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ERROR ESTIMATES FOR SEMI-DISCRETE GAUGE METHODS
FOR THE NAVIER-STOKES EQUATIONS

RICARDO H. NOCHETTO AND JAE-HONG PYO

Abstract. The gauge formulation of the Navier-Stokes equations for incom-
pressible fluids is a new projection method. It splits the velocity u = a+∇φ in
terms of auxiliary (nonphysical) variables a and φ and replaces the momentum
equation by a heat-like equation for a and the incompressibility constraint by a
diffusion equation for φ. This paper studies two time-discrete algorithms based
on this splitting and the backward Euler method for a with explicit boundary
conditions and shows their stability and rates of convergence for both velocity
and pressure. The analyses are variational and hinge on realistic regularity
requirements on the exact solution and data. Both Neumann and Dirichlet
boundary conditions are, in principle, admissible for φ but a compatibility
restriction for the latter is uncovered which limits its applicability.

1. The gauge or impulse formulation

Given an open bounded polyhedral domain Ω in R
d, with d = 2 or 3, we consider

the time-dependent Navier-Stokes equations of incompressible fluids:

(1.1)

ut + (u · ∇)u + ∇p− µ∆u = f , in Ω,
div u = 0, in Ω,

u(0,x) = u0, in Ω,

with vanishing Dirichlet boundary condition u = 0 on ∂Ω and pressure mean-value∫
Ω
p = 0. The primitive variables are the (vector) velocity u and the (scalar)

pressure p. The viscosity µ = Re−1 is the reciprocal of the Reynolds number Re.
Hereafter, vectors are denoted in boldface.

Pressure p can be viewed in (1.1) as a Lagrange multiplier corresponding to the
incompressibility condition divu = 0. This coupling is responsible for compatibility
conditions between the spaces for u and p, characterized by the celebrated inf-sup
condition, and associated numerical difficulties [1, 9]. On the other hand, projection
methods were introduced independently by Chorin [3] and Temam [22, 24] in the
late 1960s to decouple u and p and thus reduce the computational cost. However,
projection methods impose an artificial boundary condition on p, which leads to
boundary layers and reduced convergence rates for p [8, 20]. Error estimates can
be found in [2, 8, 21].
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The gauge (or impulse) formulation, introduced by Oseledets [17] and E and Liu
[6, 7], is a projection method especially conceived to cope with these inconsistencies.
The gauge formulation consists of rewriting (1.1) in terms of two auxiliary variables,
the vector field a and the scalar field φ (gauge variable), which satisfy u = a+∇φ.
Upon replacing this relation into the momentum equation in (1.1), we get

at + (u · ∇)u + ∇ (φt − µ∆φ) + ∇p− µ∆a = f .

Imposing

(1.2) p = −φt + µ∆φ,

we end up with the gauge formulation of (1.1) due to E and Liu [7]:

(1.3)

at + (u · ∇)u − µ∆a = f , in Ω,
−∆φ = div a, in Ω,
u = a + ∇φ, in Ω,

p = −φt + µ∆φ, in Ω.

Suitable boundary conditions must be given to close this system. A key ad-
vantage of the gauge formulation is that no boundary condition is imposed on p
and that we are free to choose a convenient boundary condition for the nonphysical
variable φ which, in view of (1.2), is expected to be smoother than p. We could take
a homogeneous condition either of Neumann or Dirichlet type for φ. To enforce the
boundary condition u = 0, we could either prescribe

(1.4) ∂νννφ = 0, a · ννν = 0, a · τττ = −∂τττφ

or

(1.5) φ = 0, a · ννν = −∂νννφ, a · τττ = 0,

where ννν and τττ are the unit vectors in the normal and tangential directions, respec-
tively. We call (1.4) the Neumann formulation and (1.5) the Dirichlet formulation.

Wang and Liu show, for the backward Euler time discretization of (1.3), that
the order of convergence for velocity is 1 for the Neumann formulation and 1

2 for
the Dirichlet formulation [26]. Since [26] is based on asymptotic analysis, the exact
solutions are assumed to be sufficiently smooth, a rather strong and unrealistic reg-
ularity requirement, particularly so for t ↓ 0 for this entails nonlocal compatibility
conditions between the initial data [11]; see Assumption A4 below. In addition, [26]
does not address the convergence of pressure, which is the most sensitive variable.
We use, instead, a variational technique to get rates of convergence for both velocity
and pressure under realistic regularity assumptions on data. A distinctive aspect
of our study is the assessment of pressure convergence. Since pressure is obtained
through differentiation of φ, the boundary conditions (1.4) and (1.5) play a central
role. The Neumann condition (1.4) always leads to an optimal convergence rate
for velocity and a suboptimal one for pressure. In contrast, the Dirichlet condition
(1.5) fails to yield convergence of pressure and solely gives a reduced convergence
rate for velocity. The error estimates are similar to those known for the Chorin
method [18], [20], [21] and do not fully explain the advantages of the gauge meth-
ods [6, 7, 14, 15, 19]. They provide, however, a flexible methodology that extends
to space discretization [14], a rare and fortunate situation for projection methods.

The paper is organized as follows. In §2 we formulate a semi-implicit time-
discrete gauge algorithm based on Neumann condition (1.4). In §3 we introduce
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basic assumptions and recall regularity results for (1.1). We show in §4 that the
semi-implicit algorithms are unconditionally stable in energy norms, and so ap-
plicable for large Reynolds numbers; we also examine the explicit treatment of
convection which requires a CFL condition. We give a priori error analyses in §5
for velocity and its time derivative via energy techniques; we refer to [11, 25] for
details. We present an a priori error analysis for pressure in §6. We finally conclude
in §7 with a brief discussion of the Dirichlet condition.

2. The gauge method with Neumann condition

We consider the backward Euler time discretization with uniform time step τ of
gauge formulation (1.3) with Neumann (1.4) condition. In order to decouple the
calculation of an+1 and φn+1 at time step n+ 1, it is necessary to extrapolate the
boundary conditions from the previous time step. This extrapolation is responsible
for a boundary layer. Note that τττ indicates a tangential unit vector to ∂Ω whereas
τ designates the time step. No confusion ever arises.

Algorithm 1 (Gauge method with Neumann condition (1.4)). Start with initial
values φ0 = 0 and a0 = u0 = u(0,x). Repeat for 1 ≤ n ≤ N

Step 1: Find an+1 as the solution of

(2.1)
an+1 − an

τ
+ (un · ∇)an+1 + (un · ∇)∇φn − µ∆an+1 = f(tn+1), in Ω,

an+1 · ννν = 0, an+1 · τττ = −∂τττφ
n, on ∂Ω.

Step 2: Find φn+1 as the solution of

−∆φn+1 = div an+1, in Ω,

∂νννφ
n+1 = 0, on ∂Ω.

Step 3: Update un+1:

un+1 = an+1 + ∇φn+1, in Ω.

Remark 2.1 (Pressure). One may compute the pressure whenever necessary as

(2.2) pn+1 = −φ
n+1 − φn

τ
+ µ∆φn+1.

Remark 2.2 (Velocity boundary condition). In view of the extrapolated boundary
condition an+1 · τττ = −∂τττφ

n, the boundary condition of velocity un+1 is

(2.3) un+1 · ννν = 0, un+1 · τττ = ∂τττφ
n+1 − ∂τττφ

n on ∂Ω;

thus un+1 · τττ is not zero, which represents a boundary layer effect. In order to
reduce the boundary layer in (2.3), we can use the 2nd order extrapolation formula
an+1 · τττ = −2∂τττφ

n + ∂τττφ
n−1 [7].

Algorithm 1 is shown to be unconditionally stable in §4, which extends its ap-
plicability to large Reynolds numbers. We note that the equation (2.1) for an+1 is
still linear but nonsymmetric. It becomes symmetric upon treating the convection
term explicitly in the momentum equation [6, 7, 26], namely,

(2.4)
an+1 − an

τ
+ (un · ∇)un − µ∆an+1 = f(tn+1).

The gauge algorithm based on (2.4) is stable provided Cτ ≤ µ and a rather strong,
but customary, assumption is made on the discrete solution; see §4.
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3. Preliminaries

This section is mainly devoted to stating assumptions, reviewing some well-
known lemmas, and to proving basic properties of (1.1). The basic mathematical
theory summarized here can be found in the works of Constantin and Foias [4],
Heywood and Rannacher [11], and A. Prohl [18].

