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CONSTRUCTION OF CM PICARD CURVES

KENJI KOIKE AND ANNEGRET WENG

Dedicated to the 60th birthday of Professor Rolf Peter Holzapfel

Abstract. In this article we generalize the CM method for elliptic and hy-
perelliptic curves to Picard curves. We describe the algorithm in detail and
discuss the results of our implementation.

1. Introduction

The applications of elliptic and hyperelliptic curves over finite fields to crypto-
graphy have been studied intensively [14, 20, 15]. Recently, other kinds of curves
proved to be suitable for cryptosystems. The most important examples are superel-
liptic, or more general Cab, curves [1, 7]. Since the discrete logarithm problem on
a curve of genus g ≥ 4 turned out to be easier than on a curve of lower genus [8],
we are restricted to curves of genus g ≤ 3.

A cyclic trigonal curve of genus g = 3 is called a Picard curve (see [25, 26, 12]).
A Picard curve over a field κ is given by an affine equation of the form

y3 = f(x), f ∈ κ[x], deg(f(x)) = 4,

where f is a polynomial without multiple roots in κ. If κ contains the third roots
of unity, the curve is equipped with an automorphism of order 3 defined over κ.

There exists an algorithm for an efficient addition law on the degree zero divisor
class group, Pic0

C(κ), of a Picard curve defined over a finite field κ = Fq [7, 29].
Because of the Pohlig-Hellmann attack [27], the curve C defined over Fq should be
chosen such that the order of Pic0

C(Fq) contains a large prime factor. To tackle
this problem, we need an efficient point counting algorithm for the curve C (or
Pic0

C(Fq)). For fields of small characteristic p this problem has been solved using
p-adic methods [9], but for large prime fields the question is still unanswered.

In this paper, we consider an alternative method for constructing Picard curves
over large prime fields suitable for cryptography using complex multiplication. Note
that the complex multiplication (CM) method is well-known for elliptic curves [2, 3].
Recently, this method has been extended to hyperelliptic curves of genus g ≤ 3
[34, 36, 37, 38].

We now describe the CM method from an abstract point of view. Given a CM
field K with nK = [K : Q] ≤ 6, set g = nK/2. In general the CM method can be
described as follows:
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(1) Construct the set of isomorphism classes of simple principally polarized
abelian varieties of dimension g defined over C. Represent each isomor-
phism class by a matrix Ωi in the g-dimensional Siegel upper half space
Hg.

(2) For each matrix Ωi, compute the set of absolute invariants {jik} by using
values of the theta functions of Ωi.

(3) Construct a curve with given absolute invariants.

Our paper is organized as follows. In Section 2 we recall some basic facts. In
Section 3 we explain how to determine the set of isomorphism classes in step (1)
of the algorithm. Section 4 deals with the theory of theta constants and invariants
of a Picard curve. In Section 5 we summarize the complete algorithm and discuss
subtleties of the implementation. Finally (Section 6) we give examples for Picard
curves defined over Q and Fp with a Jacobian which has complex multiplication by
a given CM field of degree 6.

For the computations we used the C-library Pari [5] and Magma [19]. The
authors thank the referee for valuable comments for improving the paper.

2. Definitions and basic facts

2.1. CM fields of Picard curves. In this section we construct all CM fields which
may occur as the endomorphism algebra of the Jacobian of a Picard curve.

Let K be a CM field of degree 6, i.e., a totally imaginary quadratic extension of
a totally real number field of degree 3. Let JC be the Jacobian of a Picard curve
with complex multiplication by the maximal order OK in K, i.e., End(JC) ' OK .
Then automatically, we have Q(ζ3) ⊆ K, where ζ3 denotes a third root of unity.
This means that K must be the composition of a totally real number field K0 and
the imaginary quadratic field Q(ζ3).

Conversely, we can prove the following lemma:

Lemma 1. Let κ be an algebraically closed field of charκ different from 3 and let A
be a principally polarized abelian variety of dimension 3 defined over κ with complex
multiplication by OK where K is a CM field containing the third roots of unity.

Then A is simple and A is the Jacobian of a Picard curve.

Proof. The abelian variety A is obviously simple, since its endomorphism ring is
commutative. It has an automorphism of order 3, since the roots of unity in the
endomorphism ring respect the polarization (see the corollary following Proposition
3 in [31, Section 14]).

Moreover, A is isomorphic to the Jacobian variety of some curve C, since the
principally polarized abelian varieties of dimension 3 are exactly the Jacobians of
curves [24]. By Torelli’s Theorem, the curve C is uniquely determined by the princi-
pally polarized abelian variety A and we have Aut(C) is isomorphic to Aut(JC)/G
where G is either trivial or {±1} (see, e.g., [21, Theorem 12.1] for the extended
version of Torelli’s theorem needed to conclude the fact about the automorphism
group). Thus, A is the Jacobian of a curve C which is uniquely determined and
has an automorphism of order 3.

Let κ(C) = κ(x, y) be the function field of C and let κ(C̃) be the function field
obtained by factoring out the automorphism α. Since JC is simple, κ(C̃) must be
the rational function field and κ(C)/κ(C̃) is a Kummer extension of degree three,
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i.e., C can be given by an affine equation of the form y3 = f(x). By the Riemann–
Hurwitz formula, C → P1 is branched over five points. We may choose the point
at infinity to be a ramification point. Then f has degree 4. �

For the rest of the paper we assume K = K0(ζ3).

2.2. The group order over finite fields. Let κ = Fp be a finite prime field with
p ≡ 1 mod 3.

Suppose given a Picard curve defined over Fp whose Jacobian JC is known to
have complex multiplication by OK for some CM field K of degree 6.

We claim that it is easy to determine the number of Fp-rational points of JC .
The p-th power Frobenius endomorphism π on the Jacobian JC corresponds to

an element w ∈ OK with the property that w and all its conjugates have absolute
value

√
p.

Since JC is absolutely simple, K = Q(w). In this case, the minimal polynomial
fw(t) ∈ Q[t] is irreducible and coincides with the characteristic polynomial of the
Frobenius on the Ql vector space Vl(JC) = Tl(JC) ⊗ Ql where Tl(JC) denotes
the Tate module of the Jacobian. The order of the group JC(Fp) is given by the
evaluation of the minimal polynomial fw(t) of w over Q at t = 1.

Let
SOK ,p = {w ∈ OK : ww = p,Q(w) = K}

/
∼

where w1 ∼ w2 if w1 and w2 are conjugate and let

NOK,p := {n ∈ N : #JC(Fp) = n for some JC with End(JC) ' OK}.
Then SOK ,p has finite cardinality and |NOK ,p| ≤ |SOK ,p|. Hence, given a CM field
K and a prime p we have only finitely many possible group orders. The elements
in SOK ,p, resp. NOK ,p, can for example be found by factoring the ideal (p) in K.
The factorization of prime ideals in number fields of low degree can efficiently be
computed and it is implemented in many number theoretic libraries.

