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ON STRONG TRACTABILITY
OF WEIGHTED MULTIVARIATE INTEGRATION

FRED J. HICKERNELL, IAN H. SLOAN, AND GRZEGORZ W. WASILKOWSKI

Abstract. We prove that for every dimension s and every number n of points,
there exists a point-set Pn,s whose 
-weighted unanchored L∞ discrepancy is

bounded from above by C(b)/n1/2−b independently of s provided that the
sequence 
 = {γk} has

∑∞
k=1 γ

a
k < ∞ for some (even arbitrarily large) a.

Here b is a positive number that could be chosen arbitrarily close to zero and
C(b) depends on b but not on s or n. This result yields strong tractability of
the corresponding integration problems including approximation of weighted
integrals

∫
D f(x) ρ(x) dx over unbounded domains such as D = Rs. It also

supplements the results that provide an upper bound of the form C
√
s/n

when γk ≡ 1.

1. Introduction

This article studies the unanchored L∞ discrepancy and strong tractability of the
corresponding integration problem. We begin the discussion with the integration
problem. Consider approximating the following type of weighted integrals:

(1) Iρ(f) =
∫
D

f(x) ρ(x) dx.

Here D is an s-dimensional box,

(2) D = (a1, b1)× · · · × (as, bs) ⊆ Rs,
with possibly infinite ai and/or bi. It is assumed that the weight function ρ has a
tensor product form,

(3) ρ(x) =
s∏

k=1

ρk(xk),

for nonnegative and Lebesgue integrable functions ρk. For simplicity, it is assumed
that the ρk are probability densities on (ak, bk), i.e.,∫ bk

ak

ρk(x) dx = 1.

However, as explained in Section 6.1 in [3], it is sufficient to assume that the integrals
of ρk are finite.
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Without loss of generality, the analysis can be restricted to linear algorithms

APn,s(f) =
n∑
i=1

wi f(xi),

where Pn,s = {x1, . . . ,xn} is a set of points from D and the wi are numbers.
Important examples of such algorithms are provided by the quasi–Monte Carlo
methods, denoted by QPn,s ,

QPn,s(f) = n−1
n∑
i=1

f(xi).

For a given normed space F of integrands, the error of APn,s is given by

error(APn,s ;F) := sup
‖f‖≤1

|Iρ(f)−APn,s(f)| = ‖Iρ −APn,s‖,

where ‖f‖ is the norm of f in the space F . The importance of this definition is
that

|Iρ(f)−APn,s(f)| ≤ ‖f‖ error(APn,s ;F), ∀ f ∈ F .
Let error(n;F) denote the nth minimal error, i.e., the minimal error among all

algorithms that use at most n function evaluations,

error(n;F) := inf
APn,s

error(APn,s ;F) and error(0;F) := ‖Iρ‖.

We say that the corresponding problem is tractable if there exist nonnegative con-
stants C, q1, and positive q2 such that

(4)
error(n;F)
error(0;F)

≤ C sq1 n−q2 , ∀n, s ≥ 1.

Moreover, the problem is strongly tractable if (4) holds with q1 = 0.
In an earlier paper [3], we considered this problem in the space F = F1,1,s (see

the next section for a formal definition), whose norm is given by

(5) ‖f‖1,1,s := |f(c)|+
∑
U 6=∅
‖f ′U‖L1(DU ).

Here the point c, called the anchor, is a fixed point from D. The summation is over
nonempty subsets U of {1, . . . , s}, and f ′U is obtained from

(∏
k∈U

∂
∂xk

)
f by fixing

the variables xk for k /∈ U and replacing them by the kth coefficients of the anchor c.
Moreover, DU is the Cartesian product

∏
k∈U (ak, bk) and xU is the projection of x

onto DU . Note that for D = [0, 1]s and c = 1, this is a classical norm often assumed
in the theory of low discrepancy points and multidimensional integration. Using a
proof technique similar to the one used in [2], we proved tractability of weighted
integration for any ρ satisfying the above assumptions. That is, in particular, we
showed that there exists a constant C such that

(6) error(n;F1,1,s) ≤ C
√
s

n
, ∀n, s ≥ 1.

