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NUMERICAL TREATMENT
OF REALISTIC BOUNDARY CONDITIONS

FOR THE EDDY CURRENT PROBLEM
IN AN ELECTRODE VIA LAGRANGE MULTIPLIERS

ALFREDO BERMÚDEZ, RODOLFO RODRÍGUEZ, AND PILAR SALGADO

Abstract. This paper deals with the finite element solution of the eddy cur-
rent problem in a bounded conducting domain, crossed by an electric current
and subject to boundary conditions appropriate from a physical point of view.
Two different cases are considered depending on the boundary data: input cur-
rent density flux or input current intensities. The analysis of the former is an
intermediate step for the latter, which is more realistic in actual applications.
Weak formulations in terms of the magnetic field are studied, the boundary
conditions being imposed by means of appropriate Lagrange multipliers. The
resulting mixed formulations are analyzed depending on the regularity of the
boundary data. Finite element methods are introduced in each case and error
estimates are proved. Finally, some numerical results to assess the effectiveness
of the methods are reported.

1. Introduction

The aim of this paper is to analyze finite element methods to solve the eddy
current problem in a conducting bounded domain. In particular, we consider the
case of an electrode crossed by an alternating current and subject to boundary con-
ditions which are non-standard, but realistic from the point of view of applications.

Numerical solution of the eddy current model became an important research
area in recent years because of many applications in electrical engineering (see for
instance [10] and references therein). In particular, the present work is motivated
by the need of a three-dimensional model to study the behavior of the electrodes
in a metallurgical electric furnace. A considerable number of mathematical models
and computer codes have been designed for this purpose, but in most cases they are
based on cylindrical symmetry (see for instance [5, 6, 16]). All of these models give
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valuable information on important electrode parameters; however, the axisymmet-
ric assumption makes it necessary to neglect aspects such as the electromagnetic
effect caused on one electrode by the others (the so-called “proximity effect”) or
the phase-difference of the input electric current in the electrode.

A finite element method to solve the eddy current problem in the whole furnace
is studied in [7]. In this case, the computational bounded three-dimensional domain
includes not only conductors (the electrodes) but dielectrics as well (the air). This
leads to the use of a scalar magnetic potential and Lagrange multipliers. However,
the model presented in that paper is highly complex and its numerical solution takes
a lot of computer time. This is why it is useful to have simpler models to describe
separate components of the whole system. In the present work, we solve the eddy
current model in a domain which includes only one electrode (see Figure 1 in the
next section). Thus, we get an important saving in computational effort while still
being able to take into account important three-dimensional aspects, although not
the presence of the two other electrodes.

While several papers deal with the eddy current problem in the whole space
(see for instance [9, 12, 15, 17, 18]), the number of papers concerning analysis in a
bounded domain is much smaller, due in part to the difficulty of handling realistic
boundary conditions. Essential and natural boundary conditions related to the
tangential component of the electric and magnetic fields are considered in [2], [7],
and [1]. However, these conditions are not directly related to the physical data
which, in the case of an electrode, usually reduces to the input current intensity on
the boundary of the conducting domain.

To our knowledge, a description of more general boundary conditions can be
found only in [11]. However, the main goal of that paper is concerned with topo-
logical aspects of the domain and with the introduction of elements of homology to
correctly define these boundary conditions, but not with the mathematical study
of corresponding variational formulations and their discretization.

In the present paper, we propose and analyze finite element methods to solve
the eddy current model in a conducting bounded domain, including boundary con-
ditions appropriate from a physical point of view. In particular, we consider a
formulation in terms of the magnetic field and impose boundary conditions related
either to the current density flux or to the current intensities entering the
conducting domain.

Our main goal is to analyze and solve the last case, because current intensities
are usually the only known data in real problems. However, we consider first the
eddy current problem with current density flux as boundary data, since this allows
us to present the results in a simpler form. Nevertheless, the analysis of this case
can be of interest on its own, for instance in coupled problems where the current
density flux is the output of other computations.

To impose the different boundary conditions, we introduce Lagrange multipliers
and study the resulting mixed formulations. Concerning the discretizations of the
problems, the magnetic field is approximated by Nédélec edge finite elements, while
the Lagrange multipliers are in principle discretized by continuous piecewise linear
functions.

We also prove that the Lagrange multiplier is a physically relevant field: an
electric surface potential defined on the boundary of the conducting domain. This
is why it turns out to be interesting to obtain error estimates for this magnitude,
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too. To this aim, we consider an alternative discretization of the Lagrange multiplier
by piecewise constant functions, valid under a further mild regularity assumption
on the current density flux.

The outline of the paper is as follows. In Section 2, we recall the eddy current
model and define two sets of boundary conditions under which the electromagnetic
problem is well posed. Section 3 is devoted to obtaining weak formulations by using
the input current density flux as boundary data and to proving the existence and
uniqueness of the solution. Then, in Section 4, we analyze the problem when the
boundary data reduces to the input current intensity. Numerical discretizations
of these problems are described in Section 5 where error estimates are obtained
under mild regularity assumption on the solution. Finally, in Section 6, we report
numerical results for a test problem with known analytical solution which allow us
to assess the performance of the methods.

Some of the results of this paper have been announced in reference [8].

2. The eddy current problem

Eddy currents are usually modeled by the low-frequency harmonic Maxwell equa-
tions. We are interested in solving the problem in a bounded conducting domain
Ω (the electrode) crossed by an alternating electric current of angular frequency ω.
In this case the model reduces to

curl H = J in Ω,(2.1)
iωµH + curl E = 0 in Ω,(2.2)

J = σE in Ω,(2.3)

where H, E and J are the complex amplitudes of the magnetic field, electric field
and current density, respectively (see for instance [10]). Throughout the paper, we
use boldface letters to denote vector fields and variables, as well as vector-valued
operators.

The coefficients µ and σ are the magnetic permeability and the electric conduc-
tivity, respectively. We assume that µ, σ ∈ L∞(Ω), and that there exist constants
µ and σ such that

µ(x) ≥ µ > 0 and σ(x) ≥ σ > 0, a.e. in Ω.

The three-dimensional domain Ω is assumed to be simply connected with a
Lipschitz-continuous and connected boundary ∂Ω. This boundary splits into two
surfaces of non-zero two-dimensional measure, Γ

E
and Γ

J
: ∂Ω = Γ̄

E
∪ Γ̄

J
. The (open)

surface Γ
E

corresponds to the tip of the electrode where the electric arc arises; we
assume ΓE is connected. The rest of the electrode boundary splits in its turn as
follows: Γ̄

J
= Γ̄0

J
∪ Γ̄1

J
∪· · ·∪ Γ̄N

J
, where Γn

J
, n = 1, . . . , N , are the (open) parts of the

boundary connected to the wires supplying electric current to the electrode, and
Γ0

J
= Γ

J
\ (Γ̄1

J
∪ · · · ∪ Γ̄N

J
) is the remaining. Finally, we also assume that Γ̄n

J
∩ Γ̄

E
= ∅

and Γ̄n
J
∩ Γ̄m

J
= ∅, m,n = 1, . . . , N , m 6= n (see Figure 1).

Maxwell equations (2.1)–(2.3) concern the whole space, but we are only interested
in a bounded conducting domain. To avoid dealing with the whole R3, it is necessary
to use an alternative approach and define suitable boundary conditions. In fact,
this need represents the main difficulty in solving the problem in a bounded domain.
From a mathematical point of view, the essential and natural boundary conditions
for the weak formulation written in terms of the magnetic field consist of giving
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Figure 1. Sketch of an electrode

H × n and E × n, respectively, n being the outward unit normal vector to the
boundary. Both are easy to handle from mathematical and computational points
of view. However they are not so easy to obtain from the physical data which
usually reduces to the input current intensities. Then, following Bossavit [11], we
consider the following boundary conditions:

E× n = 0 on Γ
E
,(2.4) ∫

Γn
J

curl H · n = In, n = 1, . . . , N,(2.5)

E× n = 0 on Γn
J
, n = 1, . . . , N,(2.6)

curl H · n = 0 on Γ0
J
,(2.7)

µH · n = 0 on ∂Ω,(2.8)

where the only data In, n = 1, . . . , N , are the current intensities through each wire.
Condition (2.4) is the natural one to model the current free exit on the electrode

tip. Conditions (2.5) and (2.7) account for the input intensities and the fact that
there is no current flux through Γ0

J
, respectively. Conditions (2.6) and (2.8) have

been proposed by Bossavit in [11] in a more general setting. They will appear as
natural boundary conditions of our weak formulation of the problem. The former
implies the assumption that the electric current is normal to the surface on the
current entrance, whereas the latter means that the magnetic field is tangential to
the conductor surface. Of course, condition (2.8) is not always fulfilled, but is a
good approximation of the physical one in the case motivating this study.

The model described above restricts the Maxwell equations to a conducting
bounded domain and neglects the electromagnetic effects outside. To take into
account this effect, one could employ, for instance, the three-dimensional model
presented in [7]. However, as mentioned above, that model is much more expensive
from a computational point of view.

As a first step toward the analysis of problem (2.1)–(2.8) we consider another
related problem. It corresponds to the following boundary conditions:

E× n = 0 on ΓE,(2.9)
curl H · n = g on Γ

J
,(2.10)

µH · n = 0 on ∂Ω,(2.11)
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where g is a given function which is only non-zero on those parts of the boundary
supporting input currents; i.e., g = 0 on Γ0

J
. Notice that g corresponds to the input

current density flux through Γ
J
, which is usually unknown on Γn

J
, for n = 1, . . . , N .