Let Hs(Ω) be the Sobolev space with s derivatives in L2(Ω), L2(Ω) =
(
L2(Ω)

)d
and bfHs(Ω) = (Hs(Ω))d, where d = 2, 3. Let ‖·‖0 denote the L2(Ω) norm, and
〈· , ·〉 the corresponding inner product. Let ‖·‖s denote the norm of Hs(Ω) for
s ∈ R.

In the proof of convergence, we resort to a duality argument via the following
Stokes equations:

(3.1)

−∆v + ∇q = g, in Ω,
div v = 0, in Ω,

v = 0, on ∂Ω.

We start with three basic assumptions about data Ω,u0, f and solution u.

Assumption A1 (Regularity of (3.1)). The unique solution {v, q} of the steady
Stokes equation (3.1) satisfies

‖v‖2 + ‖q‖1 ≤ C‖g‖0.

We remark that the validity of Assumption A1 is known if ∂Ω is of class C2 [4], or
if Ω is a convex two-dimensional polygon [12] or a three-dimensional polyhedral [5].

Assumption A2 (Data regularity). The initial velocity u(0) and the forcing term
in (1.1) satisfy

u(0) ∈ bfH2(Ω) ∩ {v ∈ bfH1
0(Ω) | div v = 0} and f , ft ∈ L∞(0, T ;L2(Ω)).

Assumption A3 (Regularity of the solution u). There exists M ∈ R such that

sup
t∈[0,T ]

‖∇u(t)‖0 ≤M.

We note that Assumption A3 is always satisfied in two dimensions, whereas it is
valid in three dimensions provided ‖f‖L∞(0,T ;L2(Ω)) and

∥∥u0
∥∥

1
are sufficiently small

[11].
Let us introduce the following space which includes the solution v of the Stokes

system (3.1):

(3.2) Z := {z ∈ bfH1
0 (Ω) | div z = 0}.

Then Z is a closed subspace of bfH1
0 (Ω) [9], and its dual space Z∗ is equipped with

the norm

‖f‖Z∗ := sup
z∈Z(Ω)

z�=0

〈f , z〉
‖z‖1

.

The following lemma is easy to prove.

Lemma 3.1 (Norm equivalence). Let (v, q,g) be the functions in the Stokes system
(3.1). Then there exist two positive constants C1, C2 such that

C1‖g‖Z∗ ≤ ‖v‖1 ≤ C2‖g‖Z∗ .
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We now define the trilinear form N associated with the convection term in (1.1)

N(u,v,w) :=
∫
Ω

(u · ∇)v ·wdx,

for which the following properties are well known [9].

Lemma 3.2 (Properties of N). Let u,v,w ∈ bfH1(Ω) and div u = 0. If

u · ννν = 0 or v = 0 on ∂Ω,

then
N(u,v,w) = −N(u,w,v) and N(u,v,v) = 0.

The Sobolev imbedding lemma yields the following results, which will be used
later in dealing with the convection term of (1.1).

Lemma 3.3 (Bounds on trilinear form). If d ≤ 4, then

(3.3)
∫
Ω

u · v · wdx ≤
{
C‖u‖0‖v‖1‖w‖1

C‖u‖2‖v‖0‖w‖0,

and if d ≤ 3, then

(3.4)
∫
Ω

u · v ·wdx ≤ C‖u‖1‖v‖1/2
0 ‖v‖1/2

1 ‖w‖0.

Heywood and Rannacher proved the following a priori regularity estimates [11].

Lemma 3.4 (Uniform and weighted a priori estimates). Let σ(t) be the weight
function

σ(t) = min{t, 1}.
Suppose Assumptions A1–A3 hold, and let 0 < T ≤ ∞. Then the solution (u, p) of
(1.1) satisfies

(3.5) sup
0<t<T

(
‖u‖2 + ‖ut‖0 + ‖p‖1

)
≤M,

∫ T

0

‖ut‖2
1dt ≤M,

and

(3.6) sup
0<t<T

(
σ(t)‖ut‖2

1

)
≤M,

∫ T

0

σ(t)
(
‖ut‖2

2 + ‖utt‖2
0 + ‖pt‖2

1

)
dt ≤M.

The following nonlocal assumption is used to remove the weight σ(t) in the error
estimates for ut of §5 and the pressure of §6.
Assumption A4 (Nonlocal compatibility). Let u0 and f0 = f(0, ·) be such that

(3.7) ‖∇ut(0)‖0 ≤M.

Combining (3.8) with [11, Corollary 2.1], we realize that (3.7) is equivalent to the
initial data u0, p0 = p(0, ·), f0 satisfying the overdetermined system

∆p0 = div
(
f0 − (u0 · ∇)u0

)
in Ω, ∇p0 = ∆u0 + f0 − (u0 · ∇)u0 on ∂Ω.

This is true if u0 = f0 = 0, in which case also p0 = 0 and ‖∇ut(0)‖0 = 0. However,
‖∇ut(t)‖0 blows-up in general as t ↓ 0, thereby uncovering the practical limitations
of results based on higher regularity than (3.5) and (3.6) uniformly for t ↓ 0.
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The proof of Corollary 2.1 in [11], which assumes u0 = f0 = 0 instead of (3.7),
implies Lemma 3.5 below. Lemma 3.6 extends Lemma 3.5 to negative norms and
is instrumental in §5.

Lemma 3.5 (Uniform a priori estimates). Suppose Assumptions A1–A3 hold and
let 0 < T ≤ ∞. Then (3.7) is valid if and only if

(3.8)
∫ T

0

‖utt(t)‖2
0dt+ sup

0<t<T
‖∇ut(t)‖2

0 ≤M.

Furthermore, if (3.7) holds, then

(3.9)
∫ T

0

(
‖pt(t)‖2

1 + ‖ut(t)‖2
2

)
dt ≤M.

Lemma 3.6 (A priori estimates on Z∗). If Assumptions A1–A3 hold, then we have

(3.10)
∫ T

0

‖utt(t)‖2
Z∗dt ≤M.

Furthermore, if (3.7) holds, then

(3.11) sup
0<t<T

‖utt(t)‖2
Z∗ ≤M.

Proof. Since ‖∇q‖Z∗ = 0 for all q ∈ L2(Ω), differentiating the momentum equation
with respect to t and utilizing Lemmas 3.2-3.3 yields

‖utt‖Z∗ ≤ ‖(ut · ∇)u‖Z∗ + ‖(u · ∇)ut‖Z∗ + µ‖∆ut‖Z∗ + ‖ft‖Z∗

≤ C (‖u‖2‖ut‖0 + ‖ft‖0) + Cµ‖∇ut‖0.

Invoking Lemmas 3.4–3.5 and Assumption A2, we easily obtain both (3.10) and
(3.11). �

The following elementary but crucial relation is derived in [13, 19, 23].

Lemma 3.7 (div-grad relation). If v ∈ bfH1
0(Ω), then

(3.12) ‖div v‖0 ≤ ‖∇v‖0.

4. Stability

We prove now that Algorithm 1 is unconditionally stable. According to (2.3)
the time-discrete function un+1 does not vanish on the boundary ∂Ω, and it is thus
difficult to use un+1 as a test function. To get around this issue, we introduce the
auxiliary function ûn+1 which vanishes on ∂Ω:

(4.1) ûn+1 := an+1 + ∇φn.

The following useful properties of ûn+1 are rather easy to show.

Lemma 4.1 (Properties of ûn and un). For all n,m nonnegative integers, we have

ûn = 0, on ∂Ω,

ûn+1 = an+1 + ∇φn = un+1 −∇(φn+1 − φn),(4.2)

〈un , ∇φm〉 = 0, and 〈ûn , um〉 = 〈un , um〉 .(4.3)
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Theorem 4.2 (Stability). Algorithm 1 is unconditionally stable in the sense that
for all τ > 0 the following a priori bound holds:

(4.4)

N∑
n=0

(∥∥un+1 − un
∥∥2

0
+ 2
∥∥∇(φn+1 − φn)

∥∥2

0
+
µτ

2

∥∥∇ûn+1
∥∥2

0

)
+
∥∥uN+1

∥∥2

0
+ µτ

∥∥∆φN+1
∥∥2

0
≤ ∥∥u0

∥∥2

0
+
Cτ

µ

N∑
n=0

∥∥f(tn+1)
∥∥2

−1
.

Proof. By definition of un+1 and ûn+1, the momentum equation (2.1) can be rewrit-
ten as follows:

(4.5)
ûn+1 − un

τ
+ (un · ∇)ûn+1 − µ∆(ûn+1 −∇φn) = f(tn+1).

