ω ≤ Chk+1.(6.23)

Proof. For the sake of brevity, let us sketch the proof. Its main idea, due to [26],
consists of two steps. First, we solve the auxiliary discrete Stokes problem

µ(a(wh,vh) + J0(wh,vh)) + b(vh, zh) = (f ,vh)− c(u;u,vh), ∀vh ∈ Xh,

b(wh, qh) = 0, ∀qh ∈Mh,

and we observe that the exact solution is precisely (u, p). As in Theorem 5.3, the
error wh − u in the energy and L2 norms is optimal. The second step consists of
estimating ‖U −wh‖0,Ω. If ξ = U −wh, the error equation can be rewritten as
(6.24)
µ(a(ξ, ξ) + J0(ξ, ξ)) + c(u; ξ, ξ) + c(ξ;U , ξ) = c(u;u−wh, ξ) + c(u−wh;U , ξ).
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The left-hand side of (6.24) is similar to that of (6.16) and has the same lower
bound. Then, we prove that its right-hand side is bounded by Chk+1

[
|ξ|
]
. �

7. Conclusion

In this paper, we have established optimal a priori estimates for a totally discon-
tinuous family of approximations of the steady incompressible Stokes and Navier-
Stokes equations in two dimensions. We have balanced the discontinuities by insert-
ing suitable jump terms and in the nonsymmetric case these have only the viscosity
as a coefficient. Simultaneously, we treat domain decomposition with nonmatching
grids. The schemes are locally conservative away from subdomain interfaces. To
our knowledge, this is the first analysis of discontinuous Galerkin methods with
nonmatching domain decomposition for Stokes and Navier-Stokes equations in the
primitive variables.
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11. V. Girault, R. Glowinski, H. López and J.-P. Vila, A boundary multiplier/fictitious domain
method for the steady incompressible Navier-Stokes equations, Numer. Math. 88 (2001), no.
1, pp. 75–103. MR 2002b:65166

12. V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations: theory
and algorithms, Springer Series in Computational Mathematics 5 (1986). MR 88b:65129

13. V. Girault and R. L. Scott, A quasi-local interpolation operator preserving the discrete di-
vergence, Calcolo 40 (2003), pp. 1–19.

14. P. Grisvard, Elliptic problems in nonsmooth domains, Pitman Monographs and Studies in
Mathematics 24, Pitman, Boston, MA (1985). MR 86m:35044

15. P. Houston, C. Schwab and E. Suli, Discontinuous hp-finite element methods for advection-
diffusion problems, SIAM J. Numer. Anal. 39 (2002), no. 6, pp. 2133-2163. MR 2003d:65108

16. O. A. Karakashian and W. Jureidini, A nonconforming finite element method for the station-
ary Navier-Stokes equations, SIAM J. Numer. Anal. 35 (1998), pp. 93–120. MR 99d:65320

17. P. Lesaint and P. A. Raviart, On a finite element method for solving the neutron trans-

port equation, In: Mathematical Aspects of Finite Element Methods in Partial Differential
Equations, C. A. de Boor (Ed.), Academic Press, (1974) pp. 89–123. MR 58:31918
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