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REAL ORTHOGONAL POLYNOMIALS IN FREQUENCY
ANALYSIS

C. F. BRACCIALI, XIN LI, AND A. SRI RANGA

Abstract. We study the use of para-orthogonal polynomials in solving the
frequency analysis problem. Through a transformation of Delsarte and Genin,
we present an approach for the frequency analysis by using the zeros and
Christoffel numbers of polynomials orthogonal on the real line. This leads to
a simple and fast algorithm for the estimation of frequencies. We also provide
a new method, faster than the Levinson algorithm, for the determination of
the reflection coefficients of the corresponding real Szegő polynomials from the
given moments.

1. Introduction

Let ν be a positive measure on the unit circle. This means that the associated
distribution function (still denoted by ν) ν(eiθ) := ν({eit|0 ≤ t < θ}), defined on
0 ≤ θ ≤ 2π, is a real, bounded and nondecreasing function with infinitely many
points of increase. Then the moments

µ(ν)
m =

∫
zmdν(z) =

∫ 2π

0

eimθdν(eiθ), m = 0, 1, 2, . . . ,

all exist. We consider the Szegő polynomials {Sn(ν, z)} associated with the measure
ν defined by

(1)
∫
Sn(ν, z)Sm(ν, z)dν(z) = 0, n 6= m.

These polynomials were introduced by Szegő. See, for example, [19, 20] for
interesting basic information on these polynomials.

The Szegő polynomials are known to satisfy the system of recurrence relations
(here we write the polynomials in monic form)

(2)
Sn+1(ν, z) = zSn(ν, z) + a

(ν)
n+1S

∗
n(ν, z),(

1− |a(ν)
n+1|2

)
zSn(ν, z) = Sn+1(ν, z)− a(ν)

n+1S
∗
n+1(ν, z),
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for n ≥ 0. Here S∗n(ν, z) = znSn(ν, 1/z) are the reciprocal polynomials. The
numbers a(ν)

n = Sn(ν, 0), n ≥ 1, are known as the reflection coefficients of the Szegő
polynomials.

The reflection coefficients have the property |a(ν)
n | < 1 for n ≥ 1. Furthermore,

the zeros {Sn(ν, z)} are all inside the open unit disk.
The Wiener-Levinson method [21, 15] for the frequency analysis problem is based

on the behaviour of the zeros of the Szegő polynomials associated with the positive

absolutely continuous measure 1
2π

∣∣∣∑N−1
m=0 x(m)e−imθ

∣∣∣2 dθ. Here x(m) is a trigono-
metric signal, which we write

x(m) = γeimπ +
I∑
j=1

(γjeimωj + γn0+1−je
imωn0+1−j ),

where n0 = 2I + 1 if γ > 0 and n0 = 2I if γ = 0.
When γ > 0, set γI+1 = γ and ωI+1 = π. One can assume

0 < ω1 < ω2 < · · · < ωn0−1 < ωn0 < 2π

and

γn0+1−j = γj 6= 0, 2π − ωn0+1−j = ωj 6= 0, for j = 1, 2, . . . , I.

The constants γj are known as the (complex) amplitudes of the signal, ωj are known
as the frequencies and m represents discrete time. The frequency analysis problem
is to determine the unknowns n0, γj and ωj from observed values of x(m), m =
0, 1, 2, . . . .

Let λk = |γk|2, k = 1, 2, . . . , n0, and let ψ be the discrete measure whose distri-
bution function is given by

(3) ψ(eiθ) =
n0∑
k=1

λkH(θ − ωk), 0 ≤ θ < 2π.

Here, and from now on, H(x) is the Heaviside function defined by H(x) = 1 for
x ≥ 0 and H(x) = 0 for x < 0.

The measure ψ has precisely n0 points of increase and the associated Szegő
polynomials Sk(ψ, z) exist uniquely only for k = 1, 2, . . . , n0.

Let the absolutely continuous measure ψN be given by

dψN (eiθ)
dθ

=
1

2πN

∣∣∣∣∣
N−1∑
m=0

x(m)e−imθ
∣∣∣∣∣
2

, 0 ≤ θ < 2π.

Then the following results are known.

Theorem A. We have

(1) The measure ψN converges in the weak-star topology to the discrete measure
ψ. This means

lim
N→∞

∫ 2π

0

f(eiθ)dψN (eiθ) =
∫ 2π

0

f(eiθ)dψ(eiθ),

for all f continuous on the unit circle.
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(2) For each fixed n, 1 ≤ n ≤ n0,

lim
N→∞

Sn(ψN , z) = Sn(ψ, z), z ∈ C,

where Sn(ψ, z) is the monic n-th degree Szegő polynomial associated with
the discrete measure ψ. In particular,

lim
N→∞

Sn0(ψN , z) = Sn0(ψ, z) =
n0∏
m=1

(z − ζm), z ∈ C,

where ζm = eiωm .
(3) For each n 6= n0, there is an Ln ∈ (0, 1), depending on n only, such that
|Sn(ψN , 0)| = |a(N)

n | ≤ Ln < 1, N = 1, 2, . . . .
(4) For each fixed n > n0, the n0 zeros of Sn(ψN , z) of largest modulus approach

the points ζm, m = 1, 2, . . . , n0. In addition, there exists a number Kn < 1,
depending only on n, such that the remaining n−n0 of Sn(ψN , z) are inside
the disk |z| ≤ Kn.

For the first two results see [9]. For the last two see [11, 16, 17]. For a recent
survey of the applications of Szegő polynomials in frequency analysis we refer to
[13].

Hence the problem of finding the frequencies ωj can be treated by construct-
ing the polynomials {Sn(ψN , z)}∞n=0 with growing N and then by observing the
behavior of their zeros.

When N is fixed, for the construction of {Sn(ψN , z)}∞n=0 one might use the
Levinson algorithm, which can be given as follows.

Let Sk(ψN , z) =
∑k
j=0 sj,kz

j and a(N)
k+1 = Sk+1(ψN , 0), for k = 0, 1, . . . .

Algorithm I (The Levinson algorithm).
Set
ρ0 =

∫ 2π

0
dψN (eiθ) = µ

(N)
0 , s0,0 = 1;

a
(N)
1 = − 1

ρ0

∫ 2π

0 e−iθdψN (eiθ) = −µ
(N)
1
ρ0

, s0,1 = a
(N)
1 , s1,1 = 1.

For k = 1, 2, 3, . . . , n− 1, do

ρk = (1− |a(N)
k |2)ρk−1,

a
(N)
k+1 = − 1

ρk

∫ 2π

0
eiθSk(eiθ)dψN (eiθ) = − 1

ρk

∑k
j=0 sj,kµ

(N)
j+1,

s0,k+1 = a
(N)
k+1, sk+1,k+1 = 1, sj,k+1 = sj−1,k + a

(N)
k+1sk−j,k, j = 1, 2, . . . , k.

The moments µ(N)
k =

∫ 2π

0
eikθdψN (eiθ) are generated by µ

(N)
−k = µ

(N)
k and

µ
(N)
k =

1
N

N−1∑
m=k

x(m)x(m − k) for k = 0, 1, . . . .

The sums on the right-hand side are also called the autocorrelation coefficients of
the signal.

Though we have found the polynomials {Sn(ψN , z)}∞n=0, the evaluation of their
zeros (complex and lying inside the open unit disk) still presents much difficulty.
We cite the work of Ammar, Calvetti and Reichel [1], where they determine first
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the zeros of a neighboring polynomial which is the characteristic polynomial of a
unitary upper Hessenberg matrix. The zeros of the Szegő polynomials are then
determined by a continuation method.

