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SPECTRAL-FRACTIONAL STEP
RUNGE–KUTTA DISCRETIZATIONS

FOR INITIAL BOUNDARY VALUE PROBLEMS
WITH TIME DEPENDENT BOUNDARY CONDITIONS

I. ALONSO-MALLO, B. CANO, AND J. C. JORGE

Abstract. In this paper we develop a technique for avoiding the order reduc-
tion caused by nonconstant boundary conditions in the methods called split-
ting, alternating direction or, more generally, fractional step methods. Such
methods can be viewed as the combination of a semidiscrete in time procedure
with a special type of additive Runge–Kutta method, which is called the frac-
tional step Runge–Kutta method, and a standard space discretization which
can be of type finite differences, finite elements or spectral methods among
others. Spectral methods have been chosen here to complete the analysis of
convergence of a totally discrete scheme of this type of improved fractionary
steps. The numerical experiences performed also show the increase of accuracy
that this technique provides.

1. Introduction

Splitting, alternating directions or fractional steps [21, 16, 27] are well-known key
words which refer to efficient discretization methods for complicated problems of
mathematical physics in several variables. Such methods provide strong reductions
of computational cost with respect to other classical, explicit or implicit methods.
Beginning from the seminal works of Douglas, Peaceman and Rachford (see [14,
15, 24]), many authors extended and improved these methods, but most of them
were developed and analyzed in close relation with specific classical evolutionary
problems and using the concrete properties of their solutions. Soon it was seen
that these kinds of methods suffer order reductions if they are used to integrate
problems with time dependent boundary conditions (see [17]); in order to avoid
such reductions, the authors introduced corrections in some classical alternating
direction schemes, which consist of modifying suitably the boundary conditions
that the original methods suggest for their internal (fractionary) steps. The first
idea which naturally arises for choosing boundary conditions in the internal steps
comes from viewing the solutions of these steps as approaches in intermediate times
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between two time levels, but the evaluation of the boundary conditions at these
intermediate times to define the internal steps is not necessarily the best option.

This order reduction drawback is also present in other classical discretization
methods of initial boundary value problems with time dependent boundary condi-
tions, for example, those derived from the combination of a Runge–Kutta method
and a finite difference or finite element method to discretize the time and spatial
variables, respectively. Such reductions have been deeply studied (see for example
[4], [6], [22], [26]) and recently, Alonso-Mallo and Cano ([2], [3]) have developed and
analyzed a technique which can be used in Runge–Kutta or Rosenbrock methods to
avoid such order reduction. This technique also consists of modifying cleverly the
boundary conditions naturally associated with the internal stages of these methods.
This method has two great advantages: Firstly, the computational cost of modify-
ing the boundary values is very cheap, compared with the cost of a complete stage.
Secondly, only few changes are necessary in a standard software to accomplish these
modifications (cf. [10], [20])

In this paper we prove that a similar technique can be implemented successfully
to avoid these order reductions in the integration of initial boundary value problems
with evolutionary boundary conditions with schemes of type alternating directions,
splitting or fractional steps. The key for getting this in a unified way departs from
the works of Jorge [18] and Jorge and Lisbona [19], where they prove that a method
of these types may be viewed and analyzed as a combination of a standard spatial
semidiscretization scheme and a time integration process which uses a special kind
of additive Runge–Kutta method [13]. Such methods are called fractional step
Runge–Kutta methods and we will refer to them as FSRK methods (see also Jorge
and Bujanda [8]). These ideas have permitted not only the analysis of classical
alternating direction, splitting or fractional step schemes in a unified way, but also
their application to other problems as well as the development of new higher order
fractional step schemes (see [9]).

For carrying out the development and analysis of our schemes, we will first con-
sider, in the next section, an abstract initial boundary value problem formulated
as an operational differential problem. Then we will study the convergence of
a fractional step Runge–Kutta time semidiscretization, with improved boundary
conditions for its internal stages. We prove in Sections 3 and 4 that such improve-
ment permits that the method not have order reductions due to the influence of
the boundary conditions.

The second discretization stage that we have performed to arrive at a numerical
method consists of discretizing in space the stationary problems resulting from
the application of an FSRK method to the continuous problem. Spectral methods
have been chosen here due to their facilities for reaching high orders of convergence.
Section 5 is devoted to the analysis of the fully discrete schemes derived of the use of
a spectral method for the spatial discretization. More classical spatial discretization
procedures can be seen combined with FSRK methods in [11] and [12].

Some numerical experiences are shown in Section 6 in order to illustrate the
improvements provided by the technique introduced here of modifying the boundary
conditions of the internal stages. Finally, some conclusions are made in Section 7.
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2. Notation and preliminaries

Let X and Y be two Hilbert spaces. The scalar product in X is denoted by
〈·, ·〉. Let A : D(A) ⊂ X → X and ∂ : D(A) ⊂ X → Y be two linear operators.
We study in the present paper full discretizations of the abstract nonhomogeneous
linear initial boundary value problem

(2.1)
u′(t) = Au(t) + f(t), 0 ≤ t ≤ T,
u(0) = u0 ∈ X,
∂u(t) = g(t) ∈ Y, 0 ≤ t ≤ T.

In practice, X is a space of functions defined in a domain Ω ⊂ Rd with regular
boundary Γ, d ≥ 1, A is an unbounded differential operator defined in a subspace
D(A) formed by regular elements of X and ∂ is a trace operator onto the space
Y . The restriction of A to D(A0) = Ker ∂, the elements of D(A) with vanishing
boundary, is denoted by A0. (An example would be A = ∆, D(A) = H2(Ω),
D(A0) = H2(Ω) ∩H1

0 (Ω).) We make the following hypotheses:
(A1) The operator −A0 is maximal and coercive, i.e.,{

∀u ∈ X, ∃x ∈ D(A0) such thatx−A0x = u, and
∀x ∈ D(A0), 〈−A0x, x〉 ≥ 0.

(A2) There exists an extension operator K : Y → D(A) such that ∂Kv = v for
each v ∈ Y .

For instance, these hypotheses are satisfied when (2.1) is well posed in the sense
defined in [23].

Since we are interested in approximations of high order, we make the following
hypotheses of regularity of the solution of (2.1): There exists an integer number
r ≥ 1 such that

Ar−ju(j) ∈ C([0, T ], X), 0 ≤ j ≤ r.(2.2)

We remark that the assumption (2.2) implies that the time derivatives of the so-
lution are regular in space, but without imposing any restriction on the boundary
values. In fact, Theorem 3.1 in [1] shows that (2.2) is satisfied when the data u0,
f and g are regular and the boundary values ∂u0, ∂f(0) and g(0) satisfy certain
natural compatibility constraints. As a consequence, we obtain

(2.3) Aju(t) = u(j)(t)−
j−1∑
i=0

Aj−i−1f (i)(t), 0 ≤ j ≤ r,

and by applying the boundary operator,

(2.4) ∂Aju(t) = g(j)(t)−
j−1∑
i=0

∂Aj−i−1f (i)(t), 0 ≤ j ≤ r.

These boundary values are used in this paper in order to define suitable boundary
values of the internal stages of a fractional step Runge–Kutta (FSRK) method.
Notice that the right-hand side of (2.4) is given only in terms of the data of (2.1).

