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A SOLUTION TO CERTAIN POLYNOMIAL EQUATIONS
WITH APPLICATIONS TO NONLINEAR FITTING

CHRIS CONNELL

Abstract. We present a combinatorial method for solving a certain system of
polynomial equations of Vandermonde type in 2N variables by reducing it to
the problem of solving two special linear systems of size N and rooting a single
univariate polynomial of degree N . Over C, all solutions can be found with
fixed precision using, up to polylogarithmic factors, O(N2) bitwise operations
in the worst case. Furthermore, if the data is well conditioned, then this
can be reduced to O(N) bit operations, up to polylogarithmic factors. As an
application, we show how this can be used to fit data to a complex exponential
sum with N terms in the same, nearly optimal, time.

1. Introduction

In this paper we present a combinatorial method for solving the following system
of polynomial equations in unknowns Ai and Xi where the elements Fi lie in a
(commutative) integral domain D.

F1 = A1 + A2 + · · · + AN
F2 = A1X1 + A2X2 + · · · + ANXN

...
...

...
. . .

...
F2N = A1X

2N−1
1 + A2X

2N−1
2 + · · · + ANX

2N−1
N .

(1)

Certainly, any polynomial system which is regular can be reduced to solving
univariate polynomials by producing resultants via Sylvester’s elimination method
or other algorithms which produce a Gröbner basis. Simply applying the Weak
Nullstellensatz gives a criteria for when solutions exist in terms of the associated
ideal. The problem is that such general methods do not usually provide the most
efficient procedures for accomplishing these tasks. For instance, one can easily
check that for the simple case of Fi = 1 + 1/i ∈ Q in the above system, at least
for N ≤ 5, one must still root N polynomials with degrees 1, . . . , N even once the
Gröbner basis has been computed. This holds regardless of elimination order.

The reduction we present provides an explicit and computationally reasonable
method for determining when solutions of this system exist and what they are. We
will show that when solutions exist, they lie in an extension (of degree at most N)
of the fraction field, K, of the integral domain D, although we could (almost) as
easily look for solutions in any integral domain extending D. We summarize the
solution as follows.
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Theorem I. The problem of solving system (1) is equivalent to (in order) solving
a certain linear Hankel system, factoring a univariate degree N polynomial, and
solving a linear Vandermonde system. Moreover this reduction is given explicitly.

More generally, for i = 1, . . . , N choose elements qi and ri from the set of expo-
nents of D (i.e., those elements y ∈ D such that xy is well defined and exists in D
for all x ∈ D). Then for any positive integer M we may consider the over/under-
determined system of D-rational equations below.


F1 = A1X

r1
1 + A2X

r2
2 + · · · + ANX

rN
N

F2 = A1X
q1+r1
1 + A2X

q2+r2
2 + · · · + ANX

qN+rN
N

...
...

...
. . .

...

FM = A1X
q1(M−1)+r1
1 + A2X

q2(M−1)+r2
2 + · · · + ANX

qN (M−1)+rN
N .

(2)

After proving the theorem for system (1) in Section 2 we will explain how to solve
system (2) in like manner. One item of importance of these particular systems of
equations arises from their connection to the problem of fitting a sum of real or
complex exponentials. In fact solutions to the above systems result in an efficient
method for finding the coefficients βi and exponents αi which provide a “best fit”
approximation of a function F (t), or discrete samples F = {(t1, f1), . . . , (tn, fn)},
by a function of the form

F̃ (t) =
N∑
i=1

βie
αit,

for any choice of N . Here the βi and the αi depend only on the Ai and Xi in a
relatively simple way. This will be explored in Section 3.

2. Solving the equations

For the first step in solving equations (1), notice that these equations are lin-
early dependent on the Ai. We can then easily eliminate the Ai from the first N
equations. To do this, use the the first N equations of (1) to solve for the Ai,

(3)


F1

F2

...
FN

 =


1 1 · · · 1
X1 X2 · · · XN

...
...

. . .
...

XN−1
1 XN−1

2 · · · XN−1
N

 ·


A1

A2

...
AN

 ,
and then substitute these into the last N equations of system (1). Recognizing
the matrix above as the transpose of the Vandermonde matrix, we can formally
compute the entries.

First we establish some notation. Let Alt be the elementary alternating polyno-
mial in the variables X1, . . . , XN . Explicitly,

Alt =
N∏
k=1

∏
j>k

(Xk −Xj).
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Similarly, let Alti be the elementary alternating polynomial in the variables
X1, . . . , Xi−1, Xi+1, . . . , XN . Let Symj be the jth elementary symmetric polyno-
mial in the variables X1, . . . , XN . Explicitly, for 1 ≤ j ≤ N ,

Symj =
N∑
l1=1

N∑
l2=l1+1

· · ·
N∑

lj=lj−1+1

j∏
k=1

Xlk ,(4)

and Sym0 = 1.
Lastly, let Symi,j be the jth elementary symmetric polynomial in the variables

X1, . . . , Xi−1, Xi+1, . . . , XN . We will outline a proof to the following well-known
lemma.

