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CONVERGENCE OF A CONTINUOUS GALERKIN METHOD
WITH MESH MODIFICATION

FOR NONLINEAR WAVE EQUATIONS

OHANNES KARAKASHIAN AND CHARALAMBOS MAKRIDAKIS

Abstract. We consider space-time continuous Galerkin methods with mesh
modification in time for semilinear second order hyperbolic equations. We
show a priori estimates in the energy norm without mesh conditions. Under
reasonable assumptions on the choice of the spatial mesh in each time step
we show optimal order convergence rates. Estimates of the jump in the Riesz
projection in two successive time steps are also derived.

1. Introduction

We consider space-time continuous Galerkin methods with mesh modification in
time for the model problem

utt −∆u = f(u), in Ω× [0, T ],

u = 0, on ∂Ω× [0, T ],

u(·, 0) = u0, in Ω,

ut(·, 0) = u1, in Ω,

(1.1)

where Ω is a bounded domain in R2, u is a real-valued function defined on Ω×[0, T ],
and f is a given Lipschitz function.

The continuous Galerkin method [AM], [BL], [FP] is a space-time finite element
method whose Runge-Kutta counterpart is the class of Gauss-Legendre methods
and thus is particularly useful for hyperbolic problems where the conservation of
certain quantities is important. This method has been analyzed for linear wave
equations in [BL], [FP]. For nonlinear problems with possible singular behavior
it is important to consider methods that allow adaptive mesh refinement. In this
direction a continuous Galerkin method with mesh modification in time was pro-
posed and analyzed in [KM2] for the nonlinear Schrödinger equation; see also [D].
In [Y] a first order in time fully discrete method with mesh modification for lin-
ear hyperbolic problems is considered and error estimates in the energy norm are
derived. In this paper we continue our investigation by considering continuous
Galerkin methods with mesh modification for nonlinear wave equations of the form
(1.1). The method proposed reduces to the classical one in the linear case, [BL],
[FP], if we have the same spatial mesh for all times. For other space-time finite
element methods for the wave equation cf. [F], [HH], [J].
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Mesh modification can have negative effects on the a priori analysis. In fact,
in extreme cases it might cause the divergence of the numerical method, as was
pointed out by Dupont [D]. Therefore the order of the method should not be
taken for granted even when “reasonable” mesh modification takes place. In the
error analysis we have to either impose restrictions in the selection of the mesh as
was done, e.g., in [EJ] or allow new terms, known as “jump terms”, to make an
appearance in the error estimates as in [KM1], [KM2]. These terms, albeit small,
are multiplied by the number of time levels where a spatial mesh modification has
occurred. In this paper, we have devoted special attention to this important issue.
In one approach, we show how to eliminate such terms (cf. Section 4) while the
second consists in obtaining superconvergence results for these terms (cf. Section
5).

The continuous Galerkin method. To introduce the method, we need some
notation. Let H` = H`(Ω) be the standard L2-based Sobolev spaces of order `
with norm ‖ · ‖`. Also (·, ·) denotes the inner product, and ‖ · ‖, the corresponding
norm on L2(Ω). ‖ · ‖∞, denotes the norm of L∞(Ω) and ‖ · ‖1,∞ the norm of
W 1,∞(Ω). We shall also use the “energy” norm on H1

0 × L2 given by |||(u, v)T ||| =
{‖∇u‖2 + ‖v‖2}1/2. For a space-time domain Ω× I, Lp(I;H`(Ω)) will denote the
usual spaces of functions defined on I and with values in H`(Ω) with norm denoted
by ‖ · ‖Lp(In;H`).

We consider a partition of [0, T ], 0 = t0 < t1 < · · · < tN = T , and we let
In = (tn, tn+1], kn = tn+1 − tn. We associate a partition Thn of Ω and a finite
element space Snh to each interval In :

Snh = {χ ∈ H1
0 (Ω) : χ|K ∈ Pr−1(K),K ∈ Thn},

where Pp(S) is the space of polynomials of degree p. (We associate S−1
h to {t0}

but for simplicity we take S−1
h = S0

h.) In the sequel we shall denote by K an
element of the partition Thn. Also hK stands for the diameter of the element K,
and hn = maxK∈Thn hK .

For a positive integer q, let Vq = Vhk(q) be the space of piecewise polynomial
functions ϕ : Ω × (0, T ] → R of the form: ϕ|Ω×In =

∑q
j=0 t

jχj(x), χj ∈ Snh .
Hence, the functions of Vq are for each t ∈ In elements of Snh , but they may
be discontinuous (in t) at the nodes tn, n = 0, . . . , J − 1. For this reason, we
introduce the notation vn+ = limt→tn+ v(t). Let also V nq = {ϕ|Ω×In : ϕ ∈ Vq} . Let
Anh : H1

0 (Ω)→ Snh be the discrete operator defined by

(1.2) (Anhv, χ) = (∇v,∇χ), ∀χ ∈ Snh ,

and let Lnh : H1
0 (Ω)× L2(Ω)→ Snh × Snh be defined by

Lnh =
(

0 −I
Anh 0

)
.

Henceforth, ((·, ·)) will denote the usual L2 inner product on the product space
L2 × L2.

We will consider approximations of (1.1) written in the usual first order (in time)
system form. In particular we will seek U ∈ Vq×Vq , U = (U1, U2)T ≈ (u, ut)T such
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that ∫
In

{((Ut,Φ)) + ((LnhU,Φ))} dt=
∫
In

((Fh(U),Φ))dt, ∀Φ ∈ V nq−1 × V nq−1,

Un+ = ΠnUn, n = 0, . . . , N − 1,
(1.3)

where U0 = (u0, u1)T and Fh(U) = (0, Pnf(U1))T , Pn is the L2 projection into Snh
and Πn denotes an appropriate projection operator into Snh × Snh . The analysis in

this paper requires the choice Πn =
(
PnE 0
0 Pn

)
, where PnE is the elliptic projection

operator into Snh . Note however that if Sn−1
h ⊂ Snh , which would result if one refines

the mesh locally, then Un+ = Un. Also, in practice, one could presumably use a
Lagrangian type interpolation operator as a less expensive alternative to Πn. This
will involve calculations only on the altered part of the mesh; cf. Remark 3.1 for a
comment on the influence of this choice in the error analysis.

