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A CONVERGENT DIFFERENCE SCHEME FOR
THE INFINITY LAPLACIAN:

CONSTRUCTION OF
ABSOLUTELY MINIMIZING LIPSCHITZ EXTENSIONS

ADAM M. OBERMAN

Abstract. This article considers the problem of building absolutely minimiz-
ing Lipschitz extensions to a given function. These extensions can be character-
ized as being the solution of a degenerate elliptic partial differential equation,
the “infinity Laplacian”, for which there exist unique viscosity solutions.

A convergent difference scheme for the infinity Laplacian equation is intro-
duced, which arises by minimizing the discrete Lipschitz constant of the solu-
tion at every grid point. Existence and uniqueness of solutions to the scheme
is shown directly. Solutions are also shown to satisfy a discrete comparison
principle.

Solutions are computed using an explicit iterative scheme which is equiva-
lent to solving the parabolic version of the equation.

1. Introduction

In this article we introduce and implement a convergent finite difference scheme
for the “infinity Laplacian” partial differential equation (PDE). The infinity Lapla-
cian was studied by Aronsson [3] in the late 1960s and has been the subject of
renewed interest in recent work by Barles and Busca, Crandall, Evans, Gariepy,
Jensen, and others. There has also been a recent comprehensive study by Arons-
son, Crandall, and Juutinen [5]. Solutions of the infinity Laplacian are in a certain
sense the best solutions of the classical analysis problem of extending a Lipschitz
function. The infinity Laplacian is also the Euler-Lagrange equation for the proto-
typical problem in the calculus of variations in L∞. The problem has applications
both to other areas of mathematics, for example in the classical transportation
problem of Monge [14], and outside of mathematics, for example in image process-
ing and engineering mechanics.

The problem requires good numerical analysis, since naive solution methods may
be numerically stable, but nevertheless fail to converge. The scheme we present
respects at the discrete level two essential features: the comparison principle and
the absolutely minimizing Lipschitz extension property.
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Consider then

∆∞u =
1

|Du|2
m∑

i,j=1

uxixj uxiuxj = 0(IL)

for x in a bounded, open set U in R
m, along with Dirichlet boundary conditions

u = g on the boundary of U . Here |Du| = (u2
x1

. . . u2
xm

)1/2 is the length of the
gradient of the function u. (The definition above is the one which arises naturally
in our discretization schemes, but it is different from the one used by some authors,
who may omit the factor of 1/|Du|2.) A more suggestive form is to rewrite the
equation as the second derivative in the direction of the gradient,

∆∞u =
d2u

dv2
, where v =

Du

|Du| .(1.1)

The infinity Laplacian operator appears in the equation for the motion of level sets
by mean curvature, ∆1u = ∆u − ∆∞u, where ∆1 is the level set mean curvature
operator, and ∆ is the usual Laplacian.

The scheme is defined by locally minimizing the discrete Lipschitz constant of the
solution, which leads to a one-dimensional, nonsmooth convex optimization prob-
lem, to be solved at each grid point. This optimization problem may be interpreted
as the minimization of the relaxed gradient. An explicit solution of the optimization
problem is found, which is then used to produce a consistent, monotone scheme.
Convergence (as the grid parameters go to zero) to the viscosity solution of (IL)
follows from Barles-Souganidis [7]. The discretized problem is solved iteratively,
using an explicit scheme that is equivalent to the explicit Euler discretization of
ut = ∆∞u. This scheme is a contraction in L∞; consequently, the iterations con-
verge exponentially to the solution.

In the next few paragraphs we discuss the infinity Laplacian PDE in more detail,
connections with other areas of mathematics, and some applications. The contents
of the remainder of article follow at the end of the section.

