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AN EXTENSION AND ANALYSIS
OF THE SHU-OSHER REPRESENTATION

OF RUNGE-KUTTA METHODS

L. FERRACINA AND M. N. SPIJKER

Abstract. In the context of solving nonlinear partial differential equations,
Shu and Osher introduced representations of explicit Runge-Kutta methods,
which lead to stepsize conditions under which the numerical process is total-
variation-diminishing (TVD). Much attention has been paid to these represen-
tations in the literature.

In general, a Shu-Osher representation of a given Runge-Kutta method is
not unique. Therefore, of special importance are representations of a given
method which are best possible with regard to the stepsize condition that can
be derived from them.

Several basic questions are still open, notably regarding the following issues:
(1) the formulation of a simple and general strategy for finding a best possible
Shu-Osher representation for any given Runge-Kutta method; (2) the question
of whether the TVD property of a given Runge-Kutta method can still be
guaranteed when the stepsize condition, corresponding to a best possible Shu-
Osher representation of the method, is violated; (3) the generalization of the
Shu-Osher approach to general (possibly implicit) Runge-Kutta methods.

In this paper we give an extension and analysis of the original Shu-Osher
representation, by means of which the above questions can be settled. More-
over, we clarify analogous questions regarding properties which are referred
to, in the literature, by the terms monotonicity and strong-stability-preserving
(SSP).

1. Introduction

1.1. The purpose of the paper. In this paper we deal with the numerical solution
of initial value problems, for systems of ordinary differential equations, which can
be written in the form

d

dt
U(t) = F (U(t)) (t ≥ 0), U(0) = u0.(1.1)

The general Runge-Kutta method, applied to problem (1.1), provides us with nu-
merical approximations un to U(n∆t), where ∆t denotes a positive time step and
n = 1, 2, 3, . . . ; cf., e.g., Butcher [2], Dekker and Verwer [3], Hairer, Nørsett and
Wanner [8], Hairer and Wanner [9]. The approximations un are defined in terms of

Received by the editor May 7, 2003 and, in revised form, August 3, 2003.

2000 Mathematics Subject Classification. Primary 65M20; Secondary 65L05, 65L06.
Key words and phrases. Initial value problem, conservation law, method of lines (MOL),

Runge-Kutta formula, Shu-Osher representation, total-variation-diminishing (TVD), strong-
stability-preserving (SSP), monotonicity.

c©2004 American Mathematical Society

201



202 L. FERRACINA AND M. N. SPIJKER

un−1 by the relations

yi = un−1 + ∆t
m∑
j=1

aijF (yj) (1 ≤ i ≤ m),(1.2.a)

un = un−1 + ∆t
m∑
j=1

bjF (yj).(1.2.b)

Here aij and bj are real parameters, specifying the Runge-Kutta method, and yi
are intermediate approximations needed for computing un from un−1. As usual, we
assume that b1 + b2 + · · ·+ bm = 1, and we call the Runge-Kutta method explicit
if aij = 0 (for j ≥ i). We define the m×m matrix A by A = (aij) and the column
vector b ∈ Rm by b = (b1, b2, b3, . . . , bm)T , so that we can identify the Runge-Kutta
method with its coefficient scheme (A, b).

In order to introduce the questions to be studied in this paper, we assume that
(1.1) results from applying the method of lines (MOL) to a Cauchy problem for a
scalar conservation law of the form

(1.3)
∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0 (t ≥ 0, −∞ < x <∞).

In this situation, the function F occurring in (1.1) can be regarded as a function
from

R∞ = {y : y = (. . . , η−1, η0, η1, . . . ) with ηj ∈ R for j = 0,±1,±2, . . .}
into itself; see, e.g., Laney [16], LeVeque [17], Toro [25]. The actual function values
F (y) depend on the given f as well as on the MOL semidiscretization being used. In
the literature (see, e.g., Gottlieb, Shu and Tadmor [7], Shu [21], Shu and Osher [22],
Spiteri and Ruuth [24]) much attention has been paid to solving the semidiscrete
problem (1.1) by Runge-Kutta processes (1.2) which are total-variation-diminishing
(TVD) in the sense that

(1.4) ‖un‖TV ≤ ‖un−1‖TV ;

here the function ‖.‖TV is defined by

‖y‖TV =
+∞∑
j=−∞

|ηj − ηj−1| (for y ∈ R∞ with components ηj).

For an explanation of the relevance of the TVD property in the numerical solution
of (1.3); see, e.g., Harten [10], Kröner [15], Laney [16], LeVeque [17], Toro [25].

By Shu and Osher [22] (see also Shu [20]) a clever representation of explicit
Runge-Kutta methods was introduced which facilitates the proof of property (1.4)
in the situation where, for some τ0 > 0,

(1.5) ‖v + τ F (v)‖TV ≤ ‖v‖TV (whenever 0 < τ ≤ τ0 and v ∈ R∞).

Clearly, (1.5) amounts to assuming that the semidiscretization of equation (1.3) has
been performed in such a manner that the simple forward Euler method, applied
to problem (1.1), is TVD when the stepsize τ is suitably restricted.

In order to describe the representation, given by Shu and Osher [22], we consider
an arbitrary explicit coefficient scheme (A, b). We assume that λij (for 2 ≤ i ≤
m+ 1 and 1 ≤ j ≤ i− 1) are any real parameters with

(1.6) λi1 + λi2 + · · ·+ λi,i−1 = 1 (2 ≤ i ≤ m+ 1),



THE SHU-OSHER REPRESENTATION OF RUNGE-KUTTA METHODS 203

and we define corresponding values µij (for 2 ≤ i ≤ m+ 1 and 1 ≤ j ≤ i− 1) by

µij = aij −
i−1∑

k=j+1

λik akj (2 ≤ i ≤ m, 1 ≤ j ≤ i− 1),(1.7.a)

µm+1,j = bj −
m∑

k=j+1

λm+1,k akj (1 ≤ j ≤ m)(1.7.b)

(where the sums occurring in the above expressions defining µij and µm+1,j should
be interpreted as 0, when j = i− 1 and j = m, respectively).

Theorem 1.1, to be given below, tells us that the relations (1.2) can be rewritten
in the form

y1 = un−1,

yi =
i−1∑
j=1

[λij yj + ∆t · µijF (yj)] (2 ≤ i ≤ m+ 1),(1.8)

un = ym+1.

We shall refer to (1.8) as a Shu-Osher representation of the explicit Runge-Kutta
method (1.2).

The following Theorem 1.1 also specifies a stepsize restriction, of the form

(1.9) 0 < ∆t ≤ c · τ0,
under which the TVD property (1.4) is valid, when un is computed from un−1

according to (1.8). In the theorem, we shall consider the situation where

(1.10) λij ≥ 0 (1 ≤ j < i ≤ m+ 1).