Since we want to use FSRK methods for the time discretization of (2.1), we
suppose that

(2.5) A =
m∑
i=1

Ai, f =
m∑
i=1

fi,
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where Ai : D(Ai) ⊂ X → X are linear operators, simpler than A from some
points of view, such that D(A) =

⋂m
i=1D(Ai). For example, following the classical

alternating direction framework, m will be the spatial dimension of the original
evolution problem (d) and operators Ai will contain the partial derivatives with
respect to one of the spatial variables x1, x2, . . . , xd. The techniques in this paper
require that we also assume that

A
sl1
l1
· · ·Asltlt u ∈ D(Ai),(2.6)

whenever l1, . . . , lt, i ∈ {1, . . . ,m}, and sl1 + · · ·+slt ≤ r−1. Moreover, we suppose
that there exist linear operators ∂i : D(Ai) ⊂ X → Yi in such a way that Ker ∂ =⋂m
i=1 Ker ∂i and the assumptions (A1) and (A2) also hold for each pair of operators

Ai, ∂i, i = 1, . . . ,m; i.e., if A0,i is the restriction of Ai to D(A0,i) = Ker ∂i, the
elements of D(Ai) with vanishing boundary ∂i, the following hypotheses hold:

(A1i) The operator −A0,i is maximal and coercive, i.e.{
∀u ∈ X, ∃x ∈ D(A0,i) such thatx−A0,ix = u, and
∀x ∈ D(A0,i), 〈−A0,ix, x〉 ≥ 0.

(A2i) There exists an extension operator Ki : Yi → D(Ai) such that ∂iKiv = v
for each v ∈ Yi.

For the time discretization of (2.1) we consider a special type of s-staged additive
Runge–Kutta method with Butcher’s table

(2.7)
c A1 A2 · · · Am

bT1 bT2 · · · bTm
,

where bi = [bi,1, . . . , bi,s]T , c = [c1, . . . , cs]T , and

Ai =

 ai,11 · · · ai,1s
...

...
ai,s1 · · · ai,ss

 .
Let us denote 1 = [1, . . . , 1]T ∈ Rs, cl = [cl1, . . . , c

l
s]T , for l ≥ 0, and by I the

s-dimensional identity matrix. From now on, we suppose that (2.7) has classical
order p; we remember [18] that the order conditions

bTi1Ai2 · · · Aij c
l =

l!
(j + l)!

,

 1 ≤ j ≤ p,
0 ≤ l ≤ p− j,
i• ∈ {1, . . . ,m},

(2.8)

are necessary and sufficient so that (2.7) has classical order p when it is applied
to a linear nonhomogeneous ordinary differential equation with time independent
coefficients similar to (2.1).

We also use the stage order of (2.7) as the maximum integer positive number q
such that

cl = lAicl−1, l = 1, . . . , q, i = 1, . . . ,m.

This definition of stage order is similar to the one used for Runge–Kutta methods.
We remark that this stage order is usually very small for known FSRK methods,
usually 0 or 1. As a consequence, an FSRK method may suffer a severe order
reduction when the solution does not vanish at the boundary and the time stepsize
is not too small. In this paper we use a similar technique to [2] and [3] to avoid
this trouble.
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For n > 0 integer, if we consider a constant time step k > 0, we take tn = nk ≤ T .
The application of an additive Runge–Kutta method, given by (2.7), to discretize
in time (2.1), permits us to obtain approximations un of the exact solution u(tn)
by using the following process:

Firstly, for the internal stages, we obtain the equations

(2.9a)
(I ⊗ I −

∑m
i=1(Ai ⊗ kAi))Un = (1⊗ I)un + k

∑m
i=1(Ai ⊗ I)Fi,n+c,

(∂1, . . . , ∂m)Un = (G1,n, . . . , Gm,n),

where Un = [U1
n, . . . , U

s
n]T , the vector of internal stages,

Fi,n+c = [fi(tn + c1k), . . . , fi(tn + csk)]T and Gi,n = [∂iU1
n, . . . , ∂iU

s
n]T

are the boundary values.
The time semidiscretization is achieved with the final equation of the additive

Runge–Kutta method,

(2.9b) un+1 = un +
m∑
i=1

(bTi ⊗ kAi)Un + k

m∑
i=1

(bTi ⊗ I)Fi,n+c.

If we want to obtain from an additive Runge–Kutta method the cost reduction
typical of the fractional step schemes and preserve the unconditional convergence
properties of classical implicit methods, the following restrictions on the coefficients
of this method must be imposed:

Definition 2.1. A fractional step Runge–Kutta method (FSRK) is an additive RK
method satisfying

(2.10)


al,ii ≥ 0, i ∈ {1, . . . , s}, l ∈ {1, . . . ,m}, al,ij = 0, ∀ j > i,

|bl,j |+
s∑
i=1

|al,ij | 6= 0⇒
m∑
λ=1
λ6=l

(|bλ,j |+
s∑
i=1

|aλ,ij |) = 0, j ∈ {1, . . . , s}.

Using these coefficient restrictions and the properties of the operators Ai in [18],
[8], it is proven that the calculus of (2.9a), (2.9b) has a unique solution. Besides,
such a solution can be bounded independently of the size of k for those FSRK
methods which have all of their stages implicit (i.e.,

∑m
l=1 al,ii > 0 for i = 1, . . . , s)

or those FSRK methods which have only the first stage explicit and a suitable
last stage. These two cases contain most of the interesting classical and modern
fractionary step schemes.

3. Consistency of the time semidiscretization

Now, we study the behaviour of local errors of the semidiscrete method defined
by (2.9a) and (2.9b). We denote by Un = [U

1

n, . . . , U
s

n]T and un+1 the values that
satisfy (2.9a) and (2.9b) with un = u(tn). Then, the semidiscrete local truncation
error in tn is defined by

(3.1) ρn = u(tn)− un, 1 ≤ n ≤ N.
Since Un are approximations of Un+c := [u(tn+c1k), . . . , u(tn+csk)]T , a natural

choice is Gi,n = Gi,n+c := [∂iu(tn + c1k), . . . , ∂iu(tn + csk)]T . As we will see later,
this choice is related to the usual full discretization of (2.1) by using the method
of lines. However, with this choice, the order of the FSRK is only achieved when
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the solution satisfies certain artificial conditions at the boundary. Let us see how
to avoid this order reduction phenomenon. We define

U [0]
n = Un+c,

U [j+1]
n = (1⊗ I)u(tn) + (

m∑
i=1

(Ai ⊗ kAi))U [j]
n + k

m∑
i=1

(Ai ⊗ I)Fi,n+c,
(3.2)

for each j ≥ 0 and 1 ≤ n ≤ N and we consider the boundary values

G
[j]
i,n = ∂iU

[j]
n ,(3.3)

for j ≥ 0, i = 1, . . . ,m and 1 ≤ n ≤ N . When we apply the FSRK method given
by (2.9a) and (2.9b) with un = u(tn) and (3.3) as boundary values of the internal
stages, the corresponding values obtained in (2.9a) and (2.9b) are denoted by U

[j]

n

and u[j]
n .