We now multiply by 2τ ûn+1 ∈ bfH1
0(Ω) and use Lemmas 3.2 and 4.1 to get

(4.6)

∥∥un+1
∥∥2

0
− ‖un‖2

0 +
∥∥un+1 − un

∥∥2

0
+ 2
∥∥∇(φn+1 − φn)

∥∥2

0
+ 2µτ

∥∥∇ûn+1
∥∥2

0

= 2µτ
〈
∆φn , div ûn+1

〉
+ 2τ

〈
f(tn+1) , ûn+1

〉
= A1 +A2.

In view of Lemmas 3.7 and 4.1, we have
∥∥∆(φn+1 − φn)

∥∥2

0
=
∥∥div ûn+1

∥∥2

0
≤∥∥∇ûn+1

∥∥2

0
, whence

A1 = −2µτ
〈
∆φn , ∆(φn+1 − φn)

〉
= −µτ

(∥∥∆φn+1
∥∥2

0
− ‖∆φn‖2

0 −
∥∥∆(φn+1 − φn)

∥∥2

0

)
≤ −µτ

(∥∥∆φn+1
∥∥2

0
− ‖∆φn‖2

0

)
+ µτ

∥∥∇ûn+1
∥∥2

0
.

Clearly,

A2 ≤ 2τ
∥∥f(tn+1)

∥∥
−1

∥∥ûn+1
∥∥

1
≤ Cτ

µ

∥∥f(tn+1)
∥∥2

−1
+
τµ

2

∥∥∇ûn+1
∥∥2

0
.

Inserting A1–A2 back into (4.6) and summing over n from 0 to N , we get (4.4). �

If we treat the convection term explicitly, namely (un ·∇)un, then the momentum
equation (2.4) becomes

(4.7)
ûn+1 − un

τ
+ (un · ∇)un − µ∆(ûn+1 −∇φn) = f(tn+1), in Ω.

In order to estimate (un · ∇)un, we need to assume that the semi-discrete solution
un is bounded in L∞(Ω). This is a customary but rather strong assumption [26],
which is not required in Theorem 4.2.

Remark 4.3 (Stability for explicit Algorithm 1). Suppose

(4.8) max
0≤n≤N+1

‖un‖L∞(Ω) ≤M.

If Assumptions A1–A3 hold, and the stability constraint 2M2τ ≤ µ is enforced,
then the following a priori estimate is valid:

∥∥uN+1
∥∥2

0
+ µτ

∥∥∆φN+1
∥∥2

0
+
µτ

4

N∑
n=0

∥∥∇ûn+1
∥∥2

0
≤ ∥∥u0

∥∥2

0
+
C

µ
τ

N∑
n=0

∥∥f(tn+1)
∥∥2

−1
.
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5. Error analysis for velocity

In this section, we carry out the error analysis for velocity of Algorithm 1. We
first prove that the convergence rate of velocity is of order 1

2 , and then we improve
the rate to order 1.

Let
(
u(tn+1), p(tn+1)

)
be the exact solution of (1.1) at the time step tn+1. If(

ûn+1,un+1, pn+1
)

is the solution of the Algorithm 1, then we denote the corre-
sponding error by

Ên+1 := u(tn+1) − ûn+1, En+1 := u(tn+1) − un+1, en+1 := p(tn+1) − pn+1.

We observe again that ûn+1 = 0 on ∂Ω and div ûn+1 
= 0 in Ω, whereas div un+1 = 0
in Ω and un+1 = ∇(φn+1 − φn) 
= 0 on ∂Ω. The following lemma results directly
from Lemma 4.1.

Lemma 5.1 (Properties of error functions). For all n,m nonnegative integers, we
have

Ên+1 = 0, on ∂Ω,(5.1)

div En+1 = 0, Ên+1 = En+1 + ∇(φn+1 − φn),(5.2)

〈En , ∇φm〉 = 0, and
〈
Ên , Em

〉
= 〈En , Em〉 .(5.3)

Lemma 5.2 (Additional properties of error functions). We have∥∥∆ (φn+1 − φn
)∥∥2

0
=
∥∥∥div Ên+1

∥∥∥2

0
≤
∥∥∥∇Ên+1

∥∥∥2

0
,(5.4) ∥∥∥Ên+1

∥∥∥2

0
=
∥∥En+1

∥∥2

0
+
∥∥∇ (φn+1 − φn

)∥∥2

0
,(5.5) ∥∥En+1

∥∥2

1
≤ C

(∥∥∥Ên+1
∥∥∥2

1
+
∥∥φn+1 − φn

∥∥2

2

)
≤ C

∥∥∥∇Ên+1
∥∥∥2

0
.(5.6)

Proof. It is a simple consequence of Assumptions A1 and Lemmas 3.7 and 5.1. �

To examine the gauge algorithm, we first show that the semi-discrete solution
un+1 converges to u(tn+1) in L∞(0, T ;L2(Ω)) with order 1

2 (see Theorem 5.3). We
then improve the rate of convergence to order 1 in L2(0, T ;L2(Ω)) and L∞(0, T ;Z∗)
in Theorem 5.7. The result of Theorem 5.3 is instrumental in deriving Theorem
5.7.

Theorem 5.3 (Reduced rate of convergence for velocity). Let Assumptions A1–A3
hold. Then the velocity error functions satisfy

(5.7)

N∑
n=0

(∥∥En+1 − En
∥∥2

0
+
∥∥∇(φn+1 − φn)

∥∥2

0
+
µτ

2

∥∥∥∇Ên+1
∥∥∥2

0

)
+
∥∥EN+1

∥∥2

0
+ µτ

∥∥∆φN+1
∥∥2

0
≤ Cτ.

Proof. By virtue of Taylor expansion for the exact velocity u(t), we get

(5.8)
u(tn+1) − u(tn)

τ
+ (u(tn+1) · ∇)u(tn+1)

+ ∇p(tn+1) − µ∆u(tn+1) = Rn+1 + f(tn+1),
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where Rn+1 := 1
τ

∫ tn+1

tn (tn − t)utt(t)dt is the truncation error. Subtracting (4.5)
from (5.8) yields the error equation

(5.9)
Ên+1 − En

τ
− µ∆Ên+1 = Rn+1 −∇p(tn+1) + µ∇∆φn

− (u(tn+1) · ∇)u(tn+1) + (un · ∇)ûn+1.

Multiplying (5.9) by 2τÊn+1 ∈ bfH1
0(Ω) and invoking Lemma 5.1, (5.9) becomes

(5.10)

∥∥En+1
∥∥2

0
− ‖En‖2

0 +
∥∥En+1 − En

∥∥2

0
+ 2
∥∥∇(φn+1 − φn)

∥∥2

0

+ 2µτ
∥∥∥∇Ên+1

∥∥∥2

0
= 2τ

〈
Rn+1 , Ên+1

〉
+ 2τ

〈
p(tn+1) , div Ên+1

〉
− 2µτ

〈
∆φn , div Ên+1

〉
− 2τ

(
N(u(tn+1),u(tn+1), Ên+1) − N(un, ûn+1, Ên+1)

)
=

4∑
i=1

Ai.

We now estimate terms A1 to A4 separately. Using Hölder inequality,

(5.11)

∥∥Rn+1
∥∥2

0
≤ 1
τ2

∫ tn+1

tn

(t− tn)dt
∫ tn+1

tn

(t− tn)‖utt(t)‖2
0dt

≤ C

∫ tn+1

tn

σ(t)‖utt(t)‖2
0dt,

whence we deduce from (5.5)

(5.12) A1 ≤ Cτ

∫ tn+1

tn

σ(t)‖utt(t)‖2
0dt+ Cτ

∥∥En+1
∥∥2

0
+

1
2

∥∥∇(φn+1 − φn)
∥∥2

0
.

On employing Lemma 5.1 and the boundary values ∂ννν(φn+1 − φn) = 0, we obtain

(5.13) A2 ≤ Cτ2
∥∥∇p(tn+1)

∥∥2

0
+

1
2

∥∥∇(φn+1 − φn)
∥∥2

0
.

Making use of (5.2) and (5.4), we arrive at

A3 = −2µτ
〈
∆φn , ∆

(
φn+1 − φn

)〉
= −µτ

(∥∥∆φn+1
∥∥2

0
− ‖∆φn‖2

0

)
+ µτ

∥∥∆ (φn+1 − φn
)∥∥2

0

≤ −µτ
(∥∥∆φn+1

∥∥2

0
− ‖∆φn‖2

0

)
+ µτ

∥∥∥∇Ên+1
∥∥∥2

0
.