Once we have determined the set of possible group orders, we can then try to
find the right order by choosing random divisor classes in the divisor class group.

3. The set of isomorphism classes

In this section, we determine all principally polarized abelian varieties over C
with complex multiplication by the maximal order OK in a CM field K. This is
needed for the first step of the algorithm given in the introduction. We use the
theory of complex multiplication by Shimura and Taniyama [31]. We summarize
their results restricted to the case [K : Q] = 6 (for details see [31], but also [34, 36,
38]).

Let K be a CM field of degree 6 with real subfield K0.
A tuple (K,Φ) = (K, {ϕ1, ϕ2, ϕ3}) consisting of the CM field K and three em-

beddings of K into C such that ϕi 6= ϕj , ϕj , i 6= j, is called a CM type. An
abelian variety of dimension 3 over C can be given by a complex torus C3/Λ. We
suppose that there exists an isomorphism e : End(A) → OK . In this situation, an
abelian variety is said to be of CM type (K,Φ) = (K, {ϕ1, ϕ2, ϕ3}) if the basis of
the lattice Λ can be chosen such that the endomorphism α is given by

(1)

 ϕ1(e(α))
ϕ2(e(α))

ϕ3(e(α))

 .
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There is a notion of a primitive CM type (see, e.g., [31, Section 8.2]) and the
abelian variety A is simple if and only if the CM type (K,Φ) is primitive.

Note that K = K0(ζ3) is either Galois or has Galois closure L where L has
degree 12 over Q (depending on whether the subfield K0 is normal or not). In both
cases there are three different primitive CM types, up to complex conjugation ([38,
Lemma 3.1]).

Suppose K is Galois and Φ1,Φ2 are two different primitive CM types. In this
case, the set of isomorphism classes of principally polarized abelian varieties with
CM type Φ1 coincides with the set of isomorphism classes of principally polarized
abelian varieties of CM type Φ2 ([38, Lemma 3.5]). Therefore, for normal K it is
enough to determine the principally polarized abelian varieties for one fixed CM
type.

For every ideal B of OK we define a lattice

Φ(B) =
{

Φ(β) = (ϕ1(β), ϕ2(β), ϕ3(β))t , β ∈ B

}
in C3. The torus C3/Φ(B) defines an abelian variety A. Obviously, the abelian
variety C3/Φ(B) is invariant under the action of matrices of the form (1). All
abelian varieties of CM type (K,Φ) with complex multiplication by OK can be
constructed this way ([17, Theorem 4.1]).

Next we want to define a Riemann form on the lattice Φ(B) which induces
a principal polarization on the abelian variety C3/Φ(B). We cite the following
theorem (cf. [31, Section 14.3] or [34]):

Theorem 2. Let K be a CM field of degree 6 and let δK/Q be the different of K.
Let B be an ideal in K such that δK/QBB is a principal ideal (b). Suppose there

exists a CM type (ϕ1, ϕ2, ϕ3) and a unit ε ∈ OK0 such that εb is totally imaginary
and Imϕi(εb) < 0 for all i. Write ξ = (εb)−1. The bilinear form

(2) Eξ(x, y) =
3∑
i=1

ϕi(ξ)(xiyi − xiyi)

defines a principal polarization on the lattice Φ(B).

From now on the tuple (Φ(B), ξ) denotes the principally polarized abelian variety
given by the torus C3/Φ(B) together with the Riemann form Eξ(x, y).

Using the following two facts (see [31, Chapter 7]) it is easy to list a complete
set of isomorphism classes of principally polarized abelian varieties having complex
multiplication by OK :

• Let U (resp. U+) be the group of units (resp. totally positive units) in
OK0 , and let U1 be the subgroup of U+ of elements of the form εε, ε ∈ O∗K .
Choose a set of representatives {ε1, . . . , εd} for the cosets U+/U1. Suppose
there exists an element ξ as in Theorem 2. The set of isomorphism classes
of principally polarized abelian varieties corresponding to Φ(B) is given by
{(Φ(B), εiξ), i = 1, . . . , d}.
• Two principally polarized abelian varieties (Φ(B1), ξ1) and (Φ(B2), ξ2) are

isomorphic if and only if there exists some γ ∈ K such that γB1 = B2 and
ξ1 = γγξ2.

This leads to the following algorithm. Let δK/Q be the different of K and let
{ε1, . . . , εd} be a set of representatives for the cosets U+/U1 (see Section 7.1 for



CONSTRUCTION OF CM PICARD CURVES 503

the computation of U+/U1). Let UK be the set of units in K. Note that U , and
therefore also U+, has finite index in UK . Choose representatives u1, . . . , ue of
UK/U

+.
For every ideal class represented by an ideal B with δK/QBB = (b) principal

and every CM type (K,Φ) = (K, {ϕi}) we check if there exists a j such that ujb
is totally imaginary and Imϕi(ujb) < 0 for all i. If such a j exists, we define a
principal polarization on Φ(B) by the Riemann form Eξ with ξ = (ujb)−1. We find
all isomorphism classes of principally polarized abelian varieties corresponding to
Φ(B) by {(Φ(B), εiξ), i = 1, . . . , d}.

Given the principally polarized abelian variety (Φ(B), ξ) (resp. (Φ(B), εiξ)), we
determine a basis β1, . . . , β6 of the lattice Φ(B) such that

(E(Φ(βi),Φ(βj)))1≤i,j≤3 =
(

O E3

−E3 0

)
,

where E is the Riemann form corresponding to ξ defined by (2). Such a basis
is called a Frobenius basis. It always exists and we describe an algorithm which
determines a Frobenius basis for abelian varieties in arbitrary dimension in the
appendix, Section 7.2.

Next we represent each isomorphism class of principally polarized abelian vari-
eties by the matrix A−1

2 A1 in the Siegel upper half space H3 = {Ω ∈ Gl3(C) : Ω =
ΩT , Im(Ω) is positive definite} where

A1 = (Φ(β1),Φ(β2),Φ(β3)) and A2 = (Φ(β4),Φ(β5),Φ(β6)) .

If the real subfield K0 has a power integer basis and class number 1, the period
matrices describing the lattice can be given more explicitly and the determination
of the set of principally polarized abelian varieties can be simplified (see [38]).

4. Theta constants of Picard curves

4.1. Invariants of Picard curves. Let κ be a field of characteristic different from
2 and 3 and let C be a Picard curve defined over κ.

Without loss of generality, we may assume that C is given by

y3 = x4 + g2x
2 + g3x+ g4, gi ∈ κ.

The coefficients gi are invariants of the binary form f(x, z) = x4 +g2x
2z2 +g3xz

3 +
g4z

4 of degree i.
We describe the absolute invariants of a Picard curve over a finite prime field Fp

(more details can be found in Section 7.5 in [12]). For that we distinguish six cases:
(1) For the majority of curves, we have g2g3 6= 0. In this case, the isomorphism

class of the Picard curve over κ is determined by

j1 =
g2

3

g3
2

and j2 =
g4

g2
2

.