The classical problem of Lipschitz extensions. A classical problem in real analysis
is to extend a given function to a larger domain without increasing its Lipschitz
constant. Given the function g defined on a closed set C ⊂ R

m, with K the least
constant for which

f(x) − f(y) ≤ K|x − y| for all x, y ∈ C

holds, the problem is to build a Lipschitz continuous extension of g with the smallest
possible Lipschitz constant. There are multiple solutions to the Lipschitz extension
problem. The Whitney [20] and McShane [17] extensions,

Φ(x) = inf
y∈C

(f(y) + K|x − y|), Λ(x) = sup
y∈C

(f(y) − K|x − y|),

are both solutions. In fact they are the maximal and minimal extensions, respec-
tively. Unfortunately, the McShane and Whitney extensions do not have certain
desirable properties. For example, repeated applications of the operators may lo-
cally improve the Lipschitz constant [5].
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Absolute minimizers and calculus of variations in L∞. Aronsson [2, 3, 4] studied
the Lipschitz extension problem under the stronger requirement that the extensions
be “absolutely minimizing”. Given boundary data g, on ∂U , the extension u is
minimizing if |Du|L∞(U) ≤ |Dv|L∞(U) for all other extensions v. A more stringent
requirement is that a function be absolutely minimizing, which means that it is
minimizing on every open, bounded subset of U .

Aronsson interpreted (IL) as the formal limit, as p → ∞, of the problem of
minimizing the functional Ip(u) =

∫
U
|Du|p dx under given boundary conditions.

The Euler-Lagrange equation for Ip is

div(|Du|p−2Du) = |Du|p−2 (∆u + (p − 2)∆∞u) ,

which results in (IL), when p → ∞.
The problem of finding absolute minimizers of |Du|∞ is the prototypical prob-

lem in the calculus of variations in L∞. Barron, Jensen and Wang [8, 9] prove
the existence of absolute minimizers and derive the corresponding Aronsson-Euler
equations for more general problems in the calculus of variations in L∞.

Existence and uniqueness of viscosity solutions. The function f(x, y) = |x|4/3 −
|y|4/3 is an example, due to Aronsson [4], of a function which is absolutely minimiz-
ing, but not twice differentiable. As of the date of this article, the differentiability
of solutions of (IL) remains an open question.

Since there exist nonsmooth solutions to (IL), solutions cannot be interpreted
in the classical sense. Viscosity solutions [13] provide a suitable notion of weak
solution. Uniqueness of viscosity solutions to (IL) was first proved by Jensen [16].
Later, using different techniques, uniqueness results were established in [6] and [5].
A geometric definition of solutions is provided by the notion of comparison with
cones. Equivalence of the viscosity solution definition, the comparison with cones
definition, and the absolutely minimizing Lipschitz property are established in [12].

Applications to engineering mechanics. The minimization of |Du| in the L1 and
L∞ norms under given boundary data is studied by Strang in [19]. According
to Strang, the L∞ and L1 norms appear naturally in many engineering problems.
Applications include the minimization of the maximum stress and the minimization
of the maximum deflection in an elastic system. Duality theory in convex analysis
is used to give equivalent formulations of the problems.

Applications to image processing. Degenerate elliptic PDE have appeared in image
processing, and more recently in image interpolation (inpainting). Axioms for im-
age processing were introduced and analyzed in [1]. Any image transform which
satisfies certain reasonable axioms can be represented as the solution operator for
a degenerate parabolic PDE. The infinity Laplacian operator (understood as the
second derivative in the direction of the gradient) has also been used for edge de-
tection in the image processing community since as far back as 1984; see [11] for
references.

Applications of (IL) and other PDEs to image interpolation (rather than image
processing) are discussed in [11]. In a parallel fashion to image processing, a class of
degenerate elliptic PDEs arise. The class includes the mean curvature operator (1-
Laplacian), the usual Laplacian, and the infinity Laplacian. Computational results
are presented for the image interpolation problem, using an ad hoc algorithm to
solve (IL).
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Interpolation operators which do not satisfy the axioms may be flawed. A mini-
mal Lipschitz interpolation algorithm is presented in [10], which fails to be absolutely
minimizing. Consequently, as observed in Caselles et al., the interpolant may be
discontinuous.

Summary of main results and overview of contents. An explicit, convergent finite
difference scheme is presented for the infinity Laplace equation. The scheme arises
at the solution of the discrete absolutely minimizing Lipschitz extension problem.
The scheme is defined on a finite difference grid with two parameters, the spatial
resolution dx and the directional resolution dθ. As dx and dθ go to 0 independently,
the solution of the scheme converges to the viscosity solution of (IL), with formal
accuracy O(dx + dθ).

