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FIVE CONSECUTIVE POSITIVE ODD NUMBERS,
NONE OF WHICH CAN BE EXPRESSED
AS A SUM OF TWO PRIME POWERS

YONG-GAO CHEN

Abstract. In this paper, we prove that there is an arithmetic progression of
positive odd numbers for each term M of which none of five consecutive odd
numbers M, M − 2, M − 4, M − 6 and M − 8 can be expressed in the form
2n ± pα, where p is a prime and n, α are nonnegative integers.

Introduction

By calculation, we find that almost all positive odd numbers can be expressed
in the form 2n + p, where n is a positive integer and p is prime. For example,
5 = 2 + 3, 7 = 2 + 5, 9 = 2 + 7, 11 = 22 + 7, 13 = 2 + 11, 15 = 2 + 13,
17 = 22 + 13, etc. The first counterexample is 127. In 1934, Romanoff [11] proved
that the set of positive odd numbers which can be expressed in the form 2n + p
has positive asymptotic density in the set of all positive odd numbers, where n is
a nonnegative integer and p is prime. For a positive integer n and an integer a,
let a (mod n) = {a + nk : k ∈ Z}. {ai (mod mi)}k

i=1 is called a covering system if
every integer b satisfies b ≡ ai (mod mi) for at least one value of i. By employing a
covering system, P. Erdős [8] proved that there is an infinite arithmetic progression
of positive odd numbers each of which has no representation of the form 2n + p.
Cohn and Selfridge [7] proved that there exist infinitely many odd numbers which
are neither the sum nor the difference of two prime powers. In [3] Chen proved the
following result: the set of positive integers which have no representation of the form
2n ± paqb, where p, q are distinct odd primes and n, a, b are nonnegative integers,
has positive lower asymptotic density in the set of all positive odd integers. That is,
the lower asymptotic density of the set of positive odd integers k such that k − 2n

has at least three distinct prime factors for all positive integers n is positive. In [5]
Chen showed that the set of positive odd integers k such that k − 2n has at least
three distinct prime factors for all positive integers n contains an infinite arithmetic
progression. For further related information see Chen [4], [6], Guy [9, A19, B21,
F13], Jaeschke [10], and Stanton and Williams [12]. The following question is a
natural one: Are there two consecutive positive odd numbers neither of which can
be expressed as a sum of two prime powers?
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In this paper, we show that the answer to the question is affirmative. In fact,
we go much further.

Theorem 1. Let k1, . . . , ks be integers, let {aij (mod mij)}ti

j=1(1 ≤ i ≤ s) be s
covering systems with 0 ≤ aij < mij , and let pij be primes with mij the order of
2 (mod pij) (1 ≤ j ≤ ti, 1 ≤ i ≤ s) such that if pij = puv, then

2aij − ki ≡ 2auv − ku (mod pij).

Then there exists an arithmetic progression of positive odd numbers for each term
M of which none of M +ki (1 ≤ i ≤ s) can be expressed in the form 2n±pα, where
p is a prime and n, α are nonnegative integers.

Theorem 2. There exists an arithmetic progression of positive odd numbers for
each term M of which none of five consecutive odd numbers M, M −2, M−4, M−6
and M − 8 can be expressed in the form 2n ± pα, where p is a prime and n, α are
nonnegative integers.

Remark. By the proofs of Theorems 1 and 2, there is an integer M ≤ 22253000
such

that none of five consecutive odd numbers M, M − 2, M − 4, M − 6 and M − 8 can
be expressed in the form 2n±pα. Currently, we cannot give an explicit value of M .

2. Proofs

Lemma 1. Let p be an odd prime and let T be a positive integer. Then 2pT − 1
has at least T distinct prime factors.

Proof. Let qi (i = 1, 2, . . . , T ) be primes with

qi

∣
∣

2pi − 1
2pi−1 − 1

.

Then q1, q2, . . . , qT are distinct primes. This completes the proof of Lemma 1. �

Lemma 2. Let p be an odd prime and let m be the order of 2 (mod p). If

2m = 1 + pld, p � | d,

and pu|2n − 1 for two integers n ≥ 0 and u > 0, then n = mpu−lv for some integer
v.

Proof. By using induction on r, we can prove that

2mpr

= 1 + pl+rdr, p � | dr, r = 0, 1, . . . .

By p|2n − 1 and m being the order of 2 (mod p), we have m|n. Let n = mphv′,
p � | v′. Then

2n = 2mphv′
= 1 + pl+hd′h, p � | d′h.

