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ON VARIATIONAL APPROXIMATIONS
IN QUANTUM MOLECULAR DYNAMICS

CHRISTIAN LUBICH

Abstract. The Dirac-Frenkel-McLachlan variational principle is the basic
tool for obtaining computationally accessible approximations in quantum mo-
lecular dynamics. It determines equations of motion for an approximate time-
dependent wave function on an approximation manifold of reduced dimension.
This paper gives a near-optimality result for variational approximations. It
bounds the error in terms of the distance of the exact wave function to the ap-
proximation manifold and identifies the parameters that control the deviation
of the variational approximation from the best approximation on the manifold.

1. Introduction

For dealing with atoms involving many electrons the accurate quan-
tum theory, involving a solution of the wave equation in many-
dimensional space, is far too complicated to be practicable. One
must therefore resort to approximate methods.

(P.A.M. Dirac 1930, in [6])

Computations in quantum molecular dynamics rely on approximations that are
based on a variational principle due to Dirac (later restated by Frenkel and McLach-
lan). This variational principle restricts the approximate time-dependent wave
function to a manifold of admissible configurations, which is chosen so that the
high dimensionality of the problem is substantially reduced and a computational
treatment becomes feasible. We recapitulate the Dirac-Frenkel-McLachlan varia-
tional principle in Section 2 and describe typical approximations obtained from
it (adiabatic approximation, time-dependent Hartree and Hartree-Fock methods,
Gaussian wave packets) in Section 3.

Despite the fundamental role and widespread use of this variational principle,
it seems that no error analysis has been given in the literature. Much work has
been done on asymptotic problems (adiabatic perturbation theory and semiclas-
sical analysis, e.g. [11, 15]), but apparently not on the quality of the variational
approximation. Here we study the following question: If the wave function is close
to the manifold, does the variational principle then provide a good approximation?
The closeness of the exact wave function to the chosen approximation manifold is
a modeling hypothesis which may or may not be satisfied in a given problem. If
it is a viable hypothesis one would, however, hope that the variational principle,
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which establishes approximate equations of motion on the manifold, yields an ap-
proximate wave function that is close to the best approximation to the true wave
function on the manifold. This is a familiar question in other areas of numerical
analysis; cf. Céa’s lemma on the optimality of Galerkin approximations of elliptic
boundary value problems [5, p. 113].

In Section 4 we give a near-optimality result for the variational approximation in
the situation of bounded coupling potentials. The error bound exhibits the param-
eters that control the deviation of the variational approximation from optimality:
the length of the time interval, bounds for the nonseparable part of the Hamil-
tonian, the curvature of the manifold, and the regularity of the wave function. In
Section 5 we derive an error bound for the case of (unbounded) Coulomb potentials,
where closeness of the wave function to the approximation manifold is required in
a stronger norm than the L2 norm of the error bound.

2. The Dirac-Frenkel-McLachlan variational principle

2.1. The variational principle. The abstract setting is that of the time-depen-
dent Schrödinger equation

(2.1) i
dψ

dt
= Hψ , ψ(0) = ψ0

where the Hamiltonian H is a self-adjoint linear operator on a complex Hilbert
space H with inner product 〈·, ·〉 and norm ‖ · ‖. Let M ⊂ H be a manifold on
which an approximation to the wave function ψ(t) should lie, and let TuM denote
the tangent space at u ∈ M (i.e., the closed real-linear subspace of H formed of
the derivatives of all paths on M passing through u, or in physical terminology,
the space of admissible variations). The variational principle as formulated by
Frenkel [7, p. 253]1 and McLachlan [12] determines the approximate wave function
t �→ u(t) ∈ M from the condition that the time derivative should satisfy, at every
time t,

(2.2)
du

dt
= θ ∈ Tu(t)M with ‖ θ − 1

i
Hu(t)‖ = min !

This amounts to projecting the vector field at u to the tangent space at u,

(2.3)
du

dt
= P (u)

1
i
Hu

with the orthogonal projection P (u) : H → TuM given by Re 〈δu, P (u)ϕ〉 =
Re 〈δu, ϕ〉 for all δu ∈ TuM and ϕ ∈ H. Equivalently,

(2.4) Re 〈δu , du
dt

− 1
i
Hu〉 = 0 for all δu ∈ TuM,

which in numerical analysis would be called a Galerkin condition. The variational
principle used by Dirac [6] and Frenkel [7, p. 253 and p. 435 f.] is the above condition
without taking the real part, which is equivalent if TuM is a complex linear space.
In that case, choosing δu = i du/dt shows that the total energy 〈u,Hu〉 is conserved
along solutions of (2.4). If u ∈ TuM for all u ∈ M, which is the case if with u ∈ M
also real multiples of u are in M, then the choice δu = u yields the conservation of
the norm ‖u‖ along solutions of (2.4); see also [3, App. A].