Suppose there exists a Picard curve with y3 = x4 + g2x
2 + g3x + g4 with

j-invariants j1, j2 ∈ Fp, p ≡ 1 mod 3. Then there are precisely three iso-
morphism classes of curves over Fp with invariants j1 and j2 given by

Ck : y3 = x4 + b2kg2x
2 + b3kg3x+ b4kg4, k = 0, 1, 2,

where b ∈ κ is a cubic non-residue. The curves Ck, k = 0, 1, 2, will be called
cubic twists of each other.
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(2) If g2 6= 0 but g3 = 0, j1 = 0 and the invariant j2 determines the isomorphism
class. It can easily be shown that the curve is singular if and only if j2 ∈
{0, 1

4}. For each j2 6∈ {0, 1
4} we get six isomorphism classes of curves over

Fp, p ≡ 1 mod 3 given by

y3 = x4 + bkg2x
2 + b2kg4, k = 0, . . . , 5.

where b is a non-square and non-cube in κ.
(3) If g2 = 0 and g3g4 6= 0, the isomorphism class is given by j = g3

4
g4
3
. We have

only the cubic twists described above.
(4) Over κ there exists only one isomorphism class with g2 = g4 = 0 (but

g3 6= 0). It corresponds to the family of curves whose Jacobians have
complex multiplication by Z[ζ9]. We get 1, 3 or 9 isomorphism classes
depending on whether p 6≡ 1 mod 3, p ≡ 4, 7 mod 9 or p ≡ 1 mod 9. If
p ≡ 1 mod 9, the 9 isomorphism classes are given by the curves

y3 = x4 + bkx, k = 0, . . . , 8

where b is a non-cube in Fp.
(5) There is only one isomorphism class over κ of curves with g4 = g3 =

0. We get 1, 4, 6 or 12 isomorphism classes depending on whether p ≡
11 mod 12, p ≡ 5 mod 12, p ≡ 7 mod 12 or p ≡ 1 mod 12. If p ≡ 1 mod 12,
the isomorphism classes are given by

y3 = x4 + bk, k = 0, . . . , 11

where b is a non-square and non-cube in Fp.
If g2g3 6= 0, the curve

(3) C : y3 = x4 + j1x
2 + j2

1x+ j2
1j2

has invariants j1 and j2. In a similar fashion we can deal with the other five cases.
For every Picard curve it is possible to write down a model over κ′(j1, j2) where κ′

is the prime field of κ. Hence, every Picard curve has a model over the field where
its invariants ji are defined.

The characteristic polynomials of the Frobenius elements of the twists of C can
easily be deduced from the characteristic polynomial of C.

Lemma 3. Suppose κ = Fp with p ≡ 1 mod 3 and let C be a Picard curve with
g2, g3 6= 0 whose Jacobian has complex multiplication by the maximal order in a
CM field.

Suppose the p-th power Frobenius corresponds to an element w ∈ OK , i.e.,
#JC(Fp) =

∏6
i=1(1 − wi) by Section 2.2. The Frobenius elements of the cubic

twists are given by ζ3w and ζ2
3w.

Proof. The curves Ci, i = 1, 2, 3, are not isomorphic over Fp but over Fp3 . Their
Jacobians are also not isogenous over Fp, since any such isogeny would already be
an isomorphism.

Let wCi be the Frobenius elements of JCi , i = 1, 2, 3. Then

w3
C1

= w3
C2

= w3
C3

which implies that they all differ by multiplication by a third root of unity. �
Analogous statements can be made in case g2g3 = 0. The group order of the

twists can always be easily determined from a single Frobenius element w.
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4.2. Equation of Picard curves over C. In this section, we give an explicit
formula which expresses the branch points of a Picard curve by theta functions.
This formula goes back to Picard [25] and has already been worked out for a special
symplectic basis in [30]. But since the period matrices constructed in Section 3 are
in general not of a special form, we have to review the arguments in [25, 30] and
give a more general formulation using geometric considerations.

4.2.1. Facts on theta functions. We first summarize some facts about theta func-
tions. For more details see [22, 33].

Let δ, ε ∈ Qg. The theta function with characteristic (δ, ε) is the function

θ

[
δ

ε

]
(z,Ω) =

∑
n∈Zg

exp
(
πi(n+ δ)tΩ(n+ δ) + 2πi(n+ δ)t(z + ε)

)
of (z,Ω) ∈ Cg ×Hg, where Hg = {Ω ∈ Glg(C) : Ω = Ωt, Im(Ω) positive definite} is
the Siegel upper half space of degree g.

The theta function with characteristic δ = ε = O is called the Riemann theta
function θ(z,Ω). For half integral vectors δ, ε ∈

(
1
2Z
)g, the characteristic (δ, ε) is

called even (odd) if 4δtε is even (resp. odd). All characteristics are regarded as
residue classes modulo integral vectors, as usual.

Theta functions with characteristics are related to the Riemann theta function
via the formula

(4) θ

[
δ

ε

]
(z,Ω) = exp

(
πiδtΩδ + 2πiδt(z + ε)

)
θ(z + Ωδ + ε,Ω).

We identify the characteristic (δ, ε) ∈ Qg ×Qg with Ωδ + ε ∈ Cg.
Now let Ω be the period matrix of a smooth algebraic curve X of genus g over

C. Fix a base point P ∈ X and consider the Abel–Jacobi map

α : SymkX(C) −→ JX(C) = Cg/(Zg + ZgΩ), Q1 + · · ·+Qk 7→
k∑
i=1

∫ Qi

P

w,

where w = (w1, · · · , wg) and the wi’s form a basis of H0(X,Ω1
X). The image of

Symg−1X under α is equal to the zero divisor of the Riemann theta function, up
to translation by some element ∆ ∈ JX(C). This element is called the Riemann
constant. More precisely, we have the following theorem.

Theorem 4 (Riemann’s Vanishing Theorem, [22, Corollary 3.6]). Let θ(z,Ω) be
the Riemann theta function. We have

θ(z,Ω) = 0⇔ z = ∆− α(Q1 + . . .+Qg−1) with Qi ∈ X
where ∆ is the Riemann constant. The Riemann constant is uniquely determined
by this property if we fix the base point P .

Remark 5. It is known that ∆ = α(D0) for some half canonical divisor D0 [22].
Let us assume that the base point P is chosen such that (2g − 2)P is a canonical
divisor. Then D = (g−1)P is also a half canonical divisor. Because 2D and 2D0 are
canonical divisors, we have α(2D0) = α(2D). By definition, α(2D) = 0 ∈ JC(C),
and we see that ∆ = α(D0) is a 2-torsion point. So we may write ∆ = Ωδ + ε
with (δ, ε) ∈ (1

2Z)g × (1
2Z)g. The corresponding characteristics (δ, ε) depends on

the choice of a symplectic basis of H1(X,Z). We will use this fact later.
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The following theorem allows us to express the values of a function on X by
theta constants.