Furthermore, we shall deal with a coefficient c defined by

(1.11) c = min{cij : 1 ≤ j < i ≤ m+ 1}, where cij =


λij/µij if µij > 0,
∞ if µij = 0,
0 if µij < 0.

Theorem 1.1 (Shu and Osher). Let (A, b) specify an explicit Runge-Kutta method
and assume λij , µij are as in (1.6), (1.7). Then the following conclusions (i) and
(ii) are valid.

(i) The Runge-Kutta relations (1.2) are equivalent to (1.8).
(ii) Assume additionally that (1.10) holds and that the coefficient c is defined

by (1.11). Let F be a function from R∞ to R∞, satisfying (1.5). Then,
under the stepsize restriction (1.9), process (1.8) is TVD; i.e. (1.4) holds
whenever un is computed from un−1 according to (1.8).

The above theorem is essentially due to Shu and Osher [22]. The proof of the
above statement (i) is straightforward. Furthermore, the proof of (ii) relies on
noting that, for 2 ≤ i ≤ m+ 1, the vector yi in (1.8) can be rewritten as a convex
combination of the vectors [yj + ∆t · (µij/λij)F (yj)] with 1 ≤ j ≤ i − 1 and on
applying (1.5) (with v = yj).

It is evident that a combination of the above statements (i) and (ii) immediately
leads to a conclusion which is highly relevant to the original Runge-Kutta method
(A, b): if (1.6), (1.7), (1.10) (1.11) are fulfilled, then the conditions (1.5), (1.9)
guarantee the TVD property (1.4) for un computed from un−1 by (1.2).
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But this conclusion regarding the Runge-Kutta method (1.2) would be of no, or
little, value if the coefficient c given by (1.11) were zero, or positive and so small
that the stepsize restriction (1.9) is too severe for any practical purposes—in fact,
the less restrictions on ∆t the better. Therefore, it is important to note that the
coefficient c, given by (1.11), not only depends on the underlying Runge-Kutta
method (A, b), but also on the parameters λij actually chosen. Suppose λ̃ij are
parameters which are best possible, in the sense that the corresponding coefficient
c̃, obtained via (1.11), satisfies c̃ ≥ c, for any other coefficient c obtainable by
applying Theorem 1.1 to the method (A, b) in question. Then c̃ depends only on
the coefficient scheme (A, b) so that we can write c̃ = c(A, b), and the following
natural question arises: how can we determine (in a transparent and simple way)
parameters λ̃ij leading to the maximal coefficient c(A, b)?

Another—and second—natural question is related to the circumstance that one
may be tempted to take the magnitude of the coefficient c(A, b) into account, when
assessing the qualities of a given explicit Runge-Kutta method (A, b). It is evident
that such a use of c(A, b) could be quite misleading if, for the Runge-Kutta method
(A, b) in question, there exists a coefficient c (not obtainable from Theorem 1.1)
which is (much) larger than c(A, b) and for which the conditions (1.5), (1.9) still
guarantee the TVD property (1.4) for process (1.2). Accordingly, we arrive at the
fundamental question of whether such coefficients c do exist.

The above two questions are strongly related to the problem of determining a
method (A, b), belonging to a given class of explicit Runge-Kutta methods, which
is optimal in the sense of its coefficient c(A, b). Much attention has been paid to
this problem in the literature—usually with terminology and notation somewhat
different from the above (see, e.g., Gerisch and Weiner [5], Gottlieb and Shu [6],
Ruuth and Spiteri [19], Shu [21], Shu and Osher [22], Spiteri and Ruuth [24]). In
fact, for various values of m and p, optimal methods (A, b) were determined within
the class of explicit m-stage Runge-Kutta methods with order of accuracy p—either
by clever ad hoc arguments or by numerical computations based on optimization
with respect to the parameters λij , µij—but, neither of the above two questions
were resolved (in general).

A third natural question is of whether the Shu-Osher Theorem 1.1 can be gener-
alized so as to also become relevant to Runge-Kutta methods which are not explicit.
Partial results related to this question, but no complete answers, were obtained by
Gottlieb, Shu and Tadmor [7, Section 6.2] and Hundsdorfer and Verwer [13].

The purpose of this paper is to give a generalization and analysis of the Shu-
Osher representation (1.8) by means of which the above three natural questions, as
well as related ones, can be settled.

1.2. Outline of the rest of the paper. In Section 2 we shall give generalizations
of the Shu-Osher representation (1.8) and of the above Shu-Osher Theorem 1.1;
our generalizations are relevant to arbitrary Runge-Kutta methods (A, b)—either
explicit or not.

It was noted (see, e.g., Gottlieb, Shu and Tadmor [7], Shu and Osher [22]) that
the convexity arguments, used in proving conclusion (ii) of Theorem 1.1, also show
that ‖yi‖TV ≤ ‖un−1‖TV (2 ≤ i ≤ m) and also apply in the more general setting of
arbitrary Banach spaces V and nonnegative convex functions ‖.‖ (rather than R∞
and ‖.‖TV ). Therefore, a useful version of Theorem 1.1 is valid in that context as
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well. Accordingly, we shall present our material in Section 2 using a similar general
framework.

In Section 2.1 we shall introduce concepts and notation which are basic for the
rest of our paper. A generalization will be given of the Shu-Osher process (1.8) and
of the properties (1.4) and (1.5). In Section 2.2 we shall present Theorem 2.2, which
constitutes the first of the two main theorems of our paper. This theorem settles
completely the question, about the generalization of Theorem 1.1, raised above at
the end of Section 1.1. Conclusion (I) of Theorem 2.2 generalizes conclusion (i)
of Theorem 1.1. For any given Runge-Kutta method (A, b), it gives a generalized
Shu-Osher representation which is specified by an (m + 1) ×m parameter matrix
L = (λij); the corresponding numerical process can thus be identified with a coef-
ficient scheme (A, b, L). Conclusion (II) of Theorem 2.2 generalizes conclusion (ii)
of Theorem 1.1; it provides us with a coefficient c = c(A, b, L) having properties
generalizing those of c (see (1.11)) mentioned in conclusion (ii) of Theorem 1.1. In
Section 2.3 we shall give the proof of Theorem 2.2.

In Section 3 we shall study, for given Runge-Kutta schemes (A, b), the maximum
of c(A, b, L) over all relevant parameter matrices L = (λij). In preparation for
the actual study of this maximum, we shall recall in Section 3.1 the concept of
irreducibility for general Runge-Kutta methods, and we shall review the important
quantity R(A, b), introduced by Kraaijevanger [14]. In Section 3.2 we shall present
(without proof) the second of our two main theorems, Theorem 3.4. This theorem
is relevant to arbitrary irreducible Runge-Kutta schemes (A, b); it gives a special
parameter matrix L∗ = (λ∗ij) such that c(A, b, L∗) = maxL c(A, b, L). Moreover,
the theorem brings to light that there exists no coefficient c that is larger than
c(A, b, L∗) and which shares with c(A, b, L∗) properties analogous to those of c
mentioned in part (ii) of Theorem 1.1. Finally, the theorem relates the optimal
coefficient c(A, b, L∗) to Kraaijevanger’s quantity R(A, b). The proof of Theorem
3.4 will be given in Section 3.3, making use of Lemma 3.5.