1 Frenkel refers to Dirac: “The argument presented below is taken from Dirac’s appendix to
the Russian edition of his book, The Principles of Quantum Mechanics.” [7, p. 253]
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2.2. An a posteriori error bound. A very simple but useful bound is

(2.5) ‖u(t) − ψ(t)‖ ≤
∫ t

0

dist
(
iHu(s), Tu(s)M

)
ds ,

which holds if u(0) = ψ(0) ∈ M; cf. [14] for an attempt towards an estimate of
this type. The bound (2.5) is obtained by subtracting (2.1) from (2.3), so that
d
dt(u − ψ) = −iH(u − ψ) + Q(u)iHu with Q(u) = I − P (u), and by multiplying
with u− ψ and taking the real part. This gives

‖u− ψ‖ · d
dt

‖u− ψ‖ =
1
2
d

dt
‖u− ψ‖2 = Re 〈u− ψ,

d

dt
(u − ψ)〉

= Re 〈u− ψ,Q(u)iHu〉 ≤ ‖u− ψ‖ · ‖Q(u)iHu‖ .
The error bound (2.5) now follows upon integrating and noting that

dist (iHu, TuM) = ‖Q(u)iHu‖ = ‖ i du
dt

−Hu‖ .
In this paper we concentrate on bounding the error in the norm ‖ · ‖ of the Hilbert
space H. For observables we just note the error bound, for any self-adjoint linear
operator S,

|〈u, Su〉 − 〈ψ, Sψ〉| = |〈u − ψ, Su〉 + 〈Sψ, u− ψ〉| ≤ ‖u− ψ‖ · (‖Su‖+ ‖Sψ‖).
2.3. The variational principle for time-dependent manifolds. The varia-
tional principle extends to time-dependent approximation manifolds Mt. Suppose
that Mt is locally given by a differentiable parametrization u = χ(t, z) ∈ Mt,
where z varies in a time-independent space. Then the time derivative of any path
t �→ u(t) ∈ Mt is such that, at u = u(t) for any fixed t,

(2.6)
du

dt
− s(t, u) ∈ TuMt ,

where s(t, u) = (∂χ/∂t)(t, z) for u = χ(t, z). The variational principle therefore
determines the approximate wave function u(t) ∈ Mt from the condition that the
time derivative satisfy at every time t, for u = u(t),

(2.7)
du

dt
− s(t, u) = θ ∈ TuMt with ‖ θ + s(t, u) − 1

i
Hu‖ = min!

Equivalently,

(2.8)
du

dt
− s(t, u) = P (t, u)

(1
i
Hu− s(t, u)

)

with the orthogonal projection P (t, u) : H → TuMt. This equation is again equiv-
alent to (2.4), now taken together with the condition (2.6). The integrand of the
a posteriori error bound becomes

dist (
1
i
Hu− s(t, u), TuMt) = ‖Q(t, u)(

1
i
Hu− s(t, u))‖ = ‖ i du

dt
−Hu‖ .

3. Examples of variational approximation

We list a few variational approximations that are widely used in chemical physics,
ranging between the full molecular time-dependent Schrödinger equation and
classical molecular dynamics.
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3.1. Adiabatic approximation (e.g., [13, Chs. XVII, XVIII]). The state of a
molecule consisting of n nuclei (with masses Mk and positions xk) and � electrons
(with mass m and positions yj) is described by a wave function

Ψ = Ψ(x1, . . . , xn, y1, . . . , y�, t)

(ignoring spin for the sake of simplicity), which is a solution of the molecular
Schrödinger equation (in atomic units, � = 1)

(3.1) i
∂Ψ
∂t

= Hmol Ψ with Hmol = TN + Te + U ,

where TN and Te are the kinetic energy operators of the nuclei and electrons,
respectively,

(3.2) TN = −
n∑
k=1

1
2Mk

∆xk
, Te = −

�∑
j=1

1
2m

∆yj ,

and the potential U = U(x, y) = U(x1, . . . , xn, y1, . . . , y�) is the sum of the Coulomb
interactions of each pair of particles in the system. In a first step we ignore the
contribution from the kinetic energy TN of the nuclei (motivated by the fact that
Mk 	 m), and consider the electronic Hamiltonian

He(x) = Te + U(x, ·)
which acts on functions of the electronic coordinates y and depends parametrically
on the nuclear coordinates x. Fix an eigenfunction Φ(x, ·) of He(x) corresponding
to the eigenvalue E(x),

He(x)Φ(x, ·) = E(x)Φ(x, ·) ,
which depends continuously on x, is real-valued and of unit L2 norm with respect
to the y-variables. For fixed nuclear coordinates x, the solution of the electronic
Schrödinger equation

(3.3) i
∂Ψe

∂t
= He(x)Ψe

with initial value ψ0(x)Φ(x, ·) is given by

Ψe(x, y, t) = e−iE(x)tψ0(x) · Φ(x, y) .

This motivates the adiabatic or time-dependent Born-Oppenheimer approximation
of (3.1), which is the variational approximation on

(3.4) M = {u ∈ L2
x,y : u(x, y) = ψ(x)Φ(x, y), ψ ∈ L2

x} .
Note that here M is a linear space so that TuM = M for all u ∈ M. The
Dirac-Frenkel-McLachlan variational principle (2.2) or (2.4) then leads, after a short
calculation, to the nuclear Schrödinger equation on the electronic energy band E,

(3.5) i
∂ψ

∂t
= HNψ with HN = TN + E +

n∑
k=1

1
2Mk

‖∇xk
Φ‖2

L2
y
,

where HN acts on functions of only the nuclear coordinates x, with E and the last
term in (3.5) as the potential.
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It is interesting to see what the error bound (2.5) yields in this situation. Since
for u(x, y) = ψ(x)Φ(x, y) we have

TNu = −
n∑
k=1

1
2Mk

(
∆xk

ψ · Φ + 2∇xk
ψ · ∇xk

Φ + ψ · ∆xk
Φ

)
,

(note that the first term in the bracket is in M), we obtain

dist (iHmol u, TuM) = dist (iTNu,M) ≤
n∑
k=1

1
2Mk

∥∥∥ 2∇xk
ψ ·∇xk

Φ+ψ ·∆xk
Φ

∥∥∥
L2

x,y

.