To estimate the convection term A4, we first note that N(un, Ên+1, Ên+1) = 0 by
Lemma 3.2. We next invoke

∥∥u(tn+1)
∥∥

2
≤M , which comes from (3.5), and infer

(5.14)

A4 = − 2τN(u(tn+1) − u(tn),u(tn+1), Ên+1)

− 2τN(En,u(tn+1), Ên+1) − 2τN(un, Ên+1, Ên+1)

≤Cτ (∥∥u(tn+1) − u(tn)
∥∥

0
+ ‖En‖0

) ∥∥u(tn+1)
∥∥

2

∥∥∥∇Ên+1
∥∥∥

0

≤Cτ
2

µ

∫ tn+1

tn

‖ut(t)‖2
0dt+

Cτ

µ
‖En‖2

0 +
µτ

2

∥∥∥∇Ên+1
∥∥∥2

0
.
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Replacing A1 −A4 back into (5.10) and summing over n from 0 to N implies

(5.15)

∥∥EN+1
∥∥2

0
+ µτ

∥∥∆φN+1
∥∥2

0
+

N∑
n=0

(∥∥∇(φn+1 − φn)
∥∥2

0
+
∥∥En+1 − En

∥∥2

0

)
+
µτ

2

N∑
n=0

∥∥∥∇Ên+1
∥∥∥2

0
≤ Cτ

N∑
n=0

(
1
µ
‖En‖2

0 +
∥∥En+1

∥∥2

0
+ τ
∥∥∇p(tn+1)

∥∥2

0

)

+
Cτ2

µ

∫ tN+1

0

‖ut(t)‖2
0dt+ Cτ

∫ tN+1

0

σ(t)‖utt(t)‖2
0dt.

By the discrete Gronwall lemma and Lemma 3.4, we finally obtain (5.7). �

Remark 5.4 (Dependence on µ). The constant C in (5.7) depends exponentially
on µ which is the reciprocal of the Reynolds number. This is unfortunate but
customary in the error analysis of (1.1), except perhaps for the pipe flow in [10].

Remark 5.5 (Estimates for initial errors). Choosing N = 0 in (5.15), and realizing
that E0 = 0 and φ0 = 0, we readily have from Lemma 3.4 and Theorem 5.3∥∥E1

∥∥2

0
+
∥∥∇φ1

∥∥2

0
+ µτ

∥∥∆φ1
∥∥2

0
+
µτ

2

∥∥∥∇Ê1
∥∥∥2

0
≤ Cτ

µ

(∥∥E1
∥∥2

0
+
∥∥∇φ1

∥∥2

0

)
+ Cτ2

∥∥∇p(t1)∥∥2

0
+
Cτ2

µ

∫ t1

0

‖ut(t)‖2
0dt+ Cτ

∫ t1

0

σ(t)‖utt(t)‖2
0dt

≤ Cτ2 + Cτ

∫ t1

0

σ(t)‖utt(t)‖2
0dt ≤ Cτ,

or ≤ Cτ2 provided Assumption A4 also holds because then (3.8) applies and σ(t) ≤
τ for t ≤ t1 ≤ 1.

Remark 5.6 (Suboptimal order). The rate of convergence of order 1/2 of Theorem

5.3 is due to the presence of
∫ tn+1

tn σ(t)‖utt(t)‖2
0dt in (5.12) and

∥∥∇p(tn+1)
∥∥

0
in

(5.13). To improve upon this, we must get rid of both terms.

This is precisely our next task. The main idea in obtaining an error estimate in
L2(0, T ;L2(Ω)) is to invert the main elliptic operator or, equivalently, multiply by
a divergence free test function satisfying the Stokes equations. For 0 ≤ n ≤ N + 1,
let (vn, qn) ∈ bfH1

0(Ω) × L2
0(Ω) be the solution of

(5.16)
−∆vn + ∇qn = En, in Ω,

div vn = 0, in Ω,

with vanishing Dirichlet boundary condition vn = 0 on ∂Ω. According to Assump-
tion A1, (vn, qn) ∈ bfH2(Ω) × H1(Ω) are strong solutions of (5.16) and satisfy

(5.17) ‖vn‖2 + ‖qn‖1 ≤ C‖En‖0.

Theorem 5.7 (Full rate of convergence for velocity). If Assumptions A1–A3 hold,
then the velocity error functions satisfy

(5.18)
∥∥EN+1

∥∥2

Z∗ +
N∑

n=0

∥∥En+1 − En
∥∥2

Z∗ + µτ
N∑

n=0

(∥∥En+1
∥∥2

0
+
∥∥∥Ên+1

∥∥∥2

0

)
≤ Cτ2.
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Proof. Let (vn, qn) be the solution of (5.16). Then, it satisfies

(5.19)
2
〈
En+1 − En , vn+1

〉
= 2

〈∇(vn+1 − vn) , ∇vn+1
〉

=
∥∥∇vn+1

∥∥2

0
− ‖∇vn‖2

0 +
∥∥∇(vn+1 − vn)

∥∥2

0
,

as well as

(5.20)
2µτ

〈
∇Ên+1 , ∇vn+1

〉
= 2µτ

〈
Ên+1 , En+1 −∇qn+1

〉
= 2µτ

(∥∥En+1
∥∥2

0
−
〈
Ên+1 , ∇qn+1

〉)
,

because of (5.3). Multiplying (5.9) by 2τvn+1 ∈ bfH1
0(Ω), thus yields

(5.21)

∥∥∇vn+1
∥∥2

0
−‖∇vn‖2

0 +
∥∥∇(vn+1 − vn)

∥∥2

0
+ 2µτ

∥∥En+1
∥∥2

0

=2τ
〈
Rn+1 , vn+1

〉
+ 2µτ

〈
Ên+1 , ∇qn+1

〉
+ 2τ

(
N(un, ûn+1,vn+1) − N(u(tn+1),u(tn+1),vn+1)

)
=A1 + A2 + A3.

We now estimate A1 to A3 separately. Since vn+1 ∈ Z, defined in (3.2), we use
(3.10) to find

A1 ≤ Cτ2

∫ tn+1

tn

‖utt‖2
Z∗dt+ Cτ

∥∥∇vn+1
∥∥2

0
.

To handle A2, we first recall (5.2) and the orthogonality
〈
En+1 , ∇q〉 = 0 for all

q ∈ L2(Ω), because div En+1 = 0 and En+1 · ννν = 0. Hence, (5.17) implies

A2 ≤ Cµτ
∥∥∇(φn+1 − φn)

∥∥2

0
+
µτ

2

∥∥En+1
∥∥2

0
.

On the other hand, the convection term A3 can be rewritten as follows:

(5.22)
A3 = − 2τN(En, ûn+1,vn+1) − 2τN(u(tn+1) − u(tn), ûn+1,vn+1)

− 2τN(u(tn+1), Ên+1,vn+1) = A3,1 +A3,2 +A3,3.

Since Theorem 5.3 and Assumption A1 yield
∥∥vn+1

∥∥
2
≤ C

∥∥En+1
∥∥

0
≤ Cτ1/2 and

(3.5) gives
∥∥u(tn+1)

∥∥
2
≤ C, appealing to (3.3), we easily deduce

A3,1 = 2τN(En, Ên+1,vn+1) − 2τN(En,u(tn+1),vn+1)

≤ Cτ‖En‖0

∥∥∥∇Ên+1
∥∥∥

0

∥∥vn+1
∥∥

2
+ Cτ‖En‖0

∥∥u(tn+1)
∥∥

2

∥∥∇vn+1
∥∥

0

≤ µτ

4

∥∥En+1
∥∥2

0
+ Cµτ

∥∥En+1 − En
∥∥2

0
+
Cτ2

µ

∥∥∥∇Ên+1
∥∥∥2

0
+
Cτ

µ

∥∥∇vn+1
∥∥2

0
.

Likewise, since
∥∥u(tn+1) − u(tn)

∥∥2

0
≤ Cτ

∫ tn+1

tn ‖ut‖2
0dt, we have

A3,2 = 2τN(u(tn+1) − u(tn), Ên+1,vn+1) − 2τN(u(tn+1) − u(tn),u(tn+1),vn+1)

≤ Cτ2

µ

∥∥∥∇Ên+1
∥∥∥2

0
+
Cτ

µ

∥∥∇vn+1
∥∥2

0
+ Cµτ2

∫ tn+1

tn

‖ut(t)‖2
0dt.