Main results. The convergence properties of this method are discussed in the next
sections. To simplify the presentation, we assume here that f is globally Lipschitz;
the general case of locally Lipschitz f can be treated as in [KM2]. Although we
follow the basic ideas in [KM2], the approach taken here is different and does not
follow with straightforward adaptations of the analysis in [KM2] for the nonlinear
Schrödinger equation. One of the main difficulties presented here is the need to
directly work with the energy norm. This requires special choices and more involved
consistency analysis. On the other hand the analysis in this paper is more condensed
and based rather on finite element type techniques compared with those of [KM1],
[KM2].

In Theorem 3.1 we show that

max
t∈[0,T ]

(
‖u(t)− U1(t)‖ + ‖ut(t)− U2(t)‖

)
≤ C

{
max
n

kq+1
n Ct(u) + max

n
hrnCx(u) +

√
NC max

n
|||Jn|||

}
,

(1.4)

where Ct(u) and Cx(u) are quantities depending on various temporal and spatial
derivatives of u, NC denotes the number of times where Sjh 6= Sj−1

h , j = 1, . . .N−1,
and Jn = (ωn+ − ωn, ωn+

t − ωnt )T is the jump in the elliptic projection of (u, ut)T

at time tn (cf. Theorem 3.1 for the details). Theorem 3.2 provides the “local”
spatial mesh version of the estimate proved in Theorem 3.1. In addition a direct
consequence of the estimates in the energy norm in Theorem 3.1 is the L∞ estimate
(1.5)
max
t∈[0,T ]

‖u(t)−U1(t)‖∞ ≤ CLh
{

max
n

kq+1
n Ct(u) + max

n
hrnCx(u) +

√
NC max

n
|||Jn|||

}
,

where Lh is a factor that grows logarithmically with h. As in [KM2], an interesting
feature in the proofs is the right choice of two time interpolating operators. These
are the interpolants at the Gauss-Legendre (stability analysis) and at the Lobatto
points of each In (consistency analysis). Note in addition that due to the mesh
modification with n we have chosen to work with the energy norm, rather than
with the weaker norm introduced in [BB] and used in [BL], [FP]. We show that we
can retain the optimal order of convergence in the L2 and L∞ norms. See also [M]
where this was done in a different context.
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Note, however, the presence of the gradient in the jump terms due to the mesh
modification (compare with [KM2]). Indeed, |||Jn||| = O(hr−1). In Section 4 we show
that it is possible to eliminate the jump terms under the reasonable assumption that
all meshes contain a reference mesh Th. Indeed, we show the optimal order estimate:

(1.6) max
t∈[0,T ]

(
‖u(t)− U1(t)‖+ ‖ut(t)− U2(t)‖

)
≤ C

{
max
n

kq+1
n Ct(u) + hrCx(u)

}
.

In particular this shows that optimal convergence rates can be retained when mesh
modification is performed in many practical applications.

Finally, in Section 5 we show how to obtain increased accuracy for the jump
terms under the assumption that the meshes differ only in a region of small area.
In the two-dimensional case, and assuming that this region is of area O(h2), we
show that |||Jn||| = O(hr). Thus in this case also the convergence rates are optimal
provided NC remains bounded.

Plan of the analysis. The analysis in the forthcoming Sections 2 and 3 is based on
several steps that we briefly describe. One of the main ingredients of our approach
is the use of the connection of the continuous Galerkin method to the Runge-
Kutta–Gauss-Legendre family. This connection is used as a motivation for the
representation of U in terms of its values at the Gauss points of each In (cf. (2.3))

U(x, t) =
q∑
j=0

ˆ̀
n,j(t)Un,j(x), (x, t) ∈ Ω× In, tn,0 = tn.

Here tn,j, j = 1, . . . , q, are the Gauss Legendre points of In and { ˆ̀i}qi=0 are the
Lagrange polynomials of degree q associated with the q+1 points tn,j , j = 1, . . . , q,
plus the point tn,0 = tn. Here, of course, Un,0 = Un+ = ΠnUn is the given starting
value. This representation is crucial throughout the paper. Its first use is in the
uniqueness proof, Lemma 2.1 and Theorem 2.1: Indeed in view of (2.7) and Lemma
2.1 we can gain control of

∑q
j=0 ‖Un,j‖2 by appropriate selection of the test function

in (2.7). Then the existence-uniqueness follows by applying known arguments; cf.,
e.g., [KM2]. Essentially the same argument is used later in the stability analysis
for the control of the L2(In;L2) norm of the error by using (2.4); cf. Lemma 3.4.

Consistency analysis—the basic error equation. The error is decomposed as U−u =
(U −W ) + (W −u), where W = (W1,W2)T ∈ Vq ×Vq. The choice of W is essential
since it should be chosen such that W − u has the right order and in addition
W has desirable consistency properties. This is achieved by the definition of the
components of W through (3.6), (3.7). Note first that the definitions are based on
the interpolation operator In,qLo at the q + 1 Lobatto points of In and the elliptic
projection operator, (3.1). Lobatto interpolation is important since it preserves
continuity at both endpoints of the interval and its corresponding quadrature has
the same accuracy as that of the Gauss rule with q points. A more natural choice
for W1 would be just W1(x, t)

∣∣
In

= In,qLo ω(x, t), but then (3.8) is not valid. It turns
out that (3.8) is essential in the sequel in order to avoid “spatial” error terms in
the first component of the right-hand side of (3.9), and therefore W1 given by (3.7)
has all the desirable properties. The approximation properties of (W1,W2) are
established in part (i) of Lemma 3.3. It remains to estimate E = U −W. In view
of the definition of the scheme and the properties of W we conclude in Lemma 3.2
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that E satisfies the basic error equation (3.9). Then the consistency terms that
appear in its right-hand side are estimated in Lemma 3.3(ii).

Stability analysis—estimate of E. Next, the basic error equation (3.9) will be the
starting point to prove the final estimate for E. Notice that we choose to work
with the energy norm |||E||| =

(
‖∇E1‖2 + ‖E2‖2

)1/2
. This norm is a natural choice

for the wave equation; in [BL], [FP] the weaker L2 ×H−1-like norm introduced in
[BB] was used. The choice of the energy norm is important since it allows us to
handle the mesh modification in a proper way. Next, by selecting Φ = Pn,q−1

t AnhE
in (3.9), we conclude the first estimate (3.23). It is evident now that an additional
bound of |||E|||L2(In;L2) is needed. This is obtained in Lemma 3.4. Indeed as in
Section 2 we can gain control of

∑q
j=0 ‖En,j‖2 and thus of |||E|||L2(In;L2) in view of

(2.4) by choosing appropriate test functions in (3.9) and using the stability Lemma
2.1. Using then Lemma 3.4 in (3.23), the only term that remains to be handled
is |||En+|||. This is exactly the term where mesh modification will give rise to the
coarsening terms; cf. Lemma 3.5. The proof is then completed in Theorem 3.1 by
a refined Grownwall type argument. “Local” mesh size versions of these estimates
rely on the validity of corresponding bounds for the elliptic finite element case.
Theorem 3.2 provides the error estimates in this case.