Theorem 3.1. Let u be the solution of (2.1) satisfying (2.2) for r = p + 1. We
use the boundary values G[j]

n , 0 ≤ j ≤ p, in (2.9a). Then the local errors ρ[j]
n =

u(tn)− u[j]
n , 1 ≤ n ≤ N , 0 ≤ j ≤ p, satisfy

‖ρ[j]
n ‖ ≤ Ckq(j)+1, for k > 0,

where q(j) = min {p, q + j}, and the constant C depends only on the smoothness
of u and the FSRK method.

Proof. First, we take j = 0 and we use Gi,n = G
[0]
i,n to get

(I ⊗ I −
m∑
i=1

(Ai ⊗ kAi))U
[0]

n = (1⊗ I)u(tn) + k

m∑
i=1

(Ai ⊗ I)Fi,n+c,

(∂1, . . . , ∂m)U
[0]

n = (G[0]
1,n, . . . , G

[0]
m,n).

(3.4)

Let δ[0]
n be the value given by

(3.5) (I ⊗ I −
m∑
i=1

(Ai ⊗ kAi))U [0]
n = (1⊗ I)u(tn) + k

m∑
i=1

(Ai ⊗ I)Fi,n+c + δ[0]
n .

By expanding into Taylor series, δ[0]
n is given by

δ[0]
n =

p∑
j=q+1

kj

j!
[
cju(j)(tn)

−j
m∑
i=1

(
(Aicj−1 ⊗ Ai)u(j−1)(tn) + (Aicj−1 ⊗ I)f (j−1)

i (tn)
) ]

+O(kp+1)

= O(kq(0)+1).

Denoting ∆[0]
n = U

[0]
n − U

[0]

n and subtracting (3.4) from (3.5),

(I ⊗ I −
∑m
i=1(Ai ⊗ kAi))∆[0]

n = δ
[0]
n ,

(∂1, . . . , ∂m)∆[0]
n = 0.
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Therefore,

∆[0]
n = (I ⊗ I −

m∑
i=1

(Ai ⊗ kAi,0))−1δ[0]
n ,

for k > 0. On the other hand, since the FSRK method has order p,

u(tn) +
m∑
i=1

[
(bTi ⊗ kAi)U [0]

n + k(bTi ⊗ I)Fi,n+c

]
= u(tn) +

p−1∑
j=0

kj+1

j!

m∑
i=1

bTi c
j
(
Aiu

(j)(tn) + f
(j)
i (tn)

)
+O(kp+1)

= u(tn) +
p−1∑
j=0

kj+1

(j + 1)!

m∑
i=1

(
Aiu

(j)(tn) + f
(j)
i (tn)

)
+O(kp+1)

= u(tn) +
p−1∑
j=0

kj+1

(j + 1)!
u(j+1)(tn) +O(kp+1)

= u(tn+1) +O(kp+1),(3.6)

where we have used the order conditions bTi c
j = 1/(j + 1), j = 0, . . . , p − 1, i =

1, . . . ,m.
Subtracting (2.9b), with un = u(tn) and Un = U

[0]

n as internal stages, from (3.6),
we get

ρ
[0]
n+1 =

m∑
i=1

(bTi ⊗ kAi)(I ⊗ I −
m∑
i=1

Ai ⊗ kAi,0)−1δ[0]
n +O(kp+1).

Using the coefficient restrictions (2.10) and the properties of the operators Ai, for
more general initial boundary value problems, it is proven in [18] and [8] that the
operator

∑m
i=1(bTi ⊗ kAi)(I ⊗ I −

∑m
i=1Ai ⊗ kAi,0)−1 is bounded independently

of the size of k, for two special classes of FSRK methods which includes most of
the interesting classical and modern fractionary step schemes; from this, we obtain
that ρ[0]

n+1 = O(kq(0)+1).
Let us take 1 ≤ j ≤ p− q. Then we have

(3.7)
(I ⊗ I −

∑m
i=1(Ai ⊗ kAi))Ū [j]

n = (1⊗ I)u(tn) + k
∑m
i=1(Ai ⊗ I)Fi,n+c,

(∂1, . . . , ∂m)U
[j]

n = (G[j]
1,n, . . . , G

[j]
m,n)

and

(I ⊗ I −
m∑
i=1

(Ai ⊗ kAi))U [j]
n = (1⊗ I)u(tn) + k

m∑
i=1

(Ai ⊗ I)Fi,n+c + δ[j]
n ,(3.8)
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whence, by subtracting (3.2) from (3.8),

δ[j]
n = U [j]

n − U [j+1]
n

= (
m∑
i=1

(Ai ⊗ kAi))(U [j−1]
n − U [j]

n )

= (
m∑
i=1

(Ai ⊗ kAi))j(U [0]
n − U [1]

n )

= (
m∑
i=1

(Ai ⊗ kAi))jδ[0]
n

= O(kq+j+1).(3.9)

We define

u
[j]
n+1 = u(tn) +

m∑
i=1

(bTi ⊗ kAi)U [j]
n + k

m∑
i=1

(bTi ⊗ I)Fi,n+c.(3.10)

We deduce from (3.6) that u[0]
n = u(tn+1) +O(kp+1). Moreover, we have

u
[j+1]
n+1 = u(tn) +

m∑
i=1

(bTi ⊗ kAi)U [j]
n + k

m∑
i=1

(bTi ⊗ I)Fi,n+c

−
m∑
i=1

(bTi ⊗ kAi)(U [j]
n − U [j+1]

n )

= u(tn) +
m∑
i=1

(bTi ⊗ kAi)U [j]
n + k

m∑
i=1

(bTi ⊗ I)Fi,n+c

−
m∑
i=1

(bTi ⊗ kAi)δ[j]
n

= u
[j]
n+1 −

m∑
i=1

(bTi ⊗ kAi)δ[j]
n .

Now, we estimate the last term in the previous formula.

m∑
i=1

(bTi ⊗ kAi)δ[j]
n =

m∑
i=1

(bTi ⊗ kAi)(
m∑
l=1

(Al ⊗ kAl))jδ[0]
n

= kj+1
m∑

i,l1,...,lj=1

(bTi Al1 · · · Alj ⊗AiAl1 · · ·Alj )
p∑
r=1

crkr

r!
u(r)(tn)

−kj+1
m∑

i,l1,...,lj=1

(bTi Al1 · · · Alj ⊗AiAl1 · · ·Alj )

×r
p∑
r=1

m∑
s=1

[
(As ⊗As)

cr−1kr

r!
u(r−1)(tn)

+(As ⊗ I)
cr−1kr

r!
f (r−1)
s (tn)

]
+O(kp+j+1)
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=
p∑
r=1

kj+1+r

r!
[ m∑
i,l1,...,lj=1

(bTi Al1 · · · Aljcr ⊗AiAl1 · · ·Alj )u(r)(tn)

−r
m∑

i,l1,...,lj ,s=1

(bTi Al1 · · ·AljAscr−1 ⊗AiAl1 · · ·AljAs)u(r−1)(tn)

−r
m∑

i,l1,...,lj ,s=1

(bTi Al1 · · ·AljAscr−1 ⊗AiAl1 . . . Alj )f (r−1)
s (tn)

+O(kp+j+1)
]

=
p∑

r=q+1

kj+1+r

j + 1 + r!
[ m∑
i,l1,...,lj=1

(I ⊗AiAl1 · · ·Alj )u(r)(tn)

−
m∑

i,l1,...,lj ,s=1

(I ⊗AiAl1 · · ·AljAs)u(r−1)(tn)

−
m∑

i,l1,...,lj ,s=1

(I ⊗AiAl1 · · ·Alj )f (r−1)
s (tn)

]
+O(kp+j+1)

= O(kq+j+1),

where we have used the order conditions (2.8).
Therefore, we obtain by using a recursive argument

u
[j]
n+1 = u(tn+1) +O(kp+1), 0 ≤ j ≤ p− q.(3.11)

Now, we denote ∆[j]
n = U

[j]
n − U

[j]

n . For k > 0, we have

∆[j]
n = (I ⊗ I −

m∑
i=1

(Ai ⊗ kAi,0))−1δ[j]
n .