In §1.1 we present an approximation scheme for (IL) in a simple case. In §2
we recall the notion of discrete ellipticity for finite difference schemes. In §3 we
recall the definitions of viscosity solutions for (IL), consistency for approximation
schemes and the convergence result. In §4 the scheme is defined and shown to be
consistent and convergent. In §5 numerical validation and examples are presented.

1.1. The scheme in a special case. If the neighboring grid points are equidistant,
for example on a uniform hexagonal grid, the resulting approximation scheme is
simpler. We present this special case here. In order to define a scheme on a
rectilinear grid, we need the general case, which will be presented in §4.

Let Br(y) denote the ball of radius r centered at y and define v̂ = v/|v|. For a
smooth function u,

u(x + rD̂u) = max
x∈∂Br(y)

u(x) + O(r2),

u(x − rD̂u) = min
x∈∂Br(y)

u(x) + O(r2).

Taking into account (1.1) gives the discretization

(1.2) −∆∞u(y) =
1
r2

(
2u(x) − min

x∈∂Br(y)
u(x) − max

x∈∂Br(y)
u(x)

)
+ O(r2).

Given points on the sphere x1, . . . , xn ∈ ∂Br(y), we may discretize further to obtain

(1.3) −∆∞u(y) =
1
r2

(
2u(y)− n

min
i=1

u(xi) − n
max
i=1

u(xi)
)

+ O(r2 + dθ),

where dθ is a measure of the error in going from (1.2) to (1.3); see §4.
The connection between absolutely minimizing Lipschitz extensions and the in-

finity Laplace equation in a discrete setting is given by the following observations.

A convex optimization problem. To build a scheme on a cartesian grid, (1.3) must be
generalized to allow for nonequidistant neighbors. This is accomplished by solving
the discrete optimal Lipschitz extension problem. Minimize the (discrete) Lipschitz
constant of u at x0 computed with respect to the points x1, . . . , xn:

min
u0

L(u0), where L(u0) =
n

max
i=1

|u(x0) − u(xi)|
|x0 − xi| ,
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which is a convex, nonsmooth one-dimensional optimization problem. The solution
in the equidistant case is simply the average of the max and the min of the values

u∗ =
1
2

(
n

min
i=1

u(xi) +
n

max
i=1

u(xi)
)

.

This solution appears in (1.3): −∆∞u = 2r−2(u− u∗) + O(r2 + dθ). In the general
case, the minimizer is found by maximizing the relaxed (discrete) gradient

n
max
i,j=1

|u(xi) − u(xj)|
|x0 − xi| + |x0 − xj |

over the neighboring nodes and linearly interpolating the values at the maximal
nodes; see Theorem 5.

2. Discretely elliptic finite difference schemes

In this section we review some background material on monotone finite difference
schemes. The discretization of (IL) gives a system of coupled, nonlinear (nondif-
ferentiable) equations. In general, these types of systems may be quite challenging
to solve, but fortunately, discretely elliptic discretizations yield systems which may
be solved by a simple explicit iteration scheme.

We begin with an informal description of the comparison principle and the de-
generate ellipticity property for PDEs to motivate the parallel definitions of mono-
tonicity and the discrete ellipticity property for numerical schemes. This is followed
by formal definitions and a statement of the main theorems, the full details of which
may be found in [18].

It is convenient for heuristic purposes to regard the solution operator of a PDE
as a map from “data” to “solution” (where “data” may represent suitable boundary
conditions and “solution” may represent a function on the domain). In this context,
the comparison principle is a global property of the solution operator which says: if
“data1 ≤ data2”, then “solution1 ≤ solution2.” Here the operator, ≤, is the natural
partial ordering on functions. Degenerate ellipticity is a local structure condition
on the PDE which is used to prove the comparison principle.

In a parallel fashion, it is convenient to regard the solution operator for an
approximation scheme as a map taking “data” to “solution” (where now the data
and the solution may be a finite number of function values). In this context,
monotonicity is a global property which says: if “data1 ≤ data2”, then “solution1
≤ solution2.” Discrete ellipticity, introduced in [18], is a local structure condition
on the approximation scheme which is used to prove monotonicity.