In view of (2.5), the approximation can become poor only if the electronic eigen-
function Φ(x, y) has large derivatives with respect to x in a region where ψ is not
negligible. This is the case near eigenvalue crossings or almost-crossings, where
indeed the adiabatic approximation is known to break down.2 The remedy then
is to enlarge the approximation space by including several energy bands which are
well separated from the remaining ones in the region of physical interest, e.g., using

M = {u ∈ L2
x,y : u(x, y) = ψ1(x)Φ1(x, y) + ψ2(x)Φ2(x, y), ψ1, ψ2 ∈ L2

x} ,
where Φ1(x, ·), Φ2(x, ·) span an invariant subspace of the electronic Hamiltonian
He(x). The variational approximation on M then leads to a system of coupled
Schrödinger equations for ψ1, ψ2; see, e.g., the contributions in [2].

3.2. Time-dependent Hartree and Hartree-Fock approximations [6, 12, 8,
3]. Consider the Schrödinger equation for the nuclei,

(3.6) i
∂ψ

∂t
= Hψ with H = TN + V ,

with the kinetic energy operator (3.2) of the nuclei, TN = T1 + · · · + Tn, and
a potential V = V (x1, . . . , xn) (supposedly an approximation to the potential in
(3.5)). In the case of a separable potential V = V1(x1) + · · ·+ Vn(xn) the equation
has solutions of the product form

ψ(x, t) = φ1(x1, t) · . . . · φn(xn, t)
for any initial value of this form, where the single-particle functions φk are solutions
of decoupled Schrödinger equations

(3.7) i
∂φk
∂t

= (Tk + Vk)φk .

For a nonseparable potential, the time-depedent Hartree or self-consistent field
method is the variational approximation on

(3.8) M = {u : u(x) = φ1(x1) · . . . · φn(xn), φk ∈ L2
xk
} .

Since M is not a linear space, the variational principle here leads to nonlinearly
coupled equations, which up to a phase factor are formally of the type (3.7) with

(3.9) Vk = 〈
∏
j �=k

φj , V
∏
j �=k

φj 〉 .

Here the L2 inner product is taken over all variables with the exception of xk; that
is, Vk is the mean field potential obtained by averaging over the coordinates of all

2The critical term is ∆xkΦ(x, ·), whose norm in L2
y generically grows as ∼ δ−2 if E(x) comes

δ-close to another eigenvalue of He(x). Of essentially the same size and asymptotic behaviour is
the last term in (3.5), which is usually neglected in computations.



770 CHRISTIAN LUBICH

other particles. A better approximation is usually obtained by allowing for a linear
combination of Hartree products in the approximation,

(3.10) M = {u : u(x) =
∑
J

aJ φ
(1)
j1

(x1) · . . . · φ(n)
jn

(xn), aJ ∈ C, φ(k)
j ∈ L2

xk
} ,

where the sum is over multi-indices J = (j1, . . . , jn) with 1 ≤ jk ≤ Nk. This leads
to the multiconfiguration time-dependent Hartree (MCTDH) method [3].

For the treatment of the electronic Schrödinger equation (3.3), where all particles
are identical and indistinguishable, one must in addition take care of the antisym-
metry of the wave function with respect to exchanging the coordinates (and spin)
of any two particles, as is required by the Pauli principle. The variational approx-
imation is therefore built on antisymmetrized products of single-particle functions
(Slater determinants),

(3.11) M = {u : u(y) = det (ϕi(yj))
�
i,j=1 , ϕi ∈ L2} .

The variational approximation of the electronic Schrödinger equation (3.3) on M
is known as the time-dependent Hartree-Fock method. It is actually the approxi-
mation considered by Dirac in [6].

3.3. Gaussian wave packets ([8] and, e.g., [1, Ch. 10]). Further computational
simplification in the treatment of the Schrödinger equation for the nuclei is obtained
if in the framework of the Hartree approximation, the functions φk are chosen in a
parameterized form. Since for strongly localized wave packets the effective potential
can be considered approximately quadratic and since Gaussian wave packets remain
Gaussians in a quadratic potential, the choice is

φk(xk) = exp
(
i
(
(xk − qk)∗Ak (xk − qk) + pk · (xk − qk) + bk

))

with real vectors qk and pk and complex parameters Ak (a matrix or, more usually,
a scalar) and bk. Here the variational approximation leads to classical-looking
equations of motion for the positions qk and momenta pk,

q̇k =
pk
Mk

, ṗk = −〈φk , ∇xk
Vk φk〉

with the pre-averaged potential Vk of (3.9), and to differential equations for the
width parameters Ak and phases bk.