For completeness we mention that also in Ferracina and Spijker [4] and Higueras
[11] the quantityR(A, b) was related to the TVD properties of method (1.2). In fact,
Lemma 3.5 is an immediate consequence of a theorem in the first of these papers.
But, apart from this lemma, the material in Section 3 is essentially different from
and no consequence of those papers.

In Section 4 we shall present some applications and illustrations to the theorems
derived in Sections 2 and 3.

In Section 4.1 we shall apply Theorems 2.2 and 3.4 to general Runge-Kutta
methods so as to arrive at Corollaries 4.1 and 4.2. The former of these corollaries
says that c(A, b, L) is finite, for every scheme (A, b) which is more than first order,
whereas the latter corollary amounts to an extension of a monotonicity result in
Ferracina and Spijker [4].

In Section 4.2, the two questions will be answered which were raised above in
Section 1.1, in connection to the coefficient c(A, b). For any given explicit method
(A, b), Theorem 4.3 gives special parametes λij = λ̃ij and µij = µ̃ij , satisfying
(1.6), (1.7), (1.10) such that the corresponding coefficient c = c̃, obtained from
(1.11), is the largest one obtainable with any parameters λij , µij satisfying (1.6),
(1.7), (1.10) (i.e., c̃ = c(A, b)). Moreover, Theorem 4.3 says that c̃ = c(A, b) is equal
to the largest coefficient c for which the conditions (1.5), (1.9) guarantee (1.4). This
result is relevant to justifying the practice of considering c(A, b) when assessing the
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qualities of a given Runge-Kutta method (A, b). At the end of Section 4.2, we apply
Theorem 4.3 so as to relate results, obtained in the literature on optimization of
c(A, b), to material of Kraaijevanger [14].

In Section 4.3 we shall shortly illustrate our theory by applying it in the analysis
of (generalized) Shu-Osher representations for two given Runge-Kutta schemes.

2. An extension of the Shu-Osher approach

to arbitrary Runge-Kutta methods

2.1. A generalization of the Shu-Osher process (1.8). We want to consider
generalized versions of the Shu-Osher process (1.8) in a versatile framework. For
that reason we assume in all of the following (unless specified otherwise) that V
is an arbitrary real vector space and that F (v) is a given function, defined for all
v ∈ V, with values in V. Our generalization of the Shu-Osher process (1.8) is as
follows:

yi =

(
1−

m∑
j=1

λij

)
un−1 +

m∑
j=1

[λij yj + ∆t · µijF (yj)] (1 ≤ i ≤ m),(2.1.a)

un =

(
1−

m∑
j=1

λm+1,j

)
un−1 +

m∑
j=1

[λm+1,j yj + ∆t · µm+1,jF (yj)].(2.1.b)

Here λij and µij are real coefficients specifying the numerical process (2.1), and
∆t denotes again a positive stepsize. Furthermore, yi are intermediate vectors in
V needed for computing un in V from a given vector un−1 ∈ V. We shall write

L =

(
L0

L1

)
, L0 =

 λ11 . . . λ1m

...
...

λm1 . . . λmm

 , L1 = (λm+1,1, . . . , λm+1,m)(2.2.a)

and

M =

(
M0

M1

)
, M0 =

 µ11 . . . µ1m

...
...

µm1 . . . µmm

 , M1 = (µm+1,1, . . . , µm+1,m).(2.2.b)

Clearly, if the above parameters λij , µij satisfy λij = µij = 0 (for 1 ≤ i ≤ j ≤ m)
and

∑m
j=1 λij = 1 (for 2 ≤ i ≤ m + 1), then process (2.1) neatly reduces to an

algorithm of the form (1.8). Therefore, the above process (2.1), with arbitrary
matrices L and M , amounts to a generalization of the original Shu-Osher process
(1.8).

In all of the following (unless specified otherwise) we shall denote by ‖.‖ an
arbitrary real convex function on V, i.e., ‖v‖ ∈ R and ‖λv + (1 − λ)w‖ ≤ λ‖v‖ +
(1− λ)‖w‖ for all v, w ∈ V and 0 ≤ λ ≤ 1.

We shall be interested in situations where, for given F, ∆t, and convex function
‖.‖,

‖yi‖ ≤ ‖un−1‖ (1 ≤ i ≤ m),(2.3.a)
‖un‖ ≤ ‖un−1‖,(2.3.b)

when un−1, un and yi ∈ V are related to each other as in (2.1). Clearly, property
(2.3) extends and generalizes the TVD property (1.4); it is important, also with
‖.‖ different from ‖.‖TV , and also when solving differential equations different from
conservation laws (see, e.g., Dekker and Verwer [3], Hundsdorfer and Verwer [13],
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LeVeque [17]). Property (2.3.b), with ‖.‖ not necessarily equal to ‖.‖TV , has been
studied extensively in the literature and corresponds to what is often called mono-
tonicity, practical stability or strong stability (see, e.g., Butcher [2, p. 392], Dekker
and Verwer [3, p. 263], Gottlieb, Shu and Tadmor [7], Hundsdorfer, Ruuth and
Spiteri [12], Morton [18]).

In the next subsection we shall study property (2.3) in the situation where, for
some τ0 > 0, the function F : V→ V satisfies

(2.4) ‖v + τ0F (v)‖ ≤ ‖v‖ (whenever v ∈ V).

Clearly, this condition is more general than (1.5)—in case V = R∞ and ‖.‖ = ‖.‖TV ,
assumption (1.5) implies (2.4).

In Theorem 2.2, to be presented below, we shall give conditions under which
(2.1) is equivalent to (1.2). Moreover, we shall give restrictions on the stepsize ∆t
guaranteeing (2.3) for functions F : V→ V satisfying (2.4).

2.2. A generalization of the Shu-Osher Theorem 1.1. Let an arbitrary
Runge-Kutta method (A, b) be given. In order to represent it in the form (2.1), we
assume that L = (λij) is a given matrix of type (2.2.a). We define a corresponding
matrix M = (µij) of type (2.2.b) by

(2.5) M0 = A− L0A, M1 = bT − L1A.

The way of defining M0 and M1 in (2.5) can be viewed as a generalization of the
definition of µij in (1.7).

The coefficients µij , corresponding to M0, M1 as in (2.5), depend only on the
given Runge-Kutta scheme (A, b) and on the choice of the (m+ 1)×m parameter
matrix L = (λij). This justifies the following definition.

Definition 2.1. Process (2.1) is said to be generated by the coefficient scheme
(A, b, L) if the coefficients µij occurring in (2.1) are chosen according to (2.2),
(2.5).