Yet another possible way is to use, instead, the para-orthogonal polynomials,
where finding zero is essentially an eigenvalue problem associated with a unitary
matrix since all the zeros of the para-orthogonal polynomials are on the unit circle.
The main difficulty now is how to distinguish between the interesting zeros (those
approaching the frequency points) and the “uninteresting” ones. Jones, Nj̊astad and
Waadeland [12] were the first to use the para-orthogonal polynomials in solving the
frequency analysis problem. The recent work by Daruis, Nj̊astad and Van Ass-
che [5] illustrated how the quadrature weights associated with the para-orthogonal
polynomials can be used to find out frequency points. In this paper, we first further
study the asymptotic behavior of the zeros of the para-orthogonal polynomials and
the quadrature weights. Then we show how to simultaneously use two families of
para-orthogonal polynomials to help us find the interesting zeros. In particular, we
will show that special para-orthogonal polynomials can be chosen so that the whole
problem becomes the evaluation of the zeros and Christoffel numbers associated
with real orthogonal polynomials on [−1, 1].

2. Para-orthogonal polynomials

In [10], Jones, Nj̊astad and Thron initiated a study of the polynomials

Sn(ν, τ, z) = Sn(ν, z) + τS∗n(ν, z), n ≥ 1,

where |τ | = 1, which they called para-orthogonal polynomials (associated with the
measure ν and the parameter τ). Clearly, for n ≥ 2, these polynomials satisfy∫

C
Sn(ν, τ, z)zkdν(z) =

∫ 2π

0

Sn(ν, τ, eiθ)e−ikθdν(eiθ) = 0, 1 ≤ k ≤ n− 1.

The word “para” is used to indicate the deficiency in the above orthogonality prop-
erty (unlike the corresponding Szegő polynomial, Sn(ν, τ, z) lacks the property for
k = 0). However, Sn(ν, τ, z) has n simple zeros z1,n(ν, τ), z2,n(ν, τ), . . . , zn,n(ν, τ),
all lying on the unit circle.

Now let us say that f ∈ Ωn−1 if f(z) ∈ Span{z−n+1, z−n+2, . . . , zn−2, zn−1} for
|z| = 1. Then the quadrature rule

(4)
∫ 2π

0

f(eiθ)dν(eiθ) =
n∑

m=1

λm,n(ν, τ)f (zm,n(ν, τ))

holds for f ∈ Ωn−1, if

λm,n(ν, τ) =
∫ 2π

0

Sn
(
ν, τ, eiθ

)
(eiθ − zm,n(ν, τ))S′n (ν, τ, zm,n(ν, τ))

dν(eiθ), m = 1, 2, . . . , n.

For given |τ | = 1 and n ≥ 1, we now consider the polynomials Qm(n, ν, τ, z)
given by the recurrence relation

Qm(n, ν, τ, z) = zQm−1(n, ν, τ, z) + zτ a
(ν)
n+1−mQ

∗
m−1(n, ν, τ, z), m = 1, 2, . . . , n,

with Q0(n, ν, τ, z) = Q∗0(n, ν, τ, z) = 1. Here a(ν)
n = Sn(ν, 0).

The polynomial Qm(n, ν, τ, z) is monic and of degree m. From the recurrence
relations of Qm(n, ν, τ, z) and Sm(ν, z), we obtain
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Theorem 2.1. The following statements hold.
(1) The m zeros of Qm(n, ν, τ, z) are all inside the open unit disk |z| < 1.
(2) For any z on the closed unit disk |z| ≤ 1,

|Qm(n, ν, τ, z)| ≤ |z|
m∏
j=1

(1 + |a(ν)
n+1−j |),

0 <
m∏
j=1

(1− |a(ν)
n+1−j |) ≤ |Q∗m(n, ν, τ, z)| ≤

m∏
j=1

(1 + |a(ν)
n+1−j |),

for m = 1, 2, . . . , n.
(3) Sn(ν, τ, z) = Qm(n, ν, τ, z)Sn−m(ν, z) + τQ∗m(n, ν, τ, z)S∗n−m(ν, z),

for m = 1, 2, . . . , n.

In [5], Daruis, Nj̊astad and Van Assche realized that the size of the weights in the
quadratures associated with a para-orthogonal polynomial can be used for studying
the frequency analysis problem. Consider the polynomial

Sn(ψN , τ, z) = Sn(ψN , z) + τS∗n(ψN , z),

with |τ | = 1, which is a para-orthogonal polynomial associated with the measure
ψN . For the zeros of Sn(ψN , τ, z) and the corresponding quadrature weights, we
use the notation

zm,n(N, τ) = eiθm,n(N,τ) and λm,n(N, τ), m = 1, 2, . . . , n.

The following results were established in [5].

Theorem B ([5, Theorems 1.1 and 2.1]).

1) For any fixed n ≥ 1,

lim
N→∞

n∑
m=1

λm,n(N, τ) =
n0∑
m=1

λm(ψ),

where λm(ψ) = λm are the weights appearing in (3).
2) Let n ≥ n0 be fixed. Let Λ be an arbitrary subsequence of the sequence of

natural numbers, and let τ be an arbitrary point such that |τ | = 1. Then
there exists a subsequence Λ1 of Λ and a polynomial Wn−n0(τ, z) of degree
n− n0 such that

lim
N→∞
N∈Λ1

Sn(ψN , τ, z) = Wn−n0(τ, z)Sn0(ψ, z).

Now we denote the distinct zeros of Sn0(ψ, z) by ζ1, ζ2, . . . , ζn0 and the zeros of
Wn−n0(τ, z) by ζn0+1(τ), ζn0+2(τ), . . . , ζn(τ). We can assume, without loss of
generality, that

lim
N→∞
N∈Λ1

zm,n(N, τ) = ζm, for m = 1, 2, . . . , n0,

lim
N→∞
N∈Λ1

zm,n(N, τ) = ζm(τ), for m = n0 + 1, . . . , n.

Any of the zeros ζn0+1(τ), ζn0+2(τ), . . . , ζn(τ) of Wn−n0(τ, z) may or may not
coincide with the frequency points (zeros ζ1, ζ2, . . . , ζn0 of Sn0(ψ, z)).

The following results are also given in [5].
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Theorem C ([5, Theorems 3.1, 4.1, and 5.2, Corollary 5.3]). With the notation
introduced above, we have

(1) If the subsequence {zm,n(N, τ) : N ∈ Λ1} converges to a value different
from a frequency point, then

lim
N→∞
N∈Λ1

λm,n(N, τ) = 0.

(2) Suppose that ζn0+m(τ) = ζm for m = 1, . . . , p and that ζ1, . . . , ζn0 ,
ζn0+p+1(τ), . . . , ζn(τ) are distinct points. Then

lim
N→∞
N∈Λ1

[λm,n(N, τ) + λn0+m,n(N, τ)] = λm(ψ), for m = 1, . . . , p,

lim
N→∞
N∈Λ1

λm,n(N, τ) = λm(ψ), for m = p+ 1, . . . , n0,

lim
N→∞
N∈Λ1

λm,n(N, τ) = 0, for m = n0 + p+ 1, . . . , n,

(3) In particular, if the zeros of Wn−n0(τ, z)Sn0(ψ, z) are simple, then

lim
N→∞
N∈Λ1

λm,n(N, τ) = λm(ψ), for m = 1, 2, . . . , n0,

lim
N→∞
N∈Λ1

λm,n(N, τ) = 0, for m = n0 + 1, . . . , n.

We can now give some results that improve and complement Theorems A–C
above. First, we have an analogue of Theorem A(3)–(4) for the para-orthogonal
polynomials.

Theorem 2.2. Let n > n0 be fixed. Then, for any ε > 0, there exists an N(ε)
such that, for all N ≥ N(ε), each one of the arcs {z : |z| = 1 and |z − ζm| < ε},
m = 1, 2, . . . , n0, contains at least one zero of Sn(ψN , τ, z).

Proof. We have from Theorem 2.1 by substituting a(ν)
n by a(N)

n

Sn(ψN , τ, z) = Qn−n0(n, ψN , τ, z)Sn0(ψN , z) + τQ∗n−n0
(n, ψN , τ, z)S∗n0

(ψN , z).

