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DETERMINANT FORMULAS
FOR CLASS NUMBERS IN FUNCTION FIELDS

HWANYUP JUNG, SUNGHAN BAE, AND JAEHYUN AHN

ABSTRACT. In this paper, by extending Kucera’s idea to the function field
case, we obtain several determinant formulas involving the real class number
and the relative class number of any subfield of cyclotomic function fields. We
also provide several examples using these determinant formulas.

1. INTRODUCTION

In the classical case, there are a lot of determinant formulas (Maillet’s deter-
minant, Demjanenko matrix) involving the relative class number for an imaginary
abelian number field. For these determinant formulas, we refer to Kucera’s paper
[8], where one can find the history of Maillet’s determinant and Demjanenko matrix
and many important results about them. In the same paper, Kucera showed a way
of obtaining most of these determinant formulas in a unique fashion by means of
the Stickelberger ideal. He also derived a nonvanishing determinant formula involv-
ing the relative class number by a modification of Ramachandra’s construction of
independent cyclotomic units.

In the function field case, some determinant formulas involving the relative class
number and the real class number of cyclotomic function fields with prime power
conductors are obtained by several authors (Rosen [0], Bae-Kang [3] and Jung-Ahn
[6, [7]). Recently the authors gave determinant formulas for the real and relative
class number of any subfield of a cyclotomic field with prime power conductor [2].
In this paper, by extending Kucera’s idea [8, Lemma 2] to the function field case,
we obtain several determinant formulas involving the real class number and the
relative class number of any subfield of cyclotomic function fields with arbitrary
conductor.

The layout of this paper is as follows. In Section 2, we derive a basic lemma
(Lemma [ZT]) which is essential for obtaining determinant formulas for class num-
bers. In Section 3, we state basic notation and results in cyclotomic theory over
the rational function field which are needed later. Several determinant formulas
involving the real class number and the relative class number of any subfield of
cyclotomic function fields are obtained in subsection 3.1 and in subsection 3.2, re-
spectively. Some of them may contain a zero factor. Adopting Kucera’s idea [8]
Example 4], we also give nonvanishing determinant formulas for class numbers. In
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the final section, we provide several numerical examples by using these determinant
formulas in Section 3.
2. BASIC LEMMA

Let G be a finite abelian group with a fixed cyclic subgroup J. For any subset
M of G, let s(M) =73,y 0 € Z[G]. Let et = s(J)/|J| and e~ = 1 —e*. For any
G-submodule H of C[G], we define two submodules H*, H~ of H as

Ht={ze€H:ex=0}, H ={xc€H:etz=0}

Let G be the set of all characters of G with values in C. For X € G we say that x is
real if x(J) = {1} and x is nonreal otherwise. Let G+ be the subset of G consisting

of real characters and G~ = G \G+ A character x € G induces a homomorphism
Py : C[G] — C defined as
X( Z cga) = Z cox(0)
oeG oelG

Let us denote by x¢ the trivial character of G.

Lemma 2.1. Let C be a system of representatives of G/J. For any o € G, let
o € C be the unique element such that o5~ € J.

(i) Forn=73,ccs0.0 ' € C[G]T, we have

(2.1) det(sor — 5o 1 1 £ 0,7 € C) = £[J|1D T py(w).
Xo#EXEGH

(i) For 6 =Y cqteo * € C[G]™, we have

(2.2) det(tor —tor 0,7 € C) == H px(0)
x€G-

Proof. For each x € G, let ey = \_CIJ\ZUEG x(c)o~! be the idempotent element
associated with x. Let C[G]f = {}_,cq o0 € C[G]T : > . o = 0}. For (i), we
consider the linear transformation S : C[G]{ — C[G]{ defined as multiplication
by 7. It is easy to see that both X = {(1 — o7 1)s(J) : 1 # o € C} and {e, :
X € @+, X # Xo} are C-bases of C[G]{. The matrix of S with respect to X and
{ey 1 x € Gt,x # xo} are (|J|(sgr—1 — so) : 1 # 0,7 € C) and diag (py(n) : x0 #
X € @"’), respectively. Thus we have