2. Notation—preliminaries

As in [KM2], we will consider for q ≥ 1, the Gauss-Legendre integration rule,

(2.1)
∫ 1

0

g(τ)dτ ∼=
q∑
j=1

wjg(τj), 0 < τ1 < · · · < τq < 1,

which is exact for all polynomials of degree ≤ 2q − 1. Let {`i}qi=1 be the Lagrange
polynomials of degree q − 1 associated with the abscissas τ1, . . . , τq.

Using the linear transformation t = tn + τkn that maps [0,1] onto In, we adapt
the quadrature rule (2.1) to the interval In by defining its abscissas and weights as
follows:

tn,i = tn + τikn,

`n,i(t) = `i(τ), t = tn + τkn,

wn,i =
∫ tn+1

tn
`n,i(t)dt = kn

∫ 1

0

`i(τ)dτ = knwi, i = 1, . . . , q.

(2.2)

We shall also use the Lagrange polynomials { ˆ̀i}qi=0 of degree q associated with
the q + 1 points 0 = τ0 < τ1 < · · · < τq. In particular, U |In is determined by the
functions Un,j ∈ Snh × Snh (Un,j = U(x, tn,j)) such that

(2.3) U(x, t) =
q∑
j=0

ˆ̀
n,j(t)Un,j(x), (x, t) ∈ Ω× In, tn,0 = tn,

where Un,0 = Un+ = ΠnUn is given.
In the sequel, the following equivalence of norms will be useful:

(2.4) C1

{
kn

q∑
j=0

‖vj‖2
}1/2

≤ ‖v‖L2(In;L2) ≤ C2

{
kn

q∑
j=0

‖vj‖2
}1/2

, v ∈ Vq
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where v =
∑q
j=0

ˆ̀
n,jv

j ∈ V nq . This is a consequence of the L∞−L2 inverse property

(2.5) max
In
|y(t)| ≤ CIk−1/2

n

(∫
In

|y(t)|2dt
)1/2

, ∀y ∈ Pq(In),

and of the bound
∫
In
|ˆ̀n,j(t)|dt ≤ ckn.

We consider the L2-projection operator Pn,q−1
t : Pq[tn, tn+1] → Pq−1[tn, tn+1].

Then (cf. [KM2])

(2.6) Pn,q−1
t = In,q−1

GL ,

where In,q−1
GL is the Lagrange interpolation operator corresponding to the q Gauss-

Legendre points tn,1 < · · · < tn,q. This is indeed the case since for v ∈ Pq[tn, tn+1],∫
In

(In,q−1
GL v)φdt =

q∑
j=1

wn,jv(tn,j)φ(tn,j) =
∫
In

vφdt, ∀φ ∈ Pnq−1[tn, tn+1].

Now, for Φ ∈ V nq−1 × V nq−1,

(2.7)
∫
In

((Ut,Φ)) =
q∑

i,j=1

mij((Un,j ,Φi)) +
q∑
i=1

mi0((Un+,Φi)),

with

mij =
∫
In

ˆ̀′
n,j(t) `n,i(t)dt, i = 1, . . . , q, j = 0, . . . , q,

and vi = v(tn,i). The stability of the method relies on the positivity of the matrix
M

Mij = mij , i, j = 1, . . . , q.

In fact it is shown in [KM2] that the array M̃ = D−1/2MD1/2, where D =
diag{τ1, . . . , τq} is positive definite:

Lemma 2.1 ([KM2]). Let α := 1
2 min

j

wj
τj

. Then

(2.8) xTM̃x ≥ α|x|2 = α(
q∑
i=1

x2
i ), ∀x ∈ Rq.

Employing then similar arguments as in [KM2], we get the existence and unique-
ness of the numerical approximations.

Theorem 2.1. Let Un be given in Sn−1
h × Sn−1

h . Then for kn sufficiently small
there exists a unique solution U ∈ V nq × V nq of equation (1.3).

3. Error estimates

We split the error U − u = (U −W ) + (W − u), where W ∈ Vq × Vq will be
defined below, and we estimate E = U −W and u−W . To define W , we consider
the elliptic projection operator PnE : H1

0 (Ω)→ Snh defined as usual by

(3.1) (∇PnEv,∇χ) = (∇v,∇χ), ∀χ ∈ Snh .
We assume that the family of spaces Snh satisfies

‖∇(v − PnEv)‖ ≤ chs−1
n ‖v‖s, v ∈ Hs ∩H1

0 , 2 ≤ s ≤ r,(3.2)
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and

‖v − PnEv‖ ≤ chsn‖v‖s, v ∈ Hs ∩H1
0 , 2 ≤ s ≤ r,(3.3)

where c is independent of n.
See [BO], [EJ], [BS, Chapter 0], and [KM1] for a discussion on these assumptions.
We will also need a temporal interpolation operator: As in [KM2] we consider

interpolation at Gauss-Lobatto points. For this let 0 = ξ0 < · · · < ξq = 1 be

the q + 1 roots of the polynomial L(x) =
dq−1

dxq−1
[x(1 − x)]q . The corresponding

Gauss-Lobatto quadrature rule, [BS],

(3.4)
∫ 1

0

g(τ) dτ ≈
q∑
j=0

bjg(ξj),

is exact on P2q−1. As done with the Gauss-Legendre points, we can define the
points ξn,j and the weights bn,j corresponding to the interval In. In addition let
In,qLo be the Lagrange interpolation operator at the q+1 Lobatto points tn = ξn,0 <
· · · < ξn,q = tn+1.

We define ω and η by

(3.5) ω(x, t) = PnEu(x, t), η = u− ω, (x, t) ∈ Ω× In, n = 0, . . . , N − 1.

We next define W = (W1,W2). First let

(3.6) W2(x, t)
∣∣
In

= In,qLo ωt(x, t), W2(t0) = P 0
Eu

1,

and then,

(3.7) W1

∣∣
In

= In,qLo

( ∫ t

tn
W2 dt+ ωn+

)
.

