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SPECTRAL DIVISION METHODS
FOR BLOCK GENERALIZED SCHUR DECOMPOSITIONS

XIAOBAI SUN AND ENRIQUE S. QUINTANA-ORTÍ

Abstract. We provide a different perspective of the spectral division methods
for block generalized Schur decompositions of matrix pairs. The new approach
exposes more algebraic structures of the successive matrix pairs in the spec-
tral division iterations and reveals some potential computational difficulties.
We present modified algorithms to reduce the arithmetic cost by nearly 50%,
remove inconsistency in spectral subspace extraction from different sides (left
and right), and improve the accuracy of subspaces. In application problems
that only require a single-sided deflating subspace, our algorithms can be used
to obtain a posteriori estimates on the backward accuracy of the computed
subspaces with little extra cost.

1. Introduction

In this paper we provide a different perspective of the so-called spectral division
methods and present modified algorithms for computing block generalized Schur
decompositions [12, 25] of a matrix pair (A,B), where A and B are square matrices
of order n. The problem we are concerned with is to efficiently construct two
unitary matrices Q = (Q1, Q2) and Z = (Z1, Z2) so that

(1.1)

QhAZ =
(
Qh

1

Qh
2

)
A (Z1, Z2) =

(
A11 A12

0 A22

)
,

QhBZ =
(
Qh

1

Qh
2

)
B (Z1, Z2) =

(
B11 B12

0 B22

)
,

and L1 = λ(A11, B11), the set of the generalized eigenvalues of the matrix pencil
A11−λB11, is disjoint from L2 = λ(A22, B22) = λ(A,B)−λ(A11 , B11). Notice that
Z1 in (1.1) is an orthonormal basis for the right-deflating subspace corresponding
to L1. A subspace X is a right-deflating subspace of (A,B) if dim(AX + BX ) ≤
dim(X ), where the equality holds if (A,B) is regular [12]. A left-deflating subspace
of (A,B) is a right-deflating subspace of (Ah, Bh). Hereafter, we assume that
(A,B) is regular, and we shorten generalized eigenvalues to eigenvalues where the
meaning is clear from the context.

By recursively applying the decomposition in (1.1), partial or complete infor-
mation of the eigenspectrum of (A,B) can be obtained. In many applications
deflating subspaces with respect to a specified division of the spectrum are also of
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interest (in analysis and synthesis of linear control systems, e.g., optimal control
problems, Kalman filtering, model reduction, stabilization of descriptor systems,
etc. [1, 5, 6, 17, 27]).

A spectral division method for the decomposition (1.1) consists of two main
steps. In the first step, a spectral projector is computed that divides the spectrum
by mapping two complementary subsets of λ(A,B), L1 and L2, to two distinct
values and preserves the respective spectral subspaces. Well-known examples of
spectral projectors are obtained from the matrix sign function and the matrix disc
function [22]. Procedures for computing these matrix functions are essentially it-
erative. Once the spectral projector is available, the second step is to extract an
orthonormal basis for a spectral subspace. The subspace extraction algorithm in
general varies depending on the type of matrix function available.

Let Z1 be an orthonormal basis for the right-deflating subspace corresponding
to L1 and let Q2 be an orthonormal basis of the left-deflating subspace corre-
sponding to L2. Then, mathematically, Qh

2 AZ1 = Qh
2 BZ1 = 0, and the ma-

trix pair (A,B) is decoupled into two smaller ones, as shown in (1.1). Computa-
tionally, (Qh

2 AZ1, Q
h
2 BZ1) indicates how accurate the decoupling of matrix pair

(A,B) is. Also, given a pair of unitary matrices Q = (Q1, Q2) and Z = (Z1, Z2),
(Qh

2 AZ1, Q
h
2 BZ1) can be used to obtain normwise bounds on the backward per-

turbation (E,F ) in (A+ E,B + F ) corresponding to the decoupled matrix pair(
Qh

1 (A+ E)Z1 Qh
1 (A+ E)Z2

0 Qh
2 (A+ E)Z2

)
,

(
Qh

1 (B + F )Z1 Qh
1 (B + F )Z2

0 Qh
2 (B + F )Z2

)
.

When only a deflating subspace (e.g., Z1) is desired, if Q2 can be obtained with little
extra cost, the computed (Qh

2 AZ1, Q
h
2 BZ1) can be used to estimate the backward

accuracy of the computed orthonormal bases.
The use of the matrix sign function as a spectral division tool was first introduced

by Roberts [22] for the standard eigenvalue problem (i.e., the case in which B = I,
the identity matrix). Consider that matrix A has no eigenvalues on the imaginary
axis and denote by

A = S

(
J− 0
0 J+

)
S−1

its Jordan decomposition, with J− of size k × k and J+ of size (n − k) × (n − k)
containing the Jordan blocks corresponding to the eigenvalues in the open left
complex plane, C−, and open right complex plane, C+, respectively. The matrix
sign function of A is then defined as

sign(A) def= S

(
−Ik 0

0 In−k

)
S−1.

Assuming A is nonsingular, one procedure for computing sign(A) is to use the
Newton iteration for the equation X2 − I = 0 with A as the initial iterate. This
procedure was extended by Gardiner and Laub [10] for the generalized eigenvalue
problem; see Figure 1. The iteration converges if (A,B) has no eigenvalues on the
imaginary axis, and the asymptotic convergence rate is quadratic. Each iteration
invokes one matrix inverse and two matrix multiplications. The inverse, however,
may be sensitive to perturbations. There are inverse-free iteration schemes for the
matrix sign function based on polynomial approximations to the inverse [14]. Such
schemes, however, have bounded convergence regions.
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Input: A nonsingular matrix A.
1. Set A0 = A.
2. For k = 0, 1, 2, . . .

Ak+1 = (Ak +BA−1
k B)/2.

Figure 1. The Newton iteration for the matrix sign function.

Assume the sequence of Ak generated by the Newton iteration for the matrix
sign function converges to A∞. Matrix (B − A∞)/2 is the spectral projector cor-
responding to the eigenvalues of (A,B) in C−. Given a spectral projector, many
effective rank-revealing algorithms developed in recent years can be used for the
basis extraction; see [7, 9, 13, 21, 20].

The matrix disc function was also first defined by Roberts in [22] for the standard
eigenvalue problem. Assume A has no eigenvalues on the unit circle and rewrite its
Jordan decomposition as

A = T

(
J0 0
0 J∞

)
T−1,

with J0 of size l × l and J∞ of size (n− l)× (n− l) containing the Jordan blocks
corresponding to the eigenvalues inside and outside the unit circle, respectively.
The matrix disc function of A is then defined [5] as

disc(A) def= T

(
Il 0
0 0

)
T−1.