We subtract (2.9b), with un = u(tn) and (3.3) as boundary values of the internal
stages, from (3.11) written in the reversed order, and we get using (3.10)

ρ
[j]
n+1 =

m∑
i=1

(bTi ⊗ kAi)(I ⊗ I −
m∑
i=1

Ai ⊗ kAi,0)−1δ[j]
n +O(kp+1)

= O(kq(j)+1).(3.12)

�

In order to illustrate how this process works, we consider now a single example
of the FSRK method which comes from the classical alternating direction method
of Peaceman and Rachford [14, 15, 24] and which may be used for the time dis-
cretization of (2.1). This method is given by the array

(3.13)

0 0 0
1/2 0 1/2 1/2 0
1 0 1 0 1/2 0 1/2

0 1 0 1/2 0 1/2
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The corresponding system of equations for the internal stages [U1
n, U

2
n, U

3
n]T may

be written as

U1
n = un,

(1− kA1

2
)U2

n = un +
k

2
(
A2U

1
n + f2(tn)

)
+
k

2
f1(tn+1/2),

(1− kA2

2
)U3

n = un + k(A1U
2
n + f1(tn+1/2)) +

k

2
(
A2U

1
n + f2(tn)

)
+
k

2
f2(tn+1),

where, to obtain a unique solution, we need to assign the boundary values

G2
1,n = ∂1U

2
n, G3

2,n = ∂2U
3
n.(3.14)

(Notice that, since the first internal stage U1
n is explicit, its boundary value is not

necessary.)
The time discretization is achieved with the final equation

un+1 = un + k(A1U
2
n + f1(tn+1/2)) +

k

2
(
A2U

1
n + f2(tn)

)
+
k

2
(
A2U

3
n + f2(tn+1)

)
.

(Observe that, for this method, un+1 = U3
n.) This method has classical order p = 2

and stage order q = 1. In order to define the suitable boundary values of the
internal stages, we consider U

1,[0]
n

U
2,[0]
n

U
3,[0]
n

 =

 u(tn)
u(tn+1/2)
u(tn+1)


and

 U
1,[1]
n

U
2,[1]
n

U
3,[1]
n

 =


u(tn)

u(tn) +
k

2
(
A1u(tn+1/2) + f1(tn+1/2)

)
+
k

2
(A2u(tn) + f2(tn))

u(tn) + k(A1u(tn+1/2) + f1(tn+1/2)) +
k

2
(A2u(tn) + f2(tn))

+k
2 (A2u(tn+1) + f2(tn+1))

 .

Our results prove order 1 when G2
1,n = ∂1U

2,[0]
n = ∂1u(tn+1/2), G3

2,n = ∂2U
3,[0]
n =

∂2u(tn+1) and order 2 when G2
1,n = ∂1U

2,[1]
n , G3

2,n = ∂2U
3,[1]
n . Notice that these

boundaries make sense because of (2.6) . In fact, to obtain these boundary values
in practice (without knowing the exact solution u), some trick must be used. It
happens in many cases that, whenever v ∈ D(A2), it is possible to calculate ∂1A2v
(resp. ∂2A1v) as C12∂1v (resp. C21∂2v), for some operators Cij : Yi → Yi. (Look
at Section 5.1 in order to understand the hypotheses being made in that particular
example.) In such a way, just ∂1u(tn) is needed to calculate ∂1A2u(tn) for the second
stage, and just ∂2u(tn+1/2) is needed to calculate ∂2A1u(tn+1/2) for the third stage.
For the rest of the terms needed, as it is usually not possible to calculate ∂iAiv in
the same direct way, the decomposition A = A1 + A2 must be used, together with



SPECTRAL-FRACTIONAL STEP RUNGE–KUTTA DISCRETIZATIONS 1811

the fact that Au = u′ − f . Therefore,

 U
1,[1]
n

U
2,[1]
n

U
3,[1]
n

 =



u(tn)

u(tn) +
k

2

(
u′(tn+1/2)−A2u(tn+1/2)− f2(tn+ 1

2
)
)

+
k

2
(A2u(tn) + f2(tn))

u(tn) + k(A1u(tn+1/2) + f1(tn+1/2))

+
k

2
(u′(tn)−A1u(tn)− f1(tn))

+
k

2
(u′(tn+1)−A1u(tn+1)− f1(tn+1))


,

and from here the entire stage boundaries (3.14) can be calculated. For example,
when the boundary data are ∂1u(t) = g1(t) and ∂2u(t) = g2(t),

∂1U
2,[1]
n = G

2,[1]
1,n

= g1(tn) +
k

2

(
g′1(tn+1/2)− C12g1(tn+1/2)− ∂1f2(tn+ 1

2
)
)

+
k

2
(C12g1(tn) + ∂1f2(tn)) ,

∂2U
3,[1]
n = G

3,[1]
2,n

= g2(tn) + k(C21g2(tn+1/2) + ∂2f1(tn+1/2))

+
k

2
(g′2(tn)− C21g2(tn)− ∂2f1(tn))

+
k

2
(g′2(tn+1)− C21g2(tn+1)− ∂2f1(tn+1)) .

Remark 3.2. In other cases more iterations to the stage boundaries would be needed
to achieve the optimal order. It is important to notice that (2.3), together with
(2.5), the commutativity of the operators {Ai}, and the hypotheses that

∂iA
l
jv = Clij∂iv, for every v ∈ D(Al+1) and i 6= j, 1 ≤ l ≤ r(3.15)

make that it is possible to calculate the stage boundaries from the given data f
and g. It is also remarkable that the hypotheses (3.15) can be assumed in most
applications. Note also that, although operators Ai do not commute, it will always
be possible to calculate G[1] which ensures, at least, one order of improvement with
respect to the one obtained with the classical boundary conditions, G[0].