Since div u(tn+1) = 0, we can exchange the last two arguments of A3,3 to write

A3,3 ≤ Cτ
∥∥u(tn+1)

∥∥
2

∥∥∥Ên+1
∥∥∥

0

∥∥∇vn+1
∥∥

0
≤ µτ

4

∥∥∥Ên+1
∥∥∥2

0
+
Cτ

µ

∥∥∇vn+1
∥∥2

0
.
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Inserting A3,1–A3,3 into (5.22) and recalling (5.5) yield

A3 ≤µτ
2

∥∥En+1
∥∥2

0
+ Cµτ

∥∥En+1 − En
∥∥2

0
+
Cτ2

µ

∥∥∥∇Ên+1
∥∥∥2

0

+
µτ

2

∥∥∇(φn+1 − φn)
∥∥2

0
+
Cτ

µ

∥∥∇vn+1
∥∥2

0
+ Cτ2

∫ tn+1

tn

‖ut(t)‖2
0dt.

Combining (5.21) with A1–A3 and adding over n from 0 to N lead to

(5.23)

∥∥∇vN+1
∥∥2

0
+

N∑
n=0

∥∥∇ (vn+1 − vn
)∥∥2

0
+ µτ

N∑
n=0

∥∥En+1
∥∥2

0

≤ Cτ

µ

N∑
n=0

∥∥∇vn+1
∥∥2

0
+ Cµτ

N∑
n=0

(∥∥∇(φn+1 − φn)
∥∥2

0
+
∥∥En+1 − En

∥∥2

0

)
+
Cτ2

µ

N∑
n=0

∥∥∥∇Ên+1
∥∥∥2

0
+ Cτ2

∫ tN+1

0

(
‖utt‖2

Z∗ + ‖ut(t)‖2
0

)
dt.

Making use of (5.7), in conjunction with (3.5) and (3.10), we arrive at

∥∥∇vN+1
∥∥2

0
+

N∑
n=0

∥∥∇(vn+1 − vn)
∥∥2

0
+ µτ

N∑
n=0

∥∥En+1
∥∥2

0
≤ Cτ2 +

Cτ

µ

N∑
n=0

∥∥∇vn+1
∥∥2

0
.

Applying the discrete Gronwall lemma allows us to remove the last term on the
right-hand side. With the aid of Lemma 3.1, this implies (5.18) except for the
estimate involving ‖Ên+1‖2

0. The latter follows from (5.5) and (5.7) together and
completes the proof. �

We now embark on an error analysis for the time derivative of velocity. We use
the notation

δWn+1 :=
Wn+1 −Wn

τ

for any sequence {Wn}N
n=0 and σn := σ(tn) for 1 ≤ n ≤ N . We first observe an

immediate consequence of Theorem 5.7.

Remark 5.8 (Estimate for
∥∥∇δv1

∥∥
0
). Choosing N = 0 in (5.23), we readily get

∥∥∇v1
∥∥2

0
≤Cτ
µ

∥∥∇v1
∥∥2

0
+ Cµτ

(∥∥∇φ1
∥∥2

0
+
∥∥E1

∥∥2

0

)
+
Cτ2

µ

∥∥∥∇Ê1
∥∥∥2

0
+ Cτ2

∫ t1

0

(
‖utt‖2

Z∗ + ‖ut(t)‖2
0

)
dt

≤Cτ3 + Cτ2

∫ t1

0

(
σ(t)‖utt‖2

0 + ‖utt‖2
Z∗ + ‖ut(t)‖2

0

)
dt ≤ Cτ2,

with the aid of Remark 5.5 and Theorem 5.7. If Assumption A4 is also valid, then
Remark 5.5 leads to a right-hand side ≤ Cτ3. Since v0 = 0, this gives

∥∥∇δv1
∥∥

0
≤ C

provided Assumptions A1–A3 hold and
∥∥∇δv1

∥∥
0
≤ Cτ1/2 provided Assumption A4

is valid as well.
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Lemma 5.9 (Enhanced stability). If Assumptions A1–A3 hold, then the error
functions satisfy the weighted a priori bounds

(5.24)

N∑
n=1

σn+1
(∥∥δEn+1 − δEn

∥∥2

0
+
∥∥∇(δφn+1 − δφn)

∥∥2

0
+ µτ

∥∥∥∇δÊn+1
∥∥∥2

0

)
+σN+1

∥∥δEN+1
∥∥2

0
+ µσN+1τ

∥∥∆δφN+1
∥∥2

0
≤ C.

If Assumption A4 is also valid,then (5.24) becomes uniform,namely without weights.

Since we intend to derive an L2-based estimate, the main difficulty is to deal
with pressure. We postpone the proof of Lemma 5.9 and instead apply it to derive
the desired error estimate.

Theorem 5.10 (Error estimate for time-derivative of velocity). If Assumptions
A1–A3 hold, then the error functions satisfy the weighted estimates

σN+1
∥∥δEN+1

∥∥2

Z∗ +
N∑

n=1

σn+1
∥∥δEn+1 − δEn

∥∥2

Z∗ + µτ

N∑
n=1

σn+1
∥∥δEn+1

∥∥2

0
≤ Cτ.

If Assumption A4 is also valid, then the following uniform error estimates hold:

∥∥δEN+1
∥∥2

Z∗ +
N∑

n=1

∥∥δEn+1 − δEn
∥∥2

Z∗ + µτ

N∑
n=1

∥∥δEn+1
∥∥2

0
≤ Cτ.

Proof. Let (vn, qn) ∈ bfH1
0(Ω) × L2

0(Ω) be the solution of (5.16); then

(5.25)
∥∥δvn+1

∥∥
2
+
∥∥δqn+1

∥∥
1
≤ C

∥∥δEn+1
∥∥

0
.

Subtracting two consecutive expressions (5.9), multiplying by 2δvn+1 ∈ bfH1
0(Ω),

and recalling the argument leading to (5.19) and (5.20), yield

(5.26)

∥∥∇δvn+1
∥∥2

0
− ‖∇δvn‖2

0 +
∥∥∇(δvn+1 − δvn)

∥∥2

0
+ 2µτ

∥∥δEn+1
∥∥2

0

= 2µτ
〈∇δqn+1 , ∇δ(φn+1 − φn)

〉
+ 2

〈
Rn+1 − Rn , δvn+1

〉
− 2
(
N(u(tn+1),u(tn+1), δvn+1) − N(u(tn),u(tn), δvn+1)

− N(un, ûn+1, δvn+1) + N(un−1, ûn, δvn+1)
)

= A1 +A2 +A3.

We now estimate each term Ai separately. We first use (5.25) to write

A1 ≤ µτ

5

∥∥δEn+1
∥∥2

0
+ Cµτ

∥∥∇(δφn+1 − δφn)
∥∥2

0
.

Since vn+1 ∈ Z, space defined in (3.2), we use (3.10) to find

(5.27)

A2 = 2
〈
Rn+1 , δvn+1

〉− 2 〈Rn , δvn〉 − 2
〈
Rn , δvn+1 − δvn

〉
≤ 2

〈
Rn+1 , δvn+1

〉− 2 〈Rn , δvn〉

+ Cτ

∫ tn

tn−1
‖utt(t)‖2

Z∗dt+
1
2

∥∥∇(δvn+1 − δvn)
∥∥2

0
.
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On the other hand, an elementary manipulation of A3 gives

A3 = − 2N(u(tn+1) − 2u(tn) + u(tn−1),u(tn+1), δvn+1)

− 2N(En − En−1,u(tn+1), δvn+1) − 2N(un − un−1, Ên+1, δvn+1)

− 2N(u(tn) − u(tn−1),u(tn+1) − u(tn), δvn+1)

− 2N(En−1,u(tn+1) − u(tn), δvn+1) − 2N(un−1, Ên+1 − Ên, δvn+1)
= A3,1 +A3,2 +A3,3 +A3,4 +A3,5 +A3,6.

To bound A3,1, we first observe

u(tn+1) − 2u(tn) + u(tn−1) =
∫ tn

tn−1

(
t− tn−1

)
utt(t)dt +

∫ tn+1

tn

(
tn+1 − t

)
utt(t)dt,

whence ∥∥u(tn+1) − 2u(tn) + u(tn−1)
∥∥2

0
≤ Cτ2

∫ tn+1

tn−1
σ(t)‖utt(t)‖2

0dt.