Malyshev presents a scheme based on the matrix disc function [18] for the spectral
division of matrix pairs. “Malyshev’s iteration”, in Figure 2, is first applied to the
matrix pair. The theoretical foundation of this iteration can be traced to works of
Godunov [11], Bulgakov and Godunov [8], Kublanovskaya [15, 16], and others (see
the references therein). Each step of Malyshev’s iteration uses a QR factorization
and two matrix multiplications. The sequence of (Ak + Bk)−1Bk in Malyshev’s
iteration converges if (A,B) has no eigenvalues on the unit circle; see [18] and [3].
Under the same condition, the asymptotic convergence rate is also quadratic. On
the convergence of Malyshev’s iteration, (A∞+B∞)−1B∞ is the spectral projector
corresponding to the eigenvalues of (A,B) inside the unit circle.

The spectral division algorithm proposed by Malyshev was modified by Bai,
Demmel, and Gu [3] to make it completely inverse-free. First, they present an

Input: A regular matrix pair (A,B).
1. Set (A0, B0) = (A,B).
2. For k = 0, 1, 2, . . .(

Q11 Q12

Q21 Q22

)(
Bk
−Ak

)
=
(
Rk
0

)
, (QR factorization)

Ak+1 = Q21Ak,
Bk+1 = Q22Bk.

Figure 2. Malyshev’s iteration for the matrix disc function.
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effective stopping criterion for Malyshev’s iteration based on the Cholesky factors of
the QR factorizations. Secondly, the bases for the deflating subspaces are obtained
by means of a generalized QR factorization [3], without explicitly constructing
(A∞ +B∞)−1B∞.

The above spectral division methods are attractive in that (1) the computation
of spectral subspaces, unlike the QZ algorithm [19], does not depend on the com-
putation of the eigenvalues and the reordering of the computed eigenvalues; and
(2) the algorithmic building blocks are mainly triangular factorizations (LR factor-
izations or QR factorizations) and matrix multiplications. High-performance codes
for such matrix computations are available on a broad class of high-performance
computers and on parallel computers in particular [2, 4, 21].

The analysis that we present in this paper exposes more algebraic structures
of the successive matrix pairs in the spectral division (Newton and Malyshev’s)
iterations and reveals some potential computational difficulties in the subspace ex-
traction stage. Let (A,B) be a matrix pair without eigenvalues on the imaginary
axis. Then, A is nonsingular and (A,B) is regular. We have the following results
for the spectral division algorithms based on the matrix sign function: (1) if B is
nonsingular, the sequence of Ak converges to a matrix, A∞, that can be consid-
ered the generalized matrix sign function of A associated with B; (2) the matrix
pair (A∞, B) is regular and preserves both the left- and right-deflating subspaces
of (A,B) corresponding to the eigenvalues in C− and C+, respectively; (3) if B
is singular, the iteration may still converge, at a linear rate, and the subspace ex-
traction on both sides (left and right) is inconsistent; and (4) the singularity or
near-singularity of B leads to the singularity or near-singularity of the limit matrix
A∞ and causes inconsistency in subspace extraction from both sides.

Malyshev’s iteration admits a matrix pair (A,B) with A and/or B singular,
without breakdown. We prove, without assuming the nonsingularity of either A or
B, that the sequence of (Ak, Bk) converges to a regular matrix pair if and only if
(A,B) has no eigenvalues on the unit circle, which implies that (A,B) is regular
and that (Ak, Bk) may still converge if there is an eigenvalue on the unit circle.
Although a step-by-step mapping relationship exists between the Newton iteration
and Malyshev’s iteration (see [3, 5]), Malyshev’s iteration preserves only the right-
deflating subspaces. To decouple a matrix pair into two smaller ones, Bai, Demmel,
and Gu [3] propose to repeat Malyshev’s iteration with (A0, B0) = (Ah, Bh) and
then to obtain the left-deflating subspace from the converged matrix pair. Two
such independent iterations (one for each subspace, left and right) may lead to
numerically inconsistent decoupling, in addition to the doubled arithmetic cost.
The extra cost is too high if the left-deflating subspace is only needed to obtain
error estimates.

We present a subspace extraction technique which provides bases for both the
left- and right-deflating subspaces with a single Malyshev iteration on (A,B) (thus
we avoid repetition of Malyshev’s iteration on (Ah, Bh)). The arithmetic cost of
our one-sided spectral division algorithm is reduced by nearly 50% in comparison
to the methods based on two-sided spectral division algorithms [3]. The deflation
scheme also reduces the decoupling inconsistency caused by independent iterations
and/or independent subspace extractions on both sides.

Our paper is organized as follows. In Section 2, we review two canonical forms
of matrix pencils. In Section 3 we expose the algebraic structure of the sequence
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of a matrix pair with the Newton iteration and present our deflation scheme for
the generalized Schur decomposition (1.1). In Section 4 we provide an analysis of
Malyshev-like algorithms and present a scheme for accurate extraction of left- and
right-deflating subspaces which only requires an iteration. In Section 5 we describe
initial transformations that allow the spectrum to be divided in various ways. In
Section 6, we present some numerical experiments. Our concluding remarks are in
Section 7.

We use the following notation and conventions in addition to what has been
introduced so far. The matrix norm ‖ · ‖ denotes the 2-norm and κ(X) denotes
the condition number of X with respect to inversion. The tensor product (or right
Kronecker product) of an m×m matrix A and an n×n matrix B is defined as the
mn×mn matrix

A
⊗

B =

 a11B . . . a1mB
...

. . .
...

am1B . . . ammB

 .

We denote by R(X) and N (X) the range and the null space of matrix X , respec-
tively. In some cases it is necessary to write the generalized eigenvalue problem
in the symmetrical cross-product form, as suggested in [24]. If (α, β) 6= 0 and
det(β A−αB) = 0, then (α, β) represents an eigenvalue of (A,B) in the sense that,
for any δ 6= 0, we have det(δβ A − δαB) = 0 also. The corresponding eigenvalue-
eigenvector problem is

β Ax = αB x, (α, β) 6= 0, x 6= 0.

In other cases we use for convenience the traditional, asymmetrical forms Ax = λBx
or µAx = Bx. When β 6= 0, we simply set β = 1 and hence α = λ. When β = 0,
we set α = 1. We denote by ρ(A) the spectral radius of a square matrix A.

2. Block canonical decompositions

The following two theorems from [25] on the two canonical forms for matrix
pencils underpin the unified theory we present for the spectral division algorithms.