4. Stability and convergence

In order to obtain convergence to the solution of the continuous problem (2.1),
for the semidiscrete solutions obtained with an FSRK method described by (2.9a),
(2.9b) with the coefficient restrictions (2.10), the consistency properties studied in
the previous section must be accompanied by suitable stability properties. In this
context, the classical concept of 0-stability is not applicable due to the fact that
operators A,Ai are generally not bounded. The natural stability requirement for
our semidiscrete solutions is the preservation of the contractivity of the solutions
of the continuous problem (2.1). This means that any two solutions u(t) and v(t)
of the same problem (2.1), obtained by choosing two initial conditions u0 and v0,
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respectively, verify that ‖u(t′)− v(t′)‖ ≤ ‖u(t)− v(t)‖, ∀t′ ≥ t. The preservation of
this condition for our semidiscretization schemes means that

(4.1) ‖un+1 − vn+1‖ ≤ ‖un − vn‖, ∀n = 0, 1, . . .

and for any two sequences {un}n and {vn}n generated with the same scheme (2.9a),
(2.9b), from different initial values u0 and v0, respectively. If the set of operators
{A0,i}mi=0 is commutative, then the difference of numerical solutions un−vn satisfies
the recurrence relation

un+1 − vn+1 = r(kA0,1, kA0,2, . . . , kA0,m)(un − vn),

where

r(z1, z2, . . . , zm) = 1 +
m∑
i=1

zib
T
i (I −

m∑
j=1

zjAj)−1e

is called the amplification function associated to the FSRK method. In this case, it
is clear that the preservation of the contractivity for our FSRK schemes is equivalent
to the transition operator is a contraction in X , i.e.,

(4.2) ‖r(kA0,1, kA0,2, . . . , kA0,m)‖ ≤ 1.

In [19] the authors develop several results which ensure that this transition operator
is a contraction if the rational function of m complex variables r(z1, z2, . . . , zm) is
an A-acceptable rational approximation1 to the exponential exp(z1 + · · ·+ zn) joint
to some additional assumptions on the commutative system {A0,i}mi=0; moreover, if
the operators −A0,i are coercive, some additional A-stability requirements on the
FSRK methods of type strong A-stability, in particular the L-stability, ensures a
strongest contractive behaviour of type ‖r(kA0,1, kA0,2, . . . , kA0,m)‖ ≤ exp(−kβ),
where β is a positive constant independent of the size of k. In [8], the authors
face a more general evolutionary problem where the operators A0,i may change
smoothly in time. In these cases a weaker stability result is obtained because the
constant β may have negative values, but this property is also sufficient to obtain
convergence for the corresponding semidiscretization procedures, in finite intervals
of time. For proving these stability results in such a quite general context, the
holomorphic functional calculus in several variables is a strong tool. The penalty
to pay is that the commutativity on the operators A0,i is a restriction difficult to
overcome for theoretical proofs. Nevertheless, practice shows that this restriction
is not necessary to get numerical stability. In [7, 9] the authors perform several
examples considering noncommuting operators A0,i and numerical stability still
remains.

The combination of the stability result (4.2) with the consistency result given
in Theorem 3.1 permits us to obtain, via a well-known recurrence reasoning, the
following convergence result.

Theorem 4.1. Let u be the solution of (2.1) satisfying (2.2) for r = p+ 1, and let
(2.9a), (2.9b) be an pth order FSRK method improved with the modified boundary
conditions G[j]

n , 0 ≤ j ≤ p. Then the global errors R[j]
n = u(tn)− u[j]

n satisfy

‖R[j]
n ‖ ≤ Ckq(j), for k > 0,

1A-acceptability means that |r(z1, z2, . . . , zm)| ≤ 1 for all (z1, z2, . . . , zm) ∈ Cm such that
Re(zi) ≤ 0, ∀i = 1, . . . ,m. Weaker A-acceptability requirements of type A(0)-acceptability can
be considered if the operators A0,i are self-adjoint.
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where q(j) = min{p, q+ j}, and the constant C depends only on the smoothness of
u and the coefficients of the FSRK method.

5. Full discretization

In this section we describe the space discretization of the elliptic problems which
define each of the stages in (2.9a), and we analyze the error committed with the
full discretization in space and time. We have considered spectral methods for the
full discretization because they are very suitable for noncomplicated domains (as
the ones in which we are interested in order to apply the advantages of fractional
step Runge–Kutta methods) and because they are extremely accurate for regular
solutions in such a way that, in the numerical experiments, the avoidance of order
reduction in time is revealed even in the case of choosing few nodes for the spatial
discretization.

5.1. Spatial discretization. Now we describe how the spectral method works to
integrate an elliptic problem of the form

−Aiu = fi,
∂iu = gi.

(5.1)

For simplicity, we will assume i = 1, the domain is the square Ω = [−1, 1]× [−1, 1]
where A1 = ∂xx and ∂1u means the values of u in

∂1Ω = {(−1, y1), (1, y2), with y1, y2 ∈ [−1, 1]}.
The approximated solution uJ is searched among the polynomials of degree ≤ J
(ΠJ ) such that

uJ = R̃1,Ju+ I1,Jg1,

where R̃1,Ju, I1,Jg1 ∈ ΠJ , ∂1(R̃1,Ju) = 0 and I1,Jg1 interpolates g1 in ΞJ ∩ ∂1Ω

and vanishes in ΞJ∩
◦
Ω, with ΞJ being the Gauss–Lobatto mesh with J + 1 nodes

in each direction.
Imitating the weak formulation of (5.1),

〈∇1u,∇1v〉 = 〈f1, v〉 for every v ∈ H1(Ω) such that ∂1v = 0,

the following is imposed:

〈∇1uJ ,∇1vJ 〉J = 〈f1, vJ〉J for every vJ ∈ ΠJ such that ∂1vJ = 0,

where (·, ·)J is the Gauss–Lobatto quadrature rule in Ω. That can be seen to be
equivalent to the collocation method

−A1uJ = f in (Ω\∂1Ω) ∩ ΞJ .(5.2)

Then, in [5], it is proved that

‖u(·, yj)− uJ(·, yj)‖L2([−1,1]) = O(J2−m‖u(·, yj)‖Hm([−1,1])),

where {yj} are the Gauss–Lobatto nodes. Therefore, applying Fubini’s theorem,
and the fact that the Gauss–Lobatto rule given by 〈·, ·〉J approximates 〈·, ·〉L2(Ω),

‖u− uJ‖J = O(J2−m‖u‖Hm(Ω)).

Making afterwards the full discretization of the parabolic problem, the most
important values are the interior ones. Therefore we shall denote as R1,J the
polynomial which belongs to XJ = ΠJ ∩ H1

0 (Ω) and which interpolates R̃1,Ju in
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the interior nodes of ΞJ . Denoting also by PJ : L2(Ω)→ XJ the projection operator
with respect to 〈·, ·〉J on XJ , it follows that

‖PJu−R1,Ju‖J ≤ ‖u− uJ‖J = O(J2−m‖u‖Hm(Ω)),(5.3)

because PJu−R1,Ju vanishes in ∂Ω∩ ΞJ and coincides with PJu−R1,Ju in
◦
Ω ∩ΞJ .

For the real implementation and analysis of (5.2), if we are just interested in the

values of uJ in
◦
Ω ∩ΞJ (the same as those of R1,Ju), we can consider the collocation

method in (Ω\∂Ω) ∩ ΞJ . That means that

− PJA1R̃1,Ju− PJA1I1,Jg1 = PJf.(5.4)

Now, as R̃1,Ju = R1,Ju+ I2,J∂2(R̃1,Ju), and PJA1I2,J∂2R̃1,Ju = 0, (5.4) is saying
that

−A1,J,0R1,Ju−B1,Jg1 = PJf,(5.5)

where A1,J,0 : XJ → XJ is defined by A1,J,0 = PJA1 and B1,J : L2(∂1Ω)→ XJ by
B1,J = PJA1I1,J . So (5.5) is enough to determine the (J − 1) × (J − 1) interior
values in which we are interested.