Since the initial error error(0;F1,1,s) equals 1, this implies tractability of the
weighted integration problem for the space F1,1,s.

Although we doubt that the upper bound (6) is sharp, it was also shown in
[2] that the dependence on s cannot be eliminated. It is therefore natural to ask
under what restrictions on the class F1,1,s the corresponding nth minimal errors
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can be bounded from above independently of s, i.e., when the integration problem
is strongly tractable.

The main result of this paper provides a partial answer to this question by
considering so-called weighted spaces introduced in [9] and then further studied in
a number of papers. More specifically, let γ = {γk}k be a sequence of positive
numbers (called weights). For simplicity, we assume that γk ≤ 1. Then the space
F1,γ,s is a Banach space whose norm is given by

(7) ‖f‖1,γ,s := |f(c)|+
∑
U 6=∅

γ−1
U ‖f ′U‖L1(DU ),

where
γU :=

∏
k∈U

γk and γ∅ := 1.

Note that for γk ≡ 1, the norms (5) and (7) coincide. Moreover, also for arbitrary
γ we have error(0;F1,γ,s) = 1.

We prove that the nth minimal errors are arbitrarily close to a constant times
n−1/2 (independently of s) provided that

(8)
∞∑
k=1

γak <∞

for a positive (even arbitrarily large) number a. For instance, condition (8) is
satisfied if γk = O(1/kδ) for a positive (even arbitrarily small) number δ.

That is, we show that (8) implies the following: for every b > 0 there exists a
constant C(b) such that

(9) error(n;F1,γ,s) ≤ C(b)n−1/2+b, ∀n, s ≥ 1.

This is proved by showing an existence of quasi–Monte Carlo algorithms QPn,s with
errors bounded from above by C(b)n−1/2+b.

Actually, we show an even stronger result by considering the so-called unanchored
L∞ discrepancy D∞(Pn,s,γ). Its definition is presented in the next section; here
we only mention that for every anchor c, every sequence γ, and every Pn,s, we have

(10) error(QPn,s ;F1,γ,s) ≤ D∞(Pn,s,γ).

Our main result is as follows.

Main Theorem. Let (8) hold for some a > 0. Then for any positive b there exists
a constant C(b) such that for every n and s there is Pn,s with

(11) D∞(Pn,s,γ) ≤ C(b)nb−1/2.

This and (10) imply that the weighted integration problem for the space F1,γ,s

is strongly tractable under a very mild assumption concerning the convergence of
the γk’s. This is in contrast to tractability and strong tractability results obtained
for weighted classes with L1-norm replaced by Lp-norm (p > 1). Indeed, let Fp,γ,s
be the space equipped with the norm

‖f‖p,γ,s :=

(∑
U

γ−pU ‖f ′U‖
p
Lp

)1/p

for p <∞

and
‖f‖∞,γ,s := max

U
γ−1
U ‖f ′U‖L∞ .
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Then for p > 1, a necessary and sufficient condition for tractability of the integration
problem for the space F = Fp,γ,s (with an arbitrary anchor) is that

sup
s≥2

∑s
k=1 γ

p∗

k

ln(s)
<∞,

where p∗ is the conjugate to p, 1/p∗ = 1−1/p. For strong tractability, it is necessary
and sufficient that ∞∑

k=1

γp
∗

k <∞;

see [4, 7]. The results for p > 1 suggest that condition (8) might be necessary for
strong tractability as well.

For every point-set Pn,s, its unanchored discrepancy is an upper bound on its
same-quadrant and star discrepancies. Hence the upper bound (11) holds for these
discrepancies as well. The star discrepancy (with γk ≡ 1), denoted by D∗∞(Pn,s),
has been analyzed in many papers, and many deep and important results are avail-
able. In particular, it is known (see, e.g., [1, 5]) that there are point-sets Pn,s for
which

D∗∞(Pn,s) ≤ c(s)
(lnn)s−1

n
,

where c(s) depends on s but not on n. Such bounds are sharper than (6) and (11)
when n is very large relative to s. Note, however, that (lnn)s−1/n is an increasing
function of n when n ≤ exp(s− 1) and that exp(s− 1) could be very large even for
relatively small s. Hence, for problems with not too small s and/or not too large
n, the bounds (6) and (11) are sharper.