2.1. Generalized Schur form.

Theorem 2.1. Let (A,B) be a regular matrix pair. Then there are unitary matrices
Q and Z such that S = QhAZ and T = QhBZ are upper triangular with the
diagonal element pairs (sii, tii), i = 1, . . . , n, being the eigenvalues of (A,B) in a
prespecified order.

Proof. The proof is by induction on the order n. The theorem holds for n = 1.
Assume that the theorem holds true for all matrix pairs of order less than n, n > 1.
Let z1, ‖z1‖2 = 1, be an eigenvector corresponding to the first eigenvalue pair
(α, β), namely,

β Az1 = αB z1, (β, α) 6= 0.
Then, the rank of (Az1, Bz1) is no greater than 1. By the regularity of the matrix
pair, (Az1, B z1) 6= 0. There is a vector q1, ‖q1‖2 = 1, such that (Az1, Bz1) =
q1(s11, t11) = q1(δα, δβ) for some scalar δ 6= 0. Let Zc = (z1, Z2) and Qr = (q1, Q2)
be unitary matrices. Then,

Qh
r AZc =

(
s11 S12

0 An−1

)
, Qh

r BZc =
(
t11 T12

0 Bn−1

)
,
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and λ(A,B) = {(s11, t11)} ∪ λ(An−1, Bn−1). Notice that (An−1, Bn−1) is also reg-
ular. By the induction hypothesis, there are unitary matrices Zn−1 and Qn−1

such that Qh
n−1An−1Zn−1 and Qh

n−1Bn−1Zn−1 are triangular with their diago-
nal elements in a specified order. The induction step is completed by letting
Q = Qr diag(1, Qn−1) and Z = Zc diag(1, Zn−1). �

The above proof can be extended to the following cases:
(a) The Schur decomposition for the standard eigenvalue problem. We can always

let Qr = Zc in the induction step and have, by induction, Qn = Zn.
(b) The generalized real Schur decomposition for a real, regular matrix pair (A,B).

The matrices T and S are block triangular matrices with 1×1 and 2×2 matrix
pairs on the diagonals.

(c) The generalized Schur decomposition for a singular matrix pair. See [26].

We are interested in the case in which (A,B) has more than one distinctive
eigenvalue. Let L1 and L2 be two nonempty subsets of λ(A,B). They are called
complementary subsets of λ(A,B) if L1 ∪ L2 = λ(A,B) and L1 ∩ L2 = ∅.
Corollary 2.2. Let (A,B) be a regular pair. Let L1 and L2 be a pair of com-
plementary subsets of λ(A,B). Then there are unitary matrices Q and Z such
that

QhAZ =
(
A11 A12

0 A22

)
, QhBZ =

(
B11 B12

0 B22

)
,

λ(A11, B11) = L1,
λ(A22, B22) = L2.

2.2. Block diagonal forms.

Theorem 2.3. Let (A,B) be a regular matrix pair. Let L1 and L2 be a pair of
complementary subsets of λ(A,B). Then there are nonsingular matrices X and Y
such that
(2.1)

Y −1AX =
(
A11 0
0 A22

)
, Y −1BX =

(
B11 0
0 B22

)
,

λ(A11, B11) = L1,
λ(A22, B22) = L2.

Theorem 2.3 can be applied recursively to one or two of the decoupled matrix
pairs (A11, B11) and (A22, B22), when needed. In the 2×2 block diagonal canonical

form, let Wh = Y −1 and partition X = (X1, X2) and Wh =
(
Wh

1

Wh
2

)
in confor-

mity with the block diagonal matrix pair. Then, for i = 1, 2, Xi and Wh
i represent,

respectively, the right- and left-deflating subspaces of (A,B) corresponding to Li.
The diagonal form renders more relationships between the deflating subspaces. In
particular, with the same assumptions as in Theorem 2.3, we have the following
corollaries.

Corollary 2.4. The right- and left-deflating subspaces of (A,B) corresponding to
L1 and L2, respectively, are complementary.

Let X be a deflating subspace of (A,B). We call the subspace Y = AX + BX
the image of X under (A,B). In (2.1), R(Y1) is the image of R(X1). For simplicity,
we say that Y1 is the image of X1 under (A,B).

Corollary 2.5. The left-deflating subspace of (A,B) corresponding to L2 (L1) is
orthogonally complementary to the image of the right-deflating subspace correspond-
ing to L1 (L2.)
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3. Spectral division via the matrix sign function

In this section we provide an analysis on the convergence of the Newton iteration
(see Figure 1), and we describe the algebraic structure of the converged matrix,
including the case in which matrix B is singular. The newly revealed algebraic
structure suggests that a single Newton iteration is sufficient to obtain the deflating
subspaces on both sides. Moreover, we provide a deflation scheme to eliminate
numerical inconsistency in subspace extraction.

3.1. The Newton iteration for the matrix sign function. The Newton itera-
tion requires that A0 (= A) be nonsingular. Let Akx = λ(k)Bx, k ≥ 0, where x 6= 0
is an eigenvector of (Ak, B) corresponding to the eigenvalue λ(k), 0 < |λ(k)| < ∞.
Assume for the moment that Ak is nonsingular. Then,

Ak+1x =
1
2

(
λ(k) +

1
λ(k)

)
Bx.

We see that, at iteration k, λ(k) is mapped to the eigenvalue
(
λ(k) + λ(k)−1

)
/2 of

(Ak+1, B); the eigenvector is preserved. Similarly, the left eigenvector is preserved
as well. We will show that the eigenvector-preserving property of the Newton
iteration can be extended to spectral subspaces. The iteration

λ(k+1) = (λ(k) + 1/λ(k))/2, k ≥ 0,

converges if and only if λ(0) is not on the imaginary axis, that is, Re(λ(0)) 6= 0. For
λ(0) with Re(λ(0)) 6= 0, limk→∞ λ(k) = sign(λ(0)). We assume for the rest of this
section that (A,B) has no eigenvalues on the imaginary axis in the λ-form, thereby
implying that A is nonsingular.