3.4. Quantum dressed classical mechanics [4]. Even if the approximation by
a Gaussian wave packet is too rough, it can nevertheless be used in a correction
scheme, which is once more based on the variational principle. Let qk(t), pk(t),
Ak(t), bk(t) be defined by Gaussian wave packet dynamics as in the previous sub-
section, possibly even further simplified by using the classical equations of motion
q̇k = pk/Mk, ṗk = −∇qk

V (q) and an analogous simplification in the differential
equations for Ak and bk. The variational approximation for (3.6) can then be
based on the time-dependent approximation manifold (here actually a linear space)

(3.12) Mt = {u : u(x1, . . . , xn) =
∑
J

cJ γ
(1)
j1

(x1, t) · . . . · γ(n)
jn

(xn, t), cJ ∈ C} .

The sum is over multi-indices J = (j1, . . . , jn) with 0 ≤ jk ≤ Nk, and the functions
γ

(k)
j are shifted and scaled Gauss-Hermite basis functions defined by (we assume
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all the xi are one-dimensional for simplicity)

γ
(k)
j (xk, t) = exp

(
i
(
Ak(t) (xk − qk(t))2 + pk(t) (xk − qk(t)) + bk(t)

))
·Hj

(√
2 ImAk(t) (xk − qk(t))

)
with Hermite polynomials Hj . This leads to a method which adapts the location
and width of the basis functions to Gaussian wave packets that follow classical
trajectories.

4. Near-optimality of the variational approximation

We bound the error of the variational approximation in terms of the best-
approximation error dist(ψ(t),M) under assumptions that include, in the situation
of a bounded coupling potential, the (multiconfiguration) time-dependent Hartree
method and the approximation by Gaussian wave packets, as well as its refinement
with time-dependent Gauss-Hermite basis functions.

4.1. Assumptions. In the abstract setting of Section 2 the Hamiltonian is split as

(4.1) H = A+B

with self-adjoint linear operators A and B, where A corresponds to the separable
part: u ∈ M implies e−itAu ∈ M for all t. This is satisfied if and only if

(4.2) iAu ∈ TuM for all u ∈ M∩D(A),

where D(A) denotes the domain of A, which is dense in H. In this section we
assume that the nonseparable remainder B is bounded:

(4.3) ‖Bϕ‖ ≤ β ‖ϕ‖
for all ϕ ∈ H. We need that every point u ∈ M is an element of its tangent space,

(4.4) u ∈ TuM for all u ∈ M ,

which is satisfied if real multiples of elements of M are again in M. The curvature
of M is bounded in terms of the orthogonal projectors P (u) : H → TuM and
Q(u) = I − P (u):

‖ (P (u) − P (v))ϕ ‖ ≤ κ ‖u− v‖ · ‖ϕ‖,(4.5)
‖Q(v)(u− v) ‖ ≤ κ ‖u− v‖2(4.6)

for all u, v ∈ M and ϕ ∈ H. The projection P is assumed continuously differentiable
in the sense that P (u(t))ϕ is a continuously differentiable function of t in H for any
continuously differentiable path u(t) on M and ϕ ∈ H.

We assume that the initial value ψ(0) is on M and of unit norm. We consider a
time interval on which the exact solution ψ(t) remains near M, in the sense that

(4.7) dist(ψ(t),M) ≤ 1
2κ

for 0 ≤ t ≤ t .

Both the exact solution ψ(t) and the variational approximation u(t) of (2.2) are
required to be in the domain of H for 0 ≤ t ≤ t, with

(4.8) ‖Hψ(t)‖ ≤ µ , ‖Hu(t)‖ ≤ µ .

Further, we consider the distance bound δ ≤ µ given by

(4.9) dist(iHψ(t), Tv(t)M) ≤ δ , dist(iHu(t), Tu(t)M) ≤ δ ,

with v(t) ∈ M the nearest point to ψ(t) on M, i.e., ‖v(t)− ψ(t)‖ = dist(ψ(t),M).
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4.2. Discussion of the assumptions. The critical assumption is the boundedness
of the nonseparable remainder B. This condition is not satisfied in the adiabatic
approximation, where B = TN is the kinetic energy operator of the nuclei, nor in
the Hartree-Fock approximation of the electronic Schrödinger equation where the
Coulomb potentials are nonseparable and unbounded. The boundedness of B is,
however, a reasonable assumption in the Schrödinger equation (3.5) of the nuclei and
its Hartree and Gaussian wave packet approximations (and their multiconfiguration
versions). In the Hartree method, the best choice of A is A = TN + V1 + · · · + Vn,
where the single-particle potentials Vk = Vk(xk) are chosen to minimize the norm
of the coupling potential B = H −A.

For simplicity we have assumed the splitting (4.1) to be independent of time.
The results would, however, directly extend to the situation of a time-dependent
splitting H = A(t) + B(t), choosing for example A(t) = TN + V1 + · · · + Vn with
Vk of (3.9) for the Hartree method. This might give more favourable error bounds
than a time-independent splitting.

Conditions (4.2) and (4.4) are satisfied for all the examples in Section 3. Condi-
tions (4.5) and (4.6) encode the curvature of M in a form that is suitable for the
analysis. Condition (4.7) ensures that ψ(t) has a unique nearest point on M. The
regularity assumption (4.8) for ψ(t) is satisfied if the initial value has such regular-
ity. The regularity (4.8) of the approximate solution u(t) is less easy to guarantee a
priori. It can indeed be proved for the (multiconfiguration) time-dependent Hartree
method when the Schrödinger equation for the nuclei has a smooth bounded po-
tential [10]. In the Gaussian wave packet approximation, condition (4.8) with a
moderate bound µ excludes extremely localized wave packets.