This, together with
∥∥u(tn+1)

∥∥
2
≤M (see (3.5)), and the aid of (3.3), yield

A3,1 ≤ C
∥∥u(tn+1) − 2u(tn) + u(tn−1)

∥∥
0

∥∥u(tn+1)
∥∥

2

∥∥∇δvn+1
∥∥

0

≤ Cτ

∫ tn+1

tn−1
σ(t)‖utt(t)‖2

0dt+ Cτ
∥∥∇δvn+1

∥∥2

0

and
A3,2 ≤ Cτ‖δEn‖0

∥∥u(tn+1)
∥∥

2

∥∥∇δvn+1
∥∥

0

≤ µτ

5

(∥∥δEn+1
∥∥2

0
+
∥∥δEn+1 − δEn

∥∥2

0

)
+
Cτ

µ

∥∥∇δvn+1
∥∥2

0
.

To estimate A3,3 − A3,6, we use to the following estimates proved in Lemma 5.9
and Theorem 5.3:

(5.28) σn
∥∥En − En−1

∥∥2

0
≤ Cτ2,

∥∥En+1
∥∥2

0
+
∥∥∥Ên+1

∥∥∥2

0
≤ Cτ.

Since

(5.29)
∥∥u(tn) − u(tn−1)

∥∥2

1
≤ τ

∫ tn

tn−1
‖ut(t)‖2

1dt ≤ Cτ

thanks to Lemma 3.4, we apply (5.25) in conjunction with (3.3) to deduce

A3,3 = 2N((En − En−1) − (u(tn) − u(tn−1)), Ên+1, δvn+1)

≤ C
(∥∥En − En−1

∥∥
0

∥∥∥Ên+1
∥∥∥

1
+
∥∥u(tn) − u(tn−1)

∥∥
1

∥∥∥Ên+1
∥∥∥

0

)∥∥δvn+1
∥∥

2

≤ Cτ

µ

(
1
σn

∥∥∥∇Ên+1
∥∥∥2

0
+
∫ tn

tn−1
‖ut(t)‖2

1dt

)
+
µτ

5

∥∥δEn+1
∥∥2

0
.

In view of (5.29), we readily obtain

A3,4 ≤ C
∥∥u(tn) − u(tn−1)

∥∥
1

∥∥u(tn+1) − u(tn)
∥∥

1

∥∥δvn+1
∥∥

1

≤ Cτ

∫ tn+1

tn

‖ut(t)‖2
1dt+ Cτ

∥∥∇δvn+1
∥∥2

0
.
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With the aid of (3.3), (5.28) and (5.29), we can bound A3,5 and A3,6 as follows:

A3,5 ≤ Cτ
∥∥En−1

∥∥
0

∥∥δu(tn+1)
∥∥

1

∥∥δvn+1
∥∥

2
≤ Cτ

µ

∫ tn+1

tn

‖ut(t)‖2
1dt+

µτ

5

∥∥δEn+1
∥∥2

0

and

A3,6 = 2τN(En−1 − u(tn−1), δÊn+1, δvn+1)

≤ Cτ
(∥∥En−1

∥∥
0

∥∥∥δÊn+1
∥∥∥

1

∥∥δvn+1
∥∥

2
+
∥∥u(tn−1)

∥∥
2

∥∥∥δÊn+1
∥∥∥

0

∥∥δvn+1
∥∥

1

)
≤ Cτ2

µ

∥∥∥∇δÊn+1
∥∥∥2

0
+
Cτ

µ

∥∥∇δvn+1
∥∥2

0
+
µτ

5

∥∥δEn+1
∥∥2

0
+ Cτ

∥∥∇(δφn+1 − δφn)
∥∥2

0
.

We now multiply both sides of (5.26) by the weight σn+1 and sum over n for
1 ≤ n ≤ N . We first examine the first two terms on the left-hand side of (5.26),
which can be rewritten as follows:

N∑
n=1

(
σn+1

∥∥∇δvn+1
∥∥2

0
− σn‖∇δvn‖2

0 −
(
σn+1 − σn)‖∇δvn‖2

0

)
≥ σN+1

∥∥∇δvN+1
∥∥2

0
− σ1

∥∥∇δv1
∥∥2

0
− τ

N∑
n=1

‖∇δvn‖2
0 ≥ σN+1

∥∥∇δvN+1
∥∥2

0
− Cτ.

This is indeed a consequence of E0 = v0 = 0, σ1 = τ , and Remark 5.8 which
give σ1

∥∥∇δv1
∥∥2

0
≤ Cτ , as well as Lemma 3.1 and Theorem 5.7, which imply∑N

n=1 ‖∇δvn‖2
0 ≤ C. Similarly, we analyze the first two terms on the right-hand

side of (5.27), which become

2
N∑

n=1

(
σn+1

〈
Rn+1 , δvn+1

〉− σn 〈Rn , δvn〉 − (σn+1 − σn
) 〈Rn , δvn〉

)
≤ 2σN+1

∥∥RN+1
∥∥
Z∗
∥∥δvN+1

∥∥
1

+ 2τ
∥∥R1

∥∥
Z∗
∥∥δv1

∥∥
1

+ 2τ
N∑

n=1

‖Rn‖Z∗‖δvn‖1

≤ σN+1

2

∥∥∇δvN+1
∥∥2

0
+ Cτ + Cτ

∫ tN+1

0

‖utt(t)‖2
Z∗dt.

Inserting the above estimates into (5.26) gives

(5.30)

σN+1

2

∥∥∇δvN+1
∥∥2

0
+

N∑
n=1

σn+1

(
1
2

∥∥∇(δvn+1 − δvn)
∥∥2

0
+ µτ

∥∥δEn+1
∥∥2

0

)

≤ Cτ + Cτ

∫ tN+1

0

(
‖utt‖2

Z∗ + σ(t)‖utt‖2
0 + ‖ut‖2

1

)
dt

+ Cτ

N∑
n=1

σn+1
(∥∥∇δvn+1

∥∥2

0
+ τ
∥∥∥∇δÊn+1

∥∥∥2

0
+
∥∥δEn+1 − δEn

∥∥2

0

)
+ Cτ

N∑
n=1

σn+1
∥∥∇(δφn+1 − δφn)

∥∥2

0
+ Cτ

N∑
n=1

σn+1

σn

∥∥∥∇Ên+1
∥∥∥2

0
.

Since σn+1

σn ≤ 2 for n ≥ 1, recalling Lemmas 3.4, 3.6, and 5.9 and Theorems 5.3 and
5.7, and using the discrete Gronwall lemma, the asserted weighted estimate follows.
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To derive the uniform error estimate, we do not multiply (5.26) by σn+1. Since
now

∥∥∇δv1
∥∥2

0
≤ Cτ , according to Remark 5.8, we immediately see that

N∑
n=1

∥∥∇δvn+1
∥∥2

0
− ‖∇δvn‖2

0 ≥ −Cτ +
∥∥∇δvN+1

∥∥2

0
.

Likewise, using (3.11), we easily arrive at

2
N∑

n=1

(〈
Rn+1 , δvn+1

〉− 〈Rn , δvn〉) ≤ Cτ3/2 +
1
2

∥∥∇vn+1
∥∥2

0
.

Since we can remove σn in (5.28), and thus in the bound for A3,3, we end up with an
expression similar to (5.30) but without weights. Proceeding as before, we conclude
the desired estimate via the discrete Gronwall lemma. �

Remark 5.11 (Optimality). The above error estimate τ
∑N

n=0 σ
n+1‖δEn+1‖2

0 ≤ Cτ

is consistent with the regularity
∫ T

0 σ‖utt‖2
0dt of Lemma 3.4. In fact, the loss of half

an order is customary unless the PDE corresponds to an angle-bounded operator
[16]. This is not the case of (1.1).

Proof of Lemma 5.9. Subtracting two consecutive formulas (5.9) and multiplying
by 2δÊn+1 = 2δEn+1 + ∇(δφn+1 − δφn) ∈ bfH1

0(Ω) yield

(5.31)

∥∥δEn+1
∥∥2

0
− ‖δEn‖2

0 +
∥∥δEn+1 − δEn

∥∥2

0
+ 2
∥∥∇(δφn+1 − δφn)

∥∥2

0

+ 2µτ
∥∥∥∇δÊn+1

∥∥∥2

0
= 2

〈
Rn+1 − Rn , δÊn+1

〉
− 2µτ

〈
∆δφn , div δÊn+1

〉
+ 2

〈
p(tn+1) − p(tn) , div δÊn+1

〉
− 2
(
N(u(tn+1),u(tn+1), δÊn+1)

− N(un, ûn+1, δÊn+1) − N(u(tn),u(tn), δÊn+1) + N(un−1, ûn, δÊn+1)
)

= A1 +A2 +A3 +A4.