We have

Lemma 3.1. It holds that

(3.8)
∫
In

(W1,t, ϕ)dt =
∫
In

(W2, ϕ)dt, ∀ϕ ∈ Vq−1.

Proof. Let Z
∣∣
In

=
∫ t
tn
W2 dt+ωn+ . Then W1

∣∣
In

= In,qLo Z . Using the definition of
In,qLo and the exactness of the Gauss-Lobatto integration rule, we get∫

In

(W1,t, ϕ)dt =−
∫
In

(W1, ϕt)dt+ (Z,ϕ)(tn+1)− (Z,ϕ)(tn+)

=−
q∑
j=0

bn,j(Z,ϕt)(ξn,j) + (Z,ϕ)(tn+1)− (Z,ϕ)(tn+)

=−
∫
In

(Z,ϕt)dt + (Z,ϕ)(tn+1)− (Z,ϕ)(tn+)

=
∫
In

(Zt, ϕ)dt =
∫
In

(W2, ϕ)dt,

since (Z,ϕt) ∈ P2q−1 . �
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The basic error equation.

Lemma 3.2. Let E = E|In = U −W and

AnI := In,qLo

( ∫ t

tn
(I − In,qLo )ut ds

)
,

AnII := utt −W2,t,

AnIII := f(W1)− f(u) + (In,qLo − I)∆u.

Then for all Φ = (φ1, φ2)T ∈ V nq−1 × V nq−1 and n = 0, 1, . . . , N − 1,
(3.9)∫
In

((Et+LnhE,Φ)) dt =
∫
In

{
(f(U1)−f(W1), φ2)− (∆AnI , φ2)+(AnII +AnIII , φ2)

}
dt.

Proof. To begin, E satisfies∫
In

((Et + LnhE,Φ)) dt =
∫
In

{
((Fh(U),Φ)) − ((Wt + LnhW,Φ))

}
dt.

Also note that ((Fh(U),Φ)) = (f(U1), φ2). On the other hand, by Lemma 3.1 we
have∫

In

((Wt + LnhW,Φ)) dt =
∫
In

{
(W1,t −W2, φ1) + (W2,t, φ2) + (∇W1,∇φ2)

}
dt

=
∫
In

(W2,t, φ2)dt+
∫
In

(∇W1,∇φ2) dt .

By the definition of W1 and (1.1) we obtain∫
In

(∇W1,∇φ2)dt =
q∑
j=0

bn,j(∇Z,∇φ2)(ξn,j)

=
q∑
j=0

bn,j(∇(
∫ ξn,j

tn
In,qLo utds+ un),∇φ2(ξn,j))

=
∫
In

(∆AnI , φ2) +
q∑
j=0

bn,j(∇(
∫ ξn,j

tn
utds+ un),∇φ2(ξn,j))

=
∫
In

(∆AnI , φ2) +
q∑
j=0

bn,j(∇u(ξn,j) ,∇φ2(ξn,j))

=
∫
In

(∆AnI , φ2) +
∫
In

(∇u ,∇φ2) +
∫
In

(∇(In,qLo u− u) ,∇φ2)

=
∫
In

(∆AnI , φ2) +
∫
In

(f(u), φ2)−
∫
In

(utt, φ2)−
∫
In

((In,qLo − I)∆u , φ2) ,

and the proof is complete. �

In the next lemma we show that indeed W1 and W2 have the right approximation
properties and we estimate AnI , A

n
II , A

n
III .



CONVERGENCE OF A CONTINUOUS GALERKIN METHOD 93

Lemma 3.3. (i) Let W1 and W2 be as in (3.7) and (3.6), respectively. Then
for p = 2 and p =∞,

‖W1 − u‖Lp(In;L2) ≤ ckq+1
n ‖ |u(q+1)|+ |u(q+2)| ‖Lp(In;L2)(3.10)

+ chrn‖ |u|+ kn|ut|+ k2
n|utt| ‖Lp(In;Hr),

‖W2 − ut‖Lp(In;L2) ≤ ckq+1
n ‖u(q+2)‖Lp(In;L2)(3.11)

+ chrn‖ |ut|+ kn|utt| ‖Lp(In;Hr),

where u(m) := ∂mt u .
(ii) Let AnI , AnII and AnIII be as in Lemma 3.2. Then

‖∆AnI ‖L2(In;L2) ≤ ckq+1
n ‖∆u(q+1)‖L2(In;L2)(3.12) ∣∣∣ ∫

In

(AnII , ϕ)dt
∣∣∣ ≤ c(kq+1

n ‖u(q+3)‖L2(In;L2)(3.13)

+ hrn‖utt‖L2(In;Hr)

)
‖ϕ‖L2(In;L2), ϕ ∈ Vq−1,

‖AnIII‖L2(In;L2) ≤ c‖W1 − u‖L2(In;L2) + Ckq+1
n ‖∆u(q+1)‖L2(In;L2).(3.14)

Proof. (i) We will consider only the case p = 2, the case p =∞ being in fact easier.
We begin by proving a stability property of the Lobatto interpolation operator In,qLo :
It is clear that In,qLo is stable with respect to the L∞ norm, i.e., ‖In,qLo φ‖L∞(In) ≤
c‖φ‖L∞(In), ∀φ ∈ L∞(In). Thus, using the Sobolev imbedding lemma and Cauchy-
Schwarz, we can easily deduce that ‖In,qLo φ‖L2(In) ≤ c‖φ‖L2(In) + ckn‖φ′‖L2(In).
This in turn gives the required stability result in the ‖ · ‖L2(In;L2) norm:

(3.15) ‖In,qLo φ‖L2(In;L2) ≤ c‖φ‖L2(In;L2) + ckn‖φt‖L2(In;L2).

We shall also use the inequality

(3.16) ‖φ‖L2(In;L2) ≤ ckn‖ψ‖L2(In;L2), where φ =
∫ t

tn
ψ ds.

Write W1 − u = In,qLo

∫ t
tn(W2 − ωt) ds + In,qLo ω − u. From (3.15) and (3.16) it

follows that

(3.17) ‖In,qLo

∫ t

tn
(W2 − ωt) ds‖L2(In;L2) ≤ ckn‖W2 − ωt‖L2(In;L2).