Although the inverse of B is not required implicitly in the iteration, the sin-
gularity or near-singularity of B causes the singularity or near-singularity of Ak,
even when A0 = A is well conditioned. To see this, we consider the case in which
B is singular and its zero eigenvalues are all simple. By Theorem 2.3, there are
nonsingular matrices X = (X0, X1, X2) and Y = (Y0, Y1, Y2) such that

A0X = Y

 A
(0)
00 0 0
0 A

(0)
11 0

0 0 A
(0)
22

 , BX = Y

 0 0 0
0 B11 0
0 0 B22

 ,

where B11 and B22 are nonsingular, λ(A(0)
11 , B11) ⊂ C−, and λ(A(0)

22 , B22) ⊂ C+. It
can be verified directly that

Ak+1X=Y

 A
(k)
00 /2 0 0
0 (A(k)

11 +B11(A(k)
11 )−1B11)/2 0

0 0 (A(k)
22 +B22(A(k)

22 )−1B22)/2

.
Thus, Ak+1 is nonsingular if Ak is nonsingular. As k →∞, A(k)

11 → −B11, A(k)
22 →

B22, but A(k)
00 → 0. In other words, the sequence of Ak converges to a singular

matrix A∞,

(3.1) A∞ = Y

 0 0 0
0 −B11 0
0 0 B22

X−1.
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Generally, it can be proved that if the Jordan blocks with eigenvalues at 0 are of
order less than 3, then the Ak converge. Notice that in the case in which B is
singular and the Ak converge, the convergence rate is linear, and the limit matrix
pair (A∞, B) is singular.

The above analysis also includes the case in which B is nonsingular, that is,
A

(0)
00 is empty. In such a case we have shown that the Newton iteration converges

if and only if (A,B) has no imaginary eigenvalue in the λ-form. Moreover, the
asymptotic convergence rate is quadratic, and the limit matrix pair (A∞, B) is
regular. Let A and B be nonsingular, and let (A,B) be a matrix pair without
imaginary eigenvalues in the λ-form. We define the generalized matrix sign function
of (A,B) as the following:

(3.2) sign(A,B) def= Y

(
−B11 0

0 B22

)
X−1.

The function is well defined in that it is independent of the selection of bases for
the spectral subspaces. When B = I, sign(A,B) = sign(A). Notice that the roles
of A and B in sign(A,B) are not symmetrical in that if B11 or B22 is near-singular,
so is sign(A,B). We have proved the following theorem.

Theorem 3.1. Let (A,B) be a matrix pair without eigenvalues on the imaginary
axis. Then, the sequence of (Ak, B) by the Newton iteration converges to a regular
matrix pair if and only if B is nonsingular. Moreover, limk→∞ Ak = sign(A,B).

3.2. Subspace extraction and deflation algorithms. A deflation algorithm
for the Schur decomposition (1.1) requires Z1, an orthonormal basis for the right-
deflating subspace corresponding to the eigenvalues, for instance, in C−, and Q2, an
orthonormal basis for the left-deflating subspace corresponding to the eigenvalues
in C+.

There are two approaches for extracting the spectral subspaces. One approach
is to form the spectral projectors first. The projectors can be expressed in terms
of sign(A,B) and B when B is nonsingular and (A,B) has no eigenvalues on the
imaginary axis:

PX1 = X diag(I, 0)X−1 = B−1(B − sign(A,B))/2, PX2 = I − PX1 .

Given a projector, many effective rank-revealing algorithms developed in recent
years can be used to obtain an orthonormal basis for the subspace; see [7, 9, 13,
21, 20]. To avoid the inverse of B, practitioners use the rank-revealing algorithms
to obtain a basis for a spectral subspace without forming the projector. The al-
ternative approach is based on the following direct relationships between the limit
matrix pair (A∞, B) and the spectral subspaces:

(3.3) N (B + sign(A,B)) = R(X1), N (B − sign(A,B)) = R(X2).

Our analysis in Section 3.1 shows that (A∞, B) preserves the left-deflating sub-
spaces as well. Recall that W = Y −h = (W1,W2) and Wh

1 and Wh
2 are the

left-deflating subspaces. Specifically, we have

PW1 = W diag(I, 0)W−1 = B−h(B − sign(A,B))h/2, PW2 = I − PW1 ,

and

(3.4) N (Bh + sign(A,B)h) = R(W1), N (Bh − sign(A,B)h) = R(W2).
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In other words, we can obtain the deflating subspace on both sides from A∞ and
B.

We now show that the independent subspace extraction on both sides may cause
numerical inconsistency in subspace extraction. To see this, we consider the case in
which B is singular and the Ak converge to a singular matrix A∞ as shown in (3.1).
We have

(3.5)
N (B +A∞) = R([X0, X1]), N (B −A∞) = R([X0, X2]),

N (Bh +Ah
∞) = R([W0,W1]), N (Bh −Ah

∞) = R([W0,W2]).

The extraction of the spectral subspaces on one side is not consistent with that
on the other side. The subspaces N (B − A∞) and N (Bh + Ah

∞) are no longer
orthogonal. Such inconsistency is also expected in numerical computation when B
is near-singular. Our approach to circumventing the problem is based on Corol-
lary 2.5. Specifically, we use the fact that R(W2) is orthogonally complementary
to the image of R([X0, X1]) under (A,B), namely,

Wh
2 (A[X0, X1], B[X0, X1]) = 0,

dim((A[X0, X1], B[X0, X1])) + dim(W2) = n.

We call this approach the Schur deflation approach. It can be applied if the
Newton iteration converges. Let Z1 and Q2 be orthonormal bases for R([X0, X1])
andR(W2), respectively. The procedure for computing Z1 and Q2 can be composed
of two rank-revealing QR (RRQR) factorizations; see Figure 3. By a proof similar
to that of Theorem 2.1, one can see that the use of an RRQR procedure, instead
of a QR factorization procedure, is necessary in the Schur deflation step.

We note that the Schur deflation technique was first used by Van Dooren [26]
for computing reducing subspaces of singular pencils; the use of the technique in
the spectral division methods for the block Schur decomposition (1.1) and for the
error estimate is new to the best knowledge of the authors.

Given (A,B). Assume A∞ is obtained by the Newton iteration in Figure 1.
1. Construct a unitary matrix Z̄ = (Z1, Z2), using an RRQR procedure,

such that

ΠQ(B +A∞)(Z1, Z2) =
(

0 L12

0 L22

)
,

where ΠQ can be a permutation matrix.
2. The Schur deflation. Construct a unitary matrix Q = (Q1, Q2), using

an RRQR procedure, such that

Qh(AZ1, BZ1)ΠZ =
(
S11 T11

0 0

)
,

where ΠZ can be a permutation matrix.
The matrix pair (QhAZ,QhBZ) is decoupled as in (1.1).