2.1. Definitions and theorems. A finite difference grid is a graph with N ver-
tices embedded in R

m. Given a node i, write e(i) = {i1, . . . ini} for the list of its
neighbors. We identify vectors u = (u1, . . . , uN ) ∈ R

N with functions on the grid
and call them grid functions.

Definition (Discretely elliptic finite difference scheme). A function F : R
N → R

N ,
which is regarded as a map from grid functions to grid functions, is a finite difference
scheme if

(2.1) F(u)i = F i
(
ui, ui − ui1 , . . . , ui − uini

)
(i = 1, . . . , N)
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for some functions F i(x0, x1, . . . , xni). A grid function u is a solution of the scheme,
if F(u) = 0. The scheme F is discretely elliptic if

(2.2) x ≤ y implies that F i(x) ≤ F i(y), for i = 1, . . . , N.

Note that when applied to a grid vector, discrete ellipticity means that F i is
nondecreasing in ui and in the differences ui−u′. (To emphasize the parallel nature
of the definitions, recall that the nonlinear PDE F (D2u, Du, u, x) is degenerate
elliptic if it is nondecreasing in the u argument and nonincreasing in the D2u
argument.)

Definition (Explicit Euler map and nonlinear CFL condition). Let F be a Lips-
chitz continuous, discretely elliptic scheme, with Lipschitz constant K. For ρ > 0,
define the explicit Euler map Sρ : R

N → R
N by

(2.3) Sρ(u) = u− ρF(u).

The nonlinear Courant-Freidrichs-Lewy condition for Sρ is

(CFL) ρ ≤ 1
K

.

Uniformly/strictly proper are mild technical conditions that may be satisfied
without loss of generality by adding a small multiple (say dx) of ui to each compo-
nent F i of the scheme.

Theorem 1 (Discretely elliptic schemes are monotone). Let F be a strictly proper,
discretely elliptic finite difference scheme. Then F is monotone.

Theorem 2 (Monotonicity of the Euler map). Let F be a Lipschitz continuous,
discretely elliptic scheme. The Euler map (2.3) is monotone provided (CFL) holds.

Thus given a discretely elliptic scheme for an elliptic PDE, the explicit Euler
discretization in time gives a monotone scheme for the corresponding parabolic
PDE. (It is also true that the implicit Euler discretization is discretely elliptic.)

Theorem 3 (Contractivity of the Euler map). Let F be a Lipschitz continuous,
discretely elliptic scheme. The Euler map (2.3) is a contraction in R

N equipped with
the maximum norm, provided (CFL) holds. If, in addition, F is uniformly proper
and strict inequality holds in (CFL), then the Euler map is a strict contraction.

Theorem 4 (Construction of unique solutions). Every uniformly proper, Lipschitz
continuous discretely elliptic scheme has a unique solution. The iterates of the
explicit Euler map converge exponentially to this solution for arbitrary initial data,
as long as strict inequality holds in (CFL).

3. Viscosity solutions

In this section we recall the definition of viscosity solutions for the infinity Lapla-
cian and the definition of consistency used in the convergence theory.

Definition (Viscosity solutions). (1) A continuous function u defined on the set
U is a viscosity subsolution of −∆∞u = 0 in U , if for every local minimum point
x ∈ U of u − φ, where φ is C2 in some neighborhood of x, we have{

−∆∞φ(x) ≤ 0, if Dφ(x) �= 0,

−ηT D2φ(x)η ≤ 0, for some |η| ≤ 1, if Dφ(x) = 0.
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(2) A continuous function u defined on the set U is a viscosity supersolution of
−∆∞u = 0 in U , if for every local maximum point x ∈ U of u − φ, where φ is C2

in some neighborhood of x, we have{
−∆∞φ(x) ≥ 0, if Dφ(x) �= 0,

−ηT D2φ(x)η ≥ 0, for some |η| ≤ 1, if Dφ(x) = 0.