Lemma 2.1. With the above notation, whenever Xi 6= Xj for j 6= i, the Ai satisfy

Ai =
(−1)N+i+1 Alti

Alt

N∑
j=1

(−1)j Symi,N−j Fj .(5)

Proof. Consider the entries of the transposed Vandermonde matrix as formal mono-
mials with coefficients in Z. The minor Mi,j of the transposed Vandermonde matrix
corresponding to position (i, j) is an alternating polynomial in all of the variables
except Xj . Every alternating polynomial F (except in characteristic 2) may be for-
mally expressed as a product, F = AltS, of the elementary alternating polynomial
Alt and some symmetric polynomial S. Hence Mi,j = Altj Si,j where for each i and
j, Si,j is symmetric in all of the variables except Xj . For any row i (resp. column
j), the alternating sum of the Mi,j in j (resp i) is Alt. One easily checks that this
relationship is satisfied when Si,j = Symj,N−i (uniquely for coefficients in Z).

Recall that a matrix with entries in D is invertible in D if and only if its deter-
minant is a unit in D. If that happens, then the inverse matrix is the transpose of
the matrix of minors with alternating signs divided by the determinant. It follows
that the (i, j) entry of the inverse of the Vandemonde matrix is

(−1)N+i+1+j Alti
Alt

Symi,N−j .

So for any fixed X1, . . . , XN belonging to a commutative domain I, if Xi 6= Xj

for any two indices i 6= j, then Alt 6= 0 and the Vandermonde matrix is invertible in
I[ 1

Alt ]. Thus the formula for the Ai is valid in this domain and hence in the fraction
field for I as well. �

Remark 2.2. One approach to finding solutions where some of theXi, sayXN−r, . . . ,
XN , coincide is to make this substitution to begin with. In this case, system (1)
reduces to the overdetermined system (2) with ri = 0, qi = 1, M = N and N
replaced by N − r. When solutions to this latter system exist, say in a field k/K,
there is an r dimensional space (over k/K) of solutions to the AN−r, . . . , AN in
system (1).

Substituting the Ai back into equations (1) then yields relations for the Fk+N

in terms of symmetric polynomials in the Xi and the Fi. More specifically, if for
each j and k, Ck,j denotes the coefficients for Fj in the expression for Fk+N , then
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the second half of the system (1) becomes
FN+1 = C1,1F1 + C1,2F2 + · · · + C1,NFN
FN+2 = C2,1F1 + C2,2F2 + · · · + C2,NFN

...
...

...
. . .

...
F2N = CN,1F1 + CN,2F2 + · · · + CN,NFN ,

(6)

where we have

Ck,j =
(−1)N+j+1

Alt

N∑
i=1

(−1)i Alti Symi,N−j X
k+N−1
i .

Now we will show that the Ck,j satisfy a recursion relation.

Proposition 2.3. The Ck,j satisfy

Ck,j = (−1)N+j SymN−j+1 Ck−1,N + Ck−1,j−1,

with

C0,N = 1, C0,j = 0 for 0 ≤ j < N, and Ck,0 = 0 for all k ≥ 0.

Proof. To verify this, we simply compute

Ck,j − (−1)N+j SymN−j+1 Ck−1,N − Ck−1,j−1

=
(−1)N+j+1

Alt

N∑
i=1

(−1)i Alti Symi,N−j X
k+N−1
i

− (−1)N+j SymN−j+1

−1
Alt

N∑
i=1

(−1)i Alti Symi,0X
k+N−2
i

− (−1)N+j

Alt

N∑
i=1

(−1)i Alti Symi,N−j+1 X
k+N−2
i

=
(−1)N+j+1

Alt

N∑
i=1

(
Symi,N−j Xi−SymN−j+1+Symi,N−j+1

)
(−1)iXk+N−2

i Alti

= 0

since the elementary symmetric polynomials satisfy

SymN−j+1 = Symi,N−j Xi + Symi,N−j+1,(7)

where we assign Symi,N = 0.
The base cases of the recursion may be verified as follows. To show C0,N = 1,

we verify by switching variables that the numerator of

C0,N =
−1
Alt

N∑
i=1

(−1)i AltiXN−1
i

is an alternating polynomial of total degree
(
N
2

)
in the variables X1, . . . , XN and

hence by the principal theorem of alternating polynomials it must be a constant
multiple of Alt. To show that the constant is 1, we simply substitute the values
Xi = i to obtain

C0,N = −
N∑
i=1

(−1)i
(−1)N−1iN−1

i!(N − i)! =
(−1)N

N !

N∑
i=1

(
N

i

)
(−1)iiN = 1.
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The last equality follows from recognizing the second to last expression as the
Sterling number σNN .

Similarly, for the C0,j with j < N we expand recursively on j, using the relations
(7), as follows

C0,j =
(−1)N+j+1

Alt

N∑
i=1

(−1)i Symi,N−j AltiXN−1
i

=
(−1)N+j+1

Alt

(
SymN−j+1

N∑
i=1

(−1)i AltiXN−2
i

−
N∑
i=1

(−1)i Symi,N−j+1 AltiXN−2
i

)
...

=
(−1)N+j+1

Alt

(
j∑

k=1

(−1)k+1 SymN−j+k

N∑
i=1

(−1)i AltiXN−1−k
i

)
.

However, we may observe by switching pairs of variables Xi and Xj for all i 6= j
that the sum

N∑
i=1

(−1)i AltiXN−1−k
i

is an alternating polynomial. Formally considering the coefficients to lie in Z, it
must then be a product of a symmetric polynomial and Alt. However for k ≥ 1, its
degree is less than Alt so each sum is zero in D.