det (|J(sor1 —s0): 1#£ o reC) = [[ px()-
Xo#x€G+
Since C' = {07! : ¢ € C} is also a system of representatives of G/J, X' =
{1 —0)s(J) : 1 # o € C} is also a basis of C[G]{. The matrix of S from X’
to X is given by (|J|(sgr — so) : 1 # 0,7 € C). Since X and X’ are also Z-
bases of the free abelian group Z[G]], the transition matrix from X to X’ has

determinant 1. Therefore we get (i). For (ii), we consider the linear transformation
T : C[G]- — C[G]~ defined as multiplication by ¢ and the following C-bases of

ClG ", {ey:x€G LY ={(1—j)ot:1#4jeJoeC}land Y ={(1—-j)o
1# j € J,o € C}. By similar arguments as for (i), we get (ii). O
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When J = {1, j}, we have t, + t;, =0 and
- {ja ifodC,
O-:

o ifoeC.
Thus

tO’T -

A 2t,, T EC,
70 ifrecC.

From (Z2), we have

1
det(tyr 10,7 ¢ C) =+ H 5Px(6).
XEG—

Thus we may regard Lemma 2] (ii) as a generalization of [8] Lemma 2].

3. DETERMINANT FORMULAS FOR CLASS NUMBERS

Let A = Fy[T] be the ring of polynomials over a finite field Fy with ¢ elements,
and let Fy(T') be the field of rational functions over F,. For each N € A one uses
the Carlitz module ¢ to construct a field extension K, called the N-th cyclotomic
function field and its maximal real subfield K]'\'} It is known that the Galois group
Gn of Kn/F,(T) is isomorphic to (A/NA)*, explicitly there is an isomorphism

U: (A/NA)* - Gy, AmodNAr— oy,

where g 4(\) = ¢4(\) for any N-torsion point A of ¢. Moreover, J = Gal(Ky /K )
= U(Fy). Let ®(N) be the order of (A/NA)*. Let My be the set of nonzero polyno-
mials of degree less than deg(IN) and relatively prime to N. Let M}, be the subset
of My consisting of monic polynomials and let My, = MN\M}.

For any nonzero A € A, we define

degy (A) = deg(A),
where A € My is the unique polynomial such that A = A modN. For any nonzero
A € A, let sgny(A) be the leading coefficient of A and define

1 if sgny(4) =1,
A =
(A)w { 0 otherwise.

A character y € Gy may be viewed as a character of (A/NA)*, thus as a
primitive Dirichlet character with conductor F), a monic polynomial. As a primitive
Dirichlet character, it induces a function from A to C as follows; for any irreducible
polynomial P € A, we define x(P) = x((P, Kr, /Fy(T))) if P { F\ and x(P) =0
otherwise. Here (P, K, /Fy(T)) denotes the Artin automorphism of P in Kr, .

Throughout the paper, we always assume that the finite abelian extension k£ of
F,(T) is contained in some cyclotomic function field. By the conductor of k, we
mean the monic polynomial N € A such that K is the smallest cyclotomic function
field containing k. Let k* be the maximal real subfield of k, i.e., k™ = kN K. Let
G = Gal(k/F,(T)),Gt = Gal(k™ /F,(T)) and J, = Gal(k/kt). We say that k is a
real (resp. nonreal) extension of Fy(T) if k = k™ (resp. k # k™). For a divisor F of
N, we let kp = kN Kp and k;; zkﬁK;.

We denote by Div’(k) and P(k) the group of divisors of degree zero and the
group of principal divisors of k, respectively. Then the divisor class number h(k)



956 H. JUNG, S. BAE, AND J. AHN

of k is defined to be the order of Div’(k)/P(k). It is well known that the divisor
class number h(k) of k is divisible by the divisor class number h(k™) of k™, called
the real divisor class number of k. The relative divisor class number of k, denoted
by h™(k), is given by h(k)/h(k™).