Since pu|2n − 1, we have u ≤ l + h. Hence h ≥ u − l. Let v = v′ph−u+l. This
completes the proof of Lemma 2. �

Lemma 3. Let p1, . . . , pt be primes such that each prime repeats at most s times.
Then there exist t distinct primes q1, . . . , qt such that

qi|2pt+s
i − 1, qi �= pj, for all i, j.
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Proof. For each prime p, by Lemma 1 we may take a set S(p) of primes with
|S(p)| = t + s such that

q|2pt+s − 1.

Since there are at most s indexes i with pi = p, we may appoint a prime qi ∈
S(p) \ {p1, . . . , pt} for each i with pi = p such that if pi = pj = p, then qi �= qj . If
pi �= pj , then, by qi ∈ S(pi) and qj ∈ S(pj) we have

qi|2pt+s
i − 1, qj |2pt+s

j − 1.

Hence qi �= qj . Thus, these qi are distinct such that

qi|2pt+s
i − 1, qi �= pj , for all i, j.

This completes the proof of Lemma 3. �

Proof of Theorem 1. If piu = piv, then, by miu and miv being the orders of
2 (mod piu) and 2 (mod piv), respectively, we have miu = miv. By

2aiu − ki ≡ 2aiv − ki (mod piu)

and miu of the order of 2 (mod piu), we have

aiv ≡ aiu (mod miu).

Hence aiu (mod miu) = aiv (mod miv). Thus, without loss of generality, we may
assume that for each i, primes pi1, . . . , piti are distinct. Let T = s + t1 + · · · + ts.
By Lemma 3, for each pij , we may appoint a prime qij such that all primes qij (1 ≤
j ≤ ti, 1 ≤ i ≤ s) are distinct,

qij | 2pT
ij − 1, 1 ≤ j ≤ ti, 1 ≤ i ≤ s,

and qij �= puv for all 1 ≤ j ≤ ti, 1 ≤ i ≤ s, 1 ≤ v ≤ tu, 1 ≤ u ≤ s. Let rij be
integers such that 0 ≤ rij < pij and

(1) rij ≡ 2aij − ki (mod pij), 1 ≤ j ≤ ti, 1 ≤ i ≤ s.

Let
2mij = 1 + p

lij

ij tij , p � | tij , 1 ≤ j ≤ ti, 1 ≤ i ≤ s,

and l = maxi,j lij . If there exists a nonnegative integer b ≡ aij (mod mij) with

(2) pl+T
ij |2b − ki − rij ,

then let bij be the least one of such b. If there are no such b, then let bij = aij . Let
m be a positive integer with

2m ≥ max
i,j

pl+T
ij + max

i
|ki| + 1.

Take an integer M with

M ≡ rij (mod pl+T
ij ),

M ≡ 2bij − ki (mod qij), 1 ≤ j ≤ tj , 1 ≤ i ≤ s,(3)

M ≡ 1 + 2m + 2m+1 (mod 2m+2).
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If pij = puv, then rij = ruv by the condition. Again, qij are distinct and each qij is
different from any puv. So such an M exists by the Chinese Remainder Theorem.
Now we prove that none of M +ki (1 ≤ i ≤ s) can be expressed in the form 2n±pα,
where p is a prime and n, α are nonnegative integers. In order to prove this, it is
enough to show that for each i and any nonnegative integer n, M + ki − 2n has
at least two distinct positive prime factors. Since {aij (mod mij)}ti

j=1 is a covering
system, there exists a j with

n ≡ aij (mod mij).

By (1), (3) and 2mij ≡ 1 (mod pij), we have

M + ki − 2n ≡ rij + ki − 2aij ≡ 0 (mod pij).

Let

M + ki − 2n = p
αij

ij Kij , pij � | Kij , αij ≥ 1.

If αij < l + T , then by

|M + ki − 2n| = |1 + 2m + 2m+1 + 2m+2u + ki − 2n|
≥ |1 + 2m + 2m+1 + 2m+2u − 2n| − |ki|
≥ 2m − 1 − |ki| ≥ pl+T

ij ,

we have |Kij | > 1. In this case, M + ki − 2n has at least two distinct prime factors.
If αij ≥ l + T , then n ≡ aij (mod mij) and

rij + ki − 2n ≡ M + ki − 2n ≡ 0 (mod pl+T
ij ).

Hence n ≡ bij (mod mij) and by (2),

2bij (1 − 2n−bij ) ≡ 2bij − ki + ki − 2n ≡ rij + ki − 2n ≡ 0 (mod pl+T
ij ).

Thus

pl+T
ij |2n−bij − 1.

By Lemma 2 we have n − bij = mijp
T
ijvij for some integer vij . By

qij | 2pT
ij − 1,

we have

qij |2n−bij − 1.

That is,

qij |2n − 2bij .

Hence

M + ki − 2n ≡ 2bij − ki + ki − 2n ≡ 2bij − 2n ≡ 0 (mod qij).