Theorem 2.2 below gives a condition on L under which the original Runge-Kutta
process (1.2) is equivalent to the process (2.1) generated by (A, b, L). The theorem
also specifies a stepsize restriction, of the form

(2.6) 0 < ∆t ≤ c · τ0,

under which (2.3) is valid for un−1, un, yi satisfying (2.1).
Below we shall deal with matrices L = (λij) of the form (2.2.a) which are such

that

(2.7) I − L0 is invertible.

Here, as well as in the following, we denote by I the m × m identity matrix.
In Theorem 2.2 we shall pay special attention to the situation where the matrix
L = (λij) has been chosen in such a way that, in addition to (2.7),

λij ≥ 0 and
m∑
k=1

λik ≤ 1 ( for 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ m).(2.8)

This condition, on the parameters λij , can be viewed as a generalization of the
requirement that (1.6), (1.10) hold.
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Furthermore, for given coefficient schemes (A, b, L), we shall use the notation

c(A, b, L) = min{cij : 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ m} where(2.9)

cij =


λij/µij if µij > 0 and i 6= j,
∞ if µij > 0 and i = j,
∞ if µij = 0,
0 if µij < 0,

and the values λij , µij are defined by (2.2), (2.5).

This notation can be regarded as a generalization of (1.11), (1.7). We note that
there are two distinct situations in which the above values cij vanish: we have
cij = 0 if either µij < 0 or λij = 0, µij > 0, i 6= j.

The following theorem amounts to a generalization of Theorem 1.1, relevant
to arbitrary Runge-Kutta methods (1.2). It constitutes the first of the two main
theorems of our paper.

Theorem 2.2 (Generalization of the Shu-Osher theorem). Let (A, b) specify an ar-
bitrary Runge-Kutta method (1.2). Let L = (λij) be any parameter matrix satisfying
(2.2.a), (2.7) and consider the corresponding process (2.1) generated by (A, b, L) (cf.
Definition 2.1). Then the following conclusions (I) and (II) are valid.

(I) The Runge-Kutta relations (1.2) are equivalent to (2.1).
(II) Assume additionally that (2.8) holds and the coefficient c is equal to

c(A, b, L) (see (2.9)). Let F be a function from V to V satisfying (2.4).
Then, under the stepsize restriction (2.6), process (2.1) has property (2.3);
i.e., the inequalities (2.3) are fulfilled whenever un−1, un, and yi are re-
lated to each other as in (2.1).

The above theorem will be proved in Section 2.3. Obviously, a combination of
the above statements (I) and (II) immediately leads to a conclusion which is highly
relevant to the original Runge-Kutta method (A, b): if L = (λij) is any matrix
satisfying (2.2.a), (2.7), (2.8) and c = c(A, b, L) (see (2.9)), then the conditions
(2.4), (2.6) guarantee the monotonicity properties (2.3) whenever un−1, un, yi
satisfy (1.2).

Let the Runge-Kutta method (A, b) be explicit. Choose any (m+ 1)×m matrix
L = (λij) such that its m×m submatrix L0 (cf. (2.2.a)) is strictly lower triangular
and

∑m
j=1 λij = 1 (for 2 ≤ i ≤ m+ 1). One easily sees that the corresponding pro-

cess (2.1), generated by the coefficient scheme (A, b, L), coincides with the original
Shu-Osher representation (1.8). Since L0 is strictly lower triangular, condition (2.7)
is fulfilled, and Theorem 2.2 can thus be applied so as to arrive easily at statements
(i) and (ii) of Theorem 1.1. This shows that Theorem 2.2 can be viewed as a neat
generalization of Theorem 1.1.

We note that the special implicit Runge-Kutta processes, analysed by Gottlieb,
Shu and Tadmor [7, Section 6.2], are covered by our general formulation (2.1). In
the analysis in the paper just mentioned, it was assumed that the first order implicit
Euler discretization is unconditionally monotonic, i.e., ‖v‖ ≤ ‖v − τF (v)‖ (for all
v ∈ V and all positive stepsizes τ). This assumption is not required (explicitly) in
our Theorem 2.2; we require instead condition (2.4) to be fulfilled. (Note that (2.4)
implies ‖v‖ = (1 + τ/τ0)‖v‖ − (τ/τ0)‖v‖ ≤ (1 + τ/τ0)‖v‖ − (τ/τ0)‖v + τ0F (v)‖ ≤
‖(1 + τ/τ0)v − (τ/τ0)(v + τ0F (v))‖ = ‖v − τF (v)‖; consequently, (2.4) implies
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that the above assumption about the implicit Euler discretization is automatically
fulfilled.)

2.3. Proving Theorem 2.2. Before giving the actual proof of Theorem 2.2, we
introduce some notation which will be used below.

For any vectors v1, v2, . . . , vm in V, we shall denote the vector in Vm with com-
ponents vj by

v = [vj ] =

 v1

...
vm

 ∈ Vm.
Let B = (bij) denote any (real) l ×m matrix. We define a corresponding linear

operator BV (from Vm to Vl) by BV(v) = w, for v = [vj ] ∈ Vm where w = [wi] ∈ Vl
with wi =

∑m
j=1 bijvj (for 1 ≤ i ≤ l). Clearly, if B and C are l×m matrices and D

is an m× k matrix, then (B+C)V = BV+CV, (λB)V = λ ·BV, (BD)V = BV ·DV.
Here the addition and multiplication, occurring in the last three left-hand members,
stand for the usual algebraic operations for matrices, whereas the addition and
multiplication in the right-hand members apply to linear operators.

For clarity, we will also use the following simplified notation: bT = (bT )V, A =
AV, M0 = (M0)V, M1 = (M1)V, L0 = (L0)V and L1 = (L1)V. Furthermore, we
define I = (I)V and e = (e)V, where I is the m ×m identity matrix and e is the
column vector in Rm all of whose components are equal to 1.

The actual proof of Theorem 2.2.
(1) For proving conclusion (I), we have to show that the relations (2.1) are

equivalent to (1.2). Using (2.5), (2.7), one easily sees that

(2.1.a) ⇐⇒ (I− L0)[yi] = (I− L0)eun−1 + ∆tM0[F (yi)]
⇐⇒ [yi] = eun−1 + ∆t(I− L0)−1M0[F (yi)]⇐⇒ (1.2.a),

so that (2.1.a) and (1.2.a) are equivalent. Therefore, assuming (2.1.a) or (1.2.a),
we also have

(2.1.b) ⇐⇒ un = (1− L1e)un−1 + L1[yi] + ∆tM1[F (yi)]
⇐⇒ un = (1− L1e)un−1 + L1{eun−1 + ∆tA[F (yi)]}+ ∆tM1[F (yi)]
⇐⇒ un = un−1 + ∆t(L1A + M1)[F (yi)]⇐⇒ (1.2.b).