Theorem 6 ([33, p. 177]). Let f be a function on X. Write

(f) =
m∑
i=1

Pi −
m∑
i=1

Qi.

Choose paths from the base point P to Pi and Qi such that
m∑
i=1

∫ Pi

P

w =
m∑
i=1

∫ Qi

P

w.

Then

(5) f(D) = f(R1) · · · f(Rg) = E

m∏
k=1

θ
(∑g

i=1

∫ Ri
P w −

∫ Pk
P w −∆,Ω

)
θ
(∑g

i=1

∫ Ri
P

w −
∫ Qk
P

w −∆,Ω
)

as a meromorphic function of D = R1 + . . . + Rg ∈ SymgX, where E is some
constant independent of D and the integral

∫ Ri
P

w in the numerator and denominator
are taken along the same path.

Remark 7. By Riemann’s Vanishing Theorem, the denominator and the numerator
of the theta quotient in formula (5) do not vanish if the divisors D − Pk and
D−Qk of degree g − 1 are general (non-special) divisors; that is, `(κ−D+ Pk) =
`(κ−D +Qk) = 0 where κ is a canonical divisor and `(D) = dimH0(X,OX(D)).

4.2.2. Picard’s Formula. Let us return to the Picard case. We consider the following
normalized form

(6) C/C : y3 = x(x − 1)(x− λ)(x − µ).

Our goal is to express λ and µ by theta functions applying Theorem 6. Let
P1, . . . , P5 ∈ C be the points lying above the branch points 0, 1, λ, µ,∞ of the
map π : C → P1, (x, y) 7→ x. We apply Theorem 6 for the function π and the
divisor D = 2P2 + P3. The divisor of π is 3P1 − 3P5. We get

π(D) = π(P2)π(P2)π(P3) = λ = E

3∏
k=1

θ
(

2
∫ P2

P5
w +

∫ P3

P5
w −

∫
γk
w −∆,Ω

)
θ
(

2
∫ P2

P5
w +

∫ P3

P5
w −∆,Ω

)
where the paths γk from P5 to P1 on C are chosen such that

∑
γk = 0. To see

that the theta functions in the equation do not vanish, let us consider the linear
system Li = L(κ−D+Pi) for i = 1 and 5. By the Riemann–Roch Theorem (or the
residue theorem), we see that there is no rational 1-form with only one pole at Pi
of order 1; moreover the canonical class of C is given by a line on P2. So elements
in Li are given by lines that pass through P3 and are tangent to C at P2. But such
a line does not exist and we have `(κ −D + Pi) = 0 for i = 1 and 5. Hence this
expression of λ as a quotient of theta constants is well defined.

By considering the divisorD′ = P2+2P3 instead ofD, we can express λ2 = π(D′)
by theta functions, and by taking the quotient π(D′)/π(D), we can eliminate the
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constant E. Analogously, we can express µ by theta constants and obtain (cf.
[25, 26])

λ =
3∏

k=1

θ
(∫ P2

P5
w + 2

∫ P3

P5
w −

∫
γk
w −∆,Ω

)
θ
(∫ P2

P5
w + 2

∫ P3

P5
w −∆,Ω

)
×

3∏
k=1

θ
(

2
∫ P2

P5
w +

∫ P3

P5
w −∆,Ω

)
θ
(

2
∫ P2

P5
w +

∫ P3

P5
w −

∫
γk
w −∆,Ω

)
and

µ =
3∏

k=1

θ
(∫ P2

P5
w +

∫ P4

P5
w −

∫
γk
w −∆,Ω

)
θ
(∫ P2

P5
w + 2

∫ P4

P5
w −∆,Ω

)
×

3∏
k=1

θ
(

2
∫ P2

P5
w +

∫ P4

P5
w −∆,Ω

)
θ
(

2
∫ P2

P5
w +

∫ P4

P5
w −

∫
γk
w −∆,Ω

) .
4.2.3. Vanishing properties of Picard theta functions. To obtain a more explicit
representation of λ and µ in terms of theta characteristics, we consider the 3-torsion
points of J(C) obtained from branch points more closely.

Choose P5 as the base point of α. We see that ∆ ∈ JC [2] since (dx/y2) = 4P5 (see
Remark 5), where JC [m] denotes the subgroup of m-torsion points of the Jacobian.
Note that the divisor of the function

π : C −→ P1, (x, y) 7→ x

is given by 3P1 − 3P5. Hence α(P1) is a 3-torsion point of the Jacobian. Similarly
we have α(P1), . . . , α(P4) ∈ JC [3].

From Theorem 4 we deduce that there must be 15 torsion points of the form
∆ + α(D) ∈ JC [6] with D = P1 + P2 and α(D) ∈ JC [3] which lie in the zero locus
of θ. These are given by

α(D) ∈ {α(2P1), α(P1 + P2), α(P1 + P3), α(P1 + P4), α(P1 + P5), α(2P2),

α(P2 + P3), α(P2 + P4), α(P2 + P5), α(2P3), α(P3 + P4), α(P3 + P5), α(2P4),

α(P4 + P5), α(2P5) = 0}.
Because C is a smooth quartic curve, it is the canonical model of a curve of genus
3 ([11, p. 342]). It is therefore not hyperelliptic and it does not have a function of
order 2. Therefore the above 15 elements are different from each other. Note that
by formula (4), θ(∆ + α(D)) = 0 is equivalent to θ[∆ + α(D)](0,Ω) = 0.

Remark 8. By the automorphism % : (x, y) 7→ (x, ζ3y), H1(C,Z) has the structure
of a Z[%]-module (so Z[ζ3]-module). In fact, it is known that H1(C,Z) is generated
by three elements as a Z[%]-module [25]. Therefore we have H1(C,Z) ∼= Z[ζ3]3. The
group

JC [1− ζ3] = Ker(1 − %) ⊂ JC [3]
is isomorphic to (Z/3Z)3. Since %(Pi) = Pi, we see that α(Pi) ∈ JC [1− ζ3]. Let G
be the subgroup generated by α(P1), . . . , α(P4). Then we have G ⊂ JC [1− ζ3], and
G has at least the above 15 elements. Hence we conclude that G = JC [1− ζ3].
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The group G is generated by α(P1), . . . , α(P4). The divisor of a function

C −→ P1, (x, y) 7→ y

is P1 + P2 + P3 + P4 − 4P5. We conclude that the α(Pi) satisfy a unique relation∑
α(Pi) = 0.

Let Ai, Bi, i = 1, 2, 3, be a symplectic basis of H1(C,Z) such that Ai ·Bj = δij .
The Riemann constant can be computed easily if the symplectic representation of

% is known. Let M =
(
A B
C D

)
∈ Sp(6,Z) be the symplectic representation of %.