Thus qij |Kij and then M + ki − 2n has at least two distinct prime factors. This
completes the proof of Theorem 1. �
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Proof of Theorem 2. Let k1 = 0, k2 = −2, k3 = −4, k4 = −6 and k5 = −8. Take

{a1j (mod m1j)}8
j=1= {0 (mod2), 3 (mod 4), 5 (mod 8),

9 (mod16), 17 (mod32), 33 (mod64),

1 (mod128), 65 (mod128)},
{a2j (mod m2j)}7

j=1= {1 (mod2), 0 (mod 4), 6 (mod 8),

10 (mod16), 18 (mod32), 34 (mod64),

2 (mod64)},
{a3j (mod m3j)}26

j=1= {0 (mod3), 2 (mod 4), 3 (mod 5),

1 (mod10), 4 (mod 12), 2 (mod 15),

1 (mod18), 7 (mod 20), 8 (mod 24),

19 (mod25), 24 (mod25), 11 (mod36),

23 (mod36), 25 (mod40), 25 (mod45),

40 (mod45), 20 (mod48), 44 (mod48),

9 (mod50), 39 (mod50), 37 (mod60),

35 (mod72), 4 (mod 75), 5 (mod 120),

29 (mod150), 215 (mod360)},
{a4j (mod m4j)}9

j=1= {0 (mod2), 1 (mod 4), 7 (mod 8),

11 (mod16), 19 (mod32), 35 (mod64),

67 (mod128), 3 (mod256), 131 (mod256)}
{a5j (mod m5j)}13

j=1= {1 (mod2), 2 (mod 3), 2 (mod 5),

4 (mod9), 6 (mod 10), 6 (mod 12),

10 (mod18), 0 (mod 20), 24 (mod30),

34 (mod36), 48 (mod60), 34 (mod90)

88 (mod180)}.

Noting that {aj (mod mj)}k
j=1 is a covering system if and only if for every integer

n with 0 ≤ n < l.c.m. {m1, . . . , mk} there exists a j with n ≡ aj (mod mj),
we can verify that {a1j (mod m1j)}8

j=1, {a2j (mod m2j)}7
j=1, {a3j (mod m3j)}26

j=1,
{a4j (mod m4j)}9

j=1 and {a5j (mod m5j)}13
j=1 are all covering systems. Now, for

every aij (mod mij) we appoint a prime pij such that mij is the order of 2 (mod pij)
and if pij = puv, then

(4) 2aij − ki ≡ 2auv − ku (mod pij).

Case 1. Let p11 = p21 = p41 = p51 = 3. Then

20 − 0 ≡ 21 − (−2) ≡ 20 − (−6) ≡ 21 − (−8) (mod3).

Case 2. Let p12 = p22 = p32 = p42 = 5. Then

23 − 0 ≡ 20 − (−2) ≡ 22 − (−4) ≡ 21 − (−6) (mod5).
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Case 3. Let

p13 = p23 = p43 = 17, p14 = p24 = p44 = 257,

p15 = p25 = p45 = 65537, p16 = p26 = p46 = 641, p27 = 6700417.

Note that both Fermat numbers F6 and F7 are composite, let p18 = p47, p17 be two
distinct prime divisors of 264 + 1, and let p48, p49 be two distinct prime divisors of
2128 + 1. Then (4) follows from the following fact:

22k+1 − 0 ≡ 22k+2 − (−2) ≡ 22k+3 − (−6) (mod 22k

+ 1).

Case 4. Let

p31 = p52 = 7, p33 = p53 = 31,

p34 = p55 = 11, p35 = p56 = 13,

p37 = p57 = 19, p38 = p58 = 41,

p3(12) = p5(10) = 109, p3(13) = 37.

Then

20 − (−4) ≡ 22 − (−8) (mod 7), 23 − (−4) ≡ 22 − (−8) (mod 31),

21 − (−4) ≡ 26 − (−8) (mod 11), 24 − (−4) ≡ 26 − (−8) (mod 13),

21 − (−4) ≡ 210 − (−8) (mod 19), 27 − (−4) ≡ 20 − (−8) (mod 41),

211 − (−4) ≡ 234 − (−8) (mod 109).

Case 5. Each of 25, 45, 48, 50, 60 is the order of 2 modulus two distinct primes.
These primes are 601, 1801; 631, 23311; 97, 673; 251, 4051; 61, 1321, respectively.
If m > 1 and m �= 6, then there exists at least one prime p with m the order
of 2 (mod p) (see [1], [2], [13]). Thus we may appoint a prime pij for each of the
remaining aij (mod mij). Now, Theorem 2 follows from Theorem 1. �
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