This completes the proof of the equivalence of (2.1) and (1.2).
(2) If c(A, b, L) = 0, then conclusion (II) is trivially fulfilled. Therefore, in the

following proof of (II), we assume c(A, b, L) > 0. This implies that, for all i, j,

0 < cij ≤ ∞ and 0 ≤ µij <∞.
We have to show (2.3) under the assumptions stated in Theorem 2.2. To this end,
we put

xi = τ0F (yi), αi = µii∆t/τ0 and βij = ∆t(τ0cij)−1,

where βij stands for zero in case cij = ∞. With this notation we obtain from
(2.1.a), by using the convexity of the function ‖.‖,

(2.10) ‖yi − αixi‖ ≤ (1 −
m∑
j=1

λij)‖un−1‖+ λii‖yi‖+
∑
j 6=i

λij‖yj + βijxj‖,
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for 1 ≤ i ≤ m. From (2.4) we have ‖yi+xi‖ ≤ ‖yi‖. Therefore, by using the relation
(1 + αi)yi = (yi − αixi) + αi(yi + xi), we obtain ‖yi‖ ≤ θ‖yi − αixi‖+ (1− θ)‖yi‖,
with θ = (1 + αi)−1. Hence

(2.11) ‖yi − αixi‖ ≥ ‖yi‖.
Similarly, by using the relation yj + βijxj = (1− βij)yj + βij(yj + xj), we see that

(2.12) ‖yj + βijxj‖ ≤ ‖yj‖.
Combining inequalities (2.10), (2.11) and (2.12), we obtain a bound for ‖yi‖
(1 ≤ i ≤ m) which can be written compactly in the form

(I − L0) [‖yi‖] ≤ ‖un−1‖(I − L0)e.(2.13)

This inequality, between two vectors in Rm, should be interpreted componentwise.
From (2.13) we easily obtain (2.3.a), provided the entries rij of the matrix R =

(rij) = (I − L0)−1 are nonnegative. In view of (2.7) and (2.8), we see that the
matrix K(t) = (I − tL0)−1 (for 0 ≤ t ≤ 1) exists and depends continuously on t.
For 0 ≤ t < 1 we have K(t) = I + tL0 + (tL0)2 + · · · so that the entries of K(t) are
nonnegative. Therefore, the entries rij of R = K(1) must be nonnegative as well,
which thus proves (2.3.a).

In order to prove (2.3.b), we note that (2.1.b) implies

‖un‖ ≤ θ‖un−1‖+
m∑
j=1

λm+1,j‖yj + βm+1,jxj‖,

where θ = 1−
∑m
j=1 λm+1,j . Hence,

‖un‖ ≤ θ‖un−1‖+
m∑
j=1

λm+1,j‖yj‖

≤ (θ +
m∑
j=1

λm+1,j)‖un−1‖ = ‖un−1‖. �

3. Maximizing the coefficient c(A, b, L)

3.1. Irreducible Runge-Kutta schemes and the quantity R(A, b). In this
section we give some definitions which will be needed when we formulate our results,
in Section 3.2, about the maximum value of the important coefficient c(A, b, L) (see
(2.9)). We start with the fundamental concepts of reducibility and irreducibility.

Definition 3.1 (Reducibility and irreducibility). An m-stage Runge-Kutta scheme
(A, b) is called reducible if (at least) one of the following two statements (a), (b) is
true; it is called irreducible if neither (a) nor (b) is true.

(a) There exist nonempty, disjoint index sets M,N with M∪N = {1, 2, . . . ,m}
such that bj = 0 (for j ∈ N) and aij = 0 (for i ∈M, j ∈ N).

(b) There exist nonempty, pairwise disjoint index sets M1,M2, . . .Mr, with
1 ≤ r < m and M1∪M2∪· · ·∪Mr = {1, 2, . . . ,m}, such that

∑
k∈Mq

aik =∑
k∈Mq

ajk whenever 1 ≤ p ≤ r, 1 ≤ q ≤ r and i, j ∈Mp.

In case the above statement (a) is true, the vectors yj in (1.2) with j ∈ N have
no influence on un, so that the Runge-Kutta method is equivalent to a method with
less than m stages. Also in case of (b), the Runge-Kutta method essentially reduces
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to a method with less than m stages; see, e.g., Dekker and Verwer [3] or Hairer and
Wanner [9]. Clearly, from a practical point of view, it is enough to consider only
Runge-Kutta schemes which are irreducible.

Next, we turn to an important characteristic quantity for Runge-Kutta schemes
introduced by Kraaijevanger [14]. Following this author, we shall denote his quan-
tity by R(A, b), and in defining it, we shall use, for real ξ, the notation

A(ξ) = A(I − ξA)−1, b(ξ) = (I − ξA)−T b,

e(ξ) = (I − ξA)−1e, ϕ(ξ) = 1 + ξbT (I − ξA)−1e.

Here −T stands for transposition after inversion, I denotes the identity matrix
of order m, and e stands for the column vector in Rm all of whose components are
equal to 1. We shall focus on values ξ ≤ 0 for which

(3.1) I − ξA is invertible, A(ξ) ≥ 0, b(ξ) ≥ 0, e(ξ) ≥ 0, and ϕ(ξ) ≥ 0.

The first inequality in (3.1) should be interpreted entrywise, the second and third
ones componentwise. Similarly, all inequalities for matrices and vectors occurring
below are to be interpreted entrywise and componentwise, respectively.

Definition 3.2 (The quantity R(A, b)). Let (A, b) be a given coefficient scheme.
In case A ≥ 0 and b ≥ 0, we define

R(A, b) = sup{r : r ≥ 0 and (3.1) holds for all ξ with − r ≤ ξ ≤ 0}.
In case (at least) one of the inequalities A ≥ 0, b ≥ 0 is violated, we define
R(A, b) = 0.

Definition 3.2 may suggest that it is difficult to determine the quantity R(A, b)
for a given coefficient scheme (A, b). But, parts (i) and (iii) of the following Theorem
3.3 show that it is relatively easy to decide whether R(A, b) = 0 or R(A, b) = ∞.
Moreover, part (ii) of the theorem can be exploited for simplifying the (numerical)
computation of R(A, b), if 0 < R(A, b) < ∞; cf. Ferracina and Spijker [4, Section
4.3], Kraaijevanger [14, p. 498].

In order to formulate part (i) of Theorem 3.3 concisely, we define, for any given
m×m matrix B = (bij), the corresponding m×m incidence matrix by

Inc(B) = (cij), with cij = 1 (if bij 6= 0) and cij = 0 (if bij = 0).

Theorem 3.3 (Kraaijevanger). Let (A, b) be an irreducible coefficient scheme.
Then

(i) R(A, b) > 0 if and only if A ≥ 0, b > 0 and Inc(A2) ≤ Inc(A).
(ii) Let 0 < r <∞. Then R(A, b) ≥ r if and only if A ≥ 0 and conditions (3.1)

hold at ξ = −r.
(iii) R(A, b) =∞ if and only if

• A is invertible and all off-diagonal entries of A−1 are nonpositive,
• A ≥ 0 and A−1e ≥ 0,
• bTA−1 ≥ 0 and bTA−1e ≤ 1.