Hence, if we consider the integral
∫
|Sn(ψN , τ, z)|dψ(z), we obtain∫

|Sn(ψN , τ, z)|dψ(z)

=
n0∑
m=1

λm|Sn0(ψN , ζm)|
∣∣Qn−n0(n, ψN , τ, ζm) + τmQ

∗
n−n0

(n, ψN , τ, ζm)
∣∣ ,

where τm = τS∗n0
(ψN , ζm)/Sn0(ψN , ζm) for m = 1, 2, . . . , n0. Note that |τm| = 1

for m = 1, 2, . . . , n0. Thus from the inequalities in Theorem 2.1,∫
|Sn(ψN , τ, z)|dψ(z) ≤ 2

{ n−n0∏
j=1

(1 + |a(N)
n+1−j |)

} n0∑
m=1

λm|Sn0(ψN , ζm)|.
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Since limN→∞ Sn0(ψN , z) = Sn0(ψ, z) and |a(N)
n+1−j | < 1 for j = 1, 2, . . . , n−n0, we

obtain

lim
N→∞

n0∑
m=1

λm|Sn(ψN , τ, ζm)| = lim
N→∞

∫
|Sn(ψN , τ, z)|dψ(z) = 0,

which implies the theorem. �

The above theorem guarantees that for each N we can pick out (distinct) zeros
zm,n(N, τ), m = 1, 2, . . . , n0, of Sn(ψN , τ, z) such that limN→∞ zm,n(N, τ) = ζm.

Before we state our next result, let us make a simple but useful observation. For
any f(z) ∈ Ωn−1, using the quadrature (4) with ν = ψN , we get

n∑
m=1

λm,n(N, τ)f (zm,n(N, τ)) =
∫
f(z)dψN(z),

which converges to
∫
f(z)dψ(z) since ψN (z) w∗−→ ψ(z) as N →∞. Thus, for every

f(z) ∈ Ωn−1,

(5) lim
N→∞

n∑
m=1

λm,n(N, τ)f (zm,n(N, τ)) =
∫
f(z)dψ(z).

We now show that (5) is not only true when f ∈ Ωn−1, but it is also valid for
all continuous functions on the unit circle. Define a sequence of discrete measures
ψN (n, τ, ·), N = 1, 2, . . . , obtained from the quadratures for the ψN (z):

ψN (n, τ, eiθ) =
n∑

m=1

λm,n(N, τ)H(θ − θm,n(N, τ)),

where zm,n(N, τ) = eiθm,n(N,τ).

Theorem 2.3. Let n > n0. Then, we have ψN (n, τ, z) w∗−→ ψ(z) as N →∞.

Proof. Note that {ψN(n, τ, z)}∞N=1 is weak-star compact. So, every subsequence of
it contains a convergent sub-subsequence in the weak-star topology. Thus, to prove
the theorem, it suffices to show that every convergent subsequence will have the
same weak-star limit.

Assume ψNk(n, τ, z) w∗−→ ψ̃(z) as k → ∞ for some measure ψ̃(z) on the unit

circle. We show that ψ̃(z) = ψ(z) in the following two steps.
Step 1. supp(ψ̃) ⊆ {ζ1, ζ2, . . . , ζn0}.
We show that ψ̃(Γ) = 0 if Γ is a closed arc that does not contain any ζj for

j = 1, 2, . . . , n0. Let ε > 0. There exists a continuous function fε(z) on the unit
circle such that fε(z) = 1 if z ∈ Γ, |fε(z)| ≤ 1 if 0 < d(z,Γ) < ε and fε(z) = 0 if
d(z,Γ) ≥ ε. Here d(z,Γ) is the smallest distance of z from Γ. Then,

(6)
∫
fε(z)dψ̃(z) = lim

k→∞

∫
fε(z)dψNk(n, τ, z).
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Note that when ε is small enough, d(ζj ,Γ) ≥ 2ε for j = 1, 2, . . . , n0, and so∫
fε(z)dψNk(n, τ, z) =

n∑
m=1

λm,n(Nk, τ)fε(zm,n(Nk, τ))

≤
∑

d(zm,n(Nk,τ),Γ)<ε

λm,n(Nk, τ)

∏n0
j=1 |zm,n(Nk, τ)− ζj |2∏n0
j=1 |zm,n(Nk, τ)− ζj |2

≤ 1
ε2n0

∑
d(zm,n(Nk,τ),Γ)<ε

λm,n(Nk, τ)
n0∏
j=1

|zm,n(Nk, τ)− ζj |2

≤ 1
ε2n0

n∑
m=1

λm,n(Nk, τ)
n0∏
j=1

|zm,n(Nk, τ)− ζj |2,

which, by (5), is equal to ε−2n0
∫
|
∏n0
j=1(z−ζj)|2dψNk(z)→ 0 as k →∞. It follows

from this and (6) that ∫
fε(z)dψ̃(z) = 0

for all small ε > 0, which implies µ(Γ) = 0. This finishes the proof of Step 1.
Step 2. ψ̃({ζj}) = λj for j = 1, 2, . . . , n0.
Let fp(z) := Sn0(ψ, z)/[(z − ζp)S′n0

(ψ, ζp)] for p = 1, 2, . . . , n0. Then

ψ̃({ζp}) =
∫
|fp(z)|2dψ̃(z) = lim

k→∞

∫
|fp(z)|2dψNk(n, τ, z),

which, by (5), equals

lim
k→∞

∫
|fp(z)|2dψNk(z) =

∫
|fp(z)|2dψ(z) =

n0∑
j=1

λj |fp(ζj)|2 = λp.

This finishes Step 2. �

From Theorem 2.3, we can derive statements like those in Theorems B and C.
In fact, we can make the following stronger statement.

Corollary 2.4. Let ε > 0 be such that the intervals Yj(ε) = (ωj − ε, ωj + ε), j =
1, 2, . . . , n0, satisfy

Yj(ε) ⊂ (0, 2π) and ωk /∈ Yj(ε) if k 6= j.

Set Ŷ (ε) = [0, 2π] \
⋃n0
j=1 Yj(ε). Then,

lim
N→∞

∑
θk,n(N,τ)∈Yj(ε)

λk,n(N, τ) = λj , j = 1, 2, . . . , n0,

lim
N→∞

∑
θk,n(N,τ)∈Ŷ (ε)

λk,n(N, τ) = 0.

Again, let zm,n(N, τ), m = 1, 2, . . . , n0, be the zeros of Sn(ψN , τ, z) that satisfy
limN→∞ zm,n(N, τ) = ζm for m = 1, 2, . . . , n0, as guaranteed by Theorem 2.2.
Define Vn0(N, τ, z) =

∏n0
m=1[z − zm,n(N, τ)] and write

(7) Sn(ψN , τ, z) = Vn0(N, τ, z)Wn−n0(N, τ, z).

Clearly, limN→∞ Vn0(N, τ, z) = Sn0(ψ, z).
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As mentioned earlier, the difficulty in using the para-orthogonal polynomials in
the frequency analysis problem lies in how to distinguish interesting zeros from the
uninteresting ones. In this aspect, Theorems B and C and the above corollary indi-
cate how the weights can help. Our next result suggests that using two sequences
of para-orthogonal polynomials is another feasible approach.

Theorem 2.5. Let n > n0 be fixed. Let Λ be an arbitrary subsequence of the
sequence of natural numbers.

(1) Then there exists a subsequence Λ1 of Λ such that

lim
N→∞
N∈Λ1

Wn−n0(N, τ1, z) = Wn−n0(τ1, z).

(2) If τ1 6= τ2, then there exists a subsequence Λ2 of Λ1 such that

limN→∞
N∈Λ2

Wn−n0(N, τ1, z) = Wn−n0(τ1, z),

limn→∞
N∈Λ2

Wn−n0(N, τ2, z) = Wn−n0(τ2, z).

Moreover, Wn−n0(τ1, z) and Wn−n0(τ2, z) cannot have common zeros.