Thus, this problem is less interesting from the practical point of view.
Throughout the paper all function spaces will be complex-valued. We use stan-

dard notation for Sobolev spaces and norms. Moreover, we recall the following
definitions:

H(div,Ω) :=
{
G ∈ L2(Ω)3 : div G ∈ L2(Ω)

}
,

H(curl,Ω) :=
{
G ∈ L2(Ω)3 : curl G ∈ L2(Ω)3

}
,

and, for each positive real number r,

Hr(curl,Ω) :=
{
G ∈ Hr(Ω)3 : curl G ∈ Hr(Ω)3

}
,

each one of these spaces endowed with its natural norm, e.g., ‖G‖2Hr(curl,Ω) =
‖G‖2Hr(Ω)3 + ‖ curl G‖2Hr(Ω)3 .

Let H1/2(∂Ω) be the space of traces of functions in H1(Ω), H−1/2(∂Ω) its dual
space, and 〈·, ·〉∂Ω the corresponding duality pairing. Let

H1
Γ
E
(Ω) :=

{
v ∈ H1(Ω) : v|Γ

E
= 0
}
.

Let H1/2
00 (ΓJ) be the space of functions defined on ΓJ that extended by 0 to ∂Ω \ ΓJ

belong to H1/2(∂Ω). Notice that H1/2
00 (Γ

J
) can also be seen as the space of traces on

Γ
J

of functions in H1
Γ
E
(Ω). Let H−1/2

00 (Γ
J
) be the dual space of H1/2

00 (Γ
J
) and 〈·, ·〉Γ

J

the corresponding duality pairing.
We end this section by proving the following lemma, which will be used sev-

eral times in the sequel. Here and thereafter, C denotes a generic constant, not
necessarily the same at each occurrence.

Lemma 2.1. Given q ∈ H−1/2
00 (ΓJ), ∃G ∈ H(curl,Ω) ∩H(div,Ω) such that

div G = 0 in Ω,(2.12)
G · n = 0 on ∂Ω,(2.13)

curl G · n = q in H−1/2
00 (Γ

J
),(2.14)

and the following estimate holds true with a constant C independent of q:

(2.15) ‖G‖H(curl,Ω) ≤ C‖q‖H−1/2
00 (Γ

J
)
.

Consequently, if Ω is a Lipschitz polyhedron, then ∃r ∈ (1
2 , 1] such that G ∈

Hr(Ω)3 and

(2.16) ‖G‖Hr(Ω)3 ≤ C‖q‖H−1/2
00 (Γ

J
)
.

Furthermore, if q ∈ L2(Γ
J
), then ∃s > 0 such that curl G ∈ Hs(Ω)3 and

(2.17) ‖ curl G‖Hs(Ω)3 ≤ C‖q‖L2(Γ
J
).

In both estimates, the constants C are also independent of q.

Proof. Let u ∈ H1
Γ
E
(Ω) be the unique solution of∫

Ω

∇u · ∇v̄ = 〈q, v〉Γ
J

∀v ∈ H1
Γ
E
(Ω).
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Then,

∆u = 0 in Ω,
∂u

∂n
= q in H−1/2

00 (Γ
J
), and ‖∇u‖L2(Ω) ≤ C‖q‖H−1/2

00 (Γ
J
)
.

Since div(∇u) = 0 and ∂Ω is connected, we know from Theorem 3.12 of [4] that
there exists a vector field G ∈ H(curl,Ω) ∩ H(div,Ω) satisfying (2.12) and (2.13)
and such that ∇u = curl G. Then (2.14) holds true. Moreover, Corollary 3.16 of
the same reference [4] yields ‖G‖H(curl,Ω) ≤ C‖∇u‖L2(Ω) and, consequently, (2.15)
holds true, too.

Now, if Ω is a Lipschitz polyhedron, estimate (2.16) is a consequence of Propo-
sition 3.7 of [4]. Finally, if q ∈ L2(Γ

J
), from a classical a priori estimate (see [13]),

we know that curl G = ∇u ∈ Hs(Ω)3 for some s > 0 and (2.17) holds true. �

3. Analysis of the eddy current problem

with input current density flux as boundary data

In this section we consider problem (2.1)–(2.3) with the boundary conditions
(2.9)–(2.11). First we obtain a weak formulation of this problem in terms of the
magnetic field.

Let us consider a smooth test function G such that curl G · n = 0 on Γ
J
. From

(2.2) we have

(3.1) iω
∫

Ω

µH · Ḡ +
∫

Ω

curl E · Ḡ = 0.

By formal calculations, the boundary condition (2.11) implies that the tangential
component of the electric field E is a gradient. Indeed, by integrating iωµH · n on
any surface S contained in ∂Ω and using (2.11), (2.2), and Stokes’ Theorem, we
obtain

0 = iω
∫
S

µH · n = −
∫
S

curl E · n = −
∫
∂S

E · t = −
∫
∂S

n× (E× n) · t,

with t being a unit vector tangent to ∂S. Therefore, since ∂Ω is simply connected,
we can assert that there exists a surface potential, defined up to a constant. More
precisely, there exists a sufficiently smooth scalar function φ defined in Ω, such that
E × n = ∇φ × n on ∂Ω. On the other hand, since Γ

E
is connected, (2.9) implies

that φ must be constant on Γ
E
; moreover, φ can be chosen null on Γ

E
. Then, we

can transform the second term of (3.1) by using Green’s formulas as follows:∫
Ω

curl E · Ḡ =
∫

Ω

E · curl Ḡ−
∫
∂Ω

E× n · Ḡ

=
∫

Ω

E · curl Ḡ−
∫
∂Ω

∇φ × n · Ḡ =
∫

Ω

E · curl Ḡ +
∫

Ω

curl Ḡ · ∇φ

=
∫

Ω

E · curl Ḡ +
∫
∂Ω

φ curl Ḡ · n =
∫

Ω

E · curl Ḡ,

where we have used that curl G · n = 0 on Γ
J

and φ = 0 on Γ
E

in the last equality.
Now, by substituting this expression in (3.1), we obtain,

iω
∫

Ω

µH · Ḡ +
∫

Ω

E · curl Ḡ = 0.
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On the other hand, equations (2.1) and (2.3) lead to E = 1
σ curl H, which allows

us to eliminate E in the above equation. Thus, we finally have that

iω
∫

Ω

µH · Ḡ +
∫

Ω

1
σ

curl H · curl Ḡ = 0,

for all G ∈ H(curl,Ω) such that curl G · n = 0 on Γ
J
.

In what follows we will obtain and analyze two different weak formulations,
depending on the regularity of the boundary data g.

3.1. Analysis without further assumptions. We start considering boundary
data g = curl H ·n belonging to H−1/2

00 (Γ
J
), which corresponds to the more general

setting since curl H ∈ H(div,Ω).
Let us denote for brevity X := H(curl,Ω), and consider the following linear

manifold of X ,

V(g) :=
{

G ∈ X : curl G · n = g in H−1/2
00 (Γ

J
)
}
,

with its associated subspace

V(0) = {G ∈ X : curl G · n = 0 on Γ
J
} .

Let a : X ×X −→ C be the sesquilinear continuous form defined by

a(H,G) := iω
∫

Ω

µH · Ḡ +
∫

Ω

1
σ

curl H · curl Ḡ.

This form is clearly X -elliptic; namely, ∃α > 0 such that

(3.2) |a (G,G)| ≥ α‖G‖2X ∀G ∈ X .
Now we introduce the following problem:

Problem 3.1. Given g ∈ H−1/2
00 (Γ

J
), find Hg ∈ V(g) such that

a(Hg,G) = 0 ∀G ∈ V(0).

The following existence result is easily deduced:

Theorem 3.2. Given g ∈ H−1/2
00 (Γ

J
), Problem 3.1 has a unique solution Hg.

Proof. The result follows from the fact that a is elliptic in X , so in particular in
V(0), and that V(g) is a non-empty closed linear manifold of X , which in its turn
is a consequence of Lemma 2.1. �

A mixed formulation of Problem 3.1 may be used to avoid dealing with functions
that satisfy the constraints associated with V(g) and V(0). It consists of handling
the boundary condition (2.10) in a weak sense by introducing a Lagrange multiplier
defined on the boundary Γ

J
.

Let us denote M := H1/2
00 (Γ

J
) and b the sesquilinear form defined in X ×M by

b(G, ν) := 〈curl G · n, ν〉Γ
J
.

The mixed problem associated with Problem 3.1 is the following:

Problem 3.3. Given g ∈ H−1/2
00 (Γ

J
), find Hg ∈ X and λg ∈M such that

a(Hg,G) + b(Ḡ, λg) = 0 ∀G ∈ X ,(3.3)
b(Hg, ν) = 〈g, ν〉Γ

J
∀ν ∈ M.(3.4)
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The classical Babuška-Brezzi theory can be applied to prove that this problem
is well posed.

Theorem 3.4. Given g ∈ H−1/2
00 (Γ

J
), let Hg ∈ X be the solution of Problem 3.1.

Then, there exists a unique λg ∈ M such that (Hg, λg) is the only solution of
Problem 3.3. Furthermore, the following continuous dependence result holds:

‖Hg‖X + ‖λg‖M ≤ C‖g‖H−1/2
00 (Γ

J
)
.

Proof. Since the forms a and b are clearly continuous on their respective domains
and a is X -elliptic, we only have to prove that b satisfies an inf-sup condition (see
for instance Corollary I.4.1 of [14]). More precisely, we are going to prove that there
exists β > 0 such that

(3.5) sup
G∈X

|b(G, ν)|
‖G‖X

≥ β‖ν‖M ∀ν ∈M.

Since M = H1/2
00 (Γ

J
) is a Hilbert space, ∀ν ∈M we can write

‖ν‖M = sup
q∈H

−1/2
00 (Γ

J
)

∣∣∣〈q, ν〉Γ
J

∣∣∣
‖q‖

H
−1/2
00 (Γ

J
)

.