Parts (i), (ii), (iii) of the above theorem have been taken almost literally from
Kraaijevanger [14, Theorem 4.2, Lemma 4.4 and Theorem 4.7, respectively].

We shall make use of the quantity R(A, b) in formulating our results below in
Section 3.2, whereas Theorem 3.3 will be essential for proving our results, in Section
3.3.
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3.2. The special parameter matrix L∗. The following Theorem 3.4 constitutes
the second of the two main theorems of our paper. It resolves the problem of finding
a parameter matrix L = (λij) such that the crucial coefficient c(A, b, L) (see (2.9))
attains its maximal value and it also gives interesting properties of this maximal
value.

In the theorem, the focus will be on the following matrix L∗:

L∗ =
(
L∗0
L∗1

)
, L∗0 =

 λ∗11 . . . λ∗1m
...

...
λ∗m1 . . . λ∗mm

 , L∗1 = (λ∗m+1,1, . . . , λ
∗
m+1,m),

(3.2.a)

with

L∗0 = γA(I + γA)−1, L∗1 = γbT (I + γA)−1, γ = R(A, b)

(if 0 ≤ R(A, b) <∞),

(3.2.b)

L∗0 = I − γP, L∗1 = bTP, γ = (max
i
pii)−1, where P = (pij) = A−1

(if R(A, b) =∞).

(3.2.c)

The above matrix L∗ seems to appear out of the blue. But, the authors were led
to introduce this matrix by analysing calculations of Kraaijevanger [14, Sections 5.3
and 6]. For more details, we refer the interested reader to that important paper.

Theorem 3.4 (The largest coefficient c(A, b, L)). Let the Runge-Kutta method
(1.2) be specified by an arbitrary irreducible coefficient scheme (A, b). Then the
inverses occurring in (3.2.b), (3.2.c) do exist, so that we can define the matrix
L∗ = (λ∗ij) by (3.2). Furthermore, the matrix L = L∗ satisfies (2.2.a), (2.7), (2.8),
and the corresponding coefficient c(A, b, L∗) (see (2.9)) has the following properties:

(I) c(A, b, L∗) = max
L

c(A, b, L), where the maximum is over all matrices L =

(λij) satisfying (2.2.a), (2.7), (2.8).
(II) c(A, b, L∗) is equal to the maximal coefficient c for which conditions (1.5),

(1.9) imply the TVD property (1.4) whenever un−1, un, yi ∈ R∞ satisfy
(1.2).

(III) c(A, b, L∗) = R(A, b) (see Definition 3.2).

The above theorem will be proved in Section 3.3. Clearly, the above prop-
erty (I) shows how to maximize the coefficient c(A, b, L) over all relevant matrices
L, whereas property (II) brings to light the fact that the coefficient c(A, b, L∗)
is optimal—not only in the context of maximizing c(A, b, L) but also—in the im-
portant context of optimizing arbitrary stepsize restrictions (of type (1.9)) which
guarantee the TVD property (1.4) for process (1.2). Finally, property (III) gives a
neat expression for the maximal coefficient c(A, b, L∗). We shall come back to the
relevance of Theorem 3.4 in Section 4.
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3.3. Proving Theorem 3.4.

3.3.1. The proof that L∗ satisfies (2.7), (2.8) and (III).
(1) Assume 0 ≤ R(A, b) <∞.

One easily sees, from Theorem 3.3, that the inverse occurring in (3.2.b) exists. We
consider the (m+1)×m matrix L∗ = (λ∗ij) defined by (3.2.a), (3.2.b). From (3.2.b)
we see that I − L∗0 = (I + γA)−1 so that L0 = L∗0 satisfies (2.7).

Using Theorem 3.3, we easily arrive at the inequalities L∗0 ≥ 0 and (I − L∗0)e =
(I + γA)−1e ≥ 0. Consequently, λij = λ∗ij satisfy the requirements occurring in
(2.8) for 1 ≤ i ≤ m. Similarly, using Theorem 3.3 once more, we see that L∗1 ≥ 0
and 1 − L∗1e = 1 − γbT (I + γA)−1e ≥ 0 so that λij = λ∗ij satisfy the requirements
in condition (2.8) also for i = m+ 1.

In order to prove (III), we consider the (m+1)×m matrix M∗ = (µ∗ij) defined by

M∗ =
(
M∗0
M∗1

)
, where M∗0 ,M

∗
1 are given by (2.5) (with L0, L1,M0,M1 replaced

by L∗0, L
∗
1,M

∗
0 ,M

∗
1 , respectively). Clearly,

L∗0 = γM∗0 , L∗1 = γM∗1 .(3.3)

In view of (2.5), (3.3) and Theorem 3.3, we have bT = M∗1 + L∗1A = M∗1 (I + γA)
with (I + γA) ≥ 0. Since

∑
bj = 1, it follows that there is an index k with:

1 ≤ k ≤ m and µ∗m+1,k > 0.(3.4)

If all µ∗ij ≥ 0, then we see from (2.9), (3.3), (3.4) that c(A, b, L∗) = γ, i.e., (III).
On the other hand, if there is a µ∗ij < 0, then we conclude from (2.9), (3.3) that
c(A, b, L∗) = 0 and γ = 0, i.e., again (III).

(2) Assume R(A, b) =∞.
One easily sees, from Theorem 3.3, that the inverse A−1 occurring in (3.2.c) exists.
Since piiaii = 1−

∑
k 6=i pikaki, we can also conclude from Theorem 3.3 that pii > 0,

so that γ in (3.2.c) is well defined, with 0 < γ <∞.

Defining L∗ by (3.2.a), (3.2.c), and M∗ =
(
M∗0
M∗1

)
again by (2.5) (with L0, L1,

M0,M1 replaced by L∗0, L
∗
1,M

∗
0 ,M

∗
1 , respectively), one has

M∗0 = γI, M∗1 = 0.

Consequently, c(A, b, L∗) (see (2.9)) satisfies (III).
From (3.2.c) it follows that I − L∗0 = γA−1 so that L0 = L∗0 satisfies (2.7).
Using Theorem 3.3 and the definition of γ, it is easy to prove L∗0 ≥ 0, L∗1 ≥ 0,

(I − L∗0)e = γA−1e ≥ 0 and 1 − L∗1e = 1 − bTA−1e ≥ 0. The last four inequalities
imply that the matrix L = L∗ satisfies (2.8).

3.3.2. The proof of (I) and (II). In proving the remaining properties (I), (II), we
shall make use of the following lemma, which immediately follows from Ferracina
and Spijker [4, Theorem 2.5].

Lemma 3.5. Consider an arbitrary irreducible Runge-Kutta scheme (A, b). Let c
be any value, with 0 ≤ c ≤ ∞, such that conditions (1.5), (1.9) imply the TVD
property (1.4) whenever un−1, un, yi ∈ R∞ satisfy (1.2). Then c ≤ R(A, b).