Proof. The existence of Wn−n0(τ1, z) and Wn−n0(τ2, z) follows from the behavior
of infinite sequences of bounded functions and adds nothing to what has already
been shown in [5]; see Theorem B(2) above.

To prove the last statement, suppose that Wn−n0(τ1, z) and Wn−n0(τ2, z) share
a common zero ζ, which has to be on the unit circle. The point ζ can be equal or
not equal to any of the frequency points. We write

Wn−n0(τ1, z) = (z − ζ)W̃n−n0−1(τ1, z)

and

Wn−n0(τ2, z) = (z − ζ)W̃n−n0−1(τ2, z).

Hence from above and from (7), we obtain

lim
N→∞
N∈Λ2

(τ1 − τ2)Sn(ψN , z)

= lim
N→∞
N∈Λ2

[τ1Sn(ψN , τ2, z)− τ2Sn(ψN , τ1, z)]

= (z − ζ)Sn0(ψ, z)[τ1W̃n−n0−1(τ2, z)− τ2W̃n−n0−1(τ1, z)].

When τ1 6= τ2, this is a contradiction to the fact that n− n0 zeros of Sn(ψN , z)
are inside the disk |z| ≤ Kn as pointed out in Section 1, Theorem A(4). �

From this result, we see that between common convergent subsequences of

{Sn(ψNk , 1, z)}∞k=1 and {Sn(ψNk ,−1, z)}∞k=1,

the only common factor of their limits is Sn0(ψ, z). The above theorem can be used
to find the interesting zeros by observing the asymptotic behavior of two distinct
sequences of para-orthogonal polynomials (at least in theory).



350 C. F. BRACCIALI, XIN LI, AND A. SRI RANGA

3. Real para-orthogonal polynomials

Let us assume in this section that the reflection coefficients are real, i.e., −1 <
an < 1. Note that the reflection coefficients are real if and only if the measure dν(z)
satisfies the symmetry dν(1/z) = −dν(z). The measure ψN satisfies this symmetry,
and therefore, the information obtained in this section can be used in the study of
the frequency analysis problem as we do in the next section.

We consider the two special sequences of para-orthogonal polynomials
{Sn(ν, 1, z)} and {Sn(ν,−1,z)}. Since Sn(ν,−1, z) is divisible by z − 1, we write

(8) R(1)
n (ν, z) =

Sn(ν, 1, z)
1 + Sn(ν, 0)

and R(2)
n (ν, z) =

Sn+1(ν,−1, z)
(z − 1)(1− Sn+1(ν, 0))

,

for n ≥ 0. The denominators are chosen in order to make the polynomials monic.
Clearly, 2Sn(ν, z) = (1 + a

(ν)
n )R(1)

n (ν, z) + (1 − a
(ν)
n )(z − 1)R(2)

n−1(ν, z), n ≥ 1,
which from (2) leads to

(9) 2zSn−1(ν, z) = R(1)
n (ν, z) + (z − 1)R(2)

n−1(ν, z), n ≥ 1.

Theorem 3.1. The monic polynomials R(κ)
n (κ = 1, 2) satisfy R

(κ)
0 =1, R

(κ)
1 (ν,z)

= z + 1 and

R
(κ)
n+1(ν, z) = (z + 1)R(κ)

n (ν, z)− 4α(κ)
n+1zR

(κ)
n−1(ν, z), n ≥ 1,

with 4α(1)
n+1 = (1 + a

(ν)
n−1)(1− a(ν)

n ) and 4α(2)
n+1 = (1 − a(ν)

n )(1 + a
(ν)
n+1), n ≥ 1.

The proof of this theorem is due to Delsarte and Genin [6].
The following theorem gives the relation between the Szegő polynomials Sn and

the orthogonal polynomials {P (κ)
n } that satisfy P

(κ)
n (x(z)) = (4z)−n/2R(κ)

n (ν, z),
through the transformation

x(z) =
1
2

(z1/2 + z−1/2).

Theorem 3.2.

1) Let dν(z) be a positive measure on the unit circle such that the associated
Szegő polynomials {Sn} are all real (i.e., −1 < a

(ν)
n < 1 for n ≥ 1). Set

α
(1)
n+1 =

1
4

(1+a(ν)
n−1)(1−a(ν)

n ) > 0 and α
(2)
n+1 =

1
4

(1−a(ν)
n )(1+a(ν)

n+1) > 0, n ≥ 1

and define the positive measures φ(1) and φ(2) by

dφ(1)(x) = −dν(z) and dφ(2)(x) = −(1− x2)dν(z),

where x = x(z) = 1
2 (z1/2 + z−1/2). The supports of dφ(1) and dφ(2) are

inside [−1, 1].
Then (for κ = 1, 2) the sequence of polynomials {P (κ)

n }, given by P (κ)
0 =

1, P
(κ)
1 (x) = x and

P
(κ)
n+1(x) = xP (κ)

n (x)− α(κ)
n+1P

(κ)
n−1(x), n ≥ 1,

is the sequence of monic orthogonal polynomials in relation to the measure
dφ(κ).
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2) Conversely, let dφ(1) and dφ(2) be two positive measures defined inside
[−1, 1] such that dφ(2)(x) = (1 − x2)dφ(1)(x). Let the respective monic or-
thogonal polynomials P (1)

n and P
(2)
n associated with these measures satisfy

P
(κ)
n+1(x) = xP

(κ)
n (x)−α(κ)

n+1P
(κ)
n−1(x), n ≥ 1. Then the reflection coefficients

a
(ν)
n of the Szegő polynomials {Sn} associated with the positive measure
dν(z) = −dφ(1)(x(z)) satisfy

a(ν)
n = 1−4α(1)

n+1/(1 +a
(ν)
n−1) and a

(ν)
n+1 = −1 + 4α(2)

n+1/(1−a(ν)
n ), n ≥ 1,

with a
(ν)
0 = 1. Given explicitly (with µ

(κ)
0 as the moment of order zero

associated with φ(κ)),

a
(ν)
2n−1 = 2

α
(2)
2n−1α

(2)
2n−3 · · ·α

(2)
3 µ

(2)
0

α
(1)
2n−1α

(1)
2n−3 · · ·α

(1)
3 µ

(1)
0

−1 and a
(ν)
2n = 2

α
(2)
2nα

(2)
2n−2 · · ·α

(2)
2

α
(1)
2n α

(1)
2n−2 · · ·α

(1)
2

−1, n ≥ 1.

Moreover,

2zSn−1(ν, z) = R(1)
n (ν, z) + (z − 1)R(2)

n−1(ν, z), n ≥ 1,

where R(κ)
n (ν, z) = (4z)n/2P (κ)

n (x(z)).

This theorem follows from results given in [3] and [22].
One can also show that (see [2])

P (1)
n (x) = P (2)

n (x) − 1
4

(1 − a(ν)
n )(1− a(ν)

n−1)P (2)
n−2(x), n ≥ 1,

and
P (1)
n (x) = xP

(2)
n−1(x) − 1

2
(1− a(ν)

n−1)P (2)
n−2(x), n ≥ 1.

This last equation leads to the following.

Theorem 3.3. The n − 1 zeros of the polynomial P (2)
n−1 and the n zeros of the

polynomial P (1)
n interlace.

Now we state some results on the associated quadrature formulas.

Theorem 3.4. Let the positive measure ν on the unit circle and the positive mea-
sures φ(1) and φ(2) on [−1, 1] be such that

−dν(z) = dφ(1)(x(z)) = (1− x(z)2)−1dφ(2)(x(z)),

with x(z) = (z1/2 + z−1/2)/2. That is,

−dν(eiθ) = dφ(1)(cos(θ/2)) = (sin2(θ/2))−1dφ(2)(cos(θ/2)).