A character x € G may be regarded as a character of Gy which is trivial on
Gal(Kn/k), thus as a primitive Dirichlet character. Let d, = deg(Fy), and let
my(A) = (dy —1—e)(g—1) —1if A € Mp, has degree e. Then there is a well-
known analytic class number formula for the real divisor class number h(k™) [5]
top of p. 408]:

(3.1) WD == I D mu(A)x(4),

x€Gt AeMf
X#X0 Fx

where r = [k : F,(T)] — 1. Let F be a monic polynomial. For any A € Mp,
Zr(s, A) denotes the partial zeta function associated with the class of A in CI(A).
It is known [7l Lemma 3.1] that

(g—2)/(g—1) if Ais monic,

(3.2) Zp(0,A) = {—1/((] -1) otherwise.

As did Yin [11], Proposition 4], we have an analytic class number formula for the
relative class number A~ (k) when k is a subextension of a cyclotomic function field:

(3.3) )= I Lox)= [ > Zr(0,4)x(A),
x€G— xeG— AEMp,

where L(s, x) is the Artin L-function associated with the character x.

3.1. Real class numbers. Let © = A/N € F,(T)/A, where A, N € A and
deg(A) = e < d = deg(N). Define p(z) = (¢ —1)(d =1 —¢e) — 1. Then ¢ is an
ordinary distribution on Fy(T")/A [4, Proposition 3.1]. For any primitive Dirichlet
character y, we let

o) = D e(A/F)xX(A).

AEMp,
Let F' be any monic polynomial divisible by F). Then we have [4, Lemma 3.2] that
(34) > @(A/F)x(A) = () [] (1= x(P)),
AeMp P|F

where P runs over all monic irreducible polynomials dividing F. For any real
character y, we have

() =(q—1) > @(A/F\)x(A),

f
AeMf
so the analytic class number formula (B can be rewritten as

(3.5) Wkt =(q— 1)~ J] 00

xeG+

X#X0
For any N € A, by “F | N” we mean that F is a monic polynomial dividing N. For
A € My, let 0’4 be the restriction of o4 on k. Now we state our basic determinant
formula for h(kT).
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Theorem 3.1. Let k be a finite abelian extension of Fy(T') with conductor N. Let

C be any system of representatives of G/Jy. Assume that we are given {ap, € Q:

1#F|N,0€G}. Foro€G,let s = rin D acyy OFo0,0-P(A/F). Then we
F#1

have

(3.6) det(sor — 8o : 1 #£ 0,7 € O) = £|Ji|7"(q — 1)*"h(kT)S,,
where S = H»;;c;g 2 i brx L pyp (1= X(P)) with by = T e araX(0).

Proof. For each F' | N with F' # 1, let np = > .. ©(A/F)o,* € Q[GF] and
Np = COTy k. TeSk . ke (MF) € Q[G]. By the definition of ¢, it is obvious that
nr € Q[Gr]T and so nj € Q[G]*. Here resk, /k, and coryy, are the restriction
and corestriction maps between group rings, respectively. We put

n=_ denp,
FIN

F#1

where dp = [Kn : kKF] Y cqaro0 € Q[G]. Then we have

[Kn : kK gl = vesge, sk corre, i, (mr) = Y @(A/F)oy "' € QIG]Y,

AeMy
and so
n= Z (Z Z aF,a;‘a*WO(A/F))U_l = Z 800_1-
ceG 5\#1\; AeM ceG
It follows, by Lemma [ZT] (i), that
(3.7) det(sor — s : 1 £ 0,7 €C) = %Ll ] px(n)-
xeG+
XFX0

If F\, { F, then py(n}) = 0 because x is not trivial on Gal(k/kr). Assume that
F\ | F. Then by (B4), we have

px(Me) = [k:krlpx(nr)
= [k:kr] Y @(A/F)X(A) = [k krlo(x) [T (1 - x(P)),
AeMp P|F
and so
px(drnp) = [Kn:kKp] Y apox(o)k: kele(x) [J(1 - x(P))
ceG P|F
(3.8) = e(bry [T —x(P)).
P|F

Thus we have

(3.9) px(m) =0(xX) Y by [J(1 = x(P)).
Ifx‘\l\;‘ P|F

By substituting (B3]) into (87) and by the analytic class number formula (&3], we
get the result. O
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In Theorem Bl s, and Sy depend on the choice of {ap, € Q:1# F | N,o €
G}. In the following we choose special values of ap’s to get several determinant
class number formulas.