More precisely, M is defined by

%(B1, B2, B3, A1, A2, A3) = (B1, B2, B3, A1, A2, A3)tM.

The matrix M acts on C3 ×H3 via

(M · z, M ·Ω) = (t(CΩ +D)−1z, (AΩ +B)(CΩ +D)−1),

and we have M · Ω = Ω because % is an automorphism of C. On characteristics,
the action of M is given by

(7) M ·
[
δ

ε

]
=

[
Dδ − Cε+ 1

2 (CtD)0

−Bδ +Aε + 1
2 (AtB)0

]
,

where (N)0 is the diagonal of a matrix N .

Remark 9. We can identify characteristics (δ, ε) ∈ Q6 with the coordinates of
torsion points H1(C,Q)/H1(C,Z). Note that δ (resp. ε) represents the coordinate
for Bi (resp. Ai). The action of % on torsion points is therefore represented as

(8) % :
[
δ

ε

]
7→
(
D −C
−B A

)[
δ

ε

]
.

But we need the diagonal vector in (7) for the transformation formula of theta
functions. Obviously, the fixed points of the action (8) are just the 27 elements of
JC [1 − ζ3].

Lemma 10. The Riemann constant ∆ is the unique odd characteristic such that
M ·∆ = ∆.

Proof. Since C is not hyperelliptic, the Riemann constant ∆ must be odd. If we
apply the theta transformation formula [18, p. 231] for M , we get

θ[M ·∆](t(CΩ +D)−1z,Ω) = (automorphic factor)× θ[∆](z,Ω).

The right-hand side vanishes exactly on α(Sym2 C), so the function θ[M ·∆](z,Ω)
vanishes on the divisor t(CΩ +D)−1α(Sym2 C). Note that t(CΩ +D) ∈ GL3(C) is
the analytic representation of % with respect to the normalized basis of H0(C,Ω1

C).
Hence, for Qi ∈ C we have

t(CΩ +D)−1α(Q1 +Q2) =
2∑

k=1

∫ Qk

P5

t(CΩ + D)−1w

=
2∑

k=1

∫ Qk

P5

(%−1)∗w =
2∑
k=1

∫ %−1(Qk)

%−1(P5)

w =
2∑

k=1

∫ %−1(Qk)

P5

w,

and this is equal to α(%−1(Q1) + %−1(Q2)). Therefore the function θ[M ·∆](z,Ω)
vanishes exactly on α(%−1(Sym2 C)) = α(Sym2 C), and we have M ·∆ = ∆.
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Let us recall that every smooth quartic curve has 28 bitangent lines l1, · · · , l28

and that they define odd characteristics (see [6]). More precisely, odd characteristics
of J(C) are given by

α(Qi +Q′i)−∆ = Ωδi + εi, (δi, εi) ∈ (
1
2
Z)3 × (

1
2
Z)3,

where Qi and Q′i are tangent points of li. It is obvious that invariant odd char-
acteristics are obtained from bitangent lines invariant under the action of %. The
projective equation of C is

ZY 3 = X(X − λ1Z)(X − λ2Z)(X − λ3Z).

The action of % is given by [X : Y : Z] 7→ [X : ζ3Y : Z]. One checks that
l = {Z = 0} is the unique invariant bitangent line. For this line we have l∩C = 4P5

and α(P5 + P5) = 0. �

We summarize the results of our discussion:

Corollary 11. Let Ω be the period matrix of the Jacobian of a Picard curve, and
let M ∈ Sp(6,Z) be the symplectic representation of %. The Riemann constant ∆
is the unique odd theta characteristic such that M ·∆ = ∆.

There is a set S1 of 15 theta characteristics
[
δ
ε

]
in
(

1
3Z/Z

)6 (including
[

0
0

]
)

fixed by M (as a linear transformation) with

θ

[(
δ

ε

)
+ ∆

]
(0,Ω) = 0.

There is a subset S2 = {D1, . . . , D4} ⊂ S1 with the property that each three char-
acteristics in S2 are linearly independent, but

∑4
i=1Di = 0.

In terms of theta functions with characteristics, the formulas for λ and µ in the
last paragraph become (using (4))

λ =
(
θ[D2 + 2D3 −D1 −∆](0,Ω) · θ[2D2 +D3 −∆](0,Ω)
θ[D2 + 2D3 −∆](0,Ω) · θ[2D2 +D3 −D1 −∆](0,Ω)

)3

,

µ =
(
θ[D2 + 2D4 −D1 −∆](0,Ω) · θ[2D2 +D4 −∆](0,Ω)
θ[D2 + 2D4 −∆](0,Ω) · θ[2D2 +D4 −D1 −∆](0,Ω)

)3

.

Since D1 + D2 + D3 + D4 = 0 and θ[D](0,Ω) = θ[−D](0,Ω), we conclude 2D2 +
D3 −D1 = D2 + 2D4 − 2D1 and

θ[2D2 +D3 −D1 −∆](0,Ω) = θ[2D2 +D4 −D1 −∆](0,Ω).

The computation of the equation of the curve over C reduces to the evaluation of
three theta constants, i.e.,

λ =
(
θ[D2 + 2D3 −D1 −∆](0,Ω)
θ[2D2 +D3 −D1 −∆](0,Ω)

)3

and µ =
(
θ[D2 + 2D4 −D1 −∆](0,Ω)
θ[2D2 +D3 −D1 −∆](0,Ω)

)3

.

(9)

5. The complete algorithm

We now describe the algorithm to construct Picard curves over finite fields Fp,
where p is a large prime.
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5.1. Precomputation. We first perform a precomputation step.
Given a CM field K = K0(ζ3), we compute different primes p = ww, w ∈ OK ,

the corresponding sets SOK ,p described in Section 2.2 and the sets of possible group
orders

(10) {fw(1) : w ∈ SOK ,p}.
If the set (10) contains an order which is prime up to a small cofactor, we try to
construct the corresponding curve.

Note that for every Frobenius element w ∈ SOK ,p we find five more Frobenius
elements −w,±ζ3w,±ζ2

3 . In contrast to elliptic or hyperelliptic curves, not every
such element can necessarily be realized as the Frobenius of a curve. Given a Picard
curve with g2g3 6= 0, j-invariants j1, j2 and Frobenius corresponding to w ∈ OK ,
there exist only two more isomorphism classes of curves over Fp with the same
j-invariant and Frobenius elements ζk3w, k = 1, 2 (see Section 4.1).