We now estimate each term A1 to A4 separately. We easily find out that

A1 ≤ 2
∥∥Rn+1 − Rn

∥∥
Z∗

∥∥∥δÊn+1
∥∥∥

1
≤ µτ

8

∥∥∥∇δÊn+1
∥∥∥2

0
+
C

µ

∫ tn+1

tn

‖utt(t)‖2
Z∗dt,

as well as

A3 ≤ 2
∥∥p(tn+1) − p(tn)

∥∥
0

∥∥∥∇δÊn+1
∥∥∥

0
≤ µτ

8

∥∥∥∇δÊn+1
∥∥∥2

0
+
C

µ

∫ tn+1

tn

‖pt‖2
0dt,

the latter being a consequence of (3.6). Making use of (5.2) and (5.4), we arrive at

A2 = −2µτ
〈
∆δφn , ∆(δφn+1 − δφn)

〉
≤ −µτ

(∥∥∆δφn+1
∥∥2

0
− ‖∆δφn‖2

0

)
+ µτ

∥∥∥∇δÊn+1
∥∥∥2

0
.

On the other hand, the convection term A4 can be rewritten as follows:

A4 = − 2
(
N(u(tn+1) − u(tn),u(tn+1), δÊn+1) + N(En,u(tn+1), δÊn+1)

− N(u(tn) − u(tn−1),u(tn), δÊn+1) − N(En−1,u(tn), δÊn+1)
)

− 2
(
N(un, Ên+1, δÊn+1) − N(un−1, Ên, δÊn+1)

)
= A4,1 +A4,2.
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We now recall that ‖u(tn)‖2 ≤ C (see (3.5)) and use (3.3) to arrive at

A4,1 ≤ µτ

8

∥∥∥∇δÊn+1
∥∥∥2

0
+
C

µτ

(
‖En‖2

0 +
∥∥En−1

∥∥2

0

)
+
C

µ

∫ tn+1

tn−1
‖ut(t)‖2

0dt.

We first rewrite A4,2 as follows invoking the crucial properties of N of Lemma 3.2:

A4,2 =
2
τ

N(un − un−1, Ên+1, Ên)

=2N(u(tn) − u(tn−1), δÊn+1, Ên) − 2N(En − En−1, δÊn+1, Ên) = Bn
1 +Bn

2 .

Since Theorem 5.3 yields ‖Ên‖1 ≤ C, we obtain

Bn
1 ≤ C

∥∥u(tn) − u(tn−1)
∥∥

1

∥∥∥δÊn+1
∥∥∥

1

∥∥∥Ên
∥∥∥

1

≤ µτ

8

∥∥∥∇δÊn+1
∥∥∥

0
+
C

µ

∫ tn

tn−1
‖ut(t)‖2

1dt.

Instead of estimating Bn
2 , we first insert the above estimates into (5.31), multiply

by the weight σn+1, and add over n from 1 to N . Arguing as in Theorem 5.10,
namely using Theorem 5.3 and Remark 5.5, the first two terms in (5.31) become

(5.32) σN+1
∥∥δEN+1

∥∥2

0
− σ1

∥∥δE1
∥∥2

0
− τ

N∑
n=1

‖δEn‖2
0 ≥ −C + σN+1

∥∥δEN+1
∥∥2

0
.

On the other hand, we resort to the property σn+1

σn ≤ 2 for n ≥ 1 to write

(5.33)
N∑

n=1

σn+1A3 ≤ µτ

8

N∑
n=1

σn+1
∥∥∥∇δÊn+1

∥∥∥2

0
+
C

µ

∫ tN+1

t1
σ(t)‖pt‖2

0dt.

Collecting all these estimates and using Lemma 3.4, we obtain

(5.34)

σN+1
∥∥δEN+1

∥∥2

0
+

N∑
n=1

σn+1
∥∥δEn+1 − δEn

∥∥2

0
+
µτ

2

N∑
n=1

σn+1
∥∥∥∇δÊn+1

∥∥∥2

0

+µτσN+1
∥∥∆δφN+1

∥∥2

0
+ 2

N∑
n=1

σn+1
∥∥∇δ(φn+1 − φn)

∥∥2

0
≤ C +

N∑
n=1

σn+1Bn
2 .

We now deal with Bn
2 in two steps via (3.4). We first use

∥∥En − En−1
∥∥

0
≤ Cτ

1
2

and ‖En‖1 ≤ ‖Ên‖1 ≤ C, which results from Theorem 5.3 and (5.6), to deduce

Bn
2 ≤ C

∥∥En − En−1
∥∥ 1

2

0

∥∥En − En−1
∥∥ 1

2

1

∥∥∥δÊn+1
∥∥∥

1

∥∥∥Ên
∥∥∥

1
,

whence
N∑

n=1

σn+1Bn
2 ≤ µτ

4

N∑
n=1

σn+1
∥∥∥∇δÊn+1

∥∥∥2

0
+

C

µτ1/2

N∑
n=1

∥∥∥∇Ên
∥∥∥2

0
.

Since
∑N

n=1 ‖∇Ên‖2
0 ≤ C according to Theorem 5.3, (5.34) gives the improvement

σn+1
∥∥En+1 − En

∥∥2

0
≤ Cτ

3
2 , σn+1

∥∥∇(En+1 − En)
∥∥2

0
≤ Cτ

1
2

over the starting condition for the 1st step. Using this to estimate Bn
2 again, we

discover that
Bn

2 ≤ µτ

4

∥∥∥∇δÊn
∥∥∥2

0
+

C

σn+1

∥∥∥∇Ên
∥∥∥2

0
,
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which leads to the improved bound

N∑
n=1

σn+1Bn
2 ≤ µτ

4

N∑
n=1

σn+1
∥∥∥∇δÊn

∥∥∥2

0
+ C

N∑
n=1

∥∥∥∇Ên
∥∥∥2

0
≤ C +

µτ

4

N∑
n=1

∥∥∥∇δÊn
∥∥∥2

0

and proves the weighted estimate (5.24). We finally observe that if Assumption A4
is valid, then so is Lemma 3.5, thereby making unnecessary the use of weight σn+1

in (5.32) and (5.33). This leads to an inequality similar to (5.34) without weights
and implies the asserted uniform estimate. �

Remark 5.12 (Convergence rates for velocity of explicit Algorithm 1). If we treat
convection explicitly, as written in (4.7), then we also need the customary but
strong assumption (4.8) to obtain the results of Theorems 5.3, 5.7, and 5.10.

6. Error analysis for oressure

The goal of this section is to estimate the pressure error in L2(0, T ;L2(Ω)) for
Algorithm 1, where pn+1 is computed according to (2.2), namely,

(6.1) pn+1 = −φ
n+1 − φn

τ
+ µ∆φn+1.

This hinges on the error estimate for time derivative of velocity of Theorem 5.10.

Theorem 6.1 (Rate of convergence for pressure). If Assumptions A1–A3 hold,
then the pressure error function en+1 satisfies the weighted estimate

(6.2) τ
N∑

n=0

σn+1
∥∥en+1

∥∥2

0
≤ Cτ.

If Assumption A4 is also valid, then the following uniform error estimate holds:

(6.3) τ

N∑
n=0

∥∥en+1
∥∥2

0
≤ Cτ.

Proof. We recall the existence of β > 0 such that (inf-sup condition) [1, 9]

(6.4) β‖q‖0 ≤ sup
w∈bfH1

0(Ω)

〈q , div w〉
‖∇w‖0

∀q ∈ L2
0(Ω).

Consequently, it suffices to estimate
〈
en+1 , div w

〉
in terms of ‖∇w‖0. Multiplying

(5.9) by w and utilizing (5.2) and (6.1), we end up with

(6.5)

〈
en+1 , div w

〉
=
〈
δEn+1 , w

〉
+ µ

〈
∇Ên+1 , ∇w

〉
+
(
N
(
u(tn+1),u(tn+1),w

)− N
(
un, ûn+1,w

))
− µ

〈
∆(φn+1 − φn) , div w

〉− 〈Rn+1 , w
〉

=
5∑

i=1

Ai.