According to Lemma 2.1, ∀q ∈ H−1/2
00 (Γ

J
), ∃G̃ ∈ X such that curl G̃ · n = q in

H−1/2
00 (Γ

J
) and ‖G̃‖X ≤ C‖q‖H−1/2

00 (Γ
J
)
. Then

∣∣∣〈q, ν〉Γ
J

∣∣∣
‖q‖

H
−1/2
00 (Γ

J
)

≤ C

∣∣∣∣〈curl G̃ · n, ν
〉

Γ
J

∣∣∣∣
‖G̃‖X

≤ C sup
G∈X

∣∣∣〈curl G · n, ν〉Γ
J

∣∣∣
‖G‖X

.

Thus, the inf-sup condition holds with β = 1
C . �

Notice that once the magnetic field Hg is obtained, the corresponding current
density Jg and electric field Eg can be readily computed in the domain Ω by means
of equations (2.1 and (2.3), respectively. These are the magnitudes actually needed
in most applications. In the following theorem we show that the solution of Problem
3.3 satisfies the Maxwell equations (2.1)–(2.3) and the boundary conditions (2.9)–
(2.11) in a suitable sense.

Theorem 3.5. Given g ∈ H−1/2
00 (Γ

J
), let Hg ∈ X and λg ∈ M be the solution

of Problem 3.3. Let λ∗g be a lifting of λg to Ω such that λ∗g ∈ H1
Γ
E
(Ω). Let Jg :=

curl Hg ∈ L2(Ω)3 and Eg := 1
σJg ∈ L2(Ω)3. Then, the following equalities hold

true:

iωµHg + curl Eg = 0 in Ω,(3.6)
µHg · n = 0 on ∂Ω,(3.7)

curl Hg · n = g in H−1/2
00 (Γ

J
).(3.8)

Eg × n = −∇λ̄∗g × n in H−1/2(∂Ω)3.(3.9)

In particular,

Eg × n = 0 on Γ
E
.(3.10)
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Proof. Let G ∈ D(Ω)3. Then G ∈ X and (3.3) yields

iω
∫

Ω

µHg · Ḡ +
∫

Ω

1
σ

curl Hg · curl Ḡ = 0.

Hence Eg = 1
σJg = 1

σ curl Hg ∈ H(curl,Ω) and (3.6) holds true.
Condition (3.8) is directly deduced from (3.4), where this boundary condition is

imposed in a variational form.
To prove equation (3.9), given φ ∈ H1/2(∂Ω)3, we are going to show that

〈Eg × n,φ〉∂Ω = −
〈
∇λ̄∗g × n,φ

〉
∂Ω

. To this aim, let G ∈ H1(Ω)3 be such that
G|∂Ω = φ. Then G ∈ X and (3.3) yields

0 = iω
∫

Ω

µHg · Ḡ +
∫

Ω

Eg · curl Ḡ +
〈
curl Ḡ · n, λg

〉
Γ
J

= iω
∫

Ω

µHg · Ḡ +
∫

Ω

Eg · curl Ḡ +
〈
curl Ḡ · n, λ∗g|∂Ω

〉
∂Ω

= iω
∫

Ω

µHg · Ḡ +
∫

Ω

curl Eg · Ḡ + 〈Eg × n,G|∂Ω〉∂Ω +
∫

Ω

curl Ḡ · ∇λ̄∗g

= 〈Eg × n,φ〉∂Ω +
〈
∇λ̄∗g × n,φ

〉
∂Ω
,

where we have used that Eg = 1
σ curl Hg in Ω, Green’s formulas, and (3.6).

Finally, to prove (3.7), notice that µHg ∈ H(div,Ω) because of (3.6). Then,
µHg · n ∈ H−1/2(∂Ω) and given ψ ∈ C∞(Ω̄) we have

iω〈µHg · n, ψ〉∂Ω = −〈curl Eg · n, ψ〉∂Ω = −
∫

Ω

curl Eg · ∇ψ̄

= −
〈
∇λ̄∗g × n,∇ψ

〉
∂Ω

= −
∫

Ω

curl(∇λ̄∗g) · ∇ψ̄ = 0,

where we have used (3.6), (3.9), and Green’s formulas. �

The following direct consequence of this theorem, which will be used several
times in Section 5 below, shows that a smoothness assumption on the magnetic
field Hg implies further smoothness of the Lagrange multiplier λg too.

Corollary 3.6. Let Γ be a smooth piece of Γ
J

such that σ|Γ is also smooth (e.g.,
C2). If Hg ∈ Hr(curl,Ω) with 1/2 < r ≤ 1, then λg|Γ ∈ Hr+1/2(Γ) and

(3.11) ‖λg‖Hr+1/2(Γ) ≤ C‖Hg‖Hr(curl,Ω).

Proof. As shown in the proof of Theorem 3.4, b satisfies the inf-sup condition
(3.5). Then, from equation (3.3) and the continuity of a we have that ‖λg‖M ≤(
‖α‖X×X /β

)
‖Hg‖X . Hence ‖λg‖L2(Γ

J
) ≤ C ‖Hg‖H(curl,Ω).

On the other hand, since curl Hg ∈ Hr(Ω)3, because of the standard trace
theorem, curl Hg|Γ ∈ Hr−1/2(Γ)3. Then, since Γ and σ|Γ ≥ σ > 0 are assumed to
be smooth, we have

−∇λ̄∗g|Γ × n = Eg|Γ × n =
1
σ

curl Hg|Γ × n ∈ Hr−1/2(Γ)3.

Hence, the surface gradient of λg on Γ, ∇Γλg := n×
(
∇λ̄∗g|Γ × n

)
, satisfies ∇Γλg ∈

Hr−1/2(Γ)3 too, and ‖∇Γλg‖Hr−1/2(Γ) ≤ C ‖Hg‖Hr(curl,Ω). Thus, we conclude the
proof. �
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Problem 3.3 can be discretized by using Nédélec edge finite elements for the mag-
netic field Hg and piecewise linear continuous elements for the Lagrange multiplier
λg. The resulting discrete problem and its convergence properties are studied in
detail in Section 5.1.

However, at this point, it is important to remark that if the boundary data
g were more regular, it would be possible to use piecewise constant functions to
approximate the Lagrange multiplier λg. For instance, this is true if g ∈ L2(Γ

J
),

which is quite a realistic assumption. Before studying this possibility at a discrete
level, we deal with the corresponding continuous problem in what follows.

3.2. Analysis for input current density flux in L2(Γ
J
). In this section we study

problem (2.1)–(2.3) with the boundary conditions (2.9)–(2.11) in the case that the
boundary data g ∈ L2(Γ

J
). To this goal we follow a scheme similar to that of the

previous section.
Let X̃ be the subspace of X defined by

X̃ :=
{

G ∈ H(curl,Ω) : curl G · n|Γ
J
∈ L2(Γ

J
)
}
,

which is a Hilbert space when equipped with the norm

‖G‖X̃ :=
[
‖G‖2H(curl,Ω) + ‖ curl G · n‖2L2(Γ

J
)

]1/2

.

Consider the following linear manifold of X̃ :

Ṽ(g) :=
{

G ∈ X̃ : curl G · n = g on Γ
J

}
,

and its associated subspace Ṽ(0), which coincides with V(0). We introduce the
following problem:

Problem 3.7. Given g ∈ L2(ΓJ), find Hg ∈ Ṽ(g) such that

a(Hg,G) = 0 ∀G ∈ Ṽ(0).

An existence result for Problem 3.7 is easily deduced:

Theorem 3.8. Given g ∈ L2(Γ
J
), Problem 3.7 has a unique solution Hg.

Proof. The result follows from the fact that a is X̃ -elliptic in Ṽ(0) and that Ṽ(g)
is a non-empty closed linear manifold of H(curl,Ω), which is again a consequence
of Lemma 2.1. �

We consider again a mixed problem to handle the constraints involved in Ṽ(g)
and Ṽ(0). Let M̃ := L2(Γ

J
). Notice that if (G, ν) ∈ X̃ × M̃, then

b(G, ν) =
∫

Γ
J

curl G · n ν̄.

The mixed problem associated with Problem 3.7 reads as follows:

Problem 3.9. Given g ∈ L2(Γ
J
), find Hg ∈ X̃ and λg ∈ M̃ such that

a(Hg,G) + b(Ḡ, λg) = 0 ∀G ∈ X̃ ,

b(Hg, ν) =
∫

Γ
J

gν̄ ∀ν ∈ M̃.
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We apply again the classical Babuška-Brezzi theory to prove that this problem
is well posed.

Theorem 3.10. Given g ∈ L2(Γ
J
), let Hg ∈ X̃ be the solution of Problem 3.7.

Then there exists a unique λg ∈ M̃ such that (Hg, λg) is the only solution of
Problem 3.9. Furthermore, the following continuous dependence result holds:

‖Hg‖X̃ + ‖λg‖M̃ ≤ C‖g‖L2(Γ
J
).

Proof. Since a and b are clearly continuous on their respective domains and a is X̃ -
elliptic in Ṽ(0), we only have to prove that b satisfies the following inf-sup condition
(see for instance Corollary I.4.1 of [14] again):

sup
G∈X̃

|b(G, ν)|
‖G‖X̃

≥ β̃‖ν‖M̃ ∀ν ∈ M̃.