For any monic irreducible polynomial P € A, we denote by ep and fp the
ramification index and the residue class degree of P in k, respectively. Let gp =
[k : Fg(T)]/(epfp), the number of primes in k lying above P. We also use e}, f
and g} for the corresponding ones for k.

Lemma 3.2. Let Q,(:r) = [l«ea+ [1pn(1 = X(P)). Then we have

X#X0
(+) _ HP\NfIJg if g =1 for all P | N,
(3.10) QY = '
0 otherwise.
In particular, if k has prime power conductor, then we have ij) =1.

Proof. Let Q,(j)(z) = [I«ea+ IIpn(2 — X(P)). Then the result follows from the

XF#X0
fact that
(zFF —1)9p

SE=T1 T e-xen =] ———

P|N xeG+ PN
X#X0
where the last equality follows from [I0, Theorem 3.7]. O

Take ap, =1 for F'= N, 0 =1, and 0 otherwise. Then s, = > acuy @(A/N).
024:(7

Thus for any 0,7 € G

Sor =50 = Y @(A/N)= > ¢(B/N)

AeMp BeMp
0:4:(77' a%:a
= —(g-1)( Y degy(A)— > degy(B)).
AeMp BeMp
0:4:(77' a%:a

Moreover, we have bp, =1 for ' = N and 0 otherwise. Thus S}, = Q,(:r

by Theorem B, we get the following.

) and S0,

Proposition 3.3.
(3.11)

det () degy(A)— Y degy(B):1#0,7€C) :i(q_lyh(w)%ﬂ

A€eMpy BeMp |Jk|

o -
op=0T og=o

Now we assume that k = Ky. Taking C = {04 : A € M?{,} as a system of
representatives of Gy /J, we get the following corollary.

Corollary 3.4.
(3.12) det (degy (AB) —degy(A) : 1 # A, B € M) = £h(K)QY%).

Unfortunately, when Q,(:r) = 0, formula (@I will not give any information.
Thus, in this case, we need another choice of ar, to get the nonvanishing determi-
nant formula. We will follow the idea of Kucera [8, Example 4]. Let N = [[}_, P/
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be the factorization of N into monic irreducible polynomials. Let S = {1,2,..., s}
and Ny = [[;c; P/* for any I C S. Put ¢; = —®(P]")~! for each 1 <i < s and

Higlci if = Ny for some I C Sando =1,
ap o = .
r 0 otherwise.

Then for any o € G, we have

G |T] (_1)3—\[‘

"7 R B ) = X G 3

A= (—1)‘“ A
= 2 (N > @(A/(N/Ny)).
1es A
Thus
507_50:_((]_1)2( Dfle(N)” Z deg/n, (A) — Z degN/N,(B))7
IS AeMy et

— -
UA—UT og=o

for any 0,7 € G. We note that, in this case,

313) Se= [ > (b H JIa-x@) =11 II x@®) ==+t

f(ic);(g F;C‘EI z&[ icl €S XO;§§5+
Define
Sk = (Z( DHe(N;)~ Z deg/n, (A)— Z degN/NI(B)) :1750,760).
¢S AEMN BeMpy

— [
UA—UT op=o

Then from Theorem [3] we get the following nonvanishing determinant class num-
ber formula for h(k™).

Proposition 3.5. det(Sy) = +((q — 1)/|Jx|)"h(k™).

In particular, if k = K, the matrix Sk, is given as

Sy = (Z(—l)\I\CI)(NI)_l(degN/NI (AB) — degyn, (A)) : 1 # A, B € M;).
ICS

3.2. Relative class numbers. For a monic polynomial F' € A let

0r = > Zp(0,A)0;" € QGr].