We now proceed to estimate each term A1 to A5 separately. We first note that

A1 ≤ C
∥∥δEn+1

∥∥
0
‖w‖0 ≤ C

∥∥δEn+1
∥∥

0
‖∇w‖0, A2 ≤

∥∥∥∇Ên+1
∥∥∥

0
‖∇w‖0.
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Term A3 can be dealt with, with the aid of (3.3) and Theorem 5.3 as follows:

A3 =N(u(tn+1) − u(tn),u(tn+1),w) + N(En,u(tn+1),w)

− N(En, Ên+1,w) + N(u(tn), Ên+1,w)

≤C
(∥∥u(tn+1) − u(tn)

∥∥
0

∥∥u(tn+1)
∥∥

2
+ ‖En‖0

∥∥u(tn+1)
∥∥

2

+ ‖En‖1

∥∥∥Ên+1
∥∥∥

1
+ ‖u(tn)‖2

∥∥∥Ên+1
∥∥∥

1

)
‖∇w‖0

≤C
(∥∥∥∇Ên+1

∥∥∥
0

+ ‖En‖0 +
∥∥u(tn+1) − u(tn)

∥∥
0

)
‖∇w‖0,

because (5.6) and (5.7) imply ‖En‖1 ≤ C. On the other hand, we have

A4 ≤ µ
∥∥∆(φn+1 − φn)

∥∥
0
‖∇w‖0, A5 ≤ ∥∥Rn+1

∥∥
−1

‖∇w‖0.

Inserting the estimates for A1 to A4 back into (6.5) and employing (6.4), we obtain

C
∥∥en+1

∥∥
0
≤∥∥δEn+1

∥∥
0

+
∥∥∥∇Ên+1

∥∥∥
0
+ ‖En‖0

+
∥∥Rn+1

∥∥
−1

+
∥∥∆ (φn+1 − φn

)∥∥
0
+
∥∥u(tn+1) − u(tn)

∥∥
0
.

We now square, multiply by τσn+1 (resp. τ), and sum over n from 0 to N . Recalling
(5.29) and (5.11) and invoking Lemma 3.4, Theorems 5.7 and 5.10, and Lemma 5.9,
the assertion (6.2) (resp. (6.3)) follows. �
Remark 6.2 (Optimality). Both error estimates of Theorem 6.1 are optimal ac-
cording to the regularity in time for pressure of Lemma 3.4, because the operator
involved is not angle-bounded [16].

Remark 6.3 (Rate of convergence for pressure of explicit Algorithm 1). If Assump-
tions A1–A3 and (4.8) hold, then the pressure error functions en+1 of Algorithm 1
with explicit convection (2.4) satisfy (6.2). Moreover, they satisfy (6.3) provided
Assumption A4 is also valid.

7. The gauge method with Dirichlet condition

In this section, we examine the Dirichlet condition (1.5) and thereby uncover
a fundamental obstruction for computing pressure, which severely limits its appli-
cability. The chief difficulty in deriving an error estimate for velocity is that now
un · ννν 
= 0. This is responsible for the reduced order O(

√
τ ) of Theorem 7.3, which

is consistent with the rate obtained in [26] via asymptotics, and for the additional
but realistic regularity assumption (7.4).

Algorithm 1 can be modified as follows to account for (1.5):

Algorithm 2 (Gauge method with Dirichlet condition (1.5)). Start with initial
values φ0 = 0 and a0 = u0 = u(0,x). Repeat for 1 ≤ n ≤ N

Step 1: Find an+1 as the solution of

(7.1)
an+1 − an

τ
+ (un · ∇)an+1 + (un · ∇)∇φn − µ∆an+1 = f(tn+1), in Ω,

an+1 · ννν = −∂νννφ
n, an+1 · τττ = 0, on ∂Ω.

Step 2: Find φn+1 as the solution of

(7.2)
−∆φn+1 = div an+1, in Ω,

φn+1 = 0, on ∂Ω.
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Step 3: Update un+1:

un+1 = an+1 + ∇φn+1, in Ω.

Remark 7.1 (Velocity boundary condition). In Algorithm 2, the boundary condi-
tions of velocity un+1 are

(7.3) un+1 · ννν = ∂τττψ
n+1 = ∂νννφ

n+1 − ∂νννφ
n, un+1 · τττ = 0, on ∂Ω.

Remark 7.2 (Compatibility condition). Upon integrating both sides of (7.2) and
using the boundary conditions of (7.1), we discover the relation∫

Ω

∆φn+1dx =
∫

∂Ω

∂νννφ
n+1dΓ = −

∫
∂Ω

an+1 · νννdΓ =
∫
∂Ω

∂νννφ
ndΓ =

∫
Ω

∆φndx

for Algorithm 2. This means that
∫
Ω

∆φndx must be constant for all time steps
n, which is not true in general. So, we cannot expect the numerical solution φn

to converge to the exact solution φ, as computations corroborate [15, 19]. Since
pressure pn and φn are linked via (2.2), we cannot expect convergence of pn to
p. Therefore, Algorithm 2 cannot be used for approximating p. Surprisingly, the
velocity un+1 converges to the exact solution u with a rate O(

√
τ ) under realistic

regularity assumptions, which are much weaker than those in [26] for a similar rate.

Theorem 7.3 (Reduced rate of convergence for velocity of Algorithm 2). Let As-
sumptions A1–A3 hold as well as

(7.4)
∫ T

0

‖pt(t)‖2
0dt ≤M.

Then the error functions of Algorithm 2 satisfy

(7.5)

∥∥EN+1
∥∥2

0
+
µτ

4

N∑
n=0

∥∥∥∇Ên+1
∥∥∥2

0

+
N∑

n=0

(∥∥En+1 − En
∥∥2

0
+
∥∥∇(φn+1 − φn)

∥∥2

0

)
≤ Cτ.

Proof. Since Ên+1 = 0 on ∂Ω according to (5.1), the departing point is again (5.10).
To estimate A1 and A4, we proceed as in Theorem 5.3 and thereby obtain (5.12)
and (5.14), respectively. The remaining two terms A2 and A3 are more delicate
and are handled together as follows:

A2 +A3 =2τ
〈
p(tn+1) − p(tn) , ∆(φn+1 − φn)

〉
− 2
µ
τ
〈
qn , qn+1 − qn

〉
+

2
µ
τ
〈
qn , p(tn+1) − p(tn)

〉
= B1 +B2 +B3,

where qn := p(tn) − µ∆φn. We have
∥∥p(tn+1) − p(tn)

∥∥2

0
≤ Cτ

∫ tn+1

tn ‖pt(t)‖2
0dt,

whence using Lemma 5.2,

B1 ≤ Cτ2

µ

∫ tn+1

tn

‖pt(t)‖2
0dt+

µτ

8

∥∥∥∇Ên+1
∥∥∥2

0
.



ERROR ESTIMATES FOR SEMI-DISCRETE GAUGE METHODS 541

For B2 we employ the inequality (a+ b)2 ≤ (1 + ε)a2 + (1 + 1
ε )b2 for ε = 1

8 ,

B2 = − τ
µ

(∥∥qn+1
∥∥2

0
− ‖qn‖2

0

)
+
τ

µ

∥∥(p(tn+1) − p(tn)) − µ∆(φn+1 − φn)
∥∥2

0

≤ − τ
µ

(∥∥qn+1
∥∥2

0
− ‖qn‖2

0

)
+
Cτ2

µ

∫ tn+1

tn

‖pt(t)‖2
0dt+

9µτ
8

∥∥∥∇Ên+1
∥∥∥2

0
.

Since

B3 ≤ Cτ2

µ
‖qn‖2

0 +
Cτ

µ

∫ tn+1

tn

‖pt(t)‖2
0dt,

inserting these expressions into (5.10) and summing over n from 0 to N , yield

∥∥EN+1
∥∥2

0
+

N∑
n=0

(∥∥En+1 − En
∥∥2

0
+
∥∥∇(φn+1 − φn)

∥∥2

0
+
µτ

4

∥∥∥∇Ên+1
∥∥∥2

0

)

+
τ

µ

∥∥qN+1
∥∥2

0
≤ Cτ

µ

N∑
n=0

∥∥En+1
∥∥2

0
+
Cτ2

µ

N∑
n=0

‖qn‖2
0 +

τ

µ
‖p(t0)‖2

0

+ Cτ

∫ tN+1

0

(
‖pt(t)‖2

0 + σ(t)‖utt(t)‖2
0 + τ‖ut(t)‖2

0

)
dt.

Finally, the discrete Gronwall lemma implies (7.5) and concludes the proof. �

Remark 7.4 (Reduced rate of convergence for velocity of explicit Algorithm 2). If
Assumptions A1–A3, (4.8), and (7.4) hold, then the error functions of Algorithm 2
with explicit convection (2.4) satisfy (7.5).
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