Figure 3. Subspace extraction and the Schur decomposition via
the matrix sign function.
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4. Spectral division via the matrix disc function

In this section we provide an analysis on the convergence of Malyshev’s iteration
(see Figure 2), and we describe the algebraic structure of the converged matrix pair,
including the case in which there are eigenvalues on the unit circle. Although Maly-
shev’s iteration does not preserve the left-deflating subspaces, the Schur deflation
scheme introduced in Section 3 still applies. The new difficulty lies in subspace ex-
traction due to the element decrease in Malyshev’s iteration. We provide a modified
algorithm for subspace extraction.

4.1. Malyshev’s iteration for the matrix disc function. We first introduce
Malyshev-like iterations with Malyshev’s iteration as a special instance and then
provide the convergence conditions for Malyshev’s iteration. Given (A0, B0), a
Malyshev-like iteration generates two matrix pencil sequences (Ak, Bk) and
(Ck, Sk), k = 1, 2, . . ., by the following two rules.

The cs-ab equivalence rule.

(4.1) Sk Ak = Ck Bk, where rank([Ck, Sk]) = n.

The squaring recurrence.

Ak+1 = CkAk,(4.2)
Bk+1 = SkBk.

We may also call the second rule the cross-update rule. Malyshev’s iteration uses the
QR factorization of (Bh

k ,−Ah
k )h to generateCk and Sk. It imposes the orthonormal

condition on (Ck, Sk) in the cs-ab equivalence rule.
The matrix pair (Ck, Sk) is equivalent to (Ak, Bk) if the latter is regular. By the

regularity of (Ak, Bk), there are µ1 and µ2 such that µ1Ak + µ2Bk is nonsingular.
Let βAkx = αBkx, where x 6= 0 and (α, β) 6= 0. Then, we have by the cs-ab

equivalence rule (4.1),

βCk(µ1Ak + µ2Bk)x = αµ1CkBkx+ βµ2SkAkx = αSk(µ1Ak + µ2SkBk)x.

We see that λ(Ak, Bk) = λ(Ck, Sk) and the right eigenvectors of (Ck, Sk) are those
of (Ak, Bk) transformed by µ1Ak + µ2Bk. Since (Ck, Sk) is also regular, the left
equivalence transformation between the two matrix pairs can be represented by a
linear combination of Ck and Sk. We can therefore expect a squaring of the eigen-
values of (Ak, Bk) in (Ak+1, Bk+1) formed by the cross-update rule (4.2). Indeed,
we have

β2Ak+1x = β2CAkx = αβCBkx = αβSAkx = α2SBkx = α2Bk+1x.

Assume that βA0x = αB0x, where x 6= 0 and (α, β) 6= 0. Then, by induction on k,

β2kAkx = α2kBkx, k ≥ 0.

By the convention introduced in Section 1, we set β = 1 when |α| < |β| (λ = α/β
is inside the unit circle in C), and we set α = 1 otherwise. As k →∞,

(α2k , 1)→ (0, 1), |α| < 1; (1, β2k) = (1, 1), β = 1;
(1, β2k)→ (1, 0), |β| < 1; (1, β2k) do not converge, |β| = 1, β 6= 1.

The following example shows that the divergence of an eigenvalue sequence
(1, β2k), |β| = 1, β 6= 1, does not necessarily imply the divergence of the matrix
pair sequence (Ak, Bk).
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Example 4.1. Let B0 = F be a nonsingular matrix and let A0 =
(
eiθ 0
0 0

)
F

for a real number θ. Then, (A,B) is a regular pair and has an eigenvalue on the unit

circle. Let S0 =
(
eiθ/
√

2 0
0 1

)
and C0 =

(
1/
√

2 0
0 0

)
. Then, (S0, C0) satisfies

the cs-ab equivalence rule (4.1) and the orthogonality condition in Malyshev’s
iteration. Form (A1, B1) by the cross-update rule (4.2), that is, A1 = C0A0 and
B1 = S0B0. For all k ≥ 0, we have

Ak =
(
ei2

kθ(1/
√

2)k 0
0 0

)
F, Bk =

(
(1/
√

2)k 0
0 1

)
F,

Ck =
(

1/
√

2 0
0 0

)
, Sk =

(
ei2

kθ/
√

2 0
0 1

)
.

The matrix pair at convergence is singular.

In Malyshev’s iteration the sequence of ‖Rk‖ is monotonically nonincreasing and
always converges. However, Malyshev’s iteration at each step is not deterministic
in that U(Ck, Sk), for an arbitrary unitary matrix U , also satisfies the first rule
and the orthonormal condition. Therefore, we say that the sequence of (Ak, Bk)
is convergent up to a unitary matrix in the sense that there is a sequence of uni-
tary matrices Uk such that the sequence of (UkAk, UkBk) converges. Assume that
(A0, B0) has eigenvalues inside and outside the unit circle. Then, we have shown
the following.
(a) If the sequence of (Ak, Bk) converges, up to a unitary factor, to a matrix pencil

(A∞, B∞), then both A∞ and B∞ are singular.
(b) If either Ck or Sk is kept unitary, the sequence of (Ak, Bk) is not convergent.
(c) The condition that (A0, B0) has no eigenvalues on the unit circle is not a

necessary condition for Malyshev’s iteration to converge.
Example 4.1 also shows that for the case in which there is an eigenvalue on the

unit circle, (Ak, Bk) converge, the convergence rate is linear, and the limit matrix
pair is singular. For the case in which there are no eigenvalues on the unit circle,
we have the following theorem.

Theorem 4.2. If (A0, B0) has no eigenvalues on the unit circle, then the sequence
of (Ak, Bk) by Malyshev’s iteration (Figure 2) converges to a regular matrix pair,
up to a unitary factor. Moreover, the sequence of Rk converges asymptotically
quadratically.

Proof. We may assume without loss of generality that (A0, B0) has eigenvalues
both inside and outside the unit circle. By Theorem 2.3, there are two nonsingular
matrices X and Y such that

(4.3) A0X = Y

(
I 0
0 A22

)
, B0X = Y

(
B11 0
0 I

)
,

where ρ(B11) < 1, ρ(A22) < 1. For a Malyshev-like iteration, we have

S0 = G diag(B11, I)Y −1, C0 = G diag(I, A22)Y −1,

for some nonsingular matrix G, and

(C0A0)X = G diag(I, A2
22), (S0B0)X = G diag(B2

11, I).
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For Malyshev’s iteration, G = UL−1, where U is a unitary matrix and L is the
Cholesky factor of the matrix (diag(B11, I)Y −1, diag(I, A22)Y −1).