To prove this, given ν ∈ M̃, let G̃ ∈ X be the vector field associated with q = ν

by Lemma 2.1. Because of (2.14), G̃ ∈ X̃ ; moreover, ‖G̃‖X̃ ≤ C‖ν‖M̃ because of
(2.15). Hence,

sup
G∈X̃

|b(G, ν)|
‖G‖X̃

≥

∣∣∣∣∣
∫

Γ
J

curl G̃ · n ν̄

∣∣∣∣∣
‖G̃‖X̃

≥

∫
Γ
J

|ν|2

C‖ν‖L2(Γ
J
)

=
1
C
‖ν‖L2(Γ

J
),

which allows us to conclude the proof by taking β̃ = 1
C . �

Remark 3.11. If g ∈ L2(ΓJ), the solution of Problem 3.3 is also a solution of Problem
3.9, becauseM is dense in M̃. This is the reason why we use the same notation for
the solutions of both problems. So we could deduce the existence of the solution
of Problem 3.9 from Theorem 3.4. However this is not the case for uniqueness and
this is the reason why we have proved Theorem 3.10. Consequently, the solution of
Problem 3.9 also satisfies Theorem 3.5 and Corollary 3.6.

4. Analysis of the eddy current problem

with input current intensities as boundary data

We address now our main goal: to solve the eddy current model with the bound-
ary conditions (2.4)–(2.8). We introduce weak formulations related to these bound-
ary conditions and use the results obtained in the previous section for Problems 3.3
and 3.9 as tools for our analysis.

We study again two different cases according to the regularity of the correspond-
ing current density flux through Γ

J
.

4.1. Analysis without further assumptions. Given (complex) input intensities
I1, . . . , IN through each wire, let us denote I := (I1, . . . , IN ) ∈ CN and I ∈ L2(Γ

J
)

the function defined by

I :=


In

meas
(
Γn

J

) on Γn
J
, n = 1, . . . , N,

0 on Γ0
J
.

Let L be the following closed subspace of M (recall that M = H1/2
00 (Γ

J
)):

L :=
{
ν ∈ H1/2

00 (Γ
J
) : ν|Γn

J
= constant, n = 1, . . . , N

}
.
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Consider the following closed linear manifold of X ,

W(I) :=

{
G ∈ X : 〈curl G · n, ν〉Γ

J
=
∫

Γ
J

Iν̄ ∀ν ∈ L
}
,

and its associated subspace

W(0) =
{

G ∈ X : 〈curl G · n, ν〉Γ
J

= 0 ∀ν ∈ L
}
.

We introduce the following problem:

Problem 4.1. Given I ∈ CN , find HI ∈W(I) such that

a(HI,G) = 0 ∀G ∈W(0).

Theorem 4.2. Given I ∈ CN , Problem 4.1 has a unique solution HI.

Proof. The result is an immediate consequence of the fact that a is X -elliptic
andW(I) is a non-empty closed linear manifold. Notice that W(I) is non-empty
because W(I) ⊃ V(I), and we have already proved that V(g) is non-empty ∀g ∈
L2(Γ

J
). �

We consider a mixed problem for handling the constraints in W(I) and W(0)
in a way similar to how we did in the previous sections:

Problem 4.3. Given I ∈ CN , find HI ∈ X and λI ∈ L such that

a(HI,G) + b(Ḡ, λI) = 0 ∀G ∈ X ,(4.1)

b(HI, ν) =
∫

Γ
J

Iν̄ ∀ν ∈ L.(4.2)

Theorem 4.4. Given I ∈ CN , let HI ∈ X be the solution of Problem 4.1. Then
there exists a unique λI ∈ L such that (HI, λI) is the only solution of Problem 4.3.
Furthermore, the following estimate holds:

‖HI‖X + ‖λI‖M ≤ C |I| .

Proof. The existence and uniqueness results are immediate consequences of the
facts that a is X -elliptic and that the corresponding inf-sup condition for b holds
true inM (and a fortiori in L ⊂M) as shown in the proof of Theorem 3.4 (see for
instance Corollary I.4.1 of [14] once more). Moreover,

‖HI‖X + ‖λI‖M ≤ C sup
ν∈L

∣∣∣∫Γ
J
Iν̄
∣∣∣

‖ν‖M
≤ C‖I‖L2(Γ

J
) ≤ C |I| .

Thus, we conclude the proof. �

Remark 4.5. The arguments in the proof of Theorem 3.5 apply to the solution
HI ∈ X and λI ∈ L of Problem 4.3, yielding equations analogous to (3.6)–(3.10),
except for (3.8). Instead of this, HI satisfies in this case 〈curl HI · n, ν〉Γ

J
=
∫

Γ
J
Iν̄

∀ν ∈ L. This equation implies the boundary condition (2.7):

curl HI · n = 0 on Γ0
J
.

Moreover, for n = 1, . . . , N , 〈curl HI · n, 1〉Γn
J

is well defined. Indeed, let νn ∈ L
be any function such that νn = 1 on Γn

J
and νn = 0 on Γm

J
for m 6= n. (Notice

that such νn exists because of the assumption Γ̄n
J
∩ Γ̄m

J
= ∅, m 6= n.) Then,
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〈curl HI · n, 1〉Γn
J

:= 〈curl HI · n, νn〉Γ
J

is well defined, since the latter does not
depend on the particular chosen function νn, because of (2.7). Furthermore, (4.2)
leads to the following form of the boundary condition (2.5):

〈curl HI · n, 1〉Γn
J

= In, n = 1, . . . , N.

On the other hand, taking into account that the Lagrange multiplier λI is constant
on each Γn

J
, n = 1, . . . , N , we deduce from (3.9) that EI = 1

σ curl HI satisfies the
boundary condition (2.6):

EI × n = 0 on Γn
J
, n = 1, . . . , N.

Finally, the analogue to Corollary 3.6 also holds true: If Γ ⊂ ∂Ω, σ|Γ is smooth,
and HI ∈ Hr(curl,Ω) with 1/2 < r ≤ 1, then λI|Γ ∈ Hr+1/2(Γ) and

(4.3) ‖λI‖Hr+1/2(Γ) ≤ C‖HI‖Hr(curl,Ω).

Problem 4.3 can be discretized by using Nédélec edge finite elements for the mag-
netic field HI and piecewise linear continuous elements which are constant on Γn

J
,

n = 1, . . . , N , for the Lagrange multiplier λI. In a way similar to how we noticed
for Problem 3.3, if the (unknown) input current density flux through Γ

J
satisfies

curl HI · n ∈ L2(Γ
J
), then we can employ piecewise constant functions to approx-

imate the Lagrange multiplier λI. In what follows we present the corresponding
continuous problem in order to study later its discrete approximation.

4.2. Analysis for input current density flux in L2(Γ
J
). In this section we

study the eddy current model with the boundary conditions (2.4)–(2.8) in the case
that the input current density flux through Γ

J
is an L2-function. This amounts to

assuming a bit more of regularity of HI, namely, that curl HI · n ∈ L2(Γ
J
).

Let L̃ be the following closed subspace of M̃ (recall that M̃ = L2(Γ
J
)):

L̃ :=
{
ν ∈ L2(Γ

J
) : ν|Γn

J
= constant, n = 1, . . . , N

}
.

Consider the following closed linear manifold of X̃ ,

W̃(I) :=

{
G ∈ X̃ :

∫
Γ
J

curl G · n ν̄ =
∫

Γ
J

Iν̄ ∀ν ∈ L̃
}
,

and its corresponding associated subspace

W̃(0) =

{
G ∈ X̃ :

∫
Γ
J

curl G · n ν̄ = 0 ∀ν ∈ L̃
}
.

Notice that G ∈ W̃(I) if and only if

G ∈ X̃ , curl G · n = 0 on Γ0
J
, and

∫
Γn
J

curl G · n = In, n = 1, . . . , N.

We introduce the following problem:

Problem 4.6. Given I ∈ CN , find HI ∈ W̃(I) such that

a(HI,G) = 0 ∀G ∈ W̃(0).

In a way similar to how we did in the previous sections, we consider a mixed
problem for handling the constraints of W̃(I) and W̃(0):
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Problem 4.7. Given I ∈ CN , find HI ∈ X̃ and λI ∈ L̃ such that

a(HI,G) + b(Ḡ, λI) = 0 ∀G ∈ X̃ ,(4.4)

b(HI, ν) =
∫

Γ
J

Iν̄ ∀ν ∈ L̃.(4.5)

Although a is not X̃ -elliptic in W̃(0), we are able to prove the following result:

Theorem 4.8. Given I ∈ CN , let us assume that the solution (HI, λI) of Problem
4.3 satisfies curl HI · n ∈ L2(Γ

J
). Then HI is the unique solution of Problem 4.6

and (HI, λI) the only solution of Problem 4.7.

Proof. First HI ∈ X̃ , because curl HI · n ∈ L2(Γ
J
). Since (HI, λI) satisfies (4.1),

λI ∈ L ⊂ L̃, and X̃ ⊂ X , we have that (HI, λI) satisfies (4.4) too. Moreover, as
shown in Remark 4.5, (4.2) implies that curl HI · n = 0 and

∫
Γn
J

curl HI · n = In

for n = 1, . . . , N . Therefore, (4.5) holds true. Thus, we have proved that (HI, λI)
is solution of Problem 4.7.

On the other hand, for any solution (HI, λI) of Problem 4.7, clearly HI is a
solution of Problem 4.6. Moreover, this problem has at most one solution. Indeed,
let HI and H′I be solutions of Problem 4.6. Then HI −H′I ∈ W̃(0) and, hence,
a(HI −H′I,HI −H′I) = 0. Therefore, since a is X -elliptic, HI = H′I.

Thus, any two solutions of Problem 4.7 must have a coinciding magnetic field
HI. Hence, to end the proof, we only need to show that the corresponding Lagrange
multiplier λI is also unique. In fact, the latter is an immediate consequence of the
inf-sup condition that b satisfies in M̃ (and a fortiori in L̃ ⊂ M̃), which has been
shown in the proof of Theorem 3.10. �

Remark 4.9. As shown in the proof of the theorem above, if the solution (HI, λI) of
Problem 4.3 satisfies curl HI · n ∈ L2(Γ

J
), then it satisfies the boundary condition

(2.5): ∫
Γn
J

curl HI · n = In on Γn
J
, n = 1, . . . , N.