Let

RLQR(κ) :
∫ 1

−1

g(x)dφ(κ)(x) =
n∑

m=1

χ(κ)
m,ng

(
x(κ)
m,n

)
, (κ = 1, 2),

be the n-point Gaussian quadrature rule based on the zeros of P (κ)
n (x). The nodes

x
(κ)
m,n are arranged in the order 1 > x

(κ)
1,n > x

(κ)
2,n > · · · > x

(κ)
n,n > −1.

Let

UCQR(τ) :
∫ 2π

0

f(eiθ)dν(eiθ) =
n∑

m=1

λm,n(ν, τ)f (zm,n(ν, τ)) , (τ = ±1),
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be the quadrature rule (4) of order n, with τ = 1 or −1, which is exact for f ∈
Ωn−1. The nodes zm,n(ν, τ) = eiθm,n(ν,τ) are arranged in the order 0 < θ1,n(ν, τ) <
θ2,n(ν, τ) < · · · < θn,n(ν, τ) ≤ 2π.

Then the following relations hold.

(1) x(1)
m,n = cos

(
1
2θm,n(ν, 1)

)
, χ

(1)
m,n = λm,n(ν, 1), for m = 1, 2, . . . , n.

(2) x(2)
m,n = cos

(
1
2θm,n+1(ν,−1)

)
, χ

(2)
m,n = sin2

(
1
2θm,n+1(ν,−1)

)
λm,n+1(ν,−1),

for m = 1, 2, . . . , n, and zn+1,n+1(ν,−1) = ei2π = 1, λn+1,n+1(ν,−1)
= µ

(ν)
0 −

∑n
m=1 λm,n+1(ν,−1).

Proof. First, RLQR stands for Real Line Quadrature Rule and UCQR stands for
Unit Circle Quadrature Rule.

The proof of the first part of this theorem that relates RLQR(1) and UCQR(1)
can be obtained from [4, Theorem 3.1].

To obtain the second part of the theorem that relates RLQR(2) and UCQR(−1),
we first note that x(2)

m,n are the zeros of P (2)
n (x) and zm,n+1(ν,−1) (1 ≤ m ≤ n) are

the zeros of R(2)
n (ν, z) = (4z)n/2P (2)

n (x(z)), which satisfy

R(2)
n (ν, z) =

Sn+1(ν,−1, z)
(z − 1)(1− Sn+1(ν, 0))

.

If f(z) ∈ Ωn−1, then f(z)(z − 1)2/z ∈ Ωn. Hence by substitution of f(z)(z− 1)2/z
in UCQR(−1) of order n+ 1, we obtain∫ 2π

0

[
−4 sin2

(
1
2θ
)]
f(eiθ)dν(eiθ)

=
∑n

m=1 λm,n+1(ν,−1)
[
−4 sin2

(
1
2θm,n+1(ν,−1)

)]
f (zm,n+1(ν,−1)) ,

for f ∈ Ωn−1. On the other hand, by application of the first part of this theorem
to the measure −(1− cos2(θ/2))dν(eiθ) = dφ(2)(cos(θ/2)), we obtain∫ 2π

0

[
sin2

(
1
2θ
)]
f(eiθ)dν(eiθ) =

∑n
m=1 χ

(2)
m,nf (zm,n+1(ν,−1)) ,

which is exact whenever f(z) ∈ Ωn−1. Hence comparing the above two quadrature
rules, we obtain

χ(2)
m,n = sin2

(
1
2
θm,n+1(ν,−1)

)
λm,n+1(ν,−1), m = 1, 2, . . . , n.

To determine the value of λn+1,n+1(ν,−1) associated with the node zn+1,n+1(ν,−1)
= 1, we use

µ
(ν)
0 =

n+1∑
m=1

λm,n+1(ν,−1).

This completes the proof of the theorem. �

Numerical Evaluation. The polynomials P (κ)
n associated with the measure φ(κ),

more precisely the coefficients α(κ)
n , can also be evaluated directly from the moments

of the measure ν(z). For this we require the following algorithm known as the
modified Chebyshev algorithm.

Let φ be a positive measure on R and let the so-called modified moments µ̂(φ)
l =∫

RQl(x)dφ(x), l = 0, 1, . . . , 2n− 1, be known. Here, the polynomials Ql are given
by the recurrence relation

Ql+1(x) = (x − β̂l+1)Ql(x) − α̂l+1Ql−1(x), l = 1, 2, . . . , 2n− 2,
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with Q0 = 1 and Q1(x) = x− β̂1, with the numbers β̂l and α̂l chosen arbitrarily.
Note that if one chooses β̂l = α̂l+1 = 0, l = 1, 2, . . . , then the

∫
RQl(x)dφ(x) are

the ordinary moments
∫
R x

ldφ(x).
The algorithm can be given as

Algorithm II (Modified Chebyshev algorithm).
Set

c−1,l = 0, c0,l = µ̂
(φ)
l , l = 0, 1, . . . , 2n− 1.

β1 = β̂1 + c0,1/c0,0.

For m = 1, 2, . . . , n− 1, do

cm,l = cm−1,l+2 + (β̂m+l+1 − βm)cm−1,l+1 − αmcm−2,l+2

+α̂m+l+1cm−1,l, l = 0, 1, . . . , 2n− 2m− 1,

βm+1 = β̂m+1 +
cm,1
cm,0

− cm−1,1

cm−1,0
, αm+1 =

cm,0
cm−1,0

.

The above algorithm, first presented by Sack and Donovan [18], determines the
coefficients in the three term recurrence relation

Pm+1(x) = (x− βm+1)Pm(x)− αm+1Pm−1(x), m = 1, 2, . . . , n− 1,

where P0(x) = 1, P1(x) = x−β1, of the orthogonal polynomials {Pn}nm=0 associated
with the measure φ. In practice (see Gautschi [8]), a good choice of the numbers
β̂l and α̂l makes the algorithm numerically more stable.

We now see how this algorithm can be used to determine the coefficients α(1)
n

associated with the measure φ(1). Note that β(1)
n are all equal to zero.

Since dν(eiθ) is a symmetric measure,

µ(ν)
m =

∫ 2π

0

eimθdν(eiθ) =
∫ 2π

0

cos(mθ)dν(eiθ).

Hence using dν(eiθ) = −dφ(1)(cos (θ/2)) and x = cos(θ/2), we obtain

µ(ν)
m =

∫ 1

−1

T2m(x)dφ(1)(x), m ≥ 0,

where the Tm are the m-th degree Chebyshev polynomials of the first kind. Hence
using the monic Chebyshev polynomials T̂m = 2−m+1Tm, m ≥ 1, we can define the
modified moments

µ̂
(φ(1))
0 = µ

(ν)
0 , µ̂

(φ(1))
2m−1 = 0, µ̂

(φ(1))
2m = 2−2m+1µ(ν)

m , m ≥ 1,

and apply the modified Chebyshev algorithm to obtain the coefficients α(1)
n . Since

T̂1(x) = x, T̂2(x) = xT̂m(x)− 1
2 T̂0(x),

T̂m+1(x) = xT̂m(x)− 1
4 T̂m−1(x), m = 2, 3, . . . , 2n− 2,

and since the cm,2l+1 turn out to be zero for all m, letting d0,0 = c0,0 and dm,l =
22(m+l)−1cm,2l, we obtain the algorithm
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Algorithm III.
Set

d0,l = µ
(ν)
l =

∫ 2π

0
eilθdν(eiθ), l = 0, 1, . . . , n− 1.

d1,l = d0,l+1 + d0,l, l = 0, 1, . . . , n− 2,

d̂2 = 2
d1,0

d0,0
.

For m = 2, 3, . . . , n− 1, do

dm,l = dm−1,l+1 + dm−1,l − d̂mdm−2,l+1, l = 0, 1, . . . , n−m− 1,

d̂m+1 =
dm,0
dm−1,0

.

From this algorithm

α(1)
m =

1
4
d̂m, m = 2, 3, . . . , n− 1.