Lastly, Ck,0 = 0 since Symi,N = 0. �

Using the above recurrence formula, the relationship between the Xi and Fi has
been somewhat simplified. For instance, with N = 3, the system (6) becomes the
following.

F4
F5
F6

=

 Sym3 − Sym2 Sym1
Sym1 Sym3 Sym3−Sym1 Sym2 Sym2

1−Sym2
(Sym2

1−Sym2) Sym3 Sym2
2−Sym2

1 Sym2+Sym1 Sym3 Sym3
1 −2 Sym1 Sym2+Sym3

·
F1
F2
F3



The above proposition allows us to apply symmetric reduction to system (1)
since the Xi variables only appear in symmetric polynomials. Next we will show
that system (6) has a simpler form.

Proposition 2.4. The system (6) may be expressed as the following linear system.
FN+1

FN+2

...
F2N

 =


FN −FN−1 · · · (−1)N+1F1

FN+1 −FN · · · (−1)N+1F2

...
...

. . .
...

F2N−1 −F2N−2 · · · (−1)N+1FN

 ·


Sym1

Sym2
...

SymN

(8)

Moreover, for any solution to system (1), the elementary symmetric polynomials in
the Xi satisfy the above linear relation.
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Proof. Repeatedly applying the recurrence relation from Proposition 2.3 on the kth
equation of (6) for k ≥ 1 we obtain

FN+k =
N∑
i=1

Ck,iFi

= (−1)N+1F1 SymN Ck−1,N

+
N∑
i=2

Fi
(
(−1)N+i SymN−i+1 Ck−1,N + Ck−1,i−1

)
= Ck−1,N

N∑
i=1

(−1)N+iFi SymN−i+1︸ ︷︷ ︸
FN+1

+
N∑
i=2

FiCk−1,i−1

=
N+1∑
i=2

FiCk−1,i−1

=
N∑
i=1

Fi+1Ck−1,i

= F2Ck−1,1 +
N∑
i=2

Fi+1

(
(−1)N+i SymN−i+1 Ck−2,N + Ck−2,i−1

)
...

...

=
N∑
i=1

Fi+2Ck−2,i

...
...

=
N∑
i=1

Fi+k−1C1,i

=
N∑
i=1

Fi+k−1(−1)N+i SymN−i+1

=
N∑
i=1

FN−i+k(−1)i+1 Symi .

Therefore these equations reduce to the N linear equations

FN+k =
N∑
i=1

FN−i+k(−1)i+1 Symi,

as desired.
The above reductions also show that for any solution to system (1) the elementary

symmetric polynomials in the Xi satisfy (8). This is immediate whenever the Xi

are distinct. The coincidence of two or more of the Xi invalidates formula (5).
Nevertheless, Proposition 2.3 implies, in particular, that the Ci,j are polynomial in
the Xi. It follows from continuity in the parameters that the elementary symmetric
polynomials in the Xi still satisfy (8) in this case. �

The system (8) may be easily solved for the Symi assuming that the system is
nonsingular. Replacing Symi by (−1)N−i SymN−i+1 in system (8) and performing
the same operations on the corresponding columns of the matrix yields the following
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system. 
FN+1

FN+2

...
F2N

 =


F1 F2 · · · FN
F2 F3 · · · FN+1

...
...

. . .
...

FN FN+1 · · · F2N−1

 ·


(−1)N−1 SymN

(−1)N−2 SymN−1
...

Sym1

(9)

This we recognize as a Hankel system which, like Vandermonde systems, can be
solved much more efficiently than general systems as we will see in Section 2.2.

The original objective was to solve for the Xi in terms of the Fj . However,
treating the Symi as known constants, the system of equations (4) in variables
X1, . . . , XN has, for each solution, up to N ! redundant solutions corresponding to
permutations of the Xi. We are only interested in obtaining all the solutions up to
permutation. Hence we wish to reduce the degree of this symmetric system. The
following lemma is classical for fields, but nevertheless we will present a short proof
to highlight its applicability to commutative rings in general.

Lemma 2.5. For elements Si in any unital commutative ring R, consider the
system of equations Si = Symi for i = 1, . . . , N , where Symi are given by (4). In
any commutative ring R′ containing R, a solution X1, . . . , XN to this system is also
a complete set of roots in R′ for the monic polynomial

P (X) := XN +
N∑
i=1

XN−i(−1)i Si .(10)

Conversely every complete set of roots for the polynomial is also a solution to the
system.

Proof. Recall that Symi =
∑

1≤l1<···<li≤N
∏i
m=1Xlm . For any solution set X1, . . . ,

XN of the system Si = Symi for i = 1, . . . , N , substituting Symi for Si into the
equation for P (X), we find

P (Xk) = XN
k +

N∑
i=1

(−1)iXN−i
k Symi(X1, . . . , XN ).

The (−1)N SymN term cancels with the Xk term of (−1)N−1X1
k SymN−1 and the

X2
k terms of this quantity cancel with the X2

k terms of (−1)N−2X2
k SymN−2, and so

forth, until finally the remaining XN
k term of −XN−1

k Sym1 cancels XN
k , showing

that P (Xk) = 0.
Conversely, if P (X) =

∏N
i=1(X −Xi), then expanding this product shows that

the coefficient (−1)kSk of Xk is (−1)k Symk as expected. In these verifications we
only use commutativity of the ring operations. �

Completing the proof of Theorem I. Now we have the prescription for solving the
original system (1). Starting with known Fi ∈ D, we use equation (8) to solve
for the Symi which will be rational in the Fi whenever solutions exist. We then
substitute Symi ∈ K for the Si in equation (10). For a complete factorization of
the polynomial P (X) we obtain the solution of the Xi in an extension field k of at
most degree n over K. Then we substitute these values into (3) and solve for the
Ai which also live in k whenever solutions exist.