5.1.1. Analysis of full discretization. As the values on ∂Ω are already known for the
exact solution, the internal stages in (2.9a) must be discretized taking into account
that we are just interested in the values of un in the interior nodes of ΞJ . From
the previous section, if Un,J,0, un,J,0 ∈ XJ are the approximations to Un in (2.9a)
and un in (2.9b) in the interior nodes, then

(I ⊗ IJ − k
m∑
i=1

(Ai ⊗Ai,J,0))Un,J,0 = (1⊗ IJ )un,J,0(5.6)

+k
m∑
i=1

(Ai ⊗Bi,J)∂iUn + k

m∑
i=1

(Ai ⊗ PJ )Fi,n+c,

un+1,J,0 = un,J,0 + k

m∑
i=1

(bTi ⊗Ai,J,0)Un,J,0(5.7)

+k
m∑
i=1

(bTi ⊗Bi,J)∂iUn + k
m∑
i=1

(bTi ⊗ PJ )Fi,n+c.

Remark 5.1. Because of the form of fractional step methods (2.10), whenever
Bi,J∂iUn,l has been needed for one of the stages, no other Bj,J∂jUn,l is needed
for j 6= i in the following ones.

The following lemma will be used to assure that (5.6) is solvable and the operator
(I ⊗ IJ − k

∑m
i=1(Ai ⊗Ai,J,0))−1 is bounded. This statement is straightforward in

case the method is A-stable and all the stages are implicit. The case in which the
first stage is explicit is also interesting and must be studied with more care. That
has already been done in [8].

Lemma 5.2. The operators Ai,J,0 are dissipative.

Proof. For simplicity we will assume i = 1 and Ω = [−1, 1]× [−1, 1] and A1 = ∂xx,
although it can be generalized easily to other values of the index i, a bit more
complicated domains and different operators Ai.
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If u ∈ XJ , then

(A1,J,0u, u)J = (PJA1u, u)J = (A1u, u)J .

On the other hand, if {Ll} are the Lagrange polynomials associated to Gauss–
Lobatto nodes in [−1, 1], then for some constants bl,k

u =
J−1∑
l,k=1

bl,kLl(x)Lk(y).

As a consequence, if {ajm} are the Gauss–Lobatto rule coefficients in Ω (ajm =
ajam, {aj} Gauss–Lobatto coefficients in [−1, 1]),

(A1u, u)J =
J−1∑
j,m=1

ajm[
∑
l,k

bl,kL
′′
l (xj)Lk(ym)][

∑
l,k

bl,kLl(xj)Lk(ym)]

=
J−1∑
m=1

am

J−1∑
j=1

aj [
∑
l

bl,mL
′′
l (xj)][

∑
l

blmLl(xj)]

=
J−1∑
m=1

am

∫ 1

−1

(
∑
l

bl,mL
′′
l (x))(

∑
l

blmLl(x))dx

=
J−1∑
m=1

am[(
∑
l

blmL
′
l(x))(

∑
l

blmLl(x))|1−1 −
∫ 1

−1

(
∑
l

blmL
′
l(x))2dx]

= −
J−1∑
m=1

am

∫ 1

−1

(
∑
l

blmL
′
l(x))2dx.(5.8)

Here we have used that [
∑
l bl,mL

′′
l (x)][

∑
l blmLl(x)] is a polynomial of degree ≤

2J − 2 in the variable x and the Gauss–Lobatto rule integrates it exactly. Finally,
as the coefficients of Gauss–Lobatto are positive [25], (5.8) is saying that

(A1u, u)J ≤ 0.

Besides, (A1u, u)J = 0 if and only if∑
l

blmL
′
l(x) = 0, m = 1, . . . , J − 1.

As Ll = 0 in {−1, 1},
∑

l blmLl(x) = 0 and therefore blm and u vanish. �

Theorem 5.3. Because of (2.2), the exact solution u of (2.1) belongs to Hm(Ω),
with m = 2r. Then the full discretization given by (5.6)–(5.7) with ∂iUn = G

[j]
i,n

in (3.3) produces an estimate of the solution at the interior of Ω and at time tn
(un,J,0) such that

‖PJu(tn)− un,J,0‖J = O(nJ2−m + kq̄(j) + J4−m).

Proof. For g ∈ L2(∂Ω), let IJg be the interpolant of g at ∂Ω ∩ ΞJ , which vanishes

at
◦
Ω ∩ΞJ . Let us also define the set of polynomials of degree ≤ J ,

Ūn,J = Ūn,J,0 + IJ∂Ūn,J = Ūn,J,0 + IJG
[j]
n ,
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as the solution of

(I ⊗ IJ − k
m∑
i=1

(Ai ⊗Ai,J,0))Ūn,J,0

= (1⊗ IJ )RJu(tn) + k

m∑
i=1

[(Ai ⊗Bi,J )∂iUn,J + (Ai ⊗RJ)Fi,n+c](5.9)

and ūn+1,J,0 in XJ as

ūn+1,J,0 = RJu(tn) + k

m∑
i=1

(bTi ⊗Ai,J,0)Un,J,0

+k
m∑
i=1

(bTi ⊗Bi,J )∂iŪn,J + k
m∑
i=1

(bTi ⊗RJ )Fi,n+c.

On the other hand, from Ū
[j]
n in (3.7) (denoted as Ūn for simplicity), ūn is defined

as

ūn+1 = u(tn) + k

m∑
i=1

(bTi ⊗Ai)Ūn + k

m∑
i=1

(bTi ⊗ I)Fi,n+c.

The proof is then based on the decomposition

(5.10) PJu(tn+1)−un+1,J,0 = (PJu(tn+1)−RJu(tn+1)) + (RJu(tn+1)−un+1,J,0),

where RJu is the elliptic projector operator which solves, according to the spectral
discretization in use,

−Au = f in Ω,
∂u = g in ∂Ω.(5.11)

That is to say, the operator RJ : D(A)→ XJ is such that

−AJ,0RJu−BJg = PJf,(5.12)

where AJ,0 = PJA|XJ and BJ = PJAIJ |L2(∂Ω). Because of classical results in [5],

‖PJu−RJu‖J = O(J2−m‖u‖Hm(Ω)).(5.13)

Therefore, it suffices to estimate the second brackets in (5.10), for which that is
decomposed as

RJu(tn+1)− un+1,J,0 = (RJu(tn+1)−RJ ūn+1) + (RJ ūn+1 − ūn+1,J,0)
+(ūn+1,J,0 − un+1,J,0).(5.14)

Then, because of the definition of local truncation error ρn, (5.13) and Theorem
3.1,

‖RJu(tn+1)−RJ ūn+1‖J = ‖RJρn‖J = ‖(RJρn − PJρn) + PJρn‖J
= O(J2−m‖ρn‖Hm(Ω) + ‖ρn‖J) = O(J2−m‖u‖Hm(Ω) + kq̄(j)+1

n ).
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To bound the second parentheses in (5.14), let us apply RJ to (3.7) and we get that

RJ Ūn = (1⊗RJ)u(tn) + k

m∑
i=1

[(Ai ⊗RJAi)Ūn + (Ai ⊗RJ )Fi,n+c]

= (1⊗RJ)u(tn) + k

m∑
i=1

(Ai ⊗Ai,J,0RJ)Ūn + k

m∑
i=1

(Ai ⊗RJ )Fi,n+c

+k
m∑
i=1

(Ai ⊗ (RJAi −Ai,J,0RJ))Ūn

= (1⊗RJ)u(tn) + k

m∑
i=1

(Ai ⊗Ai,J,0RJ)Ūn + k

m∑
i=1

(Ai ⊗RJ )Fi,n+c

+k
m∑
i=1

(Ai ⊗ ((RJ − PJ)Ai + (PJAi −Ai,J,0RJ)))Ūn.