Let G0 = Y , and let G0 = U0L
−1
0 be a QL factorization of G0. We have that,

for Lk nonsingular,

(4.4) AkX = Gk

(
I 0
0 A2k

22

)
, BkX = Gk

(
B2k

11 0
0 I

)
, k ≥ 0,

where

(4.5) Gk+1 = Uk+1L
−1
k+1, k ≥ 0,

for some unitary matrix Uk+1, and Lk+1 is the Cholesky factor of

(diag(B2k

11 , I)Lk, diag(I, A2k

22)Lk).

Let M (k) = LkL
h
k and partition M (k) in conformity with the block diagonal ma-

trices. Then,
(4.6)

M (k+1) =
(
I 0
0 A2k

22

)
M (k)

(
I 0
0 A2k

22

)h

+
(
B2k

11 0
0 I

)
M (k)

(
B2k

11 0
0 I

)h

=

 M
(k)
11 +B2k

11M
(k)
11 (B2k

11 )h B2k

11M
(k)
12 +M

(k)
12 (A2k

22)h

M
(k)
21 (B2k

11 )h +A2k

22M
(k)
21 M

(k)
22 +A2k

22M
(k)
22 (A2k

22)h

 .

Let ρ1 = ρ(B11), ρ2 = ρ(A22) and ρ = max(ρ1, ρ2). Then, ρ < 1. As k →∞,

‖M (k+1)
21 ‖ = ‖M (k+1)

12 ‖ ≤ 2ρ2k‖M (k)
12 ‖ ≤ 2k+1ρ

∑k
j=0 2j‖M (0)

12 ‖ → 0,

‖M (k)
ii ‖ ≤ ‖M

(k+1)
ii ‖ ≤ (1 + ρ2k+1

i )‖M (k)
ii ‖ < eγi ‖M (0)

ii ‖, i = 1, 2,

inf(M (k+1)
ii ) ≥ inf(M (k)

ii ) ≥ inf(M (0)
ii ), i = 1, 2,

where

γi = ρ2
i

1− 2 ln(ρi)
12 ln(ρi)2

, i = 1, 2.

Recall that for i = 1, 2, the values M (0)
ii are equal to (Y −1Y −h)ii; hence they are

nonsingular. We have shown that the M (k) converge, as k → ∞, to a nonsingular
block diagonal matrix M∞. Let L∞ be the Cholesky factor of M∞. Then, L∞ is
also block diagonal, L∞ = diag(L11, L22). By (4.4) and (4.5), (Ak, Bk) converge to
a regular matrix pair (A∞, B∞), up to a unitary factor,

(4.7) A∞ = U

(
L−1

11 0
0 0

)
X−1, B∞ = U

(
0 0
0 L−1

22

)
X−1,

where U is a unitary matrix. Let Rk be the Cholesky factor of (Ah
k , B

h
k )h. Then,

for any nonzero vector v,

vhX−h diag
(
M

(k)
11 ,M

(k)
22

)−1

X−1v ≤ vh(Rh
k Rk)v ≤ 2vhX−h

(
M (k)

)−1

X−1v,

and, as k →∞,
Rh
k Rk → Rh

∞R∞ = X−hM−1X−1.

By (4.6), the asymptotic convergence rate of Rk is quadratic. �
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‖Rk −Rk−1‖1 ≤ 10 n ε ‖Rk‖1. ε: the machine precision

Figure 4. The BDG stopping criterion.

We see that while the convergence of (Ak, Bk) is up to a unitary factor, the
Cholesky factors Rk converge and are readily available to be used in convergence
criteria. Bai, Demmel, and Gu use this convergence to design the “BDG” stopping
criterion shown in Figure 4.

4.2. Subspace extraction and deflation algorithms. From Theorem 4.2 we
have the following corollary for extracting bases of the right-deflating subspaces.

Corollary 4.3. Assume (A0, B0) has no eigenvalues on the unit circle. Let X1

and X2 be the right-deflating subspaces corresponding to the eigenvalues inside and
outside the unit circle, respectively. Then, for Malyshev’s iteration, Ak+Bk, k ≥ 0,
are nonsingular, and

(1) limk→∞(Ak + Bk)−1Ak → (A∞ +B∞)−1A∞ = PX1 , the projector for X1,
and

(2) N (B∞) = X1, N (A∞) = X2.

The projector PX1 is the matrix disc function of (A + B)−1A [5]. We call
(A∞, B∞) in (4.7) the generalized matrix disc function of (A0, B0). The com-
putation of the projectors requires the inverse of A∞ + B∞, which may be close
to a singular matrix. Part (2) of Corollary 4.3 suggests an alternative way, which
can also be extended to the case in which (A0, B0) has eigenvalue(s) on the unit
circle and (Ak, Bk) converge. In this case, (A∞ + B∞) is singular, and N (B∞)
and N (A∞) are not complementary. More specifically, N (B∞) ∩ N (A∞) is the
right-deflating subspace corresponding to the eigenvalues on the unit circle. We
study the case with eigenvalue(s) on the unit circle in order to gain insights into

Given (A,B). Assume (A∞, B∞) is obtained by Malyshev’s iteration in
Figure 2.

1. Construct a unitary matrix Z̄ = (Z1, Z2), using an RRQR procedure,
such that

ΠQB∞(Z1, Z2) =
(

0 L11

0 L22

)
,

where ΠQ can be a permutation matrix.
2. The Schur deflation. Construct a unitary matrix Q = (Q1, Q2), using

an RRQR procedure, such that

Qh(AZ1, BZ1)ΠZ =
(
S11 T11

0 0

)
,

where ΠZ can be a permutation matrix.
The matrix pair (QhAZ,QhBZ) is decoupled as in (1.1).

Figure 5. Subspace extraction and the Schur decomposition via
the matrix disc function.
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1.1.
(
A∞ B∞

)
= R

(
UA UB

)
( RQ factorization ).

1.2. UAZ =
(

0 L12

0 L22

)
( RR-RQF ).

Figure 6. Modification of step 1.

the case with eigenvalue(s) near the unit circle. The deflation algorithm in Figure 5
is based on part (2) of Corollary 4.3 and on Corollary 2.5. It is inverse-free and
requires only one-sided Malyshev iteration. To obtain the right-deflating subspace
of (A,B) corresponding to the eigenvalues outside and on the unit circle, if any, we
replace B∞ by A∞ in Step 1.