Now, W2 − ωt = In,qLo ωt − ωt = −In,qLo ηt − (ut − In,qLo ut)− ηt. From (3.15),

‖In,qLo ηt‖L2(In;L2) + ‖ηt‖L2(In;L2) ≤ c‖ηt‖L2(In;L2) + ckn‖ηtt‖L2(In;L2)

(3.18)

≤ chrn‖ut‖L2(In;Hr) + cknh
r
n‖utt‖L2(In;Hr).

The approximation properties of the operator In,qLo give

(3.19) ‖ut − In,qLo ut‖L2(In;L2) ≤ ckq+1
n ‖u(q+2)‖L2(In;L2).

Writing In,qLo ω − u = −In,qLo η + In,qLo u− u, as above we obtain

(3.20) ‖In,qLo ω − u‖L2(In;L2) ≤ chrn‖u‖L2(In;Hr) + ckq+1
n ‖u(q+1)‖L2(In;L2).

Inequality (3.10) now follows from (3.17)–(3.20). Similarly, writing ut − W2 =
ut − In,qLo ut + In,qLo ηt, we see that (3.11) follows from (3.18) and (3.19).
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(ii) We next estimate ‖∆AnI ‖L2(In;L2). From (3.15) and (3.16)

‖∆AnI ‖L2(In;L2) = ‖In,qLo

∫ t

tn
(I − In,qLo )∆ut ds‖L2(In;L2)

≤ ckn‖(I − In,qLo )∆ut‖L2(In;L2)

≤ ckq+1
n ‖∆u(q+1)‖L2(In;L2).

Also,

‖AnIII‖L2(In;L2) ≤ ‖f(W1)− f(u)‖L2(In;L2) + ‖(I − In,qLo )∆u‖L2(In;L2)

≤ c‖W1 − u‖L2(In;L2) + Ckq+1
n ‖∆u(q+1)‖L2(In;L2).

It remains to estimate AnII . Let ϕ ∈ Vq−1. Then (ηt = ut − ωt)∫
In

(AnII , ϕ)dt =
∫
In

(utt − (In,qLo ut)t, ϕ)dt+
∫
In

( (In,qLo ηt)t, ϕ)dt =: Γ1 + Γ2 .

To estimate Γ1, we have since the endpoints of In are included in the Lobatto points

Γ1 =
∫
In

(utt − (In,qLo ut)t, ϕ)dt = −
∫
In

(ut − In,qLo ut, ϕt)dt.

We next let In,q+1 denote the Lagrange interpolation operator at the q + 2 points
of [tn, tn+1] consisting of the q + 1 Lobatto points ξn,0, . . . , ξn,q and any number
in [tn, tn+1] distinct from the above, e.g., the average of any two adjacent Lobatto
points. Then, (In,q+1ut)ϕt is a polynomial of degree 2q−1 in t and we thus obtain∫

In

(ut − In,qLo ut, ϕt)dt =
∫
In

(ut − In,q+1ut, ϕt)dt .

Integrating by parts, we finally get

|Γ1| = |
∫
In

(
[
ut − In,q+1ut

]
t
, ϕ)dt|

≤ Ckq+1
n ‖u(q+3)‖L2(In;L2) ‖ϕ‖L2(In;L2) .

Now viewing ηt(tn+) as a function constant in time,

Γ2 =
∫
In

( (
In,qLo

[
ηt − ηt(tn+)

] )
t
, ϕ
)
dt =

∫
In

((
In,qLo

[ ∫ t

tn
ηtt

])
t
, ϕ

)
.

Using an H1 − L2 inverse property (similar to (2.5)), we obtain

|Γ2| ≤ ck−1
n

∥∥∥In,qLo

[ ∫ t

tn
ηtt

]∥∥∥
L2(In;L2)

‖ϕ‖L2(In;L2).

Inequality (3.13) now follows from (3.15) and (3.16). The proof of the lemma is
complete. �

Stability. Our intention is to derive estimates for |||E||| =
(
‖∇E1‖2 + ‖E2‖2

)1/2
.

For this, we take Φ = Pn,q−1
t AnhE ∈ Vq−1 × Vq−1 in (3.9), where

Pn,q−1
t =

(
Pn,q−1
t 0

0 Pn,q−1
t

)
and AnhE =

(
AnhE1

E2

)
.

Then clearly,

(3.21)
∫
In

((Et,Φ)) dt =
1
2
|||En+1|||2 − 1

2
|||En+|||2 .
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On the other hand, the definition of AhE and (2.6) imply

(3.22)
∫
In

((LnhE,P
n,q−1
t AnhE)) dt =

q∑
j=1

wn,j((LnhE,AnhE)) (tn,j) = 0 .

As for the right-hand side of (3.9), note that only φ2 = Pn,q−1
t E2 appears. Since

f is Lipschitz, the first term is bounded by c‖E1‖L2(In;L2)‖E2‖L2(In;L2) and hence
by c‖∇E1‖L2(In;L2)‖E2‖L2(In;L2) via Poincaré’s inequality. The remaining terms
having been estimated in Lemma 3.3 (estimates (3.12)–(3.14)), from (3.21) and
(3.22) it follows that for n = 0, . . . , N − 1,

(3.23) |||En+1|||2 ≤ |||En+|||2 + c|||E|||2L2(In;L2) + c
(
kq+1
n Ent + chrnEnx

)2

,

where

Ent = Ent (u, q) = ‖ |u(q+1)|+ |u(q+2)|+ |u(q+3)|+ |∇u(q+2)|+ |∆u(q+1)| ‖L2(In;L2),

Enx = Enx (u, r) = ‖ |u|+ |ut|+ |utt| ‖L2(In;Hr).

We have used this particular presentation of Ent (u, q) and Enx (u, r) for brevity. We
have also included the term∇uq+2 in anticipation of the term Bn−1 that will appear
in Lemma 3.5.

We next estimate the term |||E|||L2(In;L2) in (3.23)

Lemma 3.4. For any n, 0 ≤ n ≤ N − 1, and kn sufficiently small, it holds that

(3.24) |||E|||2L2(In;L2) ≤ ckn|||En+|||2 + ckn

(
kq+1
n Ent + chrnEnx

)2

.

Proof. Let Ẽn,j = τ
−1/2
j En,j , j = 1, . . . , q. Recalling that En,0 = En+, we have

E(x, t) =
q∑
j=0

ˆ̀
n,j(t)En,j(x) =

q∑
j=1

ˆ̀
n,j(t)τ

1/2
j Ẽn,j(x) + ˆ̀

n,0(t)En+(x).