Having found the values of α(1)
m , if needed, the values of α(2)

m can be generated by

α
(2)
m+1 =

1
4

(1− a(ν)
m )(1 + a

(ν)
m+1), m ≥ 1,

where a
(ν)
1 = 1− d̂2/2 and a

(ν)
m = 1− d̂m+1/(1 +a

(ν)
m−1), m ≥ 2, are the reflection

coefficients of the Szegő polynomials associated with ν.

4. Real orthogonal polynomials in frequency analysis

In this section, we apply the results obtained in the previous sections to the
frequency analysis problem.

For κ = 1, 2, consider the monic polynomials P (κ)
m (N, x), m = 1, 2, . . . , which

satisfy the recurrence relation

(10) P
(κ)
m+1(N, x) = xP (κ)

m (N, x)− α(κ)
m+1(N)P (κ)

m−1(N, x), m ≥ 1,

with P
(κ)
0 (N, x) = 1, P (κ)

1 (N, x) = x and

α
(1)
m+1(N) =

1
4

(1 + a
(N)
m−1)(1 − a(N)

m ) and α
(2)
m+1(N) =

1
4

(1− a(N)
m )(1 + a

(N)
m+1).

Here a(N)
m = Sm(ψN , 0). Then Theorem 3.2 tells us that P (κ)

m (N, x), m = 0, 1, . . . ,
are the monic orthogonal polynomials associated with the positive measure
φ(κ)(N,x) on [−1, 1], where

(11) dφ(1)(N, cos(θ/2)) = [sin(θ/2)]−2dφ(2)(N, cos(θ/2)) = −dψN (eiθ).

Furthermore,
P (κ)
m (N, x(z)) = (4z)−m/2R(κ)

m (ψN , z),
where x(z) = (z1/2 + z−1/2)/2. Let∫ 1

−1

g(x)dφ(κ)(N, x) =
n∑
j=1

χ
(κ)
j,n(N)g

(
x

(κ)
j,n(N)

)
be the Gaussian rule on the zeros of P (κ)

n (N, x). Then from (8) and from Theo-
rem 3.4, we have the following.
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(A) The information obtained from the behavior of the zeros

zm,n(N, 1) = eiθm,n(N,1)

and quadrature weights λm,n(N, 1) associated with Sn(ψN , 1, z) is just
the same as that obtained from the behavior of the zeros x

(1)
m,n(N) =

cos(1
2θm,n(N, 1)) and quadrature weights of χ(1)

m,n(N) = λm,n(N, 1) asso-
ciated with P

(1)
n (N, x).

(B) Likewise, the information obtained from the behavior of the zeros

zm,n(N,−1) = eiθm,n(N,−1) of (z − 1)−1Sn(ψN ,−1, z)

is just the same as that obtained from the behavior of the zeros x(2)
m,n−1(N)=

cos(1
2θm,n(N,−1)) of P (2)

n−1(N, x).
Thus, we consider the measure φ given by

(12) dφ(cos(θ/2)) = −dψ(eiθ),

where ψ is given by (3). We can write

dφ(x) =
n0∑
k=1

λkH(x− ξk),

where ξk = cosωk and λk are as in (3). Note that the ξk are ordered as

−1 < ξn0 < · · · < ξ2 < ξ1 < 1.

Thus it is natural to order the zeros of P (κ)
n (N, x) as

−1 < x(κ)
n,n(N) < · · · < x

(κ)
2,n(N) < x

(κ)
1,n(N) < 1.

The following theorem gives some information on the asymptotic behavior of the
measure φ(1)(N, x) and the asymptotic behavior of the polynomials P (1)

n (N, x) when
1 ≤ n ≤ n0.

Theorem 4.1. We have

(1) lim
N→∞

∫ 1

−1

g(x)dφ(1)(N, x) =
∫ 1

−1

g(x)dφ(x),

for any g continuous on [−1, 1].
(2) For each fixed n, 1 ≤ n ≤ n0,

lim
N→∞

P (1)
n (N, x) = Pn(φ, x), x ∈ [−1, 1],

where Pn(φ, x) are the orthogonal polynomials associated with the discrete
measure φ. In particular,

lim
N→∞

P (1)
n0

(N, x) = Pn0(φ, x) =
n0∏
m=1

(x− ξm), x ∈ [−1, 1],

where ξm = cos(1
2ωm).

Proof. The proof of this theorem follows from Theorem A and from equations (11)
and (12). �

The next theorem gives some information on the zeros and Christoffel numbers
associated with P (1)

n (N, x). This information can be used to detect the frequencies
and the modulus of the amplitudes of the given signal.
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Theorem 4.2. Let n ≥ n0 be fixed.
(1) Then for any ε > 0 there exists an N(ε) such that for all N ≥ N(ε), each

of the intervals (ξm− ε, ξm+ ε), m = 1, 2, . . . , n0, contains at least one zero
of P (1)

n (N, x).
(2) Let ε > 0 be such that the intervals ∆j(ε) = (ξj − ε, ξj + ε), j = 1, 2, . . . , n0,

satisfy

∆j(ε) ⊂ (−1, 1) and ξk /∈ ∆j(ε) if k 6= j.

Set ∆̂(ε) = [0, 2π] \
⋃n0
j=1 ∆j(ε). Then

lim
N→∞

∑
x

(1)
k,n(N)∈∆j(ε)

χ
(1)
k,n(N, τ) = λj , j = 1, 2, . . . , n0,

lim
N→∞

∑
x

(1)
k,n(N)∈∆̂(ε)

χ
(1)
k,n(N, τ) = 0.

Proof. The proof of this theorem is a consequence of Theorem 2.2, Corollary 2.4
and of the equations

ξm = cos(1
2ωm), x

(1)
m,n(N) = cos(1

2θm,n(N, 1)) and χ
(1)
m,n(N) = λm,n(N, 1),

which follow from results obtained in Section 3. �
The first part of the above theorem tells us that, for each N , we can pick out

a zero, let us say xm(N) (m = 1, 2, . . . , n0), of P (1)
n (N, x) such that the sequence

{xm(N)}∞N=1 has the limit ξm.
Now we have the following theorem on distinct convergent sequences of zeros.

Theorem 4.3. Let n > n0 be fixed. Let Λ be a subsequence of the sequence of
natural numbers and, for each N ∈ Λ, let y(1, N) > y(2, N) > y(3, N) be three
distinct zeros of P (1)

n (N, x) such that the limits

lim
N→∞
N∈Λ

y(j,N) = y(j), j = 1, 2, 3,

all exist. Then the following must hold.
(1) It is not possible to have y(1) = y(2) = y(3). That is, three distinct con-

vergent subsequences of zeros cannot have a common limit.
(2) If y(1) = y(2), that is, if two distinct convergent subsequences of zeros

have a common limit, then this limit must be equal to one of the points ξm,
m = 1, 2, . . . , n0.

Proof. With x(z) = (z1/2 +z−1/2)/2, since P (1)
n (N, x(z)) = (4z)−n/2 Sn(ψN ,1,z)

1+a
(N)
n

and

P
(2)
n−1 (N, x(z)) = (4z)−(n−1)/2 Sn(ψN ,−1,z)

(z−1)(1−a(N)
n )

, we obtain from Theorem 2.5 that there
exists a subsequence Λ2 of Λ such that

(13)

lim
N→∞
N∈Λ2

P (1)
n (N, x) = Q

(1)
n−n0

(x)
n0∏
m=0

(x− ξm),

lim
N→∞
N∈Λ2

P
(2)
n−1(N, x) = Q

(2)
n−n0−1(x)

n0∏
m=0

(x− ξm),

where Q(1)
n−n0

and Q(2)
n−n0−1 do not have any common zeros.
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Now we need to use the interlacing property of the zeros of P (1)
n (N, x) and

P
(2)
n−1(N, x), which follows from Theorem 3.3.
Suppose that y(1) = y(2) = y. From the interlacing properties of the zeros we

find that there exists a zero ŷ(1, N) of P (2)
n−1(N, x) such that y(1, N) > ŷ(1, N) >

y(2, N) and hence,
lim
N→∞
N∈Λ

y(1, N) = lim
N→∞
N∈Λ

ŷ(1, N) = y.