Conversely, given a solution Xi, Ai for i = 1, . . . , N of system (1), Proposition
2.4 states that the elementary symmetric polynomials in Xi form solve system (8)
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and by Lemma 2.5 the Xi form a factorization of P (X). It then follows that the Ai
must satisfy (3). Therefore, if either of the two linear systems or the factorization
problem fails to admit a solution, then system (1) does not admit solutions. �

Solutions, when they exist, naturally live in the Galois extension k/K which
splits P (X). The problem of looking further for solutions in D ⊂ k/K is then only
as hard as the membership problem.

Since system (8) is essentially a Hankel system, much can be said about when
solutions exist in terms of F1, . . . , F2N (see for instance [Gou97, ISL92, Las90]).
Similarly, from equation (5) we see that solutions to the Ai exist whenever the Xi

are distinct, or else whenever Xi = Xj for two indices i, j, the values F1, . . . , FN
satisfy

∑N
l=1(−1)l Symk,N−l Fl = 0 for k = i and k = j.

Let k be any field extending K. The solution variety V ⊂ k2N for system (1) is
fibered in the following way. For each solution ~s in the affine subspace S ⊂ kN of
solutions to (8) we consider the (possibly empty) set L~s of all distinct (including
permutations) complete factorizations of P (X) with coefficients Si taken from ~s in
order. Each of these forms the coordinates for a point ~x ∈ kN . For each ~x ∈ L~s
we have a (possibly empty) affine subspace T~x ⊂ kN of solutions to (3) for this
factorization. Hence

V =
⋃
~s∈S

⋃
~x∈L~s
T~x 6=∅

(~x, T~x).

Since T~x is independent of the order of ~x, the symmetric group SN acts on V
(not necessarily freely) by permuting the first N coordinates and the second N

coordinates the same way. The quotient V̂ = V/SN is the reduced variety and we
will say that system (1) is regular if V̂ is exactly one point. Note that if system (1)
is regular for any nontrivial field, then the system is regular for any field in which
it admits a solution.

2.1. The case of system (2). We can relate the solutions of system (2) in a field
k/K to the solutions of the simplified system (2) where we set qi = 1 and ri = 0
for all i = 1, . . . , N as follows.

Consider a solution, Ai and Xi (i = 1, . . . , N), to the simplified system in a field
k′/K. For each set of solutions xi, i = 1, . . . , N , in k/K of the equations Xi = xqii ,
set ai = Aix

−ri
i . Since ri is an exponent, ai ∈ k. The quantities Xi = xi and

Ai = ai then provide a solution to (2). Furthermore, all solutions in k arise in this
way as k′ is allowed to vary.

It remains to discuss the solution to system (1) in the case when the number of
equations is M 6= 2N . Of course, when we have M ≤ N , we could solve (2) for the
Ai’s in K for any choice of M distinct Xi’s which in turn would be a solution to
the original system. Therefore we may assume M > N .

Calculating A1, . . . , AN as before and substituting these into the second M −N
equations, we obtain coefficients Ck,j as in (6) for 0 ≤ k ≤M −N and 1 ≤ j ≤ N .
Proposition 2.3 still holds when M > N , and in fact it gives the formula for Ck,j
for all k ≥ 1 and 1 ≤ j ≤ N . Hence, we obtain the same system of equations,

FN+k =
N∑
i=1

FN−i+k(−1)i+1 Symi,

for k = 1, . . . ,M −N .
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Lastly in the under-determined case M < 2N , the following system
FN+1

FN+2

...
FM

 =


FN −FN−1 · · · (−1)N+1F1

FN+1 −FN · · · (−1)N+1F2

...
...

. . .
...

FM−1 −FM−2 · · · (−1)N+1FM−N

 ·


Sym1

Sym2
...

SymN

(11)

can be solved (generically) for a 2N − M dimensional space of solutions which
correspond to completing this system with variables FM+1, . . . , F2N to transform
it into the Hankel system (9).

In the over-determined case M > 2N , system (11) may be restricted to any
subsystem of size N each corresponding to rows n through N + n − 1 for any
n = 1, . . . ,M − 2N . This way the system will remain essentially Hankel after
relabelling. Once any of these systems is solved one may easily check the remaining
equations for consistency.

In either case, for each solution to system (11) we obtain the Xi and Ai as before
by solving (10) and (3), respectively.

2.2. Time complexity. Now we consider the efficiency for the entire procedure
on a random access machine. There are several different cases to consider. First
we consider exact solutions in fields. Of course, in general, not much can be said
since the fields themselves can be arbitrarily complicated for a computer to handle.
That is, one arithmetic operation can take arbitrarily long, such as in an exten-
sion field over Q with an arbitrary large degree. The factorization problem is also
very delicate in arbitrary fields. However, some of the most important cases are
the finite and p-adic cases, Fp and Qp. Over these fields, both the Hankel system
(9) and the Vandermonde system (3) can be solved with O

(
N log2(N) +N log p

)
arithmetic operations ([BDCMM01]). Factoring the polynomial P (X) in Fp takes
no worse than O

(
N2 log p

)
operations (see [vzGP01, Sho95] for subquadratic al-

gorithms when q is relatively small compared to n). For not much worse, one can
work in extensions of Qp (see [Pau01]).