We then choose in (3.9) Φ = ΦE :=
∑q
i=1 `n,i(t)τ

−1/2
i AnhẼn,i . As in (3.22)∫

In

((LnhE,ΦE)) =
q∑
j=1

wn,jτ
−1
j ((LnhEn,j ,AnhEn,j)) = 0 .

Also, using (2.7) and Lemma 2.1∫
In

((Et,ΦE))dt =
q∑

i,j=1

m̃ij

[
(∇Ẽn,j1 ,∇Ẽn,i1 ) + (Ẽn,j2 , Ẽn,i2 )

]
+

q∑
i=1

mi0τ
−1/2
i

[
(∇En+

1 ,∇Ẽn,i1 ) + (En+
2 , Ẽn,i2 )

]
(3.25)

≥ c
q∑
j=1

|||Ẽn,j |||2 − c
( q∑
j=1

|||Ẽn,j |||2
)1/2|||En+|||.

The quantities (norms)
∑q

j=1 |||Ẽn,j |||2 and
∑q
j=1 |||En,j |||2 are equivalent modulo

constants that depend only on the τi’s. Similarly, it is easily seen (cf. [KM2]) that
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the quantities
∑q

j=0 |||En,j |||2 and |||E|||2L2(In;L2) are equivalent in the sense that

(3.26) ckn

q∑
j=0

|||En,j |||2 ≤ |||E|||2L2(In;L2) ≤ c2kn
q∑
j=0

|||En,j |||2.

The terms on the right side of (3.9) with Φ = ΦE can be estimated just as before.
This and (3.25), (3.26) imply (3.24). �

We proceed to estimate |||En+|||2 which appears both in (3.23) and (3.24). Let
Mn ≥ 2 be a number depending on n which will be specified in the sequel and

βn =
γn

Mn − 1
, γn =

{
0 if Snh = Sn−1

h ,

1 otherwise,
n = 1, . . . , N − 1.

Lemma 3.5. For any n, 1 ≤ n ≤ N − 1, it holds that

(3.27) |||En+|||2 ≤ (1 + βn + kn−1)|||En|||2 + γn(Mn + kn−1)|||Jn|||2 + cB2
n−1

where
|||Jn|||2 = ‖∇(ωn+ − ωn)‖2 + ‖ωn+

t − ωnt ‖2

and
Bn−1 ≤ ckq+1

n−1‖∇u(q+2)‖L2(In−1;L2).

Proof. We first consider the term ‖En+
2 ‖. Then,

‖En+
2 ‖ = ‖Un+

2 −Wn+
2 ‖ = ‖PnEn2 − Pn[ωn+

t − ωnt ]‖(3.28)

≤ ‖En2 ‖+ ‖ωn+
t − ωnt ‖.

Next for ‖∇En+
1 ‖ we have

‖∇En+
1 ‖ = ‖∇(PnEU

n
1 −Wn+

1 )‖(3.29)

≤ ‖∇PnE(Un1 −Wn
1 )‖ + ‖∇PnE(Wn+

1 −Wn
1 )‖

≤ ‖∇(Un1 −Wn
1 )‖ + ‖∇(Wn+

1 −Wn
1 )‖.

Now using the definition of W1 we have

‖∇(Wn+
1 −Wn

1 )‖

≤ ‖∇(Wn+
1 − Pn−1

E un)‖+ ‖∇Pn−1
E (un −

∫ tn

tn−1
In−1,q
Lo ut dt− un−1)‖

≤ ‖∇(PnE − Pn−1
E )un‖+ ‖∇(un −

∫ tn

tn−1
In−1,q
Lo ut dt− un−1)‖(3.30)

= ‖∇(ωn+ − ωn)‖+ ‖
∫ tn

tn−1
(I − In−1,q

Lo )∇ut‖

≤ ‖∇(ωn+ − ωn)‖+ ck
1/2
n−1Bn−1.

The result now follows from (3.28)–(3.30) and applications of the arithmetic
geometric mean inequality. �

We note here that unlike the term J [ζn], Bn−1 is nonzero in general even if the
spaces Snh and Sn−1

h are the same.
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Remark 3.1. The choice Πn =
(
PnE 0
0 Pn

)
in (1.3) was used in an essential way

in Lemma 3.5. Indeed in (3.28) and (3.29) we used the natural stability of Pn

and PnE in L2 norm and H1 seminorm, respectively. A more convenient choice in
practice would be to use a Lagrangian type interpolation operator. In that case we

would have Un+ = ΠnUn =
(

Πn
h 0

0 Πn
h

)
Un, where Πn

h is the standard interpolation

operator into Snh . Then the result of Lemma 3.5 would still be valid provided

(A1) ‖Πn
hE

n
2 ‖ ≤ (1 + Ckn)‖En2 ‖ and ‖∇Πn

hE
n
1 ‖ ≤ (1 + Ckn)‖∇En1 ‖.

Of course there are no guarantees that these bounds are valid. To retain the
convergence result we could impose (A1) as an extra assumption. On the other
hand (A1) might be satisfied in practice when the mesh adaptation is performed
under a reasonable adaptive strategy. Indeed the influence of Πn

h is local. The
alteration of the mesh will normally consist on the part where we refine and the
part where the mesh is coarsened. Πn

hE
n
2 differs from En2 only in the coarsened

area. But a reasonable adaptive algorithm chooses to coarsen the mesh only in
areas where the error is well below a given tolerance and without strong variations.
Therefore although (A1) is an extraneous condition that cannot be justified a priori,
its validity might be within reason in successful adaptive computations.

We are now ready to prove the main convergence result for our scheme.

Theorem 3.1. Let u and U be the solutions of (1.1) and (1.3), respectively. Then

(3.31) max
t∈[0,T ]

|||E||| ≤ c
N−1∑
n=0

ec(T−tn)
{
kq+1
n Ent + hrnEnx

}
+ cecT

√
NC max

n
|||Jn|||,

where NC denotes the number of times where Sjh 6= Sj−1
h , j = 1, . . . , N − 1. In

addition, (1.4) and (1.5) hold.

Proof. To begin, note that E0+ = (0, (P 0−P 0
E)u1)T . Hence, |||E0+||| ≤ chr0E0

x . Also,
(3.23), (3.24) and (3.27) imply (set B−1 = B0 and E0 = E0+)

|||En+1|||2 ≤
(
1 + ckn

){
(1 + βn + kn−1)|||En|||2 + γn(Mn + kn−1)|||Jn|||2 + cB2

n−1

}
+ c
(
1 + ckn

)(
kq+1
n Ent + hrnEnx

)2
, n = 0, . . . , N − 1.