4.3. Near-optimality. The Dirac-Frenkel-McLachlan variational principle yields
approximations whose error over sufficiently short time intervals is of the same mag-
nitude as the distance from the exact wave function to the approximation manifold:

Theorem 4.1. Under the conditions of Section 4.1, the error of the variational
approximation is bounded by

(4.10) ‖u(t) − ψ(t)‖ ≤ d(t) + CeKt
∫ t

0

d(s) ds with d(t) = dist(ψ(t),M)

and with K = 2κδ and C = β + κ(β + 3µ), for 0 ≤ t ≤ t.

Though the bound (4.10) may be pessimistic in a concrete situation, it clearly
indicates the sources that can make the variational approximation deviate far from
optimality even if the modeling error d(t) is small: large curvature of the approx-
imation manifold (κ), a large effective nonseparable potential in the Hamiltonian
(β, δ), lack of regularity in the exact or approximate solution (µ, δ), and long time
intervals (t).

4.4. Proof. The proof compares the differential equation for u(t) with the equation
satisfied by the best approximation v(t) ∈ M with ‖v(t) − ψ(t)‖ = d(t).

(a) The function v(t) is implicitly characterized by the condition (omitting the
obvious argument t in the sequel)

(4.11) P (v) (v − ψ) = 0.

Under condition (4.7), the implicit function theorem can be used to show that
this equation has a unique solution in the ball of radius 1/(2κ) around ψ, which
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depends continuously differentiably on t. We derive a differential equation for v(t)
by differentiating (4.11) with respect to t ( ˙= d/dt):

(4.12) 0 = P (v)(v̇ − ψ̇) +
(
P ′(v) · (v − ψ)

)
v̇

with (P ′(v) ·ϕ)v̇ = (d/dt)P (v(t))ϕ for ϕ ∈ H. Since v̇ ∈ TvM, we have P (v)v̇ = v̇,
and the equation becomes

(4.13)
(
I + P ′(v) · (v − ψ)

)
v̇ = P (v)ψ̇ .

By (4.5) and (4.7) we have

‖P ′(v) · (v − ψ)‖ ≤ κ ‖v − ψ‖ ≤ 1
2 ,

so that the operator in (4.13) is invertible and

(4.14) v̇ = P (v)ψ̇ + r(v, ψ) with ‖r(v, ψ)‖ ≤ 2κµ ‖v − ψ‖ .
Here we have used the bound (4.8), ‖ψ̇‖ = ‖Hψ‖ ≤ µ. Inserting (2.1) in (4.14),
the equation can be written as

(4.15) v̇ = P (v)
1
i
Hv − P (v)

1
i
H(v − ψ) + r(v, ψ) .

We will compare this differential equation with the equation (2.3) for u(t). In
the following we tacitly assume v(t) ∈ D(H) = D(A). If v does not have this
regularity, then the proof would proceed by replacing v by a regularized family (vε)
with vε(t) ∈ D(H) and vε → v in C1([0, t],H) as ε → 0. Applying the arguments
below to vε and letting ε→ 0 in the final estimate then gives the result.

(b) We form the difference of (2.3) and (4.15), take the inner product with u− v
and take the real part. We then have

‖u− v‖ · d
dt

‖u− v‖ =
1
2
d

dt
‖u− v‖2 = Re 〈u− v, u̇− v̇〉 = I + II + III

with

I = −Re 〈u− v, P (u)iHu− P (v)iHv〉 ,
II = −Re 〈u− v, P (v)iH(v − ψ)〉 ,
III = −Re 〈u− v, r(v, ψ)〉 .

(c) Using the self-adjointness of H = A + B and condition (4.2), which implies
Q(v)iAv = 0, we write

I = Re 〈u− v,Q(u)iHu−Q(v)iHv〉
= Re 〈u− v,Q(u)iHu〉 − Re 〈u− v,Q(v)iBv〉 .

To treat the expression II, we split

II = −Re 〈u− v, P (v)iA(v − ψ)〉 − Re 〈u − v, P (v)iB(v − ψ)〉 .
It is in the first term that the condition (4.4) comes into play. This condition
implies P (v)v = v and hence, by (4.11),

v = P (v)ψ, v − ψ = Q(v)(v − ψ) = −Q(v)ψ .

It follows that

〈v, P (v)iA(v − ψ)〉 = −〈v, P (v)iAQ(v)ψ〉 = 〈Q(v)iAv, ψ〉 = 0 ,

since Q(v)iAv = 0 by (4.2). Similarly, (4.2) implies

〈u, iAQ(u)(v − ψ)〉 = 0 .
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These equations yield

〈u− v, P (v)iA(v − ψ)〉
= 〈u, iA(v − ψ)〉 − 〈u − v,Q(v)iA(v − ψ)〉
= −〈u, iA(Q(u)−Q(v))(v − ψ)〉 + 〈u− v,Q(v)iAψ〉
= −〈iAu, (P (u)− P (v))(v − ψ)〉 + 〈Q(v)(u− v), Q(v)iHψ〉

−〈u− v,Q(v)iBψ〉 .
This gives the basic identity of the proof,

I + II = Re 〈Q(u)(u− v), Q(u)iHu〉 − Re 〈u− v, iB(v − ψ)〉
+ Re 〈iAu, (P (u) − P (v))(v − ψ)〉 − Re 〈Q(v)(u − v), Q(v)iHψ〉 .