For the case of approximate solutions in C, we wish to find a solution to the
system with accuracy 2−b. We also want to consider an actual computer imple-
mentation, so we consider the time in bit operations instead of arithmetic opera-
tions. In the case of factorization, the latter usually masks an extra order of N bit
operations due to the necessity of high precision.

Both the Hankel system (9) and the the Vandermonde system (3) can be solved
in C with O

(
bN log2(N)

)
bit operations with storage O (N) (see [Pan92]). In

[Pan02] it was recently shown that the problem of approximate factorization in C
requires

O
(
(bN2 log bN log2N log log bN)(log2N + log bN)

)
bit operations for accuracy 2−b. On the other hand, this can be reduced, up to
polylogarithmic factors, down to O (bN) bit operations assuming that the zeros
of the polynomial are not too tightly clustered ([Pan02]). In particular, the entire
time complexity for finding the Xi’s and Ai’s is dominated by the factoring problem.
Hence up to polylog factors, it runs in O(N2) bit operations for fixed accuracy and
in roughly O(N) bit operations with well-conditioned data.

These running times are optimal up to polylogarithmic factors. In order to verify
this, we begin by replacing Symi in (8) by the coefficient Si of the monic polynomial
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(10). Setting F1, . . . , FN−1 all to 0 and FN = 1, we may rewrite (8) as the following
Toeplitz system.

S1

−S2

...
(−1)N+1SN

 =


1 0 · · · 0
−S1 1 · · · 0

...
...

. . .
...

(−1)N−1SN−1 (−1)N−2SN−2 · · · 1

 ·

FN+1

FN+2

...
F2N

(12)

This can be solved for the FN+1, . . . , F2N up to polylog factors in O(N) time
([Pan92]). On the other hand, if the X1, . . . , XN belong to a solution of (1) for this
choice of F1, . . . , F2N , then we showed that the Xi represent all the roots of (10).
Therefore solving (1) takes asymptotically at least as much time as a complete
factorization. On the other hand, the stated O(N2) worst case time and O(N)
well-conditioned case time are optimal, up to polylog factors in N , for complete
approximate factorization (see [Pan02]). The speed of this algorithm will become
even more significant when we explore some applications below.

It is worth noting that the algorithm of [Pan02] is quite complicated and has not
been implemented in any numerical package that we are aware of. Moreover, the
widely used versions of the Jenkins-Traub factorization algorithm are still likely to
be much faster than the near optimal algorithm for N < 100.

3. Applications

Here we present an application to a generic fitting problem. We will start with a
general component minimization scheme before narrowing down to the special case
of approximating by exponential sums. In what follows, let K be any complete field
with respect to some norm.

Given a measure space (X,µ), where µ is a K valued measure, suppose that one
has an arbitrary function F ∈ L2

loc(X,µ) taking values in K. We may assume that F
is restricted to a region S ⊂ X , the sampling domain. We wish to find the best fit of
F as a linear combination of N functions from the collection {fα}α∈A ⊂ L2

loc(X,µ)
for some parameter space A ⊂ K and natural number N . The approximating
function to F will be

F̃N =
N∑
i=1

βifαi ,(13)

for some choice of constants βi ∈ K and parameter indices αi ∈ A such that F̃N is
closest to F in a certain sense that we will make precise shortly.

We need to find the best choice of coefficients βi and parameters αi for F̃N . To
do this, we choose kernel functions Kn ∈ L2(S, µ) based on the collection {fα}α∈A
(but independent of α) such that for each integer n = 0, . . . , 2N − 1,∫

S

Kn(x)fα(x)dµ(x) = GS(α)PS(α)n,

for functions GS and PS on A. The subscript S is used to indicate that these
functions, along with the kernel functions, may depend on the domain as well.
Note that if GS(α) = 0 (respectively, PS(α) = 0), then fα is orthogonal to all of
the Kn for n = 0, . . . (respectively, for n = 1, . . . ).
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At this point, we put the above into the framework of system (1). Setting
Ai = βiGS(αi) and Xi = PS(αi), we may easily verify that,∫

S

Kn(x)F̃N (x)dµ(x) =
N∑
i=1

AiX
n
i .(14)

As this suggests, we can set Fi =
∫
S
Ki−1(x)F (x)dµ(x) for i = 1, . . . , 2N and then

solve the system (1) for the Ai, Xi. We must assume the Fi are finite, which holds
independently of Ki−1 ∈ L2(S) if F ∈ L2(S). We must further assume that PS(A)
contains all possible solution values for the Xi as the F1, . . . , F2N range over all
values produced from the class of functions F we wish to consider. For instance,
this last condition is always satisfied if we choose A and the family {Kn} so that
PS(A) = K.