Thus, according to Remark 4.5, HI satisfies all the boundary conditions (2.4)–(2.8).

5. Finite element discretization

In this section we introduce discretizations of the different mixed problems intro-
duced above and study their convergence properties. To this goal, we assume that
Ω is a Lipschitz polyhedron and that Γn

J
are polyhedral surfaces for all n = 0, . . . , N .

Consequently, Γ
E

is also a polyhedral surface. We also assume that σ is piecewise
smooth (e.g., C2) on a polyhedral partition of Ω.

We consider a family of shape-regular tetrahedral meshes {Th} of Ω where, as
usual, h denotes the corresponding mesh size. We assume that the meshes are
compatible with the splittings of the domain boundary in the sense that, ∀K ∈ Th
with a face T lying on ∂Ω,

– either T ⊂ Γ̄
E

or T ⊂ Γ̄n
J

for some n = 0, . . . , N , and
– σ|T is smooth.

The magnetic field, which is a function of H(curl,Ω) in all of the problems, is
discretized with lowest-order Nédélec edge finite elements (see [19]). We recall their
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definition. For each tetrahedron K ∈ Th, let

N (K) :=
{
Gh ∈ P1(K)3 : Gh(x) = a× x + b, a,b ∈ C3, x ∈ K

}
.

Then, fields in H(curl,Ω) are approximated in the finite-dimensional space

N h(Ω) := {Gh ∈ H(curl,Ω) : Gh|K ∈ N (K) ∀K ∈ Th} .

Since N h(Ω) ⊂ X̃ too, the main difference between the discretizations of Prob-
lems 3.3, 3.9, 4.3, and 4.7 is the space used to discretize the Lagrange multiplier.

Let ThΓJ be the triangular mesh induced by Th on the polyhedral surface Γ
J

and
consider the following finite-dimensional spaces:

Q1
h(Γ

J
) :=

{
qh ∈ H1

0(Γ
J
) : qh|T ∈ P1(T ) ∀T ∈ ThΓJ

}
,

Q0
h(Γ

J
) :=

{
qh ∈ L2(Γ

J
) : qh|T ∈ P0(T ) ∀T ∈ ThΓJ

}
.

These are, respectively, the spaces of piecewise linear continuous functions (vanish-
ing on the boundary) and piecewise constant functions defined on ThΓJ.

Let Πh : L2(Γ
J
) −→ Q0

h(Γ
J
) be the L2(Γ

J
)-orthogonal projection; that is,

∀f ∈ L2(Γ
J
), Πhf |T =

1
meas(T )

∫
T

f ∀T ∈ ThΓJ.

If G is smooth enough for the boundary integrals below to make sense, its Nédélec
interpolant GN is defined by

GN ∈ N h(Ω) :
∫
`

GN · t` =
∫
`

G · t` ∀` edge of Th,

where t` denotes a unit vector tangent to the edge `. We recall in the following
lemma some properties of this interpolant which has been essentially proved in [4]
and [3].

Lemma 5.1. The Nédélec interpolation operator

C∞(Ω̄)3 −→ N h(Ω)
G 7−→ GN

extends uniquely to the space
{
G ∈ Hr(Ω)3 : curl G ∈ Hs(Ω)3

}
, for any r > 1/2

and s > 0, and the following error estimate holds true:

(5.1) ‖G−GN‖H(curl,Ω) ≤ Chmin{1,r,s}
[
‖G‖Hr(Ω)3 + ‖ curl G‖Hs(Ω)3

]
.

Furthermore, if curl G · n ∈ L2(Γ
J
), then

curl GN · n = Πh(curl G · n) on Γ
J
.

Proof. Let G ∈ Hr(Ω)3, r > 1/2, with curl G ∈ Hs(Ω)3, s > 0. According to the
Sobolev imbedding theorem and a trace theorem, for each K ∈ Th, G|K ∈ Lp(K)3,
curl G|K ∈ Lp(K)3, and G× nK |∂K ∈ Lp(∂K)3, with p > 2 depending on r and
s, and nK being an outer unit normal to ∂K. Then, the extension of the Nédélec
interpolation operator follows by applying Lemma 4.7 of [4].

On the other hand, the arguments in the proof of Proposition 5.6 of [3] combined
with Lemma 5.5 of the same reference yield the error estimate (5.1).

Finally, a density argument, the definition of GN, and Stokes’ Theorem yield∫
T

curl GN · n =
∫
∂T

GN · tT =
∫
∂T

G · tT =
∫
T

curl G · n ∀T ∈ ThΓJ
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(tT being a unit vector tangent to ∂T ). Hence, since curl GN · n ∈ Q0
h(Γ

J
), we

conclude the proof. �

The following lemmas are used below to establish adequate inf-sup conditions.

Lemma 5.2. The application Πh : Q1
h(Γ

J
) −→ Q0

h(Γ
J
) is one-to-one.

Proof. To prove the result, we take νh ∈ Q1
h(Γ

J
) such that

∫
T νh = 0 ∀T ∈ ThΓJ and

prove that νh = 0 on Γ
J
. We do this by induction on the number m of triangles of

the mesh.
If m = 1, clearly νh = 0. Assuming the result true for any mesh of (m − 1)

triangles, we are going to show that it is also true for a mesh ThΓJ of m triangles.
Our geometric assumptions imply that ∂Γ

J
is a polygonal curve of positive one-

dimensional measure. Then, in any triangular mesh there is always a triangle with
at least one edge on the boundary ∂Γ

J
. Let T ∈ ThΓJ be one such triangle. We have

νh = 0 on T , since
∫
T νh = 0.

Let Γ′
J

:= Γ
J
\ T . Then ThΓ

′
J := ThΓJ \ {T } is a mesh on Γ′

J
of (m − 1) triangles.

Since νh = 0 on T , we have that νh|Γ′
J
∈ Q1

h(Γ′
J
). Hence, since

∫
T
νh = 0 ∀T ∈ ThΓ

′
J,

we apply the inductive assumption and conclude that νh = 0 on Γ′
J
. Therefore

νh = 0 on Γ
J

and we conclude the proof. �

Lemma 5.3. Given qh ∈ Q0
h(Γ

J
), ∃Gh ∈N h(Ω) such that curl Gh ·n = qh on Γ

J
.

Furthermore, ‖Gh‖H(curl,Ω)3 ≤ C‖qh‖L2(Γ
J
).

Proof. Let G ∈ X be the vector field associated with qh by Lemma 2.1. Since
qh ∈ L2(Γ

J
), we have that G ∈ Hr(Ω)3 with r > 1/2, curl G ∈ Hs(Ω)3 with s > 0,

and (2.16)–(2.17) hold true. Hence, because of Lemma 5.1, the Nédélec interpolant
GN ∈N h(Ω) is well defined.

We take Gh = GN. Then, because of Lemma 5.1, we have that curl Gh ·
n = Πh(curl G · n) = Πhqh = qh on ΓJ. Finally, the estimate to be proved is a
consequence of (5.1), (2.16), and (2.17). �

In the following subsections we introduce discretizations for each of the different
mixed problems, 3.3, 3.9, 4.3, and 4.7, and study their convergence properties.
(Hn, λn) is used to denote the solutions of all these discrete problems, although in
general they are not the same. We do this to simplify the notation. No confusion
should arise because we consider only one discrete problem in each subsection.

5.1. Discretizing Problem 3.3. In this case, since the Lagrange multiplier λ ∈
H1/2

00 (Γ
J
), we use piecewise linear continuous finite elements for its discretization.

Let
X h := N h(Ω) and Mh := Q1

h(Γ
J
).

In what follows, we prove that b satisfies an inf-sup condition on these discrete
spaces, although with a constant which may depend on the mesh size h.

Lemma 5.4. There exists βh > 0 such that

sup
Gh∈Xh

|b(Gh, νh)|
‖Gh‖X

≥ βh‖νh‖M ∀νh ∈ Mh.
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Proof. Since X h andMh are finite-dimensional, we only have to prove that, given
a non-vanishing νh ∈ Mh, ∃G̃h ∈ X h such that

∫
Γ
J
curl G̃h · n ν̄h 6= 0.

To prove this, notice that Πhνh ∈ Q0
h(Γ

J
) does not vanish either, because of

Lemma 5.2. Now, according to Lemma 5.3, ∃G̃h ∈ X h satisfying curl G̃h·n = Πhνh
on Γ

J
. Then, we have∫

Γ
J

curl G̃h · n ν̄h =
∫

Γ
J

Πhνh ν̄h =
∫

Γ
J

|Πhνh|2 > 0

and we conclude the proof. �
Remark 5.5. We have not been able to prove that the constant βh remains bounded
away from zero when h goes to 0. Actually, our numerical experiments seem to show
that βh converges to zero with a linear dependence on h.

If we approximate Problem 3.3 with the finite element spaces X h and Mh,
Lemma 5.4 allows us to show that the resulting discrete problem has a unique
solution. However, since the inf-sup condition is not uniform in h, the approx-
imating properties of such a scheme depend on infGh∈Vh(g) ‖Hg −Gh‖X , with
Vh(g) := {Gh ∈ X h : b(Gh, νh) = 〈g, νh〉Γ

J
∀νh ∈ Mh} (see Theorem II.1.1 of

[14]), and it is not clear that this infimum can be estimated for smooth Hg either.
To avoid this drawback, we introduce a variational crime in the discrete formula-

tion which allows us to prove error estimates under an appropriate mild smoothness
assumption on Hg. This variational crime can be seen as a kind of quadrature rule
for 〈g, νh〉Γ

J
. It consists of substituting g with Πhg in this term. This is applicable

whenever the data g is an L2(Γ
J
)-function. In such a case, we define the following

discrete problem:

Problem 5.6. Given g ∈ L2(Γ
J
), find Hh ∈ X h and λh ∈ Mh such that

a(Hh,Gh) + b(Ḡh, λh) = 0 ∀Gh ∈ X h,

b(Hh, νh) =
∫

Γ
J

Πhg ν̄h ∀νh ∈ Mh.