With (4.3)–(4.9) we thus obtain

|I + II| ≤ κ ‖u− v‖2 · δ + ‖u− v‖ · β ‖v − ψ‖
+ (µ+ β) · κ ‖u− v‖ · ‖v − ψ‖ + κ ‖u− v‖2 · δ

= 2κδ ‖u− v‖2 + (β + κ(µ+ β)) ‖u − v‖ · ‖v − ψ‖ .
(d) Together with the bound (4.14) this estimate gives

d

dt
‖u− v‖ ≤ K‖u− v‖ + C‖v − ψ‖

with K = 2κδ and C = β + κ(β + 3µ). The Gronwall inequality then implies

(4.16) ‖u(t) − v(t)‖ ≤ CeKt
∫ t

0

‖v(s) − ψ(s)‖ ds ,

and the triangle inequality for u−ψ = (u− v) + (v−ψ) together with d = ‖v−ψ‖
yields the result.

4.5. Time-dependent approximation manifolds. Theorem 4.1 extends readily
to the case of time-dependent approximation manifolds Mt that vary smoothly
with t: we then have time-dependent projections P (t, u) : H → Tu(Mt), for which
we assume the bound ∥∥∥∂P

∂t
(t, u)ϕ

∥∥∥ ≤ ρ ‖ϕ‖
for all ϕ ∈ H and u ∈ M. For Q(t, u) = I − P (t, u) and s(t, u) of (2.7) we assume

‖Q(t, u)s(t, u)‖ ≤ σ

for u ∈ Mt and 0 ≤ t ≤ t. Suppose all the bounds of Section 4.1 hold uniformly in t,
and replace the bound δ of (4.9) by the corresponding bound for time-dependent
manifolds Mt,

dist(iHψ(t) + s(t, v(t)), Tv(t)Mt) ≤ δ , dist(iHu(t) + s(t, u(t)), Tu(t)Mt) ≤ δ .

Then the error bound (4.10) remains valid with d(t) = dist(ψ(t),Mt) and with
constants

(4.17) K = 2κδ , C = β + 2ρ+ κ(β + 3µ+ 2σ) .
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The only major change in the proof is in part (a), where v(t) now satisfies the
differential equation

v̇ = P (t, v)ψ̇ +Q(t, v)s(t, v) + r(t, v, ψ)

with ‖r(t, v, ψ)‖ ≤ 2
(
κ(µ+ σ) + ρ

) ‖v − ψ‖ ,
which is to be compared with

u̇ = P (t, u)
1
i
Hu+Q(t, u)s(t, u) .

By the same arguments as in the proof of Theorem 4.1 we then obtain the error
bound (4.10) with (4.17). Note that κ = 0 for linear spaces Mt, as in Section 3.4.

5. An error bound for the case of Coulomb potentials

In this section we give an error bound in terms of approximation distances of
the exact wave function which applies in situations where the coupling potential is
unbounded. The distance of ψ to M must now be taken with respect to a stronger
norm, and in addition the distance from the time derivative dψ/dt to a tangent
space of M enters the estimate. The error bound applies to the time-dependent
Hartree-Fock approximation of the electronic Schrödinger equation.

5.1. Assumptions. We assume again all conditions of Section 4.1, with the ex-
ception of the bound (4.3) for B. Now let A be positive definite. Then A defines
an inner product on H1, the domain of A1/2,

(χ, ϕ) ∈ H1 ×H1 �→ 〈χ|A|ϕ〉 , with the norm ‖ϕ‖1 = 〈ϕ|A|ϕ〉1/2 ,
by extension of 〈χ|A|ϕ〉 = 〈χ,Aϕ〉 for χ ∈ H1 and ϕ in the domain of A. We may
assume ‖ϕ‖ ≤ ‖ϕ‖1 for all ϕ ∈ H1. Instead of the bound (4.3) we take the weaker
condition

(5.1) ‖Bϕ‖ ≤ β1 ‖ϕ‖1

for all ϕ ∈ H1. For the manifold M we now assume that the tangent space TvM
for v ∈ M is complex linear. We introduce the A-orthogonal projection P1(v) :
H1 → TvM as

P1(v)ϕ = ϑ ∈ TvM with ‖ϑ− ϕ‖1 = min !

This projection is characterized by 〈δv |A |P1(v)ϕ〉 = 〈δv |A |ϕ〉 for all δv ∈ TvM∩
H1, ϕ ∈ H1. We denote by Q1(v) = I − P1(v) the complementary projection.
P1(v) is not, in general, a bounded operator on H, but for v in the domain of A
the following condition turns out to make sense:

(5.2) 〈χ, P1(v)ϕ〉 ≤ ρ1 ‖Av‖ · ‖χ‖ · ‖ϕ‖
for all ϕ, χ ∈ H1 (and then, via continuation by density, for all ϕ, χ ∈ H). We need
the analogues of conditions (4.5)–(4.6) for the H1-projections,

‖ (P1(u) − P1(v))ϕ ‖1 ≤ κ1 ‖u− v‖1 · ‖ϕ‖1,(5.3)
‖Q1(v)(u − v) ‖1 ≤ κ1 ‖u− v‖2

1,(5.4)

and for the distance dist1 with respect to the H1-norm of the exact solution to the
approximation manifold, the analogue of (4.7):

(5.5) dist1(ψ(t),M) ≤ 1
2κ1

for 0 ≤ t ≤ t .
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We make the following regularity assumptions: the time derivative of the solution
is bounded in the H1-norm,

(5.6)
∥∥∥dψ
dt

(t)
∥∥∥

1
≤ µ1 for 0 ≤ t ≤ t ,

and the H1-nearest point to ψ(t) on M, i.e., v1(t) ∈ M with ‖v1(t) − ψ(t)‖1 =
dist1 (ψ(t),M), is in the domain of A and satisfies

(5.7) ‖Av1(t)‖ ≤ ν1 for 0 ≤ t ≤ t .