Under these conditions, then at least one solution of PS(αi) = Xi exists with
αi ∈ A. If Ai = 0, then we simply remove the corresponding term from the sum
(13); otherwise we set βi = Ai

GS(αi)
. Substituting these values of αi and βi in (13)

will produce a candidate minimizer, F̃N , with at most N terms.
Any such F̃N will satisfy∫

S

Kn(x)
(
F (x) − F̃N (x)

)
dµ(x) = 0,(15)

for n = 0, . . . , 2N − 1. In other words, F̃N − F lies in SpanL2 {K0, . . . ,K2N−1}⊥ .
Also note that whenever F (x) is given by a linear combination from {fα}α∈A with
at most N terms, then F will be included among the possibilities for F̃N .

For all n ≥ 2N , we have from the definition of Ck,j and the validity of Proposition
2.3 for all k ≥ 0 that∫

S

Kn(x)F̃N (x)dµ(x) =
N∑
i=1

AiX
n
i =

N∑
i=1

Cn−N+1,iFi.(16)

The Cn−N+1,i are all homogeneous polynomials in the Xi of degree n− i+ 1, but
they may each have many terms. We will need to estimate the number of terms in
Ck,j since we have no priori control over the size of the Ai.

Observe that by iterating the recurrence relation in Proposition 2.3 we obtain

Ck,N =
min{k,N}∑

i=1

(−1)i+1 SymiCk−i,N .

By induction on k, we obtain that Ck,N is precisely the sum of all distinct monic
monomials of total degree k in the variables X1, . . . , XN . For j 6= N it is not as
apparent how to describe Ck,j . Nevertheless, by iterating the recurrence relation
twice, we obtain

Ck,j = (−1)N−j[SymN−j+1 Ck−1,N − SymN−j+2 Ck−2,N ] + Ck−2,j−2.

Since Symi consists of the sum of all products of i distinct elements from
X1, . . . , XN , it follows from the description of Ck,N that every term in the ex-
pansion of SymN−j+2 Ck−2,N is represented in SymN−j+1 Ck−1,N . Since C1,j =
(−1)N−jSN−j+1, by induction each term in Ck,j has the same sign (−1)N−j .
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Therefore, using that Symi has
(
N
i

)
terms, the recurrence relation for the sum,

ck,j , of the absolute value of the coefficients of all terms in Ck,j is

ck,j =
(

N

N − j + 1

)
ck−1,N − ck−1,j−1

with c0,N = 1 and c0,j = 0 for j = 1, . . . , N − 1. It is straightforward to verify
that this has solution ck,j = (N−1+k)!

(N−j+k) (k−1)! (j−1)! (N−j)! . This is a polynomial in k

of degree N − 1. Moreover, estimating each factorial term using Sterling’s formula
shows that for each j ∈ {1, . . . , N}, the quantity N 2−k e−

3
2 k ck,j tends to 0 as either

k or N tends to ∞, so long as k ≥ N .
Therefore, if we assume that the sequence {Fi} tends to 0 and that for some

ε > 0, |PS(α)| ≤ e−3/2

2 − ε for all α ∈ A, then for all n > 2N ,∣∣∣∣∫
S

Kn(x)
(
F (x)− F̃N (x)

)
dµ(x)

∣∣∣∣ ≤ |Fn|+
∣∣∣∣∣
N∑
i=1

(2e3/2)−n+i−1cn−N+1,iFi

∣∣∣∣∣
≤ |Fn|+ Ce−ε(n−N),

where C > 0 is a constant depending only on the largest Fi. Note that the right-
hand side tends to 0 as either n or N tends to infinity since n − N > N by
assumption.

Now assume that F ∈ L2(S), so that the Fi are square summable. Moreover,
suppose the sequence {Kn} contains a nondegenerate basis of L2(S), by which we
mean there is a constant C′ > 0 such that for all f ∈ L2(S),∑

n≥0

〈Kn, f〉2L2(S) ≥ C
′‖f‖2L2(S).

In this case,

‖F − F̃N‖2L2(S) ≤
∑
n≥0

〈
Kn, F − F̃N

〉2

L2(S)
≤ C′

∑
n>2N

(
|Fn|+ Ce−ε(n−N)

)2

.

Hence, ‖F − F̃N‖L2(S) tends to 0 as N tends to infinity. If we only require that
Xi < 1 for i = 1, . . . , N , then we still may conclude from equation (14) that each
F̃N belongs to L2(S) for each N .

Let HF,N denote the Hankel matrix in system (9). Fix N and suppose F satisfies
the condition that for i = N + 1, . . . , 2N , we have |Fi| < 1

CN where C is any upper
bound for ‖H−1

F,N‖. Then by systen (9) the norm of the coefficients of the polynomial
(10) are all less than 1

N and therefore the roots Xi are all less than 1. In this case,
if the {Kn} contain a nondegenerate basis, then F̃N ∈ L2(S).

We point out that with obvious modifications, the above analysis applies to the
case when the Kn represent distributions instead of functions. Now we will focus
on applying these ideas to the concrete example of exponentials.

4. Fitting exponentials

In terms of the context from the previous section, we set K = C and consider
the collection of functions fα(x) = e−αx with α ∈ A = C and any S ⊂ C. We may
parameterize S by the variable t. In short we will fit an equally spaced complex
time series F1, . . . , F2N to a sum of complex exponentials F (t) =

∑N
j=1 Aje

αjt.
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We first assume that for j = 1, . . . , 2N , the Fj represent given approximations
to F (tj) where tj = j/q + r for fixed constants q and r. In terms of the previous
section, this corresponds to taking Kj = δtj for j = 1, . . . , 2N , where δtj is a
Dirac delta at tj . We can then solve for each Aj and each eαj simply by using our
algorithm to solve the corresponding version of (2) with qi = q and ri = r.