By the theorem of Honda-Tate [13, 35], every element in SOK ,p can be realized
as the Frobenius of a principally polarized abelian variety over Fp. If C is a Picard
curve defined over Fp with g2g3 6= 0 and w the Frobenius of JC , we can construct
a principally polarized abelian variety with Frobenius −w as follows. The Weil
restriction of the Jacobian over Fp2 factors into two principally polarized abelian
varieties defined over Fp, one being the principally polarized abelian varietyA which
is Fp-isomorphic to JC with Frobenius corresponding to w and the quadratic twist
A′ with Frobenius element equal to −w. Suppose C′ were a curve with Jacobian
A′. Then C and C′ would be isomorphic over Fp2 but not over Fp. They had the
same j-invariants, which leads to a contradiction.

Hence, for a given CM field K ⊃ Q(ζ3), a given prime p and a group order
fw(1) we find a Picard curve C with #JC(Fp) = fw(1) with probability 1

2 . In any
case, we can find a principally polarized abelian variety A defined over Fp with
#A(Fp) = fw(1). There exists a Picard curve C defined over Fp such that A is
either Fp-isomorphic to JC or the Fp-rational points of A are in 1-1 correspondence
to the Fp2-rational points R ∈ JC which satisfy πp(R) + π2

p(R) = 0 where πp is the
p-th power Frobenius on JC .

5.2. The construction algorithm. We present the algorithm for constructing a
Picard curve over Fp with given group order n = n(OK , p).

Input: CM field K = K0(ζ3), p = ww, w ∈ OK , a group order n(p,OK) with
a large prime factor
Output: Picard curve over Fp

(1) Determine a complete set of isomorphism classes of all principally polarized
abelian varieties having complex multiplication by OK . Represent each
isomorphism class by a matrix Ωi ∈ H3 (see Section 3).

Parallel to this computation we find for each Ωi the rational representa-
tion Mi ∈ Sp(6,Z) of the automorphism ζ3 of order 3.

Let s be the number of isomorphism classes.
(2) The next steps have to be done for each isomorphism class Ωi, 1 ≤ i ≤ s:

(a) Compute the unique odd theta characteristic ∆, ∆ ∈ (Z/2Z)2g, fixed
by Mi (where the operation of Sp(6,Z) on (Z/2Z)2g is given as in (7)).

(b) Determine the set S = {τ = (δ, ε), δ, ε ∈ (Z/3Z)g} of 27 theta charac-
teristics fixed by Mi (where the action of Sp(6,Z) is now given by (8))
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and compute the theta function θ [τ + ∆] (0,Ω) of characteristic 1/6.
Determine the subset of elements τσ of S for which θ [τσ + ∆] (0,Ω)
vanish at Ωi. The cardinality of this subset is 14, we denote its element
by τ1, . . . , τ14.

(c) Find four characteristics D1, D2, D3, D4 in {τ1, . . . , τ14} such that
three of them are linearly independent but

∑4
i=1 Di = 0.

(d) Compute λ and µ using (9). This gives the curve

C(k) : y3 = x(x − 1)(x− λ)(x − µ)

over C corresponding to Ω(k).
(e) Compute the absolute invariants j(k)

1 , j(k)
2 over C (cf. Section 4.1).

(3) Determine the two class polynomials

Hji(X) =
s∏

k=1

(X − jki ), i = 1, 2.

They are defined over Q and we find its denominator using the continued
fraction algorithm.

(4) For each tuple (j1, j2) with Hji(ji) ≡ 0 mod p:
(a) Write down a curve C over Fp using, e.g., equation (3) with invariants

j1, j2.
(b) Test if JC(Fp) = nt for some t by choosing random divisors in the

divisor class group.

Remark 12. (1) As explained in the previous subsection, the algorithm suc-
ceeds with probability 1

2 .
(2) The complexity of the construction method depends on the invariants of

K (the class number, the embeddings of the units, the size of the Galois
closure), since these invariants determine the number of isomorphism classes
of principally polarized abelian varieties over C with complex multiplication
by OK .

(3) The computation of theta constants is very time consuming. However, in
step (2)(b) we need the theta constants only up to a low precision, because
we only want to know if they vanish.

(4) It would be helpful to first apply Siegel reduction to the period matrix.
Unfortunately, unlike in the case of dimension g = 2 [10], no Siegel reduction
algorithm for dimension 3 matrices is known. At least we should try to get
a good approximation to a Siegel reduced matrix. This would speed up the
computation.

(5) For step (4)(b) we really need the arithmetic in the function field (resp. the
divisor class group of degree zero) of the curve. Such algorithms can for
example be found in [4, 7, 29].

(6) Note that all computations are only done up to some fixed precision. Hence,
we do not have a rigorous mathematical proof for the claim that the result-
ing curve does really have complex multiplication by the given CM field.
Our algorithm works under the assumption that the height of the coeffi-
cients of Hji(X) are small if the discriminant of the CM field is small. In
the examples given below a precision of 60 digits was sufficient.
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6. Examples

In this section we present some examples.

6.1. Curves defined over the rationals. We first give examples of CM Picard
curves which are defined over the rationals. This is not the main theme of our
paper but might be of theoretical interest (cf. [36] for hyperelliptic CM curves of
genus 2 defined over Q).

If the curve is defined over the rationals, the CM field has to be a Galois extension
of Q ([32, Proposition 5.17 (5)]). There are precisely five sextic normal CM fields
with class number one containing Q(ζ3) (see [39]). For all fields we get a Picard
curve defined over Q. For each example we give one model of the curve representing
the isomorphism class over C.

(1) Let K = K1
0 (ζ3) where K1

0 is given by y3 − 3y − 1. Note that K = Q(ζ9).
This CM field leads to the curve

C1 : y3 = x4 − x

whose Jacobian has CM by Z[ζ9].
(2) Let K = K2

0 (ζ3) where K2
0 is given by y3 − y2 − 2y + 1. We find the

invariants

j1 =
g2

3

g3
2

=
−23

72
and j2 =

g4

g2
2

=
−1

7 · 22
.

The curve is given by

C2 : y3 = x4 − 72 · 2x2 + 72 · 23x− 73.

(3) Let K3
0 (ζ3) where K3

0 is given by y3 − y2 − 4y − 1. The invariants are

j1 =
−2347252

76 · 13
and j2 =

−31 · 52

2274

and we get the curve

C3 : y3 = x4 − 13 · 2 · 72x2 + 23 · 13 · 5 · 47x− 52 · 31 · 132.

(4) Let K = K4
0 (ζ3) where K0 is given by y3 + y2−10y−8. The invariants are

j1 =
−219 · 472

73 · 31 · 733
and j2 =

−11593
732 · 7 · 22

.

The curve is given by

C4 : y3 = x4 − 73 · 7 · 2 · 31x2 + 211 · 47 · 31x− 7 · 312 · 11593.

(5) Let K = K5
0 (ζ3) where K0 is given by y3− y2−14y−8. The invariants are

j1 =
−211112 · 412 · 592

734322233
and j2 =

−112 · 419 · 431
22 · 72 · 43 · 2232

.

We find the curve

C5 : y3 = x4 − 2 · 7 · 223 · 432x2 + 27 · 11 · 41 · 432 · 59x− 112 · 433 · 419 · 431.