The following theorem yields an error estimate for the approximate magnetic
field Hh. Its proof follows similar arguments to those used to prove Theorem II.1.1
of [14].

Theorem 5.7. Given g ∈ L2(Γ
J
), let us assume that the solution (Hg, λg) of Prob-

lem 3.3 satisfies Hg ∈ Hr(curl,Ω) with 1/2 < r ≤ 1. Then, Problem 5.6 has a
unique solution (Hh, λh) and the following error estimate holds true:

‖Hg −Hh‖X ≤ Ch
r‖Hg‖Hr(curl,Ω).

Proof. The discrete Problem 5.6 has a unique solution, because a is elliptic in X h

and b satisfies the inf-sup condition of Lemma 5.4.
According to Lemma 5.1, the Nédélec interpolant HN

g ∈ X h is well defined and
satisfies curl HN

g · n = Πh(curl Hg · n) = Πhg on Γ
J
. Then, using that (Hh, λh) is

the solution of Problem 5.6, we have

b(Hh −HN
g , νh) = 0 ∀νh ∈ Mh

and

a(Hh−HN
g ,Hh−HN

g ) = −b(H̄h−H̄N
g , λh)−a(HN

g ,Hh−HN
g ) = −a(HN

g ,Hh−HN
g ).
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On the other hand, since Hh −HN
g ∈ X h ⊂ X , we can take G = Hh −HN

g in
Problem 3.3 and obtain

a(Hg,Hh −HN
g ) + b(H̄h − H̄N

g , λg) = 0.

Combining this with the equations above, we have

a(Hh −HN
g ,Hh −HN

g ) = a(Hg −HN
g ,Hh −HN

g ) + b(H̄h − H̄N
g , λg)

= a(Hg −HN
g ,Hh −HN

g ) + b(H̄h − H̄N
g , λg − νh)
∀νh ∈ Mh.

Hence, the X -ellipticity of a (see (3.2)) together with the continuity of a and b yield∥∥Hh −HN
g

∥∥
X ≤

1
α

(
‖a‖X×X

∥∥Hg −HN
g

∥∥
X + ‖b‖X×M‖λg − νh‖M

)
,

which combined with the triangular inequality lead to

‖Hg −Hh‖X ≤
(

1 +
1
α
‖a‖X×X

)∥∥Hg −HN
g

∥∥
X +

1
α
‖b‖X×M‖λg − νh‖M

∀νh ∈Mh.

Now, by virtue of Corollary 3.6, the Lagrange interpolant of λg, λL
g ∈ Mh, is

well defined and satisfies∥∥λg − λL
g

∥∥
M ≤ Ch

r‖Hg‖Hr(curl,Ω),

because of standard interpolation results and (3.11).
Finally, the two above inequalities and (5.1) yield the error estimate. �

5.2. Discretizing Problem 3.9. In this case we use the finite-dimensional spaces

X̃ h := N h(Ω) and M̃h := Q0
h(Γ

J
)

to define the following discrete problem:

Problem 5.8. Given g ∈ L2(Γ
J
), find Hh ∈ X̃ h and λh ∈ M̃h such that

a(Hh,Gh) + b(Ḡh, λh) = 0 ∀Gh ∈ X̃ h,

b(Hh, νh) =
∫

Γ
J

gν̄h ∀νh ∈ M̃h.

The following lemma shows that b satisfies a uniform inf-sup condition on these
discrete spaces.

Lemma 5.9. There exists β̃∗ > 0 such that

sup
Gh∈X̃h

|b(Gh, νh)|
‖Gh‖X̃

≥ β̃∗‖νh‖M̃ ∀νh ∈ M̃h.

Proof. Given νh ∈ M̃h, let G̃h ∈ N h(Ω) be the vector field associated with νh by
Lemma 5.3. Then, since curl G̃h · n = νh on Γ

J
, we have

‖G̃h‖X̃ =
[
‖G̃h‖

2

H(curl,Ω) + ‖ curl G̃h · n‖
2

L2(Γ
J
)

]1/2
≤ C‖νh‖M̃.
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Hence,

sup
Gh∈X̃h

|b(Gh, νh)|
‖Gh‖X̃

≥

∣∣∣∣∣
∫

Γ
J

curl G̃h · n ν̄h

∣∣∣∣∣
‖G̃h‖X̃

≥

∫
Γ
J

|νh|2

C‖νh‖M̃
=

1
C
‖νh‖M̃,

which yields the lemma with β̃∗ = 1
C . �

The following theorem shows existence and uniqueness of solution for this prob-
lem and establishes error estimates for the magnetic field and the Lagrange multi-
plier:

Theorem 5.10. Given g ∈ L2(Γ
J
), Problem 5.8 has a unique solution (Hh, λh)

and, if (Hg, λg) is the solution of Problem 3.9, the following estimate holds true:
(5.2)

‖Hg −Hh‖X̃ + ‖λg − λh‖M̃ ≤ C
(

inf
Gh∈X̃h

‖Hg −Gh‖X̃ + inf
νh∈M̃h

‖λg − νh‖M̃
)
.

Furthermore, if Hg ∈ Hr(curl,Ω) with 1/2 < r ≤ 1, then

(5.3) ‖Hg −Hh‖X ≤ Ch
r‖Hg‖Hr(curl,Ω).

Proof. Let

Ṽh(0) :=

{
Gh ∈ X̃ h :

∫
Γ
J

curl Gh · n ν̄h = 0 ∀νh ∈ M̃h

}
.

Notice that Ṽh(0) ⊂ Ṽ(0); indeed, since curl Gh · n ∈ M̃h for Gh ∈ X̃ h, we know
that Gh belongs to Ṽh(0) if and only if curl Gh ·n = 0 on Γ

J
. Consequently, a is X̃ -

elliptic in Ṽh(0) with the same ellipticity constant α of (3.2). Then, since b satisfies
the inf-sup condition of Lemma 5.9, a straightforward application of Theorem II.1.1
of [14] allows us to prove the estimate (5.2).

On the other hand, if Hg ∈ Hr(curl,Ω) with 1/2 < r ≤ 1, according to Lemma
5.1 the Nédélec interpolant HN

g ∈ X̃ h is well defined and satisfies curl HN
g · n =

Πh(curl Hg · n) = Πhg on Γ
J
. Then, since (Hh, λh) is the solution of Problem

5.8, we have b(Hh −HN
g , νh) = 0 ∀νh ∈ Mh. Hence, Hh −HN

g ∈ Ṽh(0) ⊂ Ṽ(0).
Consequently, by taking Hh − HN

g as test function in Problems 3.9 and 5.8, we
obtain

a(Hh −HN
g ,Hh −HN

g ) = a(Hg −HN
g ,Hh −HN

g ).

Then, since a is X̃ -elliptic in Ṽh(0) and continuous in X ×X , we have∥∥Hh −HN
g

∥∥
X̃ ≤

1
α
‖a‖X×X

∥∥Hg −HN
g

∥∥
X .

Finally, from this estimate, the triangle inequality, and (5.1), we obtain (5.3). �

Remark 5.11. Estimate (5.3) cannot be directly obtained from (5.2) without further
assumptions on the smoothness of the input current density flux g = curl Hg · n
on Γ

J
. In fact, (5.2) depends on inf

Gh∈X̃h ‖Hg −Gh‖X̃ , which in its turn in-
volves ‖curl Hg · n− curl Gh · n‖L2(Γ

J
). For Hg ∈ Hr(curl,Ω) with 1/2 < r ≤ 1,

curl Hg · n ∈ Hr−1/2(Γ
J
) and, hence, for its Nédélec interpolant HN

g ∈ X̃ h we only
have ‖Hg −HN

g ‖X̃ ≤ Ch
r−1/2‖Hg‖Hr(curl,Ω).
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5.3. Discretizing Problem 4.3. In this case we use the finite-dimensional spaces

X h := N h(Ω) and Lh :=
{
νh ∈ Q1

h(Γ
J
) : νh|Γn

J
= constant, n = 1, . . . , N

}
to define the following discrete problem:

Problem 5.12. Given I ∈ CN , find Hh ∈ X h and λh ∈ Lh such that

a(Hh,Gh) + b(Ḡh, λh) = 0 ∀Gh ∈ X h,

b(Hh, νh) =
∫

Γ
J

Iν̄h ∀νh ∈ Lh.

The following theorem shows that this problem is well posed and establishes
an error estimate for the approximate magnetic field under an appropriate mild
assumption on the solution of Problem 4.3.

Theorem 5.13. Given I ∈ CN , Problem 5.12 has a unique solution (Hh, λh).
Furthermore, if the solution (HI, λI) of Problem 4.3 satisfies HI ∈ Hr(curl,Ω)
with 1/2 < r ≤ 1, then the following error estimate holds true:

‖HI −Hh‖X ≤ Chr‖HI‖Hr(curl,Ω).