AeMp
Recall that N is the conductor of k. For any F' | N with F' # 1, we define
0% = cory i, resk . /i, (0F) € Q[G].

By (32), it is obvious that r € Q[G]~ and so 0% € Q[G]~. Then we have

(3.14) [Kn : kKpl0p = resk, /i cork /i, (0F) = Z Zr(0,A)o ‘e QlG]™.
AeMpyn
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If F\, t F, then p,(0%) = 0 because x is not trivial on Gal(k/kr). Assume that
F, | F. As in [10, Lemma 8.7],

(3.15) px(0F) = [k krlpy(0F) = [k : ke]L(0,x) [T (1 = x(P)),
P|F
where P runs over all monic irreducible polynomials dividing F.

Theorem 3.6. Let k be a finite abelian extension of Fo(T') with conductor N. Let
C' be any system of representatives of G/ Jy. Assume that we are given {ap, € Q :
1# F | N,o € G}. For any o € G, we let

te = Z Z ZF(OvA)a’F’o':qo'_l'

FIN AeMp
F#1
Then we have
(3.16) det(tor —toz 1 0,7 € C) = £h™ (k)S,,,
where S; = Ilyea- 3 pix brx Ilpp (1= X(P)) with bry = 3 S e @RoX(0).

Proof. We consider 6 = 3"y gy drfp. Then, from BI4), we have

9 = Z Z Z ZF(O7A)aF,UUf4_1U = Z tanl.
0€G FIN A€My o
By Lemma [ZT] (ii), we have
(317)  detltor —tor 0,7 € C) =% [] px@) =% T D ox(0r)onldr).

x€G~ x€G~ ?‘#A{

Since x(dr) = [Kn : kKF] deg arox(o), by @IH), we have
(3.18) oy 0%y (dr) = {L(()’X) br.x HP|F(1 -x(P)) if Fy|F,

0 otherwise.
Therefore, by substituting (3:18) into (3:17) and by the analytic class number for-

mula (3:3)), we have
det(tor —tor 0,7 ¢ C) + I D Lo, x)bey [T - x(P))

xeG- FFX“A} PIF
= =[] zo.0 I X bex [JQ - (P
xeG- xeG- FIi PIF
= 4 (k) [ Y bex [Ja-x(P). D
xe€G- lf;‘f\; PIF

As for the real class number case, we choose special values of ar, to get several
determinant class number formulas.

Lemma 3.7. Let Q,(J) =l ea- [1pn(1 = X(P)). Then we have

(319) Ql(ci) — HP|N(fP/f;)gP ngP :' g; fO?” all P | Nv
0 otherwise.

In particular, if k has prime power conductor, then we have Q;_) =1
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P)) and Q) (2) = Qu(2)/QL"(2). By
2fP —1)97 /(2 — 1) and so

Proof. Let Qr(z) = on;féxeé HP\N(Z - X
[10, Theorem 3.7}, we have Qx(2) = [[p|y

-~ fr 1)97
Q( )(5) =
Do -1 5=
By evaluating Q,(;)(z) at z = 1, we get the result. O

For any A € My, we let A = A/sgn(A) € M.

Proposition 3.8. Let f : Jy — C be any map. For any o € G, we let

=33 Zn(0,A)f(a);

a€J, AeMy
ol =ao

that is, we take ap, = f(0) if F = N, o € Ji, and 0 otherwise. Then we have
(3.20) det(tor —tor : 0,7 & C) = £h™ (k) AN T Pgo),

where Ay = det(f(af™1) — f(a) : 1 # «, B € Jy). In particular, if k = Ky, then
we have
(3.21)

~ +. _
det (f(sgny (AB)) — f(sgny(AB)) : A, B € My) = £h~ (Ky) AV Mg,
Proof. Define ap, = f(o) if F = N, o € J; and ap, = 0 otherwise. Then we have

te = Z ZN(O7A)aN,U:QU*1 = Z Z ZN(()?A)f(a)

AeM a€J, AeMy

oly=ao

We note that br, =>_ . ; f(@)x(a) if F'= N and 0 otherwise. Thus

Mova = I 3 fon@= (I 3 s@xia)® "