We now summarize the content of this paper. In Section 2, we provide basic
definitions and facts. The proof of the main theorem is presented in Section 3.

2. Basic definitions and facts

In this section we briefly recall basic facts and definitions used in this paper. For
more detailed discussion on discrepancies and the worst case setting, we refer the
reader to [1, 5] and to [6, 10], respectively.

Recall that we are interested in approximating integrals Iρ given by (1)–(3) in
the worst case setting with respect to the Banach space F = F1,γ,s whose formal
definition is presented now.

Let Hs be the linear space generated by the linear combinations of functions

f(x) =
s∏

k=1

hk(xk),

where for every k, hk : (ak, bk) → R is an absolutely continuous function with
h′k ∈ L1((ak, bk)). Then, for a given sequence γ, the number s of variables, and
the anchor c, the space F1,γ,s is the completion of Hs with respect to the norm
‖ · ‖1,γ,s given by (7).

As shown in [3], the weighted integration problem Iρ for the space F1,γ,s has
the same complexity as the complexity of unweighted integration on the unit cube
for the space F defined as F1,γ,s, however, with D replaced by the unit cube and
(in general) a different anchor. Moreover, for a quasi–Monte Carlo method for one
problem, there exists a quasi–Monte Carlo method for the other problem, both with
identical worst case errors. (Formally, this has been shown in [3] only for γk ≡ 1;
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however, the proof extends trivially to any γ.) Hence, from now on, we can assume
that

ρ ≡ 1, D = [0, 1]s, and Pn,s ⊂ [0, 1]s.

As follows from [3], the worst case error of QPn,s in the space F1,γ,s is equal
to the so-called (weighted) L∞ same-quadrant discrepancy of the point-set Pn,s =
{x1, . . . ,xn}. That is,

error(QPn,s ;F1,γ,s) = D∞,c(Pn,s,γ),

where

D∞,c(Pn,s,γ) := max
U 6=∅

γU sup
h∈[0,1]s

|disc(B(h, c), U,Pn,s)| ,

with

disc(B(h, c), U,Pn,s) := Vol(BU (hU , cU ))− n−1
n∑
i=1

1BU (hU ,cU )(xiU ).

Here B(h, c) is the box with one corner at h and the opposite corner given by
the unique vertex of [0, 1]s that lies in the same-quadrant as h with respect to the
anchor c. Of course, by BU (hU , cU ) we mean the projection of B(h, c) onto DU .
See [3] for the precise definition.

Recall that the classical L∞-star discrepancy of Pn,s is given by

D∗∞(Pn,s) := max
U 6=∅

sup
h∈D
|disc([0,h), U,Pn,s)|

= sup
h∈D

∣∣∣∣∣Vol([0,h))− n−1
n∑
i=1

1[0,h)(xi)

∣∣∣∣∣ ,
and its γ-weighted version is given by

D∗∞(Pn,s,γ) := max
U 6=∅

γU sup
h∈D
|disc([0,h), U,Pn,s)| .

By [0,h) we mean a box with opposite corners 0 and h.
Of course, for every Pn,s and γ,

D∗∞(Pn,s,γ) = D∞,1(Pn,s,γ);

i.e., the star discrepancy and the same-quadrant discrepancy coincide when c = 1.
The (weighted) L∞ unanchored discrepancy is defined by

D∞(Pn,s,γ) := max
U

γU sup
g,h∈[0,1]s

|disc([g,h), U,Pn,s)| ,

where now [g,h) is the box with opposite corners g and h.
It is easy to see that for every Pn,s, every γ, and every anchor c,

D∞,c(Pn,s,γ) ≤ D∞(Pn,s,γ), ∀ c ∈ D

which implies (10).
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3. Proof of the main result

We need the following three lemmas.