From Theorem 2.2 we see that, given any matrix L satisfying (2.2.a), (2.7), (2.8),
the coefficient c = c(A, b, L), defined via (2.9), is such that conditions (1.5), (1.9)
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imply the TVD property (1.4) whenever un−1, un, yi ∈ R∞ satisfy (1.2). Hence,
by Lemma 3.5,

c(A, b, L) ≤ R(A, b) (whenever L satisfies (2.2.a), (2.7), (2.8)).

This shows that property (I) follows from property (III). Moreover, by using
Lemma 3.5 once more and applying Theorem 2.2 with matrix L∗, we see that
property (II) also follows from (III). �

4. Applications and illustrations of Theorems 2.2 and 3.4

4.1. Applications to general Runge-Kutta methods. In [14], interesting re-
lations were revealed between the order of accuracy p, of m-stage Runge-Kutta
schemes (A, b), and the size of R(A, b) (Definition 3.2); in [4, Section 4] a review of
these results was presented. Combining Kraaijevanger’s findings with our Theorem
3.4, one easily obtains interesting relations between the order p and the size of
c(A, b, L). As an important illustration, we give the following corollary to Theorem
3.4; for the concept of irreducibility, occurring in the corollary, see Definition 3.1.

Corollary 4.1. Let the Runge-Kutta method (1.2) be specified by an arbitrary
irreducible coefficient scheme (A, b). Assume the method has an order of accuracy
greater than one. Then, for any matrix L = (λij), satisfying (2.2.a), (2.7), (2.8),
the corresponding coefficient c(A, b, L) (see (2.9)) is finite.

Proof. In [14, p. 514], it was shown that R(A, b) < ∞ if the order of the method
is greater than one. An application of Theorem 3.4 (parts (I), (III)) completes the
proof. �

Next, we turn to a corollary obtainable by combining Theorems 2.2 and 3.4.

Corollary 4.2. For any given irreducible Runge-Kutta scheme (A, b) the following
two statements are valid.

(I) Let c = R(A, b). Then, for all vector spaces V and convex functions ‖.‖
on V, conditions (2.4), (2.6) guarantee the monotonicity properties (2.3),
whenever un−1, un, yi satisfy (1.2).

(II) The value c = R(A, b) in the above statement (I) is optimal in that, for any
value c > R(A, b), the general conclusion as given in statement (I) is no
longer true.

Proof. In order to prove (I), we note that by Theorem 3.4 the coefficient c = R(A, b)
is equal to c(A, b, L∗), where L = L∗ satisfies (2.2.a), (2.7), (2.8). An application
of parts (I), (II) of Theorem 2.2, with L = L∗, thus shows that conditions (2.4),
(2.6) imply (2.3) for un−1, un, yi satisfying (1.2).

In order to prove statement (II) of the corollary, suppose that the general conclu-
sion as given in statement (I) of the corollary is true for some c > R(A, b). Then,
with this c, conditions (1.5), (1.9) would imply (1.4) for un−1, un, yi satisfying
(1.2). Lemma 3.5 shows that c ≤ R(A, b), which yields a contradiction. �

The above corollary can be viewed as a variant to one of the results given in [4,
Theorem 2.5]. The conclusion, given above in statement (I), is stronger than an
analogous monotonicity result in the paper just mentioned—because (I) deals with
arbitrary convex functions (rather than seminorms) and property (2.3) gives not
only a bound for ‖un‖ but also for ‖yi‖.
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We finally note that the relevance of Theorem 3.4 is not restricted to properties
(1.4) and (2.3). The theorem may be applied as well in the analysis of other
interesting (stability and boundedness) properties studied in the literature; cf.,
e.g., Dekker and Verwer [3, pp. 38, 39], Gottlieb, Shu and Tadmor [7, p. 92].

4.2. Applications to explicit Runge-Kutta methods. In this section, we shall
make use of Theorem 3.4 in resolving, for explicit Runge-Kutta methods (A, b), the
two questions related to the coefficient c(A, b) as raised at the end of Section 1.1.
Due to the restriction

∑
j λij = 1 (cf. (1.6)), which occurs in the original Shu-

Osher representation but not in our generalized representation (cf. Sections 2, 3),
Theorem 3.4 will have to be applied with some care.

Our Theorem 4.3 answers the two questions just mentioned. Property (I), in
the theorem, makes clear how to choose parameters λij = λ̃ij satisfying (1.6),
(1.10) such that the corresponding coefficient c̃ (see (1.11), (1.7)) is maximal, i.e.,
c̃ = c(A, b). In addition, property (II), in the theorem, shows that no coefficient c
greater than c̃ = c(A, b) exists for which the conditions (1.5), (1.9) still guarantee
the TVD property (1.4) for process (1.2). Finally, property (III), in the theorem,
relates the maximal coefficient c̃ = c(A, b) to Kraaijevanger’s quantity R(A, b). The
proof of Theorem 4.3 will be based on Theorem 3.4.

The concept of irreducibility and the quantity R(A, b), which occur in Theorem
4.3, are defined above in Section 3.1.

Theorem 4.3 (The largest coefficient c of the form (1.11)). Consider an arbitrary
irreducible explicit Runge-Kutta method (A, b). Then 0 ≤ R(A, b) < ∞, and the
inverse occurring in (3.2.b) exists so that we can define the matrix L∗ = (λ∗ij) by
(3.2.a), (3.2.b). Let parameters λ̃ij be defined by

λ̃ij = 1−
m∑
k=2

λ∗ik (for 2 ≤ i ≤ m+ 1 and j = 1),(4.1.a)

λ̃ij = λ∗ij (for 2 ≤ i ≤ m+ 1 and 2 ≤ j ≤ i− 1),(4.1.b)

and corresponding values µ̃ij via (1.7). Then the parameters λij = λ̃ij satisfy (1.6),
(1.10), and the corresponding coefficient c = c̃ (defined by (1.11) with λij = λ̃ij and
µij = µ̃ij) has the following properties:

(I) c̃ is the largest coefficient, obtainable from (1.11) with any parameters
λij , µij satisfying (1.6), (1.7), (1.10).

(II) c̃ is equal to the largest coefficient c for which the conditions (1.5), (1.9)
imply the TVD property (1.4) whenever un−1, un, yi ∈ R∞ satisfy (1.2).

(III) c̃ = R(A, b).

Proof. Since A is strictly lower triangular, one easily sees from Theorem 3.3 that
R(A, b) <∞ and the inverse occurring in (3.2.b) exists.

Clearly, the parameters λij = λ̃ij satisfy condition (1.6).
From Theorem 3.4 we know that L = L∗ satisfies (2.8), so that the parameters

λij = λ̃ij also satisfy (1.10).
Define (m+1)×mmatrices, with a structure as in (2.2), by L̃ = (λ̃ij), M̃ = (µ̃ij),

where λ̃ij , µ̃ij (for j < i) satisfy (4.1) and (1.7), and λ̃ij , µ̃ij (for j ≥ i) are defined
to be zero. One easily sees that L = L̃ and M = M̃ satisfy (2.5), (2.7), (2.8), and
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that
c̃ = c(A, b, L̃).