Recall that ‖Rk‖ is nonincreasing. Since ‖A∞‖, ‖B∞‖ ≤ ‖R∞‖, the numerical
computation for revealing the null space of A∞ or B∞ by step 1 of the algorithm in
Figure 5 may be difficult. By the convergence analysis in Section 4.1, the numerical
rank of A∞, or B∞, can be significantly affected by κ(L11) and κ(X). From the
proof of Theorem 4.2 we know that κ(L11) is related to κ(Y ). We modify step 1
using the scheme in Figure 6. In step 1.1, if the Cholesky factor R is nonsingular,
then N (A∞) and N (UA) are complementary, and the singular values of UA (or
UB) are at around 1 and 0, according to the theory of the CS decomposition [12].
In other words, step 1.1 is the preconditioning stage for the next rank-revealing
step. Similarly, the scheme can be applied to obtain the right-deflating subspace
corresponding to the eigenvalues outside the unit circle (and on the unit circle, if
any).

5. Transformations of spectral divisions

The spectrum of a matrix pair can be divided in various ways by using a spectral
division algorithm, as discussed in the preceding sections, combined with an initial
spectral transformation. The Möbius transformations of a given matrix pair (A,B)
are particularly simple, involving only linear combinations of A and B. We have
the following theorem from [25].

Theorem 5.1. Let M be a nonsingular 2×2 matrix. Given the matrix pair (A,B),
set C = A(M

⊗
In) and D = B(M

⊗
In). Given a pair (α, β) 6= (0, 0) such that

det(βA− αB) 6= 0, define (γ, δ) by(
δ
−γ

)
= M−1

(
β
−α

)
.

Then det(βA − αB) 6= 0 if and only if det(δ C − γD) 6= 0.

In the preceding theorem, if we choose for example to use Malyshev’s iteration,
then the Cayley transformation on (A,B)

M =
(

1 1
1 −1

)
, (A0, B0) = (A+B,A−B),

enables the division of λ(A,B) along the imaginary axis. Figures 7 and 8 de-
pict the progressive changes of the eigenvalues with Malyshev’s iteration starting,
respectively, from (A + B,A − B) and (A,B), where A and B are the matrices
in Example 2 of Section 6. Each figure consists of four snapshots, showing the
distribution of the initial eigenvalues (top left) and the eigenvalues at the end of
iteration 1 (top right), iteration 2 (bottom left), and iteration 5 (bottom right).
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Figure 7. Iterations for the matrix sign function.
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Figure 8. Iterations for the matrix disc function.



1842 XIAOBAI SUN AND ENRIQUE S. QUINTANA-ORTÍ

In Figure 7, the eigenvalues converge to their sign function values ±1; in Figure 8,
we only show the eigenvalues inside the unit circle, which converge to 0. The
reciprocal of the eigenvalues outside the circle is symmetric to those inside with
respect to the imaginary axis (see Section 4). Notice that the scale of the axis is
different for each figure.

Among other Möbius transformations there are those scaling the unit circle,
shifting the circle center, and shifting and/or rotating the imaginary axis. In [3],
different spectral transformations are used at different decoupling levels to locate
the eigenvalues in a specified region in the complex plane. These transformations
were first employed as acceleration techniques in some fine-grained algorithms, such
as the AB algorithms [16], for generalized eigenvalue problems.

6. Numerical experiments

In this section we present some numerical experiments with spectral division
algorithms via the matrix disc function. Specifically, we compare the following
algorithms:
mm-inv: The spectral division algorithm originally designed by Malyshev [18].

Malyshev’s iteration is applied twice, starting with matrix pairs (A,B)
and (Ah, Bh). The corresponding spectral projectors, PX1 and PW2 ,
are explicitly constructed and the left- and right-deflating subspaces are
then obtained from those via an RRQR factorization.

mm-gqr: The spectral division algorithm proposed by Bai, Demmel and Gu [3].
Malyshev’s iteration is also applied twice, on (A,B) and (Ah, Bh), but
now the left- and right-deflating subspaces are obtained by means of
two generalized QR factorizations [3], without explicit construction of
the spectral projectors.

m-abqr: Our new spectral division algorithm. Malyshev’s iteration is only ap-
plied once, on (A,B). The subspace extraction scheme described in
Figure 5 is then employed to obtain the left- and right-deflating sub-
spaces.

The three algorithms use the BDG stopping criterion (see Figure 4) in Malyshev’s
iteration (Figure 2). They differ in the iterations performed (one-sided in our
algorithm and two-sided in algorithms mm-inv and mm-gqr) and the subspace
extraction technique. Our spectral division algorithm only requires one iteration
on a matrix pair and therefore approximately 50% of the computational cost of
algorithms mm-inv and mm-gqr.

To measure and compare the backward accuracy of these algorithms, we evaluate
the relative decoupling residual (rdr):

(6.1) rdr = ‖(E21, F21)‖F /‖(A,B)‖F .

All the experiments are performed in matlab 4.2 on a Sun sparcstation-20 using
ieee arithmetic with the machine precision ε ≈ 2.2× 10−16.

In all our experiments the three algorithms take about the same number of
iterations to compute the right-deflating subspace for each matrix pair. With two-
sided iterations, the number of right iterations and the number of left iterations are
very close.
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We conduct two sets of experiments. The matrices in the first set are 100× 100
random matrices with entries independent and normally distributed within [−1, 1].
We apply the algorithms for both the division along the imaginary axis and the
division along the unit circle (see Section 5). The decoupling residuals with mm-

gqr and m-abqr are of about the same order for both division cases, whereas the
decoupling residuals by mm-inv are more sensitive to κ(A∞ + B∞).

The second set of experiments consists of matrix pairs from [1, 3]. The problems
are designed with known eigenstructures which can be adjusted to obtain difficult
cases for the spectral division algorithms. We present experimental results for three
examples with the algorithms using the spectrum division along the imaginary
axis. In these examples, B = I. We use the matrix pair (A, I) and the equivalent
pair (R,Qh), where A = QR is a QR factorization. The two options show no
noticeable differences. Matlab files for these examples are available with PRISM
project working note #32 at http://www.mcs.anl.gov/prism.

Following the notation in [3], we use ∆(A) to denote the gap between the eigen-
values and the imaginary axis:

∆(A) = min
λj∈λ(A)

|Re(λj)|.

The larger the gap ∆(A) is, the faster (Ak, Bk) converge. To estimate the sensitivity
of the spectral subspaces to perturbations in a matrix pair, we compute a lower
bound of the quantity dif introduced in [23]:

dif[(A11, B11), (A22, B22)]
def= inf

max{‖P‖F,‖Q‖F}=1
max{‖QA11 +A22P‖F, ‖QB11 +B22P‖F}.

The lower bound we compute is the smallest singular value of the matrix operator
T that maps (Q,P ) to (QA11 +A22P,QB11 +B22P ) (see [23]).