A standard Gronwall type argument gives

|||En|||2 ≤ c
n−1∑
m=0

Cm,n−1

{(
kq+1
m Emt + hrmEmx

)2(3.32)

+ γm(Mm + km−1)|||Jm|||2
}
, n = 1, . . . , N,

where Cm,n−1 =
∏n−1
j=m(1+ckj)(1+βj+kj−1). We shall next estimate these terms.
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We fix n and choose Mm = M = NC(n− 1) + 1, m = 1, . . . , n − 1, where
NC(n− 1) denotes the number of times where Sjh 6= Sj−1

h , j = 1, . . . , n− 1. Then,
βj = β = 1

M−1 , whenever Sjh 6= Sj−1
h , and βj = 0 otherwise. Thus, for m ≤ ` ≤

n− 1,

Cm,n−1 ≤
n−1∏
j=m

(1 + ckj)
n−1∏
j=m

β<kj−1

(1 + 2kj−1)
n−1∏
j=m

β≥kj−1

(1 + 2β)

≤ ec(tn−tm) · e2(tn−1−tm−1) · (1 + 2β)M−1 ≤ ec(tn−tm−1) · e2.

Using this in (3.32), we obtain

(3.33) max
1≤n≤N

|||En|||2 ≤ c
N−1∑
n=0

ec(T−tn)
{
kq+1
n Ent + hrnEnx

}2

+ cecTNC max
n
|||Jn|||2.

Inequality (3.31) now follows from the inverse inequality (2.5), (3.24), (3.27) and
(3.33). Now (1.4) follows from (3.31) upon using the triangle inequality (recall that

U−
(
u
ut

)
= E+W −

(
u
ut

)
), Poincaré’s inequality on the first component of E and

the consistency estimates of Lemma (3.3) ((3.10) and (3.11) with p =∞). Finally,
(1.5) can be obtained by making use of a well-known H1-L∞ inverse inequality that
holds in 2 dimensions (cf. [Thomée, p. 67]). �

Estimates with local spatial mesh sizes. In the previous estimates we did
not work with the local mesh sizes, but rather with the global h. The results are
extended in the local mesh form provided we assume that the elliptic projection
operator PnE : H1

0 (Ω) → Snh defined in (3.1) satisfies the “local mesh” versions of
(3.2), (3.3); i.e., we assume that

‖∇(v − PnEv)‖ ≤ c‖hs−1
n v‖s, v ∈ Hs ∩H1

0 , 2 ≤ s ≤ r,(3.34)

and

‖v − PnEv‖ ≤ c‖hsnv‖s, v ∈ Hs ∩H1
0 , 2 ≤ s ≤ r,(3.35)

where c is independent of n. Here we use the “local mesh” notation

‖hsnv‖m =
{ ∑
K∈Thn

h2s
K‖v‖2m,K

}1/2

,

and ‖v‖m,K denotes the restriction of the Sobolev norm to K. Clearly the estimate
(3.34) is straightforward. Inequality (3.35) requires more care. Indeed, it is known
that (3.35) is valid in one dimension without any assumptions on the mesh; cf.
[BO]. In higher dimensions (3.35) is valid under appropriate local quasiuniformity
conditions; cf. [EJ] and the references therein and also [BS, Chapter 0] for a dis-
cussion of the one-dimensional case that hints at the difficulties of the problem.
Essentially (3.35) is used only to bound the “elliptic” consistency terms in Lemma
3.3. Therefore Theorem 3.1 still holds if we replace the hrn‖v‖r-like terms by cor-
responding terms involving the error of the elliptic projection in the L2-norm. We
can thus obtain by entirely similar arguments
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Theorem 3.2. Let u and U be the solutions of (1.1) and (1.3), respectively. Then

(3.36) max
t∈[0,T ]

|||E||| ≤ c
N−1∑
n=0

ec(T−tn)
{
kq+1
n Ent +Knx(hrn)

}
+ cecT

√
NC max

n
|||Jn|||,

where NC denotes the number of times where Sjh 6= Sj−1
h , j = 1, . . . , N − 1, and

Knx(hrn) = ‖hrn(|u|+ |ut|+ |utt|)‖L2(In;Hr) .

In addition, the local mesh version of (1.4) holds. The L∞ estimate requires a
local mesh estimate of the elliptic projection in the L∞ norm:

‖v − PnEv‖∞ ≤ c‖hrnv‖r,∞ ;

cf., e.g., [E], [SW] and their references.

4. Estimates under conditions on the mesh

We will assume in this section that the meshes in each time step are generated
by a reference (coarse) mesh Th. In particular starting with Th we may want to
refine the mesh in a part of the domain after some time steps. Then (since we may
want to capture a moving singularity) we may choose to derefine in this area (and
thus getting the original partition there) and to refine in a new area. This situation
can be summarized by assuming that a fixed space Sh, that corresponds to the
reference mesh Th, is a subspace of all the finite element spaces Snh . We denote
h = maxK∈Th hK , and we assume that

(4.1) inf
ϕ∈Sh

‖v − ϕ‖s ≤ Chr−s‖v‖r, s = 0, 1.

The main idea in this section is that although Un lies in a different space Snh for
each n, we will compare it with a function (denoted again) W such that W (t) ∈ Sh
for all t. For this we split the error as U − (u, ut)T = (U −W ) + (W − (u, ut)T ). To
define W , we consider the elliptic projection operator PE : H1

0 (Ω)→ Sh defined by

(4.2) (∇PEv,∇χ) = (∇v,∇χ), ∀χ ∈ Sh.
Then PE satisfies the well-known estimates
(4.3)
‖∇(v − PEv)‖ ≤ chs−1‖v‖s, ‖v − PEv‖ ≤ chs‖v‖s, v ∈ Hs ∩H1

0 , 2 ≤ s ≤ r.
We define ω̄, η̄ as

ω̄(x, t) = PEu(x, t), η̄ = u− ω̄.
If W = (W1,W2)

∣∣
In

, we let

W2

∣∣
In

= In,qLo ω̄t, W1

∣∣
In

= In,qLo

(∫ t

tn
W2 dt+ ω̄n

)
.