Then,

RJ Ūn − Ūn,J,0 = [I ⊗ IJ − k
m∑
i=1

(Ai ⊗Ai,J,0)]−1

× [k
m∑
i=1

Ai ⊗ ((RJ − PJ)Ai + (PJAi −Ai,J,0RJ))Ūn

− k
m∑
i=1

(Ai ⊗Bi,J )∂iŪn,J ]

= [I ⊗ IJ − k
m∑
i=1

(Ai ⊗Ai,J,0)]−1

× [k
m∑
i=1

Ai ⊗ (−Ai,J,0RJ +Ai,J,0Ri,J + (RJ − PJ )Ai)Ūn].(5.15)

On the other hand,

RJ ūn+1 = RJu(tn) + k

m∑
i=1

(bTi ⊗RJAi)Ūn + k

m∑
i=1

(bTi ⊗RJ )Fi,n+c

= RJu(tn) + k

m∑
i=1

(bTi ⊗Ai,J,0RJ)Ūn

+k
m∑
i=1

(bTi ⊗ (RJAi −Ai,J,0RJ ))Ūn + k

m∑
i=1

(bTi ⊗RJ)Fi,n+c

= RJu(tn) + k
m∑
i=1

(bTi ⊗Ai,J,0RJ)Ūn

+k
m∑
i=1

(bTi ⊗ ((RJ − PJ )Ai + (PJAi −Ai,J,0RJ )))Ūn(5.16)

+k
m∑
i=1

(bTi ⊗RJ)Fi,n+c.
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Therefore,

RJ ūn+1 − ūn+1,J,0

= k(
m∑
i=1

bTi ⊗Ai,J,0)(RJ Ūn − Ūn,J,0)

+k
m∑
i=1

[bTi ⊗ [(RJ − PJ)Ai + (PJAi −Ai,J,0RJ)]Ūn −Bi,J∂Ūn,J ]

= k(
m∑
i=1

bTi ⊗Ai,J,0)(RJ Ūn − Ūn,J,0)

+k
m∑
i=1

[bTi ⊗ ((RJ − PJ)Ai +Ai,J,0(Ri,J −RJ))]Ūn.

Because of (5.13) and the definition of Ūn in (3.7),

‖(RJ − PJ )AiŪn‖J = O(J2−(m−2)‖AiŪn‖Hm(Ω))

= O(J4−m‖Ūn‖Hm(Ω)) = O(J4−m‖u‖Hm(Ω)).(5.17)

It is also true that

Ai,J,0(Ri,J −RJ) = Ai,J,0[(Ri,J − PJ ) + (PJ −RJ )],

and from here, attending to (5.3) and (5.13),

‖Ai,J,0(Ri,J −RJ)Ūn‖J ≤ ‖Ai,J,0O(J2−m‖Ūn‖Hm(Ω))‖J
= O(J4−m‖Ūn‖Hm(Ω))

= O(J4−m‖u‖Hm(Ω)).

(5.18)

Using now (5.15), (5.17), (5.18) and the uniform boundedness on J and k of
(
∑m

i=1 b
T
i ⊗ kAi,J,0)(I ⊗ IJ − k

∑m
i=1AiAi,J,0)−1 [8], [18],

RJ ūn+1 − ūn+1,J,0 = O(kJ4−m‖u‖Hm(Ω)).

As for the third term of (5.14), subtracting (5.6) from (5.9), we get that

Ūn,J,0 − Un,J,0 = (I ⊗ IJ − k
m∑
i=1

Ai ⊗Ai,J,0)−1

×[(1⊗ IJ )(RJu(tn)− un,J,0) + k

m∑
i=1

(Ai ⊗ (RJ − PJ))Fi,n+c],
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ūn+1,J,0 − un+1,J,0 = RJu(tn)− un,J,0 + k

m∑
i=1

(bTi ⊗Ai,J,0)(Ūn,J,0 − Un,J,0)

+k
m∑
i=1

(bTi ⊗ (RJ − PJ ))Fi,n+c

= RJu(tn)− un,J,0(5.19)

+k
m∑
i=1

(bTi ⊗Ai,J,0)(I ⊗ IJ − k
m∑
i=1

Ai ⊗Ai,J,0)−1

×[(1⊗ IJ)(RJu(tn)− un,J,0)

+k
m∑
i=1

(Ai ⊗ (RJ − PJ ))Fi,n+c]

+k
m∑
i=1

(bTi ⊗ (RJ − PJ ))Fi,n+c.

Now, (5.13) implies that

(RJ − PJ )Fi,n+c = O(J2−(m−2)‖f‖Hm−2(Ω)) = O(J4−m‖u‖Hm(Ω)).

Using again that
∑m
i=1(bTi ⊗ kAi,J,0)(I ⊗ IJ − k

∑m
i=1(Ai ⊗Ai,J,0))−1 is a bounded

operator,

ūn+1,J,0 − un+1,J,0 = r(kA1,J,0, . . . , kAm,J,0)(RJu(tn)− un,J,0)

+O(kJ4−m‖u‖Hm(Ω)),

and as a consequence,

RJu(tn+1)− un+1,J,0 = r(kA1,J,0, . . . , kAm,J,0)(RJu(tn)− un,J,0) + εJ,n,

where
εJ,n = O(J2−m + kq̄(j)+1 + kJ4−m).

Using a recursion argument,

RJu(tn)− un,J,0 =
n−1∑
l2=0

(
n−1∏

l1=l2+1

r(kl1A1,J,0, . . . , kl1Am,J,0)εJ,l2)

+
n−1∏
l1=0

r(kl1A1,J,0, . . . , kl1Am,J,0)(RJu(0)− PJu(0))(5.20)

= O(nJ2−m + kq̄(j) + J4−m),

because of (4.2). �

Remark 5.4. In practice, it happens many times that for moderate stepsizes kn,
the global error behaves in this way:

PJu(tn)− un,J,0 = O(J2−m + kq̄(j)+1 + kJ4−m).

The reason for that was studied for Runge–Kutta methods in [22, 26] and it was
mainly due to a summation-by-parts procedure which could be applied to the equiv-
alent form of (5.20) for those methods. The same behaviour is observed for frac-
tional step methods.
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Remark 5.5. The analysis carried out here for spectral methods can be extended
easily to other spatial discretization methods. For example, if finite differences
were considered, it would suffice to substitute in (5.5), (5.12) the operators PJ , RJ
by suitable restrictions to the corresponding nodes and AJ,0, Ai,J,0, Bi,J by the
corresponding matrices which result after the discretization of the elliptic boundary
problems (5.11), (5.1). The error bounds obtained for (5.20) would depend on the
particular methods considered.