We denote by δ1 ≤ µ (see (4.8)) the bound

(5.8) dist(iHψ(t), Tv1(t)M) ≤ δ1 , dist(iHu(t), Tu(t)M) ≤ δ1 .

5.2. Verification of the assumptions for Hartree and Hartree-Fock ap-
proximations. The assumptions are satisfied for the time-dependent Hartree-Fock
approximation of the electronic Schrödinger equation (3.3). Here A = Te+ I is the
(shifted) kinetic energy operator and B = U(x, ·) − I the Coulomb potential for
fixed coordinates x of the nuclei. The Hilbert space is H = L2(R3�), and H1 is the
Sobolev space H1(R3�).

The bound (5.1) is a consequence of Hardy’s inequality ([9, p. 350, (4.24)], [16,
(3.7)]). In the following we give the proof of (5.2) and (5.7) for the Hartree method
(3.8) with products of only two functions (without antisymmetrization). The same
arguments apply to Hartree products with any number of factors and to the an-
tisymmetrized functions in the Hartree-Fock method (3.11), but the presentation
becomes more cumbersome.

Proof of (5.2). Let v = φ1⊗φ2 ∈ M∩H2 and assume for simplicity ‖φ1‖ = ‖φ2‖ =
1. The operator A takes the form A = A1 ⊗ I + I ⊗A2, where Aj is a shifted and
scaled negative Laplacian acting on functions of the variable xj (j = 1, 2). For
ϕ ∈ H2, consider the projection ϑ = P1(v)ϕ ∈ TvM, which can be uniquely
written as

ϑ = θ1 ⊗ φ2 + φ1 ⊗ θ2 + c φ1 ⊗ φ2

with 〈θj |Aj |φj〉 = 0 for j = 1, 2 and a complex number c. We then have

‖θ1‖2
1 = 〈θ1 |A1 | θ1〉 = 〈θ1 ⊗ φ2 |A1 ⊗ I | θ1 ⊗ φ2〉 = 〈θ1 ⊗ φ2 |A1 ⊗ I |ϑ〉

and similarly for θ2. Hence,

(5.9) ‖θ1‖1 ≤ ‖ϑ‖1 , ‖θ2‖1 ≤ ‖ϑ‖1 , |c| ≤ ‖ϑ‖ + ‖θ1‖ + ‖θ2‖ ≤ 3 ‖ϑ‖1.

Since ϑ is determined by the condition

(5.10) 〈δ1 ⊗ φ2 + φ1 ⊗ δ2 |A |ϑ〉 = 〈δ1 ⊗ φ2 + φ1 ⊗ δ2 |A |ϕ〉
for arbitrary δ1 ∈ H1

x1
, δ2 ∈ H1

x2
, we obtain the equation

A1θ1 +A1φ1 〈φ2, θ2〉 + cA1φ1 + θ1〈φ2, A2φ2〉 + cφ1〈φ2, A2φ2〉 = 〈φ2, Aϕ〉x2

and the same equation with the subscripts 1 and 2 interchanged. From this we
see that the L2 norm of A1θ1 can be bounded in terms of the L2 norms of Ajφj
(j = 1, 2) and Aϕ, with the bound

‖A1θ1‖ ≤ ‖A1φ1‖ · ‖θ2‖ + ‖A2φ2‖ · ‖θ1‖ + |c| · (‖A1φ1‖ + ‖A2φ2‖) + ‖Aϕ‖
and the same bound for ‖A2θ2‖. We now note that

‖A1φ1‖2 + ‖A2φ2‖2 = ‖(A1 ⊗ I)v‖2 + ‖(I ⊗A2)v‖2 ≤ ‖Av‖2
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where the last inequality is obtained using the Plancherel identity and estimating
the Fourier transforms. With ‖θj‖ ≤ ‖θj‖1, the bounds (5.9), and ‖ϑ‖1 ≤ ‖ϕ‖1 ≤
‖Aϕ‖, these inequalities give (with ρ1 = 16)

(5.11) ‖AP1(v)ϕ‖ ≤ ρ1 ‖Av‖ · ‖Aϕ‖ .
We write

〈χ, P1(v)ϕ〉 = 〈A−1χ |A |P1(v)ϕ〉 = 〈P1(v)A−1χ |A |ϕ〉 = 〈AP1(v)A−1χ, ϕ〉 ,
and since ‖AP1(v)A−1χ‖ ≤ ρ1 ‖Av‖ · ‖χ‖ by (5.11), we obtain (5.2).

Proof of (5.7). We note that v1 satisfies P1(v1)(v1 − ψ) = 0 and hence, by (4.4),

v1 = P1(v1)ψ.