Hence part (2) of the theorem follows from (13).
Now suppose that y(1) = y(2) = y(3) = y. From the interlacing property

of the zeros there exist two zeros ŷ(1, N) and ŷ(2, N) of P (2)
n−1(N, x) such that

y(1, N) > ŷ(1, N) > y(2, N) > ŷ(2, N) > y(3, N) and hence,

lim
N→∞
N∈Λ

y(1, N) = lim
N→∞
N∈Λ

ŷ(1, N) = lim
N→∞
N∈Λ

y(2, N) = lim
N→∞
N∈Λ

ŷ(2, N) = y.

This is a contradiction to the fact thatQ(1)
n−n0

andQ(2)
n−n0−1 do not have any common

zeros. This completes part (1) of the theorem. �
We now propose the following procedure to solve the frequency analysis problem.

The procedure is divided into three steps.

Step 1. Determine the coefficients α(1)
m (N), m = 2, 3, . . . , n, in the recurrence

relation (10). This can be done by the special version of the modified
Chebyshev algorithm:

Algorithm IV.
Set

d0,l = µ
(N)
l =

1
N

N−1∑
m=l

x(m)x(m − l), l = 0, 1, . . . , n− 1.

d1,l = d0,l+1 + d0,l, l = 0, 1, . . . , n− 2,

d̂2 = 2
d1,0

d0,0
.

For m = 2, 3, . . . , n− 1, do

dm,l = dm−1,l+1 + dm−1,l − d̂m dm−2,l+1, l = 0, 1, . . . , n−m− 1,

d̂m+1 =
dm,0
dm−1,0

.

From this
α(1)
m (N) =

1
4
d̂m, m = 2, 3, . . . , n.

Remarks. (1) The reflection coefficients associated with the Szegő polynomials
Sm(ψN ,z) can be derived from

a(N)
m = 1− d̂m+1/(1 + a

(N)
m−1), for m = 1, 2, . . . , n− 1,

with a
(N)
0 = 1.

(2) The Levinson algorithm requires in the order of n2 − 4 multiplications to
obtain {a(N)

m }n−1
m=1, while the above algorithm requires in the order of 1

2n
2 + 1

2n− 1
multiplications. This means that the above algorithm is about twice the speed of
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the Levinson algorithm. The above algorithm is in some sense a modification of
the split Levinson algorithm (see [7]).

(3) Furthermore, the coefficients α(2)
m (N) can be generated by

α(2)
m (N) =

1
4

(1− a(N)
m−1)(1 + a(N)

m ), for m = 2, 3, . . . , n− 1.

Step 2. Determine the zeros x(1)
m,n(N) and the Christoffel numbers χ(1)

m,n(N)
associated with the orthogonal polynomials P (1)

n (N, x). These can be gen-
erated as the eigenvalue problem associated with the symmetric Jacobi
matrix Jn(d)



d

√
α

(1)
2 (N) 0 · · · 0 0√

α
(1)
2 (N) d

√
α

(1)
3 (N) · · · 0 0

0
√
α

(1)
3 (N) d · · · 0 0

...
...

...
...

...

0 0 0 · · · d

√
α

(1)
n (N)

0 0 0 · · ·
√
α

(1)
n (N) d


.

The eigenvalues of Jn(d) are d + x
(1)
m,n(N), m = 1, 2, . . . , n, and if ηm is

the normalized (ηTmηm = 1) eigenvector associated with the eigenvalue d+
x

(1)
m,n(N), then

χ(1)
m,n(N) = (ηm,1)2µ

(N)
0 .

Here, ηm,1 is the first component of ηm.
Step 3. Finally, using the results given in the Theorems 4.1, 4.2 and 4.3, de-

termine the number of frequencies n0, the frequencies ωm and the modulus
of the amplitudes γm, by observing the limiting behavior of x(1)

m,n(N) and
χ

(1)
m,n(N) from growing values of N .

5. Examples

We give some examples to show that the method proposed in the previous section
is highly feasible. All the calculations are performed using the software Maple.
Example 1. We consider the signal

(14) x(m) = 2eimπ + (1 + 2i)ei2mπ/3 + (1− 2i)ei4mπ/3 + Zm,

embedded with a random perturbation (or noise) Zm at each discrete time m =
0, 1, . We choose Zm to be real random numbers in the range [−0.005, 0.005].

We expect that the interesting zeros of P (1)
n (N, x), as N tends to infinity, con-

verge to the values

ξ1 = cos(2π/6) = 0.5, ξ2 = cos(π/2) = 0, and ξ3 = cos(4π/6) = −0.5 .

The corresponding quadrature weights (or sums of quadrature weights as in Theo-
rem 4.2) tend to the limits

λ1 = 5, λ2 = 4, and λ3 = 5 .
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Table 1. The nonnegative zeros of P (1)
n (N, x), for n = 7, and the

corresponding quadrature weights for the signal given by (14).

N 1000 10000 100000 1000000

x
(1)
1,n(N) .9594011810 .9594358752 .9600074510 .9638104402

x
(1)
2,n(N) .6240716070 .6239469630 .6262791465 .6463467115

x
(1)
3,n(N) .4993490519 .4999350137 .4999935864 .4999994190

x
(1)
4,n(N) .0000000000 .0000000000 .0000000000 .0000000000

χ
(1)
1,n(N) .2385586e − 2 .2398284e − 3 .2510096e − 4 .3672402e − 5

χ
(1)
2,n(N) .3019255e − 1 .3038765e − 2 .2968618e − 3 .2512087e − 4

χ
(1)
3,n(N) .4960261e + 1 .4995888e + 1 .4999684e + 1 .4999974e + 1

χ
(1)
4,n(N) .3980690e + 1 .3998053e + 1 .3999756e + 1 .3999974e + 1

We calculate the zeros of P (1)
7 (N, x) and P (1)

16 (N, x) to analyze their behavior. Be-
cause of the symmetry in the zeros of P (1)

n (N, x), we give, respectively in Table 1
and Table 2, only the nonnegative zeros of P (1)

7 (N, x) and P
(1)
16 (N, x) and the cor-

responding quadrature weights. As one can see from Table 1, as N gets larger,
χ

(1)
1,7(N) and χ(1)

2,7(N) tend to the limit 0 and hence, x(1)
1,7(N) and x(1)

2,7(N) represent
the uninteresting zeros. The other two zeros, which are interesting ones, permit us
to recover the limits ξ1 = 0.5 and ξ2 = 0. The corresponding quadrature weights
also tend to the limits λ1 = 5 and λ2 = 4.

In Table 2, the degree of the polynomial is even. As we can see, this forces
the zero x

(1)
8,16(N) (and also the zero x

(1)
9,16(N)) to the limit ξ2 = 0. According

to Theorem 4.3, convergence of these two zeros to ξ2 means no other zeros can

Table 2. Positive zeros of P (1)
n (N, x), for n = 16, and the corre-

sponding quadrature weights for the signal given by (14).