Note that all three curves given in (2)–(4) are of the form y3 = f(x) where f(x) =
(x− λ)g(x) with g a polynomial of degree three whose roots lie in the real subfield
K0. We have the following lemma:
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Lemma 13. Let K = K0(ζ3) be a Galois CM field of degree 6 whose class number
is equal to one and such that |U+/U1| = 1. Then there exists a Picard curve
C : y3 = f(x) over Q such that End(JC) ' OK and all roots of f lie in K.

Proof. First, by the discussion following Theorem 2 we can easily check that up
to isomorphism there is only one principally polarized abelian variety over C with
complex multiplication by OK . Hence, the field of moduli of A is equal to Q. The
j-invariants of the corresponding Picard curve lie in Q and the curve itself can be
defined over Q.

The roots of f correspond to the fixed points P1, . . . , P4 of C under the auto-
morphism % : (x, y) 7→ (x, ζ3y). The images α(Pi) under the embedding α of C into
its Jacobian JC span the subgroup JC [1 − ζ3].

Let V = JC/Aut(JC) be the Kummer variety and let h : JC → V be the Kummer
map. Both are defined over Q ([31, Section I.4.4]). Let (K,Φ) be the CM type of
A. Then Φ is primitive and K = K∗, since K abelian.

The field extension K(h(JC [1− ζ3])) is a class field of K. It corresponds to the
class group

(11) {B ∈ IK : Bψ1Bψ2Bψ3 = (β), ββ = NK/Q(B), β ≡ 1 mod(1− ζ3)}.

where (K,Ψ) = (K, {ψ1, ψ2, ψ3}) is the reflex type ([31, Chapter IV, Section 17]).
Let B be an ideal in K. Since the class number hK of K is equal to 1, B = (π)

for some π ∈ K. Write π = π1π2 where π1 ∈ K0 and π2 ∈ Q(ζ3). Set β =
πψ1πψ2πψ3 . Then β = NK0/Q(π1)NQ(ζ3)/Q(π2)π2 ∈ Q(ζ3) and after multiplying β
by a root of unity, we may assume β ≡ 1 mod(1 − ζ3) and ββ = NK/Q(π). Thus
K(h(JC [1− ζ3])) = K.

Assume now that Pi is defined over some number field M . We may assume M/K
Galois by replacing M by its Galois closure and set G =Gal(M/K). For σ ∈ G,
σ(Pi) is also a ramification point of C.

Now consider β(Pi), β(σ(Pi)) ∈ JC . Since h and h(β(Pi)) are defined over K,

h(σ(β(Pi))) = σ(h(β(Pi))) = h(β(Pi)).

By the property of the Kummer map, there exists an automorphism µ ∈ Aut(JC)
such that σ(β(Pi)) = µβ(Pi) but this implies σ = id. Hence, Pi is defined over
K. �

Suppose JC is a Jacobian defined over Fp with complex multiplication by the
maximal order in a CM field as described in Lemma 13. Then, p splits completely
in K and the group order #JC(Fp) is divisible by 27.

6.2. Curves over finite field. There are two possibilities to get a curve over Fp.

6.2.1. Reduction of the global model. Choose a curve C defined over Q whose Ja-
cobian has complex multiplication by OK for some given CM field K and reduce it
modulo a suitable prime p.

(1) Take the prime number p = 1152921504606861907 = ww, w ∈ OK , and the
curve C2/Q from the previous section. It has group order

1532495538570855258220483944932363122469441341618544481=33 ·qprime

modulo p.
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(2) Take the prime p = 1152921504606848023 and the curve C3/Q. We obtain
the group order

1532495543986857597626769191284494468178422602393245633=33 ·qprime.

Both curves are suitable for cryptographic applications, since qprime has 52, resp.
54, decimal digits.

6.2.2. Computation of the curve from its invariants. We now present some example
for the algorithm given in Section 5.

(1) We take the CM field K = K0(ζ3) where K0 is given by y3 − y2 − 3y + 1.
The prime p = 1152921504606850963 splits completely in K/Q. One of the
group orders corresponding to OK and p is equal to

n=n(p,OK)=1532495543245035887858338638033552803612844799046915949

which is of the form 27 · qprime where qprime has 53 decimal digits.
We now apply the construction algorithm with input K, p and n.
The CM field K has class number one and is non-normal. We get three

isomorphism classes of principally polarized abelian varieties defined over
C with complex multiplication by OK .

The class polynomials for j1 and j2 are given by

H1(x) = 12136871902141x3 + 7414575044352x2

+1237453206528x+ 31310028800,
H2(x) = 33800087104x3 + 1389314640x2− 439574100x− 26755625.

For H1(x) mod p, resp. H2(x) mod p, we find the roots

j1 = 1047392199222542445 and j2 = 421995974217783139.

The corresponding curve over Fp is given by the equation

y3 = z4 + z2 − 949958165379570266z− 730925530389067824.

(2) We choose the CM field K = K0(ζ3) where K0 is given by y3− y2− 4y+ 1.
The prime p = 1152921504606848077 splits completely in K/Q. One of the
group orders corresponding to OK is equal to

n=n(p,OK)=1532495543493954434573830343916180676167964213317491661

which is of the form 9 · qprime where qprime has 53 decimal digits.
We have hK = 1 and K is non-normal. Again we get three isomorphism

classes over C. The class polynomials are given by

H1(x) = 943427331x3 + 2809491048x2 + 641981504x− 34877952

and

H2(x) = 167340096x3 + 50179920x2− 20073524x− 1971081.

The polynomials H1(X), resp. H2(X), have roots

j1 = 712939366860039460 and j2 = 913313516550283314

in Fp. The corresponding curve over Fp is given by the equation

y3 = z4 + 2z2 − 696757215341552432z− 607007046380386391.

It has the desired group order n.
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7. Appendix

7.1. The computation of U+/U1. Fix an embedding σ1 of K0 into C and denote
by σ2, σ3 the two other embeddings. For α ∈ OK0 with σ1(α) > 0 we define the
embedding type equal to

1. if α is totally positive,
2. if σ2(α) < 0 and σ3(α) > 0,
3. if σ2(α) > 0 and σ3(α) < 0,
4. if σ2(α) < 0 and σ3(α) < 0.

Let UK be the set of units in OK generated by a root of unity µ and the two
fundamental units ν1 and ν2 and let UK0 be the set of units inOK0 with fundamental
units δ1, δ2 chosen such that σ1(δ1) > 0 and σ1(δ2) > 0.

As before, the subgroup U+ denotes the totally positive units and the subgroup
of U+ of elements of the form εε for some ε ∈ UK is denoted by U1.

We first compute the free generators u1, u2 of U+.

Case 1. Both generators of UK0 are totally positive. Set u1 := δ1 and u2 := δ2.

Case 2. If δ1 is totally positive but δ2 is not, set u1 := δ1 and u2 := δ2
2 (and vice

versa).