In particular, ‖v1‖1 ≤ ‖ψ‖1. In view of (5.10) with ϑ = v1 = φ1 ⊗ φ2 and ϕ = ψ,
we have

A1φ1‖φ2‖2 + φ1‖φ2‖2
1 = 〈φ2, Aψ〉x2

and the same equation with the subscripts 1 and 2 interchanged. With the bound
(4.8) for Aψ, this yields (5.7) as long as ‖v1‖ ≥ 1

2 , say. Since ‖v1−ψ‖ ≤ ‖v1−ψ‖1 =
dist1(ψ,M) and ‖ψ‖ = 1, the latter condition is satisfied if dist1(ψ,M) ≤ 1

2 .

5.3. Error bound.

Theorem 5.1. Under the conditions of Section 4.1 (with the exception of (4.3))
and of Section 5.1, the error of the variational approximation is bounded by

(5.12) ‖u(t) − ψ(t)‖ ≤ d1(t) + eK1t

∫ t

0

(
C1 d1(s) + C∗ d∗(s)

)
ds

with d1(t) = dist1(ψ(t),M) , d∗(t) = dist(dψdt (t), Tv1(t)M) and with the constants
K1 = 2κδ1, C1 = β1 + 2κ1µ1, C∗ = ρ1ν1, for 0 ≤ t ≤ t.

5.4. Proof. By the same argument as in part (a) of the proof of Theorem 4.1, the
function v1(t) satisfies

(5.13) P1(v1)(v1 − ψ) = 0

and the differential equation

(5.14) v̇1 = P1(v1)ψ̇ + r1(v1, ψ) with ‖r1(v1, ψ)‖1 ≤ 2κ1µ1 ‖v1 − ψ‖1 .

We rewrite this as

(5.15) v̇1 = −P (v1)iHv1 − P (v1)iH(ψ − v1) − (P1(v1) − P (v1))iHψ + r1(v1, ψ) .

We form the difference of (2.3) and (5.15), take the H-inner product with u − v1
and take the real part. We then have

‖u− v1‖ · d
dt

‖u− v1‖ = I + II + III + IV

with

I = −Re 〈u− v1, P (u)iHu− P (v1)iHv1〉 ,
II = −Re 〈u− v1, P (v1)iH(v1 − ψ)〉 ,
III = Re 〈u− v1, (P1(v1) − P (v1))iHψ〉 ,
IV = −Re 〈u− v1, r1(v1, ψ)〉 .
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As in part (c) of the proof of Theorem 4.1, we have

I = Re 〈u− v1, Q(u)iHu〉 − Re 〈u− v1, Q(v1)iHv1〉 .
For the term II we note that, using (5.13),

〈u− v1, P (v1)iA(v1 − ψ)〉 = i 〈P (v1)(u − v1) |A |Q1(v1)(v1 − ψ)〉 = 0 ,

because P (v1)(u − v1) ∈ Tv1M and the range of Q1(v1) is A-orthogonal to Tv1M.
Hence,

I + II = Re 〈Q(u)(u− v1), Q(u)iHu〉 − Re 〈Q(v1)(u − v1), Q(v1)iHψ〉
− Re 〈u− v1, iB(v1 − ψ)〉 ,

which by (5.1) is bounded by

|I + II| ≤ 2κ ‖u− v1‖2 · δ1 + ‖u− v1‖ · β1 ‖v1 − ψ‖1 .

The expression III is rewritten as

III = Re 〈u− v1, P1(v1)Q(v1)ψ̇〉 ,
and (5.2) and (5.7) yield

(5.16) |III| ≤ ρ1ν1 ‖u− v1‖ · dist (ψ̇, Tv1M) .

In total, we obtain
d

dt
‖u− v1‖ ≤ K1 ‖u− v1‖ + C1 d1 + C∗d∗

with the constants K1, C1, C∗ given in the theorem. The Gronwall inequality and
the triangle inequality together with ‖v1 − ψ‖ ≤ ‖v1 − ψ‖1 = d1 then yield the
result.
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11. A. Martinez, An Introduction to Semiclassical and Microlocal Analysis, Springer, New York,
2002. MR 2003b:35010

12. A.D. McLachlan, A variational solution of the time-dependent Schrodinger equation, Mol.
Phys. 8 (1964), 39–44. MR 31:4358

13. A. Messiah, Quantum Mechanics, Dover Publ., 1999 (reprint of the two-volume edition pub-
lished by Wiley, 1961-1962). MR 23:B2826; MR 26:4643

14. A. Raab, On the Dirac-Frenkel/McLachlan variational principle, Chem. Phys. Lett. 319
(2000), 674–678.

http://www.ams.org/mathscinet-getitem?mr=92f:65001
http://www.ams.org/mathscinet-getitem?mr=56:4540
http://www.ams.org/mathscinet-getitem?mr=53:11389
http://www.ams.org/mathscinet-getitem?mr=2003b:35010
http://www.ams.org/mathscinet-getitem?mr=31:4358
http://www.ams.org/mathscinet-getitem?mr=23:B2826
http://www.ams.org/mathscinet-getitem?mr=26:4643


ON VARIATIONAL APPROXIMATIONS IN QUANTUM MOLECULAR DYNAMICS 779

15. S. Teufel, Adiabatic Perturbation Theory in Quantum Dynamics, Lecture Notes in Mathe-
matics 1821, Springer, Berlin, 2003.

16. H. Yserentant, On the regularity of the Schrödinger equation in Hilbert spaces of mixed deriva-
tives, Numer. Math., 2004 (to appear).

Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076
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