N 1000 10000 100000 1000000

x
(1)
1,n(N) .9940844167 .9940870898 .9941331278 .9943640409

x
(1)
2,n(N) .9472732272 .9473005082 .9475947640 .9495377568

x
(1)
3,n(N) .8548244375 .8548903013 .8555067037 .8603075329

x
(1)
4,n(N) .7189582997 .7189420977 .7197975661 .7268018340

x
(1)
5,n(N) .5385688762 .5380815523 .5386536378 .5438509641

x
(1)
6,n(N) .4993173295 .4999312006 .4999932243 .4999994002

x
(1)
7,n(N) .2904740721 .2904681641 .2906274219 .2920830261

x
(1)
8,n(N) .6701693e − 2 .2113208e − 2 .6692490e − 3 .2156445e − 3

χ
(1)
1,n(N) .7977139e − 3 .8018650e − 4 .8492834e − 5 .1341455e − 5

χ
(1)
2,n(N) .9460595e − 3 .9528461e − 4 .9991095e − 5 .1489447e − 5

χ
(1)
3,n(N) .1415432e − 2 .1419179e − 3 .1466860e − 4 .1942683e − 5

χ
(1)
4,n(N) .3392576e − 2 .3401662e − 3 .3437371e − 4 .3808523e − 5

χ
(1)
5,n(N) .9917225e − 1 .1030305e − 1 .1005570e − 2 .8145786e − 4

χ
(1)
6,n(N) .4881227e + 1 .4987618e + 1 .4998873e + 1 .4999906e + 1

χ
(1)
7,n(N) .6356956e − 2 .6361711e − 3 .6434639e − 4 .7037543e − 5

χ
(1)
8,n(N) .1989875e + 1 .1998979e + 1 .1999873e + 1 .1999986e + 1
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converge to the same limit. Note that, as indicated by Theorem 4.2, the sum
χ

(1)
8,16(N) + χ

(1)
9,16(N) converges to the limit λ2 = 4.

From the quadrature weights, the only other interesting zero of P (1)
16 (N, x) in

Table 2 is x(1)
6,16(N), which converges to ξ1 = 0.5 and the corresponding quadrature

weight tends to λ1 = 5.

Example 2. Now we consider the signal

(15) x(m) =
3∑
j=1

(γjeimωj + γn0+1−je
imωn0+1−j ),

where n0 = 6, ω1 = 2π − ω6 = π/3, ω2 = 2π − ω5 = π/2, ω3 = 2π − ω4 = 4π/5,
γ1 = γ6 = 10, γ2 = γ5 = 4 and γ3 = γ4 = 1.

We expect that the positive interesting zeros of P (1)
n (N, x) and the corresponding

quadrature weights, as N tends to infinity, converge to the values

ξ1 = cos(π/6) = 0.86602540 · · · , λ1 = 100,

ξ2 = cos(π/4) = 0.70710678 · · · , λ2 = 16,

ξ3 = cos(2π/5) = 0.30901699 · · · , λ3 = 1.

For this example, we analyze the zeros of P (1)
14 (N, x) and P

(1)
15 (N, x) for increasing

values of N . In Table 3, we give the positive zeros of P (1)
14 (N, x) and the corre-

sponding quadrature weights. By observing the quadrature weights that approach
0, we can easily eliminate the uninteresting zeros x(1)

1,14(N), x(1)
2,14(N), x(1)

5,14(N) and

x
(1)
7,14(N). The remaining interesting zeros x(1)

3,14(N), x(1)
4,14(N) and x(1)

6,14(N) seem to
converge to the required limits ξ1, ξ2 and ξ3, respectively. From the limits of the
corresponding quadrature weights one can also recover the values of λ1, λ2 and λ3.

Table 3. Positive zeros of P (1)
n (N, x), for n = 14, and the corre-

sponding quadrature weights for the signal given by (15)

N 4096 16384 65536 262144 1048576

x
(1)
1,n(N) .989212594 .989299970 .989210625 .989299581 .989210502

x
(1)
2,n(N) .906162462 .906761986 .906133429 .906755808 .906131609

x
(1)
3,n(N) .865979840 .866014421 .866022554 .866024717 .866025225

x
(1)
4,n(N) .707215505 .707135396 .707113588 .707108570 .707107206

x
(1)
5,n(N) .607312636 .611289737 .607296488 .611295467 .607295454

x
(1)
6,n(N) .309555993 .309108278 .309050983 .309022710 .309019119

x
(1)
7,n(N) .150003490 .142155835 .150181242 .142175633 .150192479

χ
(1)
1,n(N) .112888e − 1 .287092e − 2 .705654e − 3 .179437e − 3 .441037e − 4

χ
(1)
2,n(N) .153277e + 0 .373171e − 1 .960046e − 2 .233339e − 2 .600109e − 3

χ
(1)
3,n(N) .998523e + 2 .999642e + 2 .999907e + 2 .999977e + 2 .999994e + 2

χ
(1)
4,n(N) .160273e + 2 .160061e + 2 .160017e + 2 .160003e + 2 .160001e + 2

χ
(1)
5,n(N) .301059e − 1 .774932e − 2 .188245e − 2 .484465e − 3 .117656e − 3

χ
(1)
6,n(N) .100595e + 1 .100141e + 1 .100037e + 1 .100008e + 1 .100002e + 1

χ
(1)
7,n(N) .730947e − 2 .198729e − 2 .458248e − 3 .124244e − 3 .286460e − 4



REAL ORTHOGONAL POLYNOMIALS IN FREQUENCY ANALYSIS 361

Table 4. The nonnegative zeros of P (1)
n (N, x), for n = 15 and the

corresponding quadrature weights for the signal given by (15)

N 65536 131072 262144 524288 1048576

x
(1)
1,n(N) .990694550 .991069694 .990707384 .991109746 .990694385

x
(1)
2,n(N) .918162836 .920315195 .918158191 .920506677 .918161176

x
(1)
3,n(N) .866024393 .866025016 .866025149 .866025308 .866025340

x
(1)
4,n(N) .707388335 .710944712 .707148927 .708477691 .707125604

x
(1)
5,n(N) .703238297 .706967424 .700700794 .707010273 .703489755

x
(1)
6,n(N) .405875346 .407626485 .386511972 .385318866 .405829382

x
(1)
7,n(N) .308955310 .308988523 .308993668 .309005739 .309013135

x
(1)
8,n(N) .000000000 .000000000 .000000000 .000000000 .000000000

χ
(1)
1,n(N) .635379e − 3 .356439e − 3 .162438e − 3 .923051e − 4 .397117e − 4

χ
(1)
2,n(N) .510492e − 2 .243761e − 2 .128986e − 2 .614839e − 3 .319084e − 3

χ
(1)
3,n(N) .999944e + 2 .999961e + 2 .999986e + 2 .999990e + 2 .999996e + 2

χ
(1)
4,n(N) .149311e + 2 .569533e + 0 .158983e + 2 .105795e + 1 .159183e + 2

χ
(1)
5,n(N) .107307e + 1 .154316e + 2 .102705e + 0 .149423e + 2 .819297e − 1

χ
(1)
6,n(N) .107399e − 2 .481206e − 3 .371597e − 3 .173370e − 3 .671996e − 4

χ
(1)
7,n(N) .999815e + 0 .999950e + 0 .999839e + 0 .999932e + 0 .999988e + 0

χ
(1)
8,n(N) .320445e − 3 .146707e − 3 .964100e − 4 .450728e − 4 .200286e − 4

.160042e + 2 .160011e + 2 .160010e + 2 .160002e + 2 .160002e + 2

In Table 4, we present the nonnegative zeros of P (1)
15 (N, x). Again we can easily

eliminate the uninteresting zeros x(1)
1,15(N), x(1)

2,15(N), x(1)
6,15(N) and x

(1)
8,15(N), by

observing the corresponding quadrature weights. The behavior of the quadrature
weights χ(1)

3,15(N) and χ
(1)
7,15(N) also indicate that x(1)

3,15(N) approaches the limit ξ1
and x(1)

7,15(N) approaches the limit ξ3.
It is rather difficult to say much about the individual behavior of the quadrature

weights χ(1)
4,15(N) and χ

(1)
5,15(N). However, as expected from Theorems 4.2 and 4.3,

the sum χ
(1)
4,15(N) +χ

(1)
5,15(N) tends to the limit λ2. The numbers in the last row of

Table 4 represent these sums.
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in frequency analysis, in Continued Fractions and Orthogonal Functions (S.C. Cooper and
W.J. Thron, eds.), Lecture Notes in Pure and Applied Mathematics, Vol. 154, pp. 141-152,
Marcel Dekker, 1994. MR95h:94001

[13] W.B. Jones and V. Peterson, Continued fractions and Szegő polynomials in frequency analysis
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