(Note that ω̄n+ = ω̄n.) Then the relation∫
In

(W1,t, ϕ)dt =
∫
In

(W2, ϕ)dt for all ϕ ∈ Vq−1

still holds.
The analysis then is the same as in Section 3. The main difference is that in the

place of Lemma 3.4 we now have
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Lemma 4.1. It holds that

|||En+||| ≤ |||En|||+Gn

where
Gn ≤ ck1/2

n−1k
q+1
n−1‖∇u(q+2)‖L2(In−1;L2).

Proof. We first consider the term ‖En+
2 ‖. Then,

En+
2 = Un+

2 −Wn+
2 = Pn+Un2 − ω̄nt = Pn+(Un2 − ω̄nt ) = Pn+En2 ,

since by our assumption ω̄nt ∈ Sh ⊂ Snh . Therefore ‖En+
2 ‖ ≤ ‖En2 ‖. For ‖∇En+

1 ‖
we have, noticing again that W1(t) ∈ Sh ⊂ Snh ,

‖∇En+
1 ‖ = ‖∇(Pn+

E Un1 −Wn+
1 )‖

≤ ‖∇Pn+
E (Un1 −Wn

1 )‖+ ‖∇(Wn+
1 −Wn

1 )‖

≤ ‖∇(Un1 −Wn
1 )‖+ ‖∇PE(

∫ tn

tn−1
(I − In−1,q

Lo )ut)‖.

But then as in Lemma 3.4,

‖∇PE(
∫ tn

tn−1
(I − In−1,q

Lo )ut)‖ ≤ ‖(
∫ tn

tn−1
(I − In−1,q

Lo )∇ut)‖

≤ k1/2
n−1ck

q+1
n−1‖∇u(q+2)‖L2(In−1;L2),

which completes the proof. �
Therefore since no jump terms are present in this lemma, by applying the argu-

ments in Section 3, we get

Theorem 4.1. Let u and U be the solutions of (1.1) and (1.3), respectively. Suppose
Sh ⊆ Snh ∀n, where Sh satisfies (4.1). Then

max
t∈[0,T ]

(
‖u(t)− U1(t)‖ + ‖ut(t)− U2(t)‖

)
≤ C

{
max
m

kq+1
m Ct(u) + hrCx(u)

}
.

Remark 4.1. The local mesh size version of the above result is obtained as before
by replacing the assumption (4.3) by

‖∇(v − PEv)‖ ≤ c‖hs−1v‖s, ‖v − PEv‖ ≤ c‖hsv‖s, v ∈ Hs ∩H1
0 , 2 ≤ s ≤ r.

Then the analog of Theorem 3.2 holds in our case without the jump terms present.
Note however that the locality of the estimate in this case is “smeared out” since Sh
does not include the moving refined parts of the mesh. On the other hand Theorem
4.1 establishes that in the present important case of mesh modification the optimal
order of convergence is preserved.

5. Estimate for the jump of the Riesz projection

In applications, when it is needed to change the spatial mesh at some time level
tn, the two meshes will be in general incompatible but will, more often than not,
differ only in a region of small area. The following simple estimates show that
the corresponding difference of the Riesz projections involves a factor that depends
on the measure of the region of the incompatibility of the two meshes. To define
the regions of incompatibility, we will use the following characterization. The set
Dn
i ⊂ Ω is called the incompatibility region for the meshes T n−1

h and T nh if

for all ϕ ∈ Sn−1
h ∪ Snh with supp ϕ = Ω\Dn

i it holds that ϕ ∈ Sn−1
h ∩ Snh ,
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and there is no other set that is contained in Dn
i with this property. It is clear that

the incompatibility region is simply the region where the meshes differ. Also, since
we are using conforming elements, a transition layer is needed. This could consist
of a layer, one-triangle across, surrounding Dn

i . We denote it by Dn
` and we let

Dn = Dn
i ∪Dn

` .
We will use the following lemma, which follows from [SW, Lemma 2.3].

Lemma 5.1. There exists a function η ∈ Sn−1
h ∩Snh , η = Jn := (PnE−Pn−1

E )u(x, t)
on Ω\Dn, and supp η ⊂ Ω\Dn

i , such that

‖Jn − η‖1,Dn` ≤ c‖J
n‖1,Dn` .

We have the following

Proposition 5.1. If Lemma 5.1 holds, then

‖∇Jn‖ ≤ cm(Dn)1/2‖Jn‖1,∞ .
If in addition the space Sn−1

h ∩ Snh has the approximation property

inf
ϕ∈Sn−1

h ∩Snh
‖v − ϕ‖1 ≤ ch|v|2,

then
‖Jn‖ ≤ cm(Dn)1/2 h ‖Jn‖1,∞ .

Proof. Let η be as in Lemma 5.1. Since η ∈ Sn−1
h ∩ Snh ,

(∇Jn,∇η) = 0;

thus

(∇Jn,∇Jn) = (∇Jn,∇Jn)Ω\Dni + (∇Jn,∇Jn)Dni
= (∇Jn,∇(Jn − η))Ω\Dni + (∇Jn,∇η)Ω\Dni + (∇Jn,∇Jn)Dni
= (∇Jn,∇(Jn − η))Dn` + (∇Jn,∇η) + (∇Jn,∇Jn)Dni
≤ ‖∇Jn‖Dn` ‖∇(Jn − η)‖Dn` + ‖∇Jn‖2Dni
≤ c‖Jn‖21,Dn ≤ cm(Dn)‖Jn‖21,∞ .

For the L2 estimate consider the function Ψ ∈ H2 ∩H1
0 that satisfies

(∇Ψ,∇v) = (Jn, v) ∀v ∈ H1
0 .

Then for any Ψh ∈ Sn−1
h ∩ Snh , the approximation property of Sn−1

h ∩ Snh implies

‖Jn‖2 = (∇Ψ,∇Jn)

= (∇(Ψ −Ψh),∇Jn)

≤ ch‖∇Jn‖ ‖Ψ‖2 ≤ ch‖∇Jn‖ ‖Jn‖ ,
and the proof follows. �
Remark 5.1. One may get a similar result by working directly with, e.g., Clement’s
interpolant, but we do not present this case here.

This result implies that, e.g., in Rd and if the diameter of Dn is O(h), then

‖∇(PnE − Pn−1
E )u(x, t)‖ = O(hr−1+d/2), ‖(PnE − Pn−1

E )ut(x, t)‖ = O(hr+d/2).

Note that the approximation assumption on Sn−1
h ∩ Snh is realistic. This is the

case for example if Snh is obtained from Sn−1
h by refining the mesh in a part of the

domain and derefining it in another part. This is what we do in most situations.
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