Example 4.1. Let F (t) be a series of N exponential functions each of whose
coefficients and exponents are randomly chosen using a uniform distribution over
the square in C with opposite corners ±(1 + i). To keep the exponentials from
becoming too large or small, we set q = 2N and r = 0 so that Fj = F

(
j

2N

)
for

j = 0, . . . , 2N − 1.
We implemented our algorithm in the Mathematica computer algebra system,

version 4.1, on a 900 MHz Pentium III machine equipped with 400 megabytes of
RAM. Since the purpose of this example is to demonstrate the viability of the
algorithm for relatively small N , we did not attempt to implement the optimal
algorithm. Instead, we chose to use Mathematica’s built-in linear solver, which
has computational complexity O(N3), for the two linear systems. We also used
Mathematica’s implementation of the suboptimal Jenkins-Traub algorithm for the
polynomial factorization.

Nevertheless, this implementation could still recover the original F (t) with an
accuracy of 10−9 from the Fi in approximately 2.6 seconds of CPU time forN = 100.
For N = 1000 the entire algorithm takes approximately 1100 seconds. The single
most time consuming step is the rooting of the polynomial which was accomplished
in 504 seconds of CPU time.

By contrast, Mathematica’s nonlinear regression routine, based on the Levenberg-
Marquart algorithm, expended 15 seconds of CPU time on the same machine to
fit an exponential sum F (t) with N = 100, but restricted to real exponents and
coefficients. Similarly, the case with N = 1000 exhausted 1239 seconds of CPU
time. For some reason, the actual time to complete this fit was more than 12 times
as long, even without any disk paging.

For many typical numerical applications, the Fi may represent inaccurate or un-
evenly spaced data. For this situation we may want to rely on averaging techniques.
For instance, when S = [0,∞) and we are modelling decaying exponentials, i.e.,
Re(αi) < 0, then we can use our method when the Laplace transform of Kn has
the correct form. Table 1 is a partial list collected from [IK77] for possible choices
of Kn(x) along with the corresponding GS and PS which fit into the framework
of Section 3. For instance, choosing Kn(x) = xn−1

Γ(n) leads to equating the statis-

tical moments of F̃N with those of F ; other choices lead to different notions of
approximation.

Here Jn(t) is the nth Bessel J function, Ln(t) is the nth Laguerre polynomial,
and Hn(t) is the nth Hermite polynomial. We see from Table 1 that for these
kernel functions either α is uniquely determined from PS(α) for α on C (with a
given branch cut), a half plane (PS = 2p

α2+p2 ), or a strip (in the exponential cases).
For a given choice of the Kn it takes at most O(Nm) time to calculate the

integrals Fi for i = 0, . . . , 2N − 1 when F (t) has been sampled at m points. Hence
the entire algorithm to compute a fit F̃N is, in the worst case, O(N2 log(N) +Nm)
for a fixed precision. Note that for some choices of Kn the integration can be done
in O(N +m) time.
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Table 1.

Choices of Kernel Functions for fα(t) = e−αt

Kn(t) GS(α) PS(α){
0 (0 ≤ t < n)

1 (n ≤ t)
1
α

e−α

e−pt t
n−1

Γ(n)
1 1

α+p

1√
πt
e−n

2/(4t) 1√
α

e−
√
α

1√
n

sin(
√
nt)

√
π

4α3 e−
1

4α

1√
t

cos(
√
nt)

√
π
α

e−
1

4α

Jn(t) 1√
1+α2

√
1 + α2 − α

n
t
Jn(pt) 1 1

p

(√
p2 + α2 − α

)
tn

Γ(n+1/2)
Jn(pt) 1√

π(p2+α2)

2p
α2+p2(

t
n

)p/2
Jp(
√
nt) 2−pα−(p+1) e−

1
4α

tpΓ(n−p+1)
n!

L
(p)
n (T ) 1

α(α−1)p
α−1
α

1
(2n+1)!!

H2n+1(
√
t)

√
π

2α3
1−α
α

1√
t(2n−1)!!

H2n(
√
t)

√
π
α

1−α
α

Appendix A. Other noniterative methods in special cases

Here we report on a couple of previously existing methods to handle special
cases of the problem of fitting exponential series. The more well-known techniques
of nonlinear regression and the Prony method have already been well analyzed in
the literature, so we will not discuss them here. Though very effective for small N
these inherently iterative methods suffer from being asymptotically inefficient.

The special cases presented here have the potential to run in O(N logN) opera-
tions for well-behaved inputs and are both simple and elegant. Unfortunately, they
only recover exponents αj lying in a particular one real dimensional subset of C.
Moreover, their numerical deficiencies make them for the most part impractical.

The general scheme is to find an appropriate operator� such that �eαt = δ(t−α)
where δ(t) is the Dirac delta distribution centered at 0. Thus if F (t) =

∑N
j=1 Aje

αjt,
we may express this as

F (t) =
∫ ∞
−∞

f(s)estds

for

f(s) =
N∑
j=1

Ajδ(s− αj),

and �F (t) = f(t).
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When applying discrete versions of such an operator, the inherent numerical
inaccuracies do not always make them a good choice for recovery of a best fit
approximation, especially in the presence of noise. However, they can at least give
a practical means of finding the number of terms, N , in the sum, the hope being
that the number of peaks N of a numerical realization of �F (t) may be discernable
even when their relative heights and positions are not.