Lemma 1. The function B(t) := t−2 ((1 + t) ln(1 + t)− t) (t > 0) is decreasing
and supt>0B(t) = 1/2.

Proof. Note that limt↓0B(t) = 1/2 and B′(t) = g(t)/t3, where g(t) = 2t −
(2+t) ln(1+t). Since g′(t) = t/(1+t)−ln(1+t) and g′′(t) = −t/(1+t)2 < 0 ∀t > 0, it
follows that g′(t) ≤ g′(0) = 0 ∀t > 0, and so g(t) ≤ g(0) = 0 ∀t > 0. The conclusion
of this lemma follows. �
Lemma 2. If ca :=

∑∞
k=1 γ

a
k <∞, then there exists γ̂ <∞ such that

γU ≤ (ca/|U |)|U|/a ≤ γ̂, ∀U 6= ∅.
Proof. The proof of this inequality follows from the inequality relating the geometric
mean to the arithmetic mean:

γU =
∏
k∈U

γk =

[∏
k∈U

γak

]1/a

≤
[

1
|U |

∑
k∈U

γak

]|U|/a
≤
(
ca
|U |

)|U|/a
.

Taking the limit of |U | → ∞ of the right-hand side gives zero, so γU is bounded
above by some γ̂. �
Lemma 3. Under the conditions of Lemma 2 it follows that for δ < 1,

δ < γU ⇒ |U | < cae− a ln(δ).

Proof. Under the assumption that δ < γU and by Lemma 2 it follows that

|U | ln(|U |/ca) ≤ −a ln(γU ) < −a ln(δ).

Either |U | < cae or |U | ≥ cae. The former case is contained in the conclusion of
this lemma. In the latter case the inequality above implies that |U | < −a ln(δ). �

We are ready to prove the theorem. The proof uses Bennett’s inequality (see,
e.g., [8]) and is somewhat similar to the proof of [2, Theorem 1]. Let δ = (ĉ/n)b for
some b < 1/2 and some constant ĉ independent of n and s to be determined later.
It will be shown that there exists a set Pn,s with

(12) D∞(Pn,s,γ) = max
U

sup
g,h∈[0,1]s

γU |disc([g,h), U,Pn,s)| ≤ 3δ.

For any U ⊆ {1, . . . , s}, let δU = δ/γU . Since the absolute value of the local
discrepancy function is no larger than 1, it follows automatically that

sup
g,h∈[0,1]s

γU |disc([g,h), U,Pn,s)| ≤ γU ≤ δ for δU ≥ 1.

Therefore, to prove (12), it is only necessary to consider those U with δU < 1.
For U satisfying this condition, define mU = d|U |/δUe. Let ΓU be the equidistant
grid {1/mU , . . . , (mU − 1)/mU}|U| in DU . Of course, the cardinality of this grid is
|ΓU | = (mU − 1)|U|. As in [2] it can be shown that for any nonempty U and any
set Pn,s,

sup
g,h∈[0,1]s

|disc([g,h), U,Pn,s)| ≤
2|U |
mU

+ sup
g,h∈ΓU

|disc([g,h), U,Pn,s)| ,

sup
g,h∈[0,1]s

γU |disc([g,h), U,Pn,s)| ≤ 2δ + sup
g,h∈ΓU

γU |disc([g,h), U,Pn,s)| .
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For any positive integers n and s, let Pn,s = {x1, . . . ,xn} be a set of independent
and identically distributed random points uniformly distributed on [0, 1]s. The
quantities disc([g,h), U, {xi}) are also iid random variables indexed by g,h, and U .
Each of these random variables has zero mean and is bounded by ±1. Moreover,

disc([g,h), U,Pn,s) =
1
n

n∑
i=1

disc([g,h), U, {xi}).