Xeé_ XEé— a€Jg x€J, acJy
XF#X0

[k*:Fq(T)]

= (det(f(aﬁfl) —fla):1#a,p¢€ Jk)) ,

where the last equality follows from the Dedekind determinant formula [10, Lemma
5.26 (b)]. Therefore from Theorem B, we prove (B20). Now assume that k = K.
For each A € My, we have

ton = Y Zn(0,a T A) f(a) = f(sgny(4) = D

ackF? aclF?:

fle)
g—1

Thus ty 0y — toass = f(sgny(AB)) — f(sgny(AB)), for any A, B € My. This
completes the proof of [B:21). O

Now let us choose a specific map f : J, — {0,1} by f(a) = 1if @« = 1 and
0 otherwise. Then we have the following generalized Demjanenko matrix for the
relative class number of k.

Corollary 3.9. Lett, = ZAE]WN’G,A:G Zn(0,A). Then we have

det(tor —tor 10,7 € C) = +£h™ (k)QL .
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When k = K, let Ok, be the integral closure of A in Ky and let h~ (Ok,) be
the relative ideal class number of Ok, . Then we have
(3.22)

h™(Oky) if N is a prime power,

det((AB)y : A,B € My) =+ {h_(OKN)Q(I(J\)f/(q —1)  otherwise.

Proof. Since bp,, = 1 if F = N and 0 otherwise, the first statement follows from
B20). Assume that k = K. Since f(sgny(4)) = (A)n, we have

det((AB)y — (AB)y : A, B € My) = £h~ (Kn)Q% ).
From [I1] Lemma 3], we have
_ h=(Okpy)(qg— 1)[K1T’:]F‘1(T)]_1 if N is a prime power,
h™(Kn) =4, _ [K§Fg(T)]—2 .
h™(Ogy)(g— 1)~ otherwise.

In [6l Proposition 2.6], it is shown that

det((AB)x — (AB)y : A, B € Miy)==%(q— 1)K~ Fa(DI-1 det((AB) 5 : A, BEMy),
when N is a prime power. It is easy to see that the proof of [6 Proposition 2.6]

also holds for an arbitrary polynomial N. We note that Q(K_]3 is 1 if N is a prime
power. Therefore we get the result. (Il

We give another matrix whose determinant is also related to h~ (k). Let j be a
fixed generator of J,. We define f : J, — {0,...,|Jx| — 1} as a = j7(@) for any
a € Ji. When k = Ky, we let 5gny(A4) = f(sgny(A)) for A € A. Then we have
the following.

Corollary 3.10. Assume that ¢ > 2. For each o € G, we let
[Je| -1

to=Y_ (> Zn(0,A))i.

i=0 AeMp
ol y=jlo

Then we have
det(tor — tor : 0,7 & C) = £h™ (k)| Ji| 1/ =DET T Q=)
For k= Ky,
det (Sgniy(AB) — gy (AB) : A, B € My) = +h™ (Kn)(g — 1)1 2N Q).

Proof. We note that )
det (f(aB™!) = f(a) s 1 £ a, B € Ji) II > flexw
XE Tk x#1 €Tk

[Je|—1
I > ixt

x€Jw,x#1 =0

Here x(j) ranges over all nontrivial |Ji|-th roots of unity as x runs over jk\{l}
Consider g(X) = (X”* —1)/(X — 1) = XVkl=* ... 4 1. Then the discriminant
of g is #|Jg|l”*/=2. Thus we have

det(f(ap™) = fla):1#a.B8eq)= [  ¢9(Q) ==l
¢Mrl=1,¢#1
Now the results follow from Proposition [3.8 O
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Finally, we also need a nonvanishing determinant class number formula for A~ (k),

in the case that Q,(;) = 0. We follow the same notations and definitions for .S, Ny
and ar’s as in the real class number case. Then we have

= > > (C)Me/ND 2, (0,4)