Proof. Since Lh ⊂ Mh, the inf-sup condition for b of Lemma 5.4 holds true for
all νh ∈ Lh, although not necessarily uniformly in h. On the other hand, a is
X -elliptic in X h with the ellipticity constant α of (3.2), which is independent of h.
Then Theorem II.1.1 of [14] applies to this problem yielding existence of a unique
solution of Problem 5.12 and the error estimate

‖HI −Hh‖X ≤ C
(

inf
Gh∈Wh(I)

‖HI −Gh‖X + inf
νh∈Lh

‖λI − νh‖M
)
,

with C := max
{

1 + 1
α‖a‖X×X ,

1
α‖b‖X×M

}
and

Wh(I) :=

{
Gh ∈ X h :

∫
Γ
J

curl Gh · n ν̄h =
∫

Γ
J

Iν̄h ∀νh ∈ Lh

}
.

Now, if HI ∈ Hr(curl,Ω) with 1/2 < r ≤ 1, its Nédélec interpolant HN
I ∈ X h

is well defined. In what follows we show that HN
I ∈ Wh(I). Then, the previous

inequality, standard interpolation results, and estimates (4.3) and (5.1) allow us to
conclude the theorem.

Notice that, for such HI, curl HI · n ∈ L2(Γ
J
). Hence, because of Lemma 5.1,

curl HN
I · n = Πh(curl HI · n) on ΓJ. On the other hand, as shown in Remark 4.5,

curl HI · n = 0 on Γ0
J

. Then, curl HN
I · n = 0 on Γ0

J
too. Hence, ∀νh ∈ Lh we have∫

Γ
J

curl HN
I · n ν̄h =

N∑
n=1

(
ν̄h|Γn

J

)∫
Γn
J

curl HN
I · n

=
N∑
n=1

(
ν̄h|Γn

J

)∫
Γn
J

curl HI · n =
∫

Γ
J

Iν̄h,

the latter because of Remark 4.9. Therefore HN
I ∈ Wh(I) and we conclude the

proof. �
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5.4. Discretizing Problem 4.7. In this case we use the finite-dimensional spaces

X̃ h := N h(Ω) and L̃h :=
{
νh ∈ Q0

h(Γ
J
) : νh|Γn

J
= constant, n = 1, . . . , N

}
to define the following discrete problem:

Problem 5.14. Given I ∈ CN , find Hh ∈ X̃ h and λh ∈ L̃h such that

a(Hh,Gh) + b(Ḡh, λh) = 0 ∀Gh ∈ X̃ h,

b(Hh, νh) =
∫

Γ
J

Iν̄h ∀νh ∈ L̃h.

Since L̃h ⊂ M̃h, the inf-sup condition for b of Lemma 5.9 holds true for all
νh ∈ L̃h uniformly in h; that is,

(5.4) sup
Gh∈X̃h

|b(Gh, νh)|
‖Gh‖X̃

≥ β̃∗‖νh‖M̃ ∀νh ∈ L̃h.

On the other hand, a is X -elliptic in X̃ h. Then, since X̃ h is finite-dimensional, a
is X̃ -elliptic in X̃ h too, although with an ellipticity constant which may depend on
h; namely, ∃αh > 0 such that

|a (Gh,Gh)| ≥ αh‖Gh‖2X̃ ∀Gh ∈ X̃ h.

Thus, Babuška-Brezzi theory can be applied to prove that the discrete problem
above is well posed:

Theorem 5.15. Given I ∈ CN , Problem 5.14 has a unique solution (Hh, λh).

We cannot use the standard results to obtain error estimates for the solution of
this problem, because the ellipticity of a is not necessarily uniform in h. However,
we can modify conveniently the proof of Theorem II.1.1 of [14] to adapt it to this
case.

Let

W̃h(I) :=

{
Gh ∈ X̃ h :

∫
Γ
J

curl Gh · n ν̄h =
∫

Γ
J

Iν̄h ∀νh ∈ L̃h

}
and

W̃h(0) :=

{
Gh ∈ X̃ h :

∫
Γ
J

curl Gh · n ν̄h = 0 ∀νh ∈ L̃h

}
.

We have the following result (we recall that W̃(0) was defined in Section 4.2):

Lemma 5.16. W̃h(0) ⊂ W̃(0) holds.

Proof. Let Gh ∈ W̃h(0). Since curl Gh · n|Γ
J
∈ Q0

h(Γ
J
), we have that curl Gh ·n =

0 on Γ0
J

and
∫

Γn
J

curl Gh · n = 0, n = 1, . . . , N . Hence, ∀ν ∈ L̃, we have∫
Γ
J

curl Gh · n ν̄ =
N∑
n=1

(
ν̄|Γn

J

)∫
Γn
J

curl Gh · n = 0.

Therefore, since Gh ∈ X̃ h ⊂ X̃ , Gh ∈ W̃(0). �

Now we are in order to establish an error estimate:
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Theorem 5.17. Given I ∈ CN , let us assume that the solution (HI, λI) of Problem
4.3 satisfies HI ∈ Hr(curl,Ω) with 1/2 < r ≤ 1. Then, (HI, λI) is the solution
of Problem 4.7 too and, if (Hh, λh) is the solution of Problem 5.14, the following
error estimate holds:

‖HI −Hh‖X + ‖λI − λh‖M̃ ≤ Ch
r‖HI‖Hr(curl,Ω).

Proof. For HI ∈ Hr(curl,Ω) with 1/2 < r ≤ 1, curl HI · n ∈ L2(Γ
J
) and, hence,

(HI, λI) is the solution of Problem 4.7 because of Theorem 4.8.
Let HN

I ∈ X̃ h be the Nédélec interpolant of HI. An argument similar to that
used in the proof of Theorem 5.13 allows us to prove that HN

I ∈ W̃h(I). Hence,
Hh−HN

I ∈ W̃h(0) and, because of Lemma 5.16, Hh−HN
I ∈ W̃(0) too. Therefore,

by taking Hh −HN
I as test function in Problems 4.7 and 5.14, we obtain

a(Hh −HN
I ,Hh −HN

I ) = a(HI −HN
I ,Hh −HN

I ).

Then, from the continuity and ellipticity of a in X (see (3.2)), we have

‖Hh −HN
I ‖X ≤

1
α
‖a‖X×X ‖HI −HN

I ‖X ,

which combined with the triangle inequality and (5.1) yield

(5.5) ‖HI −Hh‖X ≤
(

1 +
1
α
‖a‖X×X

)
‖HI −HN

I ‖X ≤ Chr‖HI‖Hr(curl,Ω).

On the other hand, by taking the same test function Gh ∈ X̃ h ⊂ X̃ in Problems
4.7 and 5.14, we obtain

b(Ḡh, λh − νh) = a(HI −Hh,Gh) + b(Ḡh, λI − νh) ∀νh ∈ L̃h ∀Gh ∈ X̃ h.

Then, in particular for νh = ΠhλI ∈ L̃h we have from (5.4)

‖λh −ΠhλI‖M̃ ≤
1

β̃∗
sup

Gh∈X̃h

|b(Gh, λh −ΠhλI)|
‖Gh‖X̃

≤ 1

β̃∗

(
‖a‖X×X ‖HI −Hh‖X + ‖b‖X̃×M̃‖λI −ΠhλI‖M̃

)
,

where we have used that a is continuous on X × X and b in X̃ × M̃ and that
‖Gh‖X ≤ ‖Gh‖X̃ . Hence, from the triangle inequality we obtain

‖λI − λh‖M̃ ≤
(

1 +
1

β̃∗
‖b‖X̃×M̃

)
‖λI −ΠhλI‖M̃ +

1

β̃∗
‖a‖X×X ‖HI −Hh‖X ,

and we conclude the proof from this inequality, standard error estimates for the
L2(Γ

J
)-projection, and estimates (4.3) and (5.5). �

6. Numerical results

In this section we present some numerical results obtained with Matlab codes
developed by us, which implement the different methods described above. We have
solved a particular test problem with known analytical solution to validate the
computer codes and to assess the performance and convergence properties of each
method.

We have solved the eddy current problem in a cylindrical domain Ω of radius R
and height L, which is a bounded section of an infinite cylinder (see Figure 2).
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Figure 2. Sketch of the domain. Coordinate system.

We have considered an alternating current J going through the conductor Ω in
the direction of its axis. This current has been assumed to be axially symmetric
with an intensity I(t) = I1 cos(ωt). Thus, we have taken the bottom surface of the
cylinder as the current exit boundary ΓE, its lateral surface as the current density
flux-free boundary Γ0

J
, and its top as the input current boundary Γ1

J
. Concerning

the physical properties, the electric conductivity σ and the magnetic permeability
µ are taken as constants in Ω.

We have used the following geometrical and physical data:
• R = 0.5 m;
• L = 1 m;
• σ = 106 (Ωm)−1;
• µ = µ0 = 4π 10−7 Hm−1 (magnetic permeability of free space);
• I1 = 7× 104 A;
• ω = 2π × 50 Hz.

To obtain the analytical solution of this problem, we consider a cylindrical co-
ordinate system (r, θ, z) with the z-axis coinciding with the axis of the cylinder
(see Figure 2). We denote er, eθ, and ez the unit vectors in the corresponding
coordinate directions.

Because of the conditions assumed on J, only the z-component of the electric
field E = 1

σJ does not vanish in the conductor. Moreover, it depends on the radial
coordinate r but is independent of the other two coordinates θ and z. Consequently,
only the θ-component of the magnetic field H = i

ωµ curl E does not vanish and it
also depends only on the coordinate r. Then, after writing the curl operator
in cylindrical coordinates, straightforward computations allow us to obtain the
following expression for the magnetic and electric field (see [7] for details):

H(r, θ, z) = − I1
2πR

I1(γr)
I1(γR)

eθ,

E(r, θ, z) = − I1γ

2πRσ
I0(γr)
I1(γR)

ez,

 r ∈ [0, R], θ ∈ [0, 2π], 0 ≤ z ≤ L,

where I1 and I0 are the modified Bessel functions of the first kind and orders 1
and 0, respectively, and γ =

√
iωµσ ∈ C.
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Figure 3. Coarsest mesh.