Case 3. If δ1, δ2 are both not totally positive but have the same embedding type,
set u1 := δ1δ2 and u2 := δ2

2 .

Case 4. If δ1, δ2 are both not totally positive and have different embedding type,
set u1 := δ2

1 and u2 := δ2
2 .

We next want to determine U+/U1. Suppose the complex conjugates of v1

and v2 are given by v1 = ve11
1 ve12

2 and v2 = ve21
1 ve22

2 . To test whether an element
ε ∈ UK0 is a unit in K, we search for k1, k2 ∈ Z such that ε = vk1

1 v1
k1vk2

2 v2
k2 =

v
k1(1+e11)
1 vk1e12

2 vk2e21
1 v

k2(1+e22)
2 . This is just linear algebra.

In Case 4, U+/U1 = {1}. In the second and third case, we get U+/U1 = {1},
resp. {1, u1}, depending on whether u1 ∈ U1 or not. In the first case,

|U+/U1| =

 1 if u1, u2 ∈ U1,
2 if precisely one of the elements u1, u2 or u1u2 is in U1,
4 if u1, u2 and u1u2 are not in U1.

7.2. Skew-symmetric matrices and Riemann forms. We show how to com-
pute Frobenius bases for Riemann forms using an algorithm described in [23].

A skew-symmetric matrix of dimension 2n is a 2n × 2n matrix (aij)i,j with
aij = −aji. In particular, aii = 0 for all i.

Let V be a complex vector space of dimension n and let D be a lattice of full
dimension. A Riemann form E on V with respect to D is a R-valued form
E : V × V → R satisfying the following conditions:

(1) The form E is alternating.
(2) It takes integral values on D ×D.
(3) The form (x, y) 7→ E(ix, y) is positive definite.

Suppose we have given a basis e1, . . . , e2n of D. The corresponding 2n-dimensional
matrix (E(ei, ej))i,j has integer entries and is skew-symmetric.
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It is a well-known fact (see, e.g., [16, p. 90]) that there exists a basis e′1, . . . , e
′
2n

of D such that (E(e′i, e
′
j))i,j is of the form

0n

d1 0 . . . 0
0 d2 . . . 0
. . .
0 . . . 0 dn

−d1 0 . . . 0
0 −d2 . . . 0
. . .
0 . . . 0 −dn

0n


.

Such a basis is called a Frobenius basis for D.
We now describe an algorithm which, given a basis e1, . . . , e2n for D and the

matrix (E(ei, ej))i,j , computes a Frobenius basis e′1, . . . , e
′
2n for D.

For simplicity we now denote (E(ei, ej))i,j by A.
For the algorithm we mainly have to add multiples of a row (column) to another

row (column) and we have to be able to exchange rows (columns).
Suppose we would like to interchange the column (row) ai with aj where i < j.

The operation on the basis is given by the n-dimensional matrix B, which is up
to interchanging the i-th and j-th column the identity matrix. We have Anew =
BTAaltB.

Suppose now we would like to add a k-th multiple of the i-th row (column) to the
j-th row (column). The operation on the basis is given by B = En + kIij where Iij
denotes the corresponding elementary matrix and En is the n-dimensional identity
matrix..

The transformation matrix at the end of the algorithm is just the product of the
transformation matrices of the single steps.

Algorithm for computing a Frobenius basis
Input: A basis {e1, . . . , e2n} and the alternating matrix A = (ai,j)i,j :=

(E(ei, ej))i,j of the non-degenerate Riemann form E

Output: A Frobenius basis for E

(1) n := Rank(A); T := En;
(2) m := 1;
(3) WHILE m ≤ n− 2

(a) FOR i := m to n− 1
(i) IF ai,i+1 = 0

Exchange columns such that ai,i+1 6= 0.
ENDIF;

(ii) d := gcd(ai,i+1, . . . , ai,n) = ri+1ai,i+1 + . . .+ rnai,n
with gcd(ri+1, . . . , rn) = 1;

(iii) Find a transformation matrix T ′ of dimension n such that T ′ is
equal to the identity for the first i columns and rows and that
the (n − i) times (n − i) submatrix given by the entries t′s,t,
i + 1 ≤ s, t ≤ n, has determinant 1 and t′i+1,t = rt (see [28, p.
178]).

(iv) Compute Anew = (T ′)tAaltT
′ and set T := T ′ · T .

(v) FOR j := i+ 2 to n
A[j] := A[j]− ai,j/ai,i+1A[i+ 1];
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Compute the corresponding transformation matrix T ′ and set
T := T ′ · T .
ENDFOR

ENDFOR
(b) IF am,m+1 does not divide all elements in A

(i) A[m] :=
∑n
k=m+1 A[k];

(ii) Compute the corresponding transformation matrix T ′ and set
T := T ′ · T .

ELSE
(i) A[m+ 2] := A[m+ 2] + am+1,m+2/am,m+1A[m]; m := m+ 2;

(ii) Compute the corresponding transformation matrix T ′ and set
T := T ′ · T .

ENDIF
ENDWHILE

(4) Apply suitable permutation to the set of rows and adjust T .
(5) return T ;
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[23] M. Newman. Integral matrices. Pure and applied mathematics, Vol. 45, Academic Press, New

York-London, 1972. MR49:5038

http://www.ams.org/mathscinet-getitem?mr=2002f:11067
http://www.ams.org/mathscinet-getitem?mr=93m:11136
http://www.ams.org/mathscinet-getitem?mr=90i:14009
http://www.ams.org/mathscinet-getitem?mr=2002h:14102
http://www.ams.org/mathscinet-getitem?mr=2003h:11159
http://www.ams.org/mathscinet-getitem?mr=21:5748
http://www.ams.org/mathscinet-getitem?mr=57:3116
http://www.ams.org/mathscinet-getitem?mr=97g:11059
http://www.ams.org/mathscinet-getitem?mr=37:5216
http://www.ams.org/mathscinet-getitem?mr=88b:94017
http://www.ams.org/mathscinet-getitem?mr=90k:11165
http://www.ams.org/mathscinet-getitem?mr=84m:14032
http://www.ams.org/mathscinet-getitem?mr=85f:11042
http://www.ams.org/mathscinet-getitem?mr=88b:68040
http://www.ams.org/mathscinet-getitem?mr=85h:14026
http://www.ams.org/mathscinet-getitem?mr=49:5038


518 KENJI KOIKE AND ANNEGRET WENG

[24] F. Oort and K. Ueno. Principally polarized abelian varieties of dimension two or three are
Jacobian varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math, 20:377-381, 1973. MR51:520

[25] E. Picard. Sur les fonctions de deux variables indépendantes analogues aux fonctions modu-
laires. Acta math., 2:114-135, 1883.

[26] E. Picard. Sur les formes quadratiques ternaire indéfinies et sur les fonctions hyperfuchsiennes,
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