6. Examples and numerical experiments

To illustrate the results of the previous sections, we have performed some nu-
merical experiments using the full discretization Spectral/FSRK described in (5.6)–
(5.7). We have considered the problem

ut(t, x, y) = uxx(t, x, y) + uyy(t, x, y)− 4(1 + y2)e−tex+y2
in Ω = [−1, 1]× [−1, 1],

u(0) = ex+y2
,

u(t, x, y) = e−tex+y2
in ∂Ω,

whose exact solution is u(t, x, y) = e−tex+y2
(∈ Hm(Ω) for every integer m > 0).

In such a way, when considering J = 18 nodes in each direction, the error coming
from the space discretization in our numerical experiments is negligible in front of
the error coming from the time semidiscretization, for moderate sizes of k, as was
announced by the results of Theorem 5.3.

As a first FSRK-method, we have considered the array (3.13). This method has
stage order 1, according to (2.9) and classical order 2. Its amplification function is

r(z1, z2) =
1 + z1

2

1− z1
2

1 + z2
2

1− z2
2

.

With the most natural boundary conditions for the stages (G[0]
n ), the bounds in

Theorem 3.1 and Remark 5.4 give order 2 for the local error and (a bit heuristically)
for the global error. However, a better order can be observed with the boundary
conditions for the stages G[1]

n . In this case, the bound gives order 3 for local error
and (a bit heuristically) for the global error. Table 1 shows the order for local error
by integrating till time T = k with timestep k = 1/n and measuring the error at that
particular time in L2-norm approximated by the Gauss–Lobatto quadrature rule.
Table 2 does the same for global error integrating till time T = 1 and measuring the

Table 1. Orders for local error and method (3.13)

n 5–10 10–20 20–40 40–80 80–160 160–320
G[0] 1.9569 2.0672 2.1377 2.1910 2.2400 2.2956
G[1] 2.7992 2.8394 2.8715 2.8990 2.9223 2.9414

Table 2. Orders for global error and method (3.13)

n 5–10 10–20 20–40 40–80 80–160 160–320
G[0] 2.1092 2.0035 1.9993 2.0007 2.0004 2.0001
G[1] 2.3446 2.1490 2.0632 2.0287 2.0140 2.0070
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Figure 1. Comparison of efficiency with method (3.13) and stage
boundaries G[0]

n and G[1]
n .

error just at that final time. The orders observed are the expected ones. The only
thing to notice is that the global order for G[1]

n is not as high as 3 for the smallest
values of k. That corresponds to the fact that, for a fixed value of J and k small
enough, the stiffness of the problem does not cause order reduction and the analysis
can be done in the classical way. Consequently, no numerical order reduction will
be observed in this case.

When looking at the size of the errors, the fact that the order is higher in
general for j = 1 leads to much smaller errors when k is smaller. That can be
observed in Figure 1, in which the L2-norm is represented against the timestep.

Table 3. Orders for local error and method (6.1)

n 5–10 10–20 20–40 40–80 80–160 160–320
G[0] 0.7062 0.9920 1.1271 1.2103 1.3096 1.4811
G[1] 2.4776 2.3838 2.2465 2.1781 2.1662 2.1579
G[2] 3.1008 3.1365 3.1335 3.1492 3.1920 3.2619

Table 4. Orders for global error and method (6.1)

n 5–10 10–20 20–40 40–80 80–160 160–320
G[0] 0.8470 1.0591 1.1561 1.2187 1.3010 1.4375
G[1] 2.4887 2.3132 2.1861 2.1386 2.1370 2.1479
G[2] 3.1374 3.1003 3.0636 3.0445 3.0363 3.0312
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Circles correspond to G
[0]
n and crosses to G

[1]
n . As the last correction just means

some modifications on the boundaries of the stages, the figure implies that that
implementation is more competitive.

As a second example, we have considered the FSRK-method of classical order 3
[7]

(6.1)

1
10

1
2 0

1
2

1
2 0 0 1

2

3
25

1
50 0 1

2 0 1
50 0

19
25

119
50 0 −2 0 0 − 3

25 0 1
2

3
5

3065
706 0 − 1500

353 0 1
2 0 − 75

706 0 250
353 0

29
50

1447
3750 0 1

10 0 353
3750 0 0 − 4

75 0 2
15 0 1

2

68
15 0 − 325

72 0 353
360 0 0 − 553

72 0 125
36 0 125

24 .

This method has stage order 0. Therefore, with G
[0]
n , Theorem 3.1 and Remark

5.4 give order 1 for local and global errors. That is observed in practice, as Tables
3 and 4 show. With G[1]

n , theorems give order 2. In practice, the order is even a bit
higher for the biggest values of the stepsize. With G

[2]
n , the expected order 3 for
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Figure 2. Comparison of efficiency with method (6.1) and stage
boundaries G[0]

n , G[1]
n and G[2]

n .



SPECTRAL-FRACTIONAL STEP RUNGE–KUTTA DISCRETIZATIONS 1823

10
1

10
2

10
3

10
4

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

NUMBER OF FUNCTION EVALUATIONS

E
R

R
O

R

Figure 3. Number of evaluations the source term against the
global errors with method (3.13) and stage boundaries G[0]

n and
G

[1]
n , method (6.1) and stage boundaries G[0]

n , G[1]
n and G

[2]
n .

both local and global error is observed in the tables. So, through the techniques of
this paper, the classical order of the method has been reproduced for global error.

In Figure 2, we again represent global error against the timestep. The results
for G[0]

n and G
[1]
n are again represented by circles and crosses, respectively. Now,

the results for G[2]
n are represented by asterisks. The gain in order with j is again

evident through the slopes of the lines in that figure. As for the size of the errors,
the great decrease comes when changing j = 0 for j = 1. For all the values of
k which we have proved, the errors with one modification of the boundaries are
several orders of magnitude smaller. Then, a bigger value of j leads to smaller
errors for the smallest values of the stepsize considered.

Finally, we have studied the computational cost of both methods with all the
implementations considered. We remark that the performance of both methods
improves clearly when the boundary values are successively modified. As expected,
the method (3.13) (with q = 1) is better than the method (6.1) (with q = 0) when
the usual implementation is used, corresponding to the use of G[0]

n . When the stage
boundaries are modified, (3.13) is still better than (6.1) for moderate values of the
error (see Figure 3). However, (6.1) is better when a smaller value of the error is
required.

7. Conclusions

We would like to mention now the important advantages of the type of discretiza-
tion suggested here when integrating regular problems in noncomplicated domains.
First of all, when dealing with the spectral discretization in space suggested here,
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fractional step Runge–Kutta methods manage to reduce the cost of the LU factor-
ization needed for the stages from O(J6) arithmetic operations in the Runge–Kutta
case to O(J3) due to the fact that the FSRK time semidiscretization reduces the
continuous problem to a set of essentially one-dimensional elliptic problems. Then,
the forward and backward substitutions needed for the complete resolution of each
stage means O(J4) operations in the Runge–Kutta case and just O(J3) in the frac-
tionary step case. On the other hand, the spectral discretization in itself is very
suitable for the same kind of problems, because it leads to really small errors in
space. Finally, the fact that the reduction of order in time is completely avoided
with the techniques in this paper leads to a very efficient method, mainly taking
into account that the modifications needed to avoid that order reduction just mean
O(J) operations at each stage (the number of nodes in the boundary). This means
nearly nothing compared with the total required to advance a step (O(J3)) and it
is one of the features which makes this technique better than others already in the
literature.
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