Example 1. The matrix A is real and Hamiltonian:

A = Qt

(
F S
G −Ft

)
Q,

where

F =


−η 1 0 0
−1 −η 0 0

0 0 η 1
0 0 −1 η

 , S = G =


1
1
1
1

( 1 1 1 1
)
,

and Q is an orthogonal matrix obtained from the QR factorization of a random
matrix. The eigenvalues of A are symmetric with respect to the imaginary axis as
well as the real axis and are in a neighborhood of ±η2 ± i. This type of matrix
arises in an optimal control problem [1, 17]. Table 1 lists the values of dif, iteration
number, and relative decoupling residual with a few different values of η. As η → 0,
the eigenvalues at about ±η2 ± i approach two points ±i on the imaginary axis,
and the division along this axis becomes more difficult. All three algorithms behave
about the same numerically; however, algorithm m-abqr only requires a one-sided
iteration and therefore uses only about 50% of the arithmetic operations used by
the other two algorithms.
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Table 1. Experimental results with Example 1.

∆(A) ≈
η2/2

dif iter mm-inv mm-gqr m-abqr

rdr rdr rdr

5.00e − 1 4.26e − 1 8 2.04e − 16 2.31e − 16 1.81e − 16

5.00e − 3 5.04e − 3 15 4.66e − 15 4.75e − 15 6.52e − 15

5.00e − 5 5.00e − 5 22 3.84e − 13 3.84e − 13 2.55e − 13

5.00e − 7 5.00e − 7 28 3.91e − 11 3.91e − 11 1.53e − 11

Example 2. The matrix is of Hamiltonian-like structure:

A = Qt

(
A11 A12

0 A22

)
Q,

with

A11 =


1− α α
α 1− α

. . . . . .
α 1− α

 , A22 = −At
11,

where A12 is a k×k random matrix (not necessarily symmetric), Q is an orthogonal
matrix, and A11 is a circulant matrix with parameter α. The eigenvalues of A11 are
evenly distributed on a circle with center at 1−α and radius α. The eigenvalues of
A are therefore distributed on two circles symmetric to the imaginary axis for any
α ∈ (0, 0.5); see Figure 7.

Table 2 lists two groups of experimental results. In the first group, we let α→ 0.5
so that the two circles get closer to each other toward the imaginary axis. Both
∆(A) and dif decrease at the same time. In the second group, we fix α at 0.45 and
shift A so that ∆(A) gets smaller and dif remains the same. Algorithm m-abqr is
more accurate in both cases.

Example 3. The matrix is constructed as

A = Qt

(
A11 A12

0 A22

)
Q,

where Q is an orthogonal matrix, A12 is a 5 × 5 random matrix, A11 and A22 are
random upper triangular matrices except that diag(A11) = − diag(A22) = β D with

Table 2. Experimental results with Example 2 (k = 20).

∆(A) dif iter mm-inv mm-gqr m-abqr

rdr rdr rdr

10−1 1.41e − 1 10 6.49e − 16 5.10e − 16 2.77e − 16

10−3 1.41e − 3 17 6.77e − 14 3.58e − 14 5.32e − 16

10−5 1.41e − 5 23 5.71e − 11 4.56e − 12 3.28e − 15

10−7 1.41e − 7 29 6.95e − 08 1.42e − 10 3.64e − 14

10−3 1.41e − 1 16 2.59e − 15 1.03e − 15 2.90e − 16

10−5 1.41e − 1 23 2.25e − 14 1.32e − 14 3.27e − 16

10−7 1.41e − 1 30 1.62e − 13 1.42e − 13 3.00e − 16
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Table 3. Experimental results with Example 3.

β ∆(A) dif iter mm-inv mm-gqr m-abqr

rdr rdr rdr

1.0 2.43e − 1 2.56e − 2 9 1.63e − 15 7.42e − 16 4.58e − 16

0.5 1.21e − 1 2.19e − 3 10 1.61e − 14 2.67e − 15 5.08e − 16

0.3 7.20e − 2 2.33e − 4 11 1.34e − 13 3.67e − 14 7.05e − 16

0.2 4.86e − 2 2.46e − 5 11 1.41e − 11 1.31e − 12 4.50e − 15

0.1 2.43e − 2 1.23e − 7 12 6.57e − 10 6.57e − 10 4.83e − 14

a random positive diagonal matrix and a positive parameter β. As β gets smaller,
dif decreases quickly but ∆(A) remains of the same order. Table 3 shows that, as
β gets smaller, the accuracy of m-abqr is much higher than that of mm-inv and
mm-gqr.

Our experimental results confirm that the dominant factor for the number of
iterations is ∆(A). The convergence criterion is important in that a premature stop
of the iteration would render a poor decoupling residual. Given a converged matrix
pair by a one-sided iteration, our scheme for subspace extraction and deflation gives
competitive numerical results. We note that our experiments indicate that ‖E21‖F
and ‖F21‖F computed by the two-sided algorithms are not well balanced.

7. Concluding remarks

We have related the algebraic structures of the matrix pairs at convergence to
that of the initial matrix pairs for the spectral division algorithms based on the ma-
trix sign/disc functions. By exploring such algebraic relationships, we have provided
modified spectral division algorithms for the block generalized Schur decomposition
(1.1). In the case that only a spectral subspace is required, our deflation scheme can
be used, with little extra cost, to obtain an a posteriori estimate on the accuracy of
the computed solution. Such an estimate is helpful in that the iteration procedures
are not backward stable and a priori error estimates are often overly pessimistic.

Our presentation in this paper is also intended to make spectral division methods
more understandable and to reveal their computational advantages and remaining
drawbacks. For the spectral division via the matrix sign function, our analysis
shows that it is sensitive to perturbations in B as well as in A. Preconditioning
for the computation of BA−1

k B at each step may improve the accuracy, with some
tradeoff of arithmetic cost and programming simplicity. For the spectral division
via the matrix disc function, our analysis shows that the element decrease in the it-
erates due to the orthonormal condition of (Ck, Sk) entails the preconditioning step
for the numerical extraction of a spectral subspace. The effectiveness of our precon-
dition scheme depends on that of rank-revealing algorithms. We have reduced the
arithmetic cost of the spectral division methods by nearly 50%; Malyshev’s itera-
tion is still rather expensive. We have described a class of Malyshev-like algorithms
and presented some necessary convergence conditions. It is an open problem to find
more efficient inverse-free algorithms in the class and to design effective acceleration
techniques.

In the case in which there are eigenvalues near the spectral dividing curve (the
imaginary axis for the matrix sign function or the unit circle for the matrix disc
function), the iteration either fails to converge or converges at a nearly linear rate.
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In either case, the iteration is stopped in practice by a prespecified upper bound
on the number of iterations.
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