0£ICS AEMN

GA (o4
= )Ny > Zyyw, (0, A).
ICS AeMN
GAZG
Thus
tor —ter = > (=De(N)T( D Znyn, (0,4) = Y Znyn, (0,B))
ICS AEMN BeMN
aA=a'r UB=07"'
= Z(—l)lll‘b(Nl)_l( Z (A) NN, — Z (B)n/N;)-
IgS AeMpy BeMpy

o JA——
op=0T og=o*F

As in (B13), we have

II > e [Ia—xP)= T > 0T -x(P)) =+1.

xeG- FIN. - PIF e o5 el
Define
Te = (D (DON) Y A, = Y. (Biywy) 10,7 £C).
ICS AeMpy BeMy
o/y=oT olg=o7

Then from Theorem 3.6 we have the following.
Proposition 3.11. det(Ty) = +h~ (k).
When k£ = Ky, the matrix Tk, is given as
Tiey = (D (=D @(ND) " (AB)wyw, — (AB)xyn,) : A B € My).
Ics
4. SOME NUMERICAL EXAMPLES

Example 4.1. Assume that ¢ = 3 and k = Kpg with P =T and Q = T? + T + 2.
Then M*Q ={1,T+1,T+2,T*+1,T?+2,T?+T+1,T*4+2T+1,T?+2T+2} and
Mpo = {2,274 1,27 +2,2T% +1,2T% +2,2T* + T+ 1,2T* + T +2,2T% + 2T + 2}.
We use M;Q and M;Q in this ordering for matrices in this example. Then the
matrix in (BI2) with N = PQ is given as

1 1 0 -1 1 1 1
1 1 1 1 1 -1 0
-1 0 0 0 -1 0 -2
-2 0 0 -1 0 -1 0
0 0 -1 0 -2 -1 0
0 -2 0 -1 -1 0 0
1 1

-2 0 0 0 -
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An elementary calculation shows that g; = gg =gp =gg = 1 and so Q%\)] =
;13 = 4. Thus we have h(K};) = 2-17. The matrix in [(22) is given as
1 1 1

e e e
O O =
RO O OO~
_— O OOk O
O OO OO o

_ o= OO O
—_—0 O = OO
— O = === O

Thus we have h= (O, ) = 5.

Example 4.2. Assume that ¢ = 3 and k = Kpg with P =T and Q = T? + 1.
In this case it is easy to check that gj.f =gp = go = 2 and gg = 1. Thus

QQ}BQ = Qg;gQ = 0 and we cannot compute the real class number and the relative

class number of Kpg from (312) and (B:22), respectively. We compute the class
numbers of K p¢ from the nonvanishing formulas in Propositions B8 and [3:11] Then

we have h(K;{Q) =22-3% and h™ (Ok,q) = 2%,

Example 4.3. Assume ¢ = 3 and k = Ky with N = T(T?+1)(T?+T+2). In this

case both Q(];r]\)r and Q(K;)I are zero. Using Propositions [3.5] and B.11], we compute
that
h(K%)=2%-3%.52.72.175. 113 2412 - 257 - 281 - 433

and
h™(Ofy) =2"-35.55.13.17% . 412 . 137- 193 - 241 - 281.

Example 4.4. When ¢ = 3 and N = T?(T? + 1), we have
h(K{)=2%-35.112.73%, h™(Ogy)=2%-13-457.
When ¢ =3 and N = T%(T? + T + 2), we have
h(K})=2-17-19-337-409-733, h™ (Of,)=5>-7%.37.
When ¢ =5 and N = T%(T + 1), we have
h(Ky)=41-71-101, h™ (Oky)= 24.5.11-41-1301- 11981 - 15601 - 57301.
Example 4.5. Table 1 gives the real and relative class numbers of Ky for ¢ = 3

and N =T"(T + 1) with n = 1,2, 3,4.

TABLE 1. ¢ =3, N=T"(T +1)

n h(K5) = (Oxy)

1 1 1

2 7 1

3 26.75.13 22.72.19

4 26.75.13.192.37.1092.127 | 22.72.19-37%.127-181
-3072-1009-10531-270379 -307-379-523-9091
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