On the other hand, since E × n = −∇λ̄ × n on Γ
J
, after writing the gradient

operator in cylindrical coordinates, we obtain the following analytical expression
for the Lagrange multiplier λ on ΓJ:

(6.1) λ(r, θ, z) = zC, with C =
I1γ̄

2πRσ
I0(γ̄R)
I1(γ̄R)

.

Notice that λ is constant on the top and bottom surfaces Γ1
J

and Γ
E
, respectively.

Thus, this problem can be used as a test for both sets of boundary conditions
(2.9)–(2.11) and (2.4)–(2.8). In the first case, a direct computation leads to the
following expression for the boundary data g = curl H · n|Γ

J
in (2.10),

g(r, θ, z) =


I1γ

2πR
I0(γr)
I1(γR)

r ∈ (0, R), θ ∈ [0, 2π], z = L,

0 r = R, θ ∈ [0, 2π], 0 < z < L.

In the second case, the input current intensity I1 in (2.5) is just the intensity
amplitude of the alternating current I(t) = I1 cos(ωt) imposed through Ω.

Notice that the four proposed finite element methods are applicable to this prob-
lem, since curl H · n ∈ L2(Γ

J
).

All of the numerical methods have been used on several successively refined
meshes and we have compared the obtained numerical solutions with the analytical
one. Figure 3 shows the coarsest mesh used for the domain.

Tables 1 to 4 show the norms of the approximate solutions Hh and λh computed
on several meshes and the corresponding absolute errors for all of the discrete
problems analyzed in the previous section. In all tables we identify each mesh with
its total number of edges which correspond to the number of degrees of freedom
(d.o.f.) of Hh. We include one table for each problem.

We have chosen the following energy-like norms:

‖H‖a,Ω := |a(H,H)|1/2 for the magnetic field,

|H|σ,Γ
J

:= σ−1/2‖curl H · n‖L2(Γ
J
) for the current density flux.

Notice that ‖ · ‖a,Ω is equivalent to ‖ · ‖X , whereas ‖ · ‖a,Ω + | · |σ,Γ
J

is equivalent to
‖ · ‖X̃ .
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Table 1. Solution (Hh, λh) of Problem 5.6.

d.o.f. ‖Hh‖a,Ω ‖H −Hh‖a,Ω ‖λh‖M ‖λ− λh‖M
2096 168.00 85.44 0.4007 0.0489
6720 172.83 68.22 0.3951 0.0356
15520 174.79 55.00 0.3955 0.0217
29840 176.04 45.59 0.3978 0.0146
51024 176.86 38.75 0.3997 0.0107
80416 177.41 33.63 0.4011 0.0079
119360 177.80 29.66 0.4022 0.0061
169200 178.06 26.51 0.4013 0.0049

Table 2. Solution (Hh, λh) of Problem 5.8.

d.o.f. ‖Hh‖a,Ω ‖H −Hh‖a,Ω |Hh|σ,Γ
J
|H −Hh|σ,Γ

J
‖λh‖M̃ ‖λ− λh‖M̃

2096 167.91 85.54 117.10 79.87 0.6105 0.0282
6720 172.78 68.26 134.86 60.25 0.6031 0.0347
15520 174.78 55.03 142.39 47.32 0.6045 0.0271
29840 176.04 45.61 146.18 38.69 0.6079 0.0203
51024 176.86 38.77 148.33 32.63 0.6108 0.0155
80416 177.41 33.63 149.66 28.18 0.6130 0.0123
119360 177.79 29.66 150.58 24.77 0.6146 0.0100
169200 178.06 26.51 151.14 22.09 0.6157 0.0084

Table 3. Solution (Hh, λh) of Problem 5.12.

d.o.f. ‖Hh‖a,Ω ‖H −Hh‖a,Ω ‖λh‖M ‖λ− λh‖M
2096 189.80 105.79 0.4522 0.1538
6720 181.31 74.62 0.4143 0.0794
15520 179.30 57.70 0.4059 0.0470
29840 178.65 46.96 0.4042 0.0307
51024 178.78 39.54 0.4041 0.0215
80416 178.81 34.12 0.4044 0.0159
119360 178.85 29.99 0.4047 0.0122
169200 178.90 26.74 0.4049 0.0097

Table 4. Solution (Hh, λh) of Problem 5.14.

d.o.f. ‖Hh‖a,Ω ‖H −Hh‖a,Ω |Hh|σ,Γ
J
|H −Hh|σ,Γ

J
‖λh‖M̃ ‖λ− λh‖M̃

2096 189.78 105.93 132.77 79.54 0.6904 0.2286
6720 181.30 74.66 140.98 59.99 0.6332 0.1188
15520 179.30 57.72 145.54 47.22 0.6204 0.0708
29840 178.85 46.98 148.10 38.69 0.6178 0.0466
51024 178.78 39.55 149.62 32.68 0.6175 0.0320
80416 178.81 34.13 150.58 28.24 0.6179 0.0246
119360 178.85 29.99 151.23 24.84 0.6183 0.0191
169200 178.90 26.74 151.68 22.17 0.6187 0.0153
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Figure 4. Error curve for Hh (log-log scale). Case of physical constants.

On the other hand, to compute the M norm (i.e., H1/2
00 (Γ

J
) norm) involved

in Problems 5.6 and 5.12, we have used the following characterization: for ν ∈
H1/2

00 (Γ
J
), there exists a unique uν ∈ H1

Γ
E
(Ω) satisfying

−∆uν = 0 in Ω,
uν = ν on Γ

J
,

and ‖∇uν‖L2(Ω)3 is equivalent to the norm ‖ν‖
H

1/2
00 (Γ

J
)
. In our test, it is simple to

verify that uλ = λ in the whole Ω, with λ given by (6.1). Then, to compute theM
norm of a numerical solution λh and its corresponding error, we have solved by a
standard finite element method the problem above with ν = λh.

Notice that the computed magnetic fields Hh and Lagrange multipliers λh con-
verge for all the methods.

Figures 4 and 5 show log-log plots of the errors for the computed magnetic
fields Hh and Lagrange multipliers λh, respectively, versus the number of degrees
of freedom, for the same meshes and the four methods. We have used the norm
‖ · ‖a,Ω for the former and the L2(Γ

J
) norm for the latter.

A linear dependence on the mesh size can be clearly observed for all Hh. How-
ever, for the Lagrange multiplier λh the conclusions are not clear. Figure 5 shows
an almost quadratic dependence on the mesh size which could not be true, at least
for Problems 5.8 and 5.14 where λ is approximated by piecewise constant func-
tions. Since in three-dimensional experiments the mesh size cannot become very
small because of computer limitations, we cannot confirm the actual order of con-
vergence of the Lagrange multiplier with this example. This is mainly due to the
large magnitude of some of the physical constants.

To avoid this drawback, we have solved a similar problem with all of the physical
constants set equal to one, namely, σ = µ = ω = I1 = 1. Figure 6 shows a log-log
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Figure 5. Error curve for λh (log-log scale). Case of physical constants.

plot of the relative errors for the Lagrange multipliers computed with each of the
methods. Now, a quadratic dependence on the mesh size can be observed for the
methods approximating the Lagrange multiplier with piecewise linear functions,
while a linear dependence appears for those using piecewise constant functions.
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Figure 6. Error curve for λh (log-log scale). Case of unit constants.
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7. Conclusions

We have studied the eddy current problem in a conducting bounded domain.
The main point is the introduction of physically realistic boundary conditions. To
handle these boundary conditions, which are neither essential nor natural, we have
introduced a Lagrange multiplier defined on the boundary which leads to mixed
problems. This multiplier has a physical meaning: it is a surface electric potential
defined on the boundary of the domain.

Two kinds of boundary conditions have been considered:

• the current density flux is given (Problems 3.3 and 3.9);
• the current intensities are given (Problems 4.3 and 4.7).

The second boundary condition is the most interesting in practice, because it in-
volves physical data easy to measure in real problems. The reason to consider the
first boundary condition too is two-fold: on one hand, as an intermediate step for
the treatment of the other case and, on the other hand, because in some problems
the current density flux could be known, for instance if it is the output of other
computations.

Each mixed problem involves the magnetic field and the Lagrange multiplier,
and we have proposed finite element methods to obtain their numerical solution.
The magnetic field has been approximated by using Nédélec edge elements in all
of the problems, while the discretization of the Lagrange multiplier depends on the
regularity of curl H · n. More precisely, we have used

• piecewise linear functions in the most general setting, namely, if curl H·n ∈
H−1/2

00 (Γ
J
) (Problems 5.6 and 5.12);

• piecewise constant functions, only if curl H · n ∈ L2(Γ
J
) (Problems 5.8 and

5.14).

In the first case, the discrete inf-sup conditions corresponding to the mixed
problems are not uniform with respect to the mesh size. Because of this, we could
only prove L2 convergence for the magnetic and electric fields. Instead, in the
second case, we have proved L2 error estimates for the multiplier too.

Both discretizations of the Lagrange multiplier have some interest in and of
themselves. The first one is valid without the need of the additional smoothness
assumption curl H ·n ∈ L2(Γ

J
). The second one has the advantage that a thorough

mathematical analysis including optimal order error estimates for the multipliers
has been given in this paper. However, in spite of the lack of a proof for the
convergence of the Lagrange multiplier, the experiments seem to indicate that an
optimal order error estimate should be valid for the first discretization, too. Thus
a conclusion as to which is the best choice would need further work.
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[6] A. Bermúdez, J. Bullón, F. Pena, and P. Salgado, A numerical method for transient simula-
tion of metallurgical compound electrodes, Finite Elem. Anal. Des., 39 (4) (2003) 283–299.
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