In the first case, using the notation from Section 3, if S = R and αj ∈ R · i,
then we could simply take the Fourier transform of F to obtain a sum of Dirac
measures centered at the −i ·αj with weights Aj . Numerically, this can be accom-
plished using a nonuniform fast Fourier transform algorithm and taking Aj to be
the total mass of each peak which will be centered approximately at −i · αj . This
can be done in O(N logN) time for fixed precision assuming the sampling is less
than a fixed multiple of N ([DR93] and see [NL99, Bey95, CFR84] for consequent
improvements). However the constants in the time dependency may be large due
to the need to resolve the peaks enough to accurately estimate the Ai. We also
needed to assume that F (t) can be sampled at an appropriate set of real values of
t.

Similarly, when αj ∈ R with αj < 0 we could take the inverse Laplace transform

f(s) =
1

2πi

∫ σ+i∞

σ−i∞
F (t)estdt for any σ > 0

to obtain a sum of Dirac measures centered at −αj with weights Aj . Numerically
this can be done using an algorithm based on the fast Fourier transform (FFT)
when F has been sampled along the line σ + iR. Otherwise, if F is sampled only
for positive real values (which one might commonly expect in practice), then one
may use the inversion formula arising from the Mellin transform,

f(s) =
1

2πi

∫ σ+i∞

σ−i∞

s−p

Γ(1 − p)

(∫ ∞
0

F (t)t−pdt
)
dp.

Here Γ(x) is the Euler gamma function and the function F must also satisfy certain
analytic conditions (see [AR00]) in order for the integrals to converge. It seems that
the general method described in [Str92] for fast evaluation of discrete transforms
with sufficiently decaying kernels, when applied to the discrete application of the
above transform given in [AR00], would give a means of computing this numerically
in O(N logN) time.

The Gardner transform ([GGLM59]) provides an efficient alternate approach to
inverting the Laplace transform in this case when F (t) is sampled at real values
only. Its advantage is that it can be simply evaluated from three FFT’s.

To solve for f(s) in terms of F (t), we make it a convolution in order to conve-
niently take its Fourier transform. To do so, we make a transformation of variables
in the Laplace transform. From the equation for F (t) above under the assumption
αj < 0, we recover,

etF (et) =
∫ 0

−∞
f(s)etese

t

ds.

Then making a change of variables from s to −βe−x (for any positive constant β)
gives us

etF (et) =
∫ ∞
−∞

f
(
−βe−x

)
e−βe

t−x
βet−xdx.
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We observe that the integral is a convolution with K(z) = βe−βe
z

ez. Taking the
Fourier transform of both sides then gives

Ft→ω
(
etF

(
et
))

= Fx→ω
(
f
(
−βe−x

))
Fx→ω (K(x)) .

For the purpose of numerical stability, we multiply the left-hand side by a gauss-
ian factor e−(ων )2

for some constant ν. Since this is equivalent to convolving F (t)
by the same factor at the outset, it acts as a low pass filter which cuts out baseline
ripples which are far away from the central peak of Ft→ω (etF (et)) (see [SCSB76]).
Good values of the constant ν vary, but often taking ν to be about half of the length
of the interval on which the Fourier transform of F is defined works well.

The final result is

f
(
−βe−x

)
= F−1

ω→x

(
Ft→ω (etF (et)) e−(ων )2

Fx→ω (K(x))

)
.

The purpose of the constant β is to shift the peak of K(z) by a factor of log(β) in
order to center it in the domain of etF (et) so that it goes to zero on either edge of
this window. This reduces numerical inaccuracies ([SCSB76]).

The numerical problems with applying this transform mostly stem from the
constraint on the domain of the data. For example, the maximum of etF (et) where
F (t) is a single exponential eαt occurs at t = log −1

α and decays very rapidly from
that point. Therefore the domain of F (t) should include points nearby to the points
−1
αj

in order to obtain an accurate sampling. Clearly, integrating etF (et) accurately
from sampled data can be problematic since the domain of F is compressed so
rapidly.

Since Fx→ω (K(x)) appears in the denominator in the Gardner transform, there
are inaccuracies introduced whenever it decays on the portion of the domain of the
numerator representing significant data. By examining Laplace transforms of K(x)
on the positive and negative imaginary axes, we find that

Fx→ω (K(x)) = β−i2πsΓ(1 + i2πs).

Therefore it is also important to choose β so that the domain where this function
has small norm does not overlap with the domain of the data window used in the
computation of Ft→ω (etF (et)). Since this later function is modelled by

N∑
j=1

Aj(−αj)−(1+i2πs)Γ(1 + i2πs),

this may be impossible if the αj are spread apart.
In practice, we found that when applying this algorithm with machine precision

of 10−16, the number of peaks accurately corresponded to the number of exponential
terms N except when the αj were separated by less than 10−3. Even when choosing
optimal values of β and ν with fewer than six αj uniformly distributed between 0
and 1, the precision of the αj was usually less than 10−3. On the other hand, even
in cases when the peaks about the αj are completely separated, it is difficult to
estimate their mass to within a factor of 1 of the value of the original Ai. Due to
the extensive overlap of peaks when two αj are reasonably close, it is difficult to
make any reasonable estimate at all.
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