In order to be able to apply Theorem 3.4 to the situation at hand, we shall now
relate c(A, b, L̃) to the coefficient c(A, b, L∗).

From (3.2.b) we see that L∗0 is strictly lower triangular. This implies, in view of
(4.1), that L̃ and L∗ differ only in their first column and that L̃ ≥ L∗. Denoting
by M∗ the matrix which is related to L∗ as in (2.5), it follows that M̃ −M∗ =
(L∗ − L̃)A = 0. Consequently, M̃ = M∗ so that c(A, b, L̃) ≥ c(A, b, L∗). In view of
Theorem 3.4, we thus have

c(A, b, L̃) = c(A, b, L∗).

We conclude that c̃ = c(A, b, L∗), which in combination with Theorem 3.4 easily
leads to the properties (I), (II), (III) of Theorem 4.3. �

Let Em,p denote the class of all explicit m-stage Runge-Kutta methods with
(classical) order of accuracy at least p. As mentioned in Section 1.1, much attention
has been paid in the literature to finding methods (A, b) of class Em,p which are
optimal in Em,p with respect to the coefficient c(A, b) (introduced in Section 1.1);
see, e.g., Gottlieb and Shu [6], Ruuth and Spiteri [19], Shu [21], Shu and Osher [22],
Spiteri and Ruuth [24]. Independently of this work, in [14], methods (A, b) were
identified that are optimal in Em,p with respect to R(A, b). In [4, Section 4], the
remarkable fact was noted (but not explained!) that the methods identified in [14]
coincide with methods (A, b) obtained in the above literature on optimization with
respect to c(A, b); cf. also Example 4.4 in Section 4.3 below. Theorem 4.3 allows
us to fully understand this fact: by definition, c(A, b) is equal to c̃ in property (I)
of the theorem, so that, in view of property (III),

(4.2) c(A, b) = R(A, b).

This equality makes clear that any method which is optimal in the sense of c(A, b)
is also optimal with respect to R(A, b).

Relation (4.2) is also relevant, e.g., to the nonexistence of methods (A, b) with
c(A, b) > 0 in E4,4 and in Em,5—as proved in [6] and [19], respectively. According
to Kraaijevanger [14, pp. 516, 521], for any method (A, b) of class E4,4 or Em,5, we
have R(A, b) = 0, which via (4.2) immediately leads to c(A, b) = 0.

4.3. Illustrations to Theorems 3.4 and 4.3. We give two examples illustrating
Theorems 3.4 and 4.3 in the construction of (generalized) Shu-Osher representations
with maximal coefficients c(A, b, L).

Example 4.4 (Illustration to Theorem 4.3). Consider the explicit Runge-Kutta
method (1.2), with m = 4 and

A =


0 0 0 0

1/2 0 0 0
1/2 1/2 0 0
1/6 1/6 1/6 0

 , bT = (1/6, 1/6, 1/6, 1/2).(4.3)

Kraaijevanger [14, Theorem 9.5] proved that this method is of third order and
R(A, b) = 2, whereas there exists no other explicit third order method with m = 4
and R(A, b) ≥ 2.
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Define parameters λ̃ij , µ̃ij as in Theorem 4.3. It is easy to see that the coefficients
λij = λ̃ij , µij = µ̃ij in the corresponding process (1.8) are as follows:

λ̃21

λ̃31 λ̃32

λ̃41 λ̃42 λ̃43

λ̃51 λ̃52 λ̃53 λ̃54

 =


1
0 1
2
3

0 1
3

0 0 0 1

 ,


µ̃21

µ̃31 µ̃32

µ̃41 µ̃42 µ̃43

µ̃51 µ̃52 µ̃53 µ̃54

 =


1
2

0 1
2

0 0 1
6

0 0 0 1
2

 .

We see that, as predicted by Theorem 4.3, the coefficient c̃, defined by (1.11) (with
λij = λ̃ij , µij = µ̃ij), satisfies

c̃ = 2.

Moreover, applying Theorem 4.3 once more, we immediately arrive at the following
two interesting conclusions.

1. For any explicit third order method with four stages, different from (4.3),
there exist no parameters λij , µij , satisfying (1.6), (1.7), (1.10), such that
the corresponding coefficient c (see (1.11)) satisfies c ≥ 2.

2. For any explicit third order method with four stages, different from (4.3),
there exists no coefficient c ≥ 2 such that the conditions (1.5), (1.9) guar-
antee (1.4) (whenever un−1, un, yi satisfy (1.2)).

It is interesting to note that the numerical process (1.8) with the above parameter
values λij = λ̃ij , µij = µ̃ij was also recently found by numerical computations
based on optimization of c, (1.11), with respect to the parameters λij , µij ; see
Spiteri and Ruuth [24]. However, the last-mentioned paper gives no proof of our
two conclusions stated above.

Example 4.5 (Illustration to Theorem 3.4). Consider the singly diagonally implicit
Runge-Kutta (SDIRK) method (1.2), with m = 2 and

A =
(

1/4 0
1/2 1/4

)
, bT = (1/2, 1/2).(4.4)

This method is algebraically stable and of second order; see Burrage [1]. A simple
calculation shows that R(A, b) = 4. Moreover, it can be seen, by straightforward
calculations using Theorem 3.3, that method (4.4) is optimal in that there exists
no other second order SDIRK method with m = 2 and R(A, b) ≥ 4.

We define matrices L = L∗ = (λ∗ij) and M = M∗ = (µ∗ij), corresponding to
(4.4), by (2.2), (2.5), (3.2). These matrices are as follows: λ∗11 λ∗12

λ∗21 λ∗22

λ∗31 λ∗32

 =

 1/2 0
1/2 1/2
0 1

 ,

 µ∗11 µ∗12

µ∗21 µ∗22

µ∗31 µ∗32

 =

 1/8 0
1/8 1/8
0 1/4

 .

We see that, as predicted by Theorem 3.4, the coefficient c(A, b, L∗), computed
from (2.9) (with L = L∗), satisfies

c(A, b, L∗) = 4.
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Moreover, applying Theorem 3.4 once more, we obtain the following two interesting
conclusions.

1. For any second order SDIRK method with two stages, different form (4.4),
there exists no matrix L = (λij) satisfying (2.2.a), (2.7), (2.8), such that
the corresponding coefficient c(A, b, L) (see (2.9)) satisfies c(A, b, L) ≥ 4.

2. For any second order SDIRK method with two stages, different form (4.4),
there exists no coefficient c ≥ 4 such that conditions (1.5), (1.9) guarantee
(1.4) (whenever un−1, un, yi satisfy (1.2)).
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