To get an upper bound on the local discrepancy function, Bennett’s inequality
(see, e.g., [8]) is used. Let Y1, . . . , Yn be independent random variables with zero
means and bounded ranges: |Yi| ≤ M . Let σ2

i be variances of Yi and let V be any
number such that V ≥

∑n
i=1 σ

2
i . Then for each η > 0, Bennett’s inequality states

that

Prob{|Y1 + · · ·+ Yn| ≥ η} ≤ 2 exp
(
−η

2

V
B(Mη/V )

)
,

where B(t) = t−2 ((1 + t) ln(1 + t)− t).
We shall use this inequality for Yi = disc([g,h), U, {xi}), so we may take M = 1

and V = n. Taking η = nδU , it follows from above that η2/V = nδ2
U , Mη/V = δU ,

and

Prob {|disc([g,h), U,Pn,s)| ≥ δU} ≤ 2 exp
(
−nδ2

UB(δU )
)
, ∀g,h ∈ ΓU .

Since it is assumed above that δU < 1, Lemma 1 implies that B(δU ) ≥ B(1) =
2 ln(2)− 1. Since δ = (ĉ/n)b for some b < 1/2, we have n = ĉ/δ1/b, and
(13)

Prob {|disc([g,h), U,Pn,s)| ≥ δU} ≤ 2 exp
(
−(ĉB(1)/γ2

U )δ2−1/b
)
, ∀g,h ∈ ΓU .

Note that 2− 1/b < 0.
For a given U , there are no more than

(mU − 1)2|U| ≤ (|U |/δU )2|U| = exp (2|U |[ln(|U |)− ln(δ) + ln(γU )])

possible values of (g,h) ∈ ΓU × ΓU with g ≤ h. In view of Lemmas 2 and 3 one
may then write

(14) (mU − 1)2|U| ≤ exp (c1 − ln(δ)[c2 − c3 ln(δ)]) ≤ exp
(

(c4B(1)/γ̂2)δ2−1/b
)

for some positive constants c1, c2, c3, and c4 that are independent of U, n, and δ,
although c4 depends on b.

Combining (13) and (14), it follows that

Prob

{
sup

g,h∈ΓU

γU |disc([g,h), U,Pn,s)| ≥ δ
}
≤ 2 exp

(
(−ĉ+ c4)(B(1)/γ2

U )δ2−1/b
)
.

By choosing ĉ > 2c4, one ensures that
(15)

Prob

{
sup

g,h∈ΓU

γU |disc([g,h), U,Pn,s)| ≥ δ
}
≤ 2 exp

(
−[ĉB(1)/(2γ2

U )]δ2−1/b
)
.
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To obtain a lower bound on the probability of having a low discrepancy set, one
sums the above quantity over U :

Prob {D∞(Pn,s,γ) ≥ 3δ}

≤ Prob

{
sup

U with δU≤1
sup

g,h∈ΓU

γU |disc([g,h), U,Pn,s)| ≥ δ
}

≤
∑
U

2 exp
(
−[ĉB(1)/(2γ2

U )]δ2−1/b
)

≤
∑
U

2
exp

(
[ĉB(1)/(2γ2

U )]δ2−1/b
)

≤
∑
U

21+a/2(a/(2e))a/2γaUδ
a(1−2b)/(2b)

(ĉB(1))a/2

≤ 21+a/2(a/(2e))a/2δa(1−2b)/(2b)

(ĉB(1))a/2
∑
U

γaU

≤ 21+a/2(a/(2e))a/2δa(1−2b)/(2b)

(ĉB(1))a/2

∞∏
j=1

(1 + γaj ).

The product involving γaj is finite because of the summability condition on the γaj . If
δ > γ̂, then Prob {D∞(Pn,s,γ) ≥ 3δ} = 0 automatically. Otherwise, δa(1−2b)/(2b) ≤
γ̂a(1−2b)/(2b) and the last term above may be made as small as desired by choosing
ĉ large enough. Doing so forces Prob{D∞(Pn,s,γ) < 3δ} to be greater than zero,
completing the proof. �
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