(3) Moreover, a continuous function defined on the set U is a viscosity solution
of −∆∞u = 0 in U , if it is both a viscosity subsolution and a viscosity supersolution
in U .

Definition (Consistency). The numerical scheme Fdx,dθ is consistent if for every
φ ∈ C2(U) and for every x ∈ U ,

lim
dx,dθ→0

Fdx,dθ(φ)(x) = −∆∞φ(x)

if Dφ(x) �= 0, and

λ ≤ lim inf
dx,dθ→0

Fdx,dθ(φ)(x) ≤ lim sup
dx,dθ→0

Fdx,dθ(φ)(x) ≤ Λ,

where λ, Λ are the least and greatest eigenvalues of D2φ(x), otherwise.

By a theorem of Barles-Souganidis [7], consistent, monotone schemes converge
to the unique viscosity solution of the PDE.

4. Discrete minimal Lipschitz extensions

In this section we define and solve the discrete minimal Lipschitz extension prob-
lem, which will then be used to define the approximation scheme.

We mention that the discrete minimal Lipschitz extension problem is formulated
for points in Euclidean space, but the arguments apply equally to points in a
metric space. This approach may be useful for more general problems, for example
inpainting on a surface or extending a function in a metric space.

Definition (Discrete Lipschitz constant). Given distinct points x0, . . . , xn in R
m,

let di = |x0 − xi| > 0, i = 1, . . . , n, be the distances from the base point x0 to
the neighbors. Given a function u defined in a neighborhood containing the points
xi, i = 0, . . . , n, let ui = u(xi), for i = 1, . . . n. The discrete Lipschitz constant of
the function u, at the point x0, computed with respect to the points x1, . . . , xn, is

(4.1) L(u0) =
n

max
i=1

Li(u0) =
n

max
i=1

|u0 − ui|
di

.

Problem 1 (Discrete minimal Lipschitz extensions). Minimize the discrete Lips-
chitz constant of u at x0, computed with respect to the points x1, . . . , xn over the
value u0 = u(x0) :

min
u0

L(u0).

Remark (Geometrical interpretation of Problem 1). Consider R
n imbued with the

metric d(x, y) = maxn
i=1 |xi − yi|/di, where di > 0, i = 1, . . . , n. Then Problem 1

consists of finding the minimum distance from the point (u(x1), . . . , u(xn)) to the
diagonal line (t, . . . , t), t ∈ R.
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Theorem 5 (Solution of the discrete minimal Lipschitz extension problem). The
unique solution of the discrete minimal Lipschitz extension problem is

(4.2) u∗ =
diuj + djui

di + dj
,

where i, j are the indices which maximize the relaxed discrete gradient

(4.3)
|ui − uj|
di + dj

=
n

max
k,l=1

{ |uk − ul|
dk + dl

}
.

Furthermore,

(4.4) u∗ is nondecreasing as a function of (u1, . . . , un).

Proof. The function L(u) : R → R is convex and piecewise linear, with L(u)′ �= 0
on each piece, so L(u) has a unique minimum, u∗. The minimum occurs at the
unique point where limu↑u∗ L′(u) < 0 and limu↓u∗ L′(u) > 0. Rewrite

(4.5) L(u) =
n

max
i,j=1

Li,j(u),

where

Li,j(u) = max
{ |u − ui|

di
,
|u − uj |

dj

}
.

By the description (4.5), all possible vertices of L are vertices of Li,j , for some
indices i, j. Thus the minimum of L occurs at a minimum of Li,j for some i, j.
Therefore

(4.6) min
u

n
max
i,j=1

Li,j(u) =
n

max
i,j=1

min
u

Li,j(u).

The minimum of Li,j(u) occurs when (u − ui)/di = (u − uj)/dj . This gives a
minimum at the linear interpolant

(4.7) uij =
diuj + djui

di + dj
,

with value

L(u) = Lij(uij) =
|ui − uj |
di + dj

.

Taking into account the minimax property (4.6) gives (4.2), (4.3).
Next, we check the assertion (4.4). Write u′ for u1, . . . , un. Now L(u) = L(u, u′) :

R
n+1 → R is a continuous function, convex in u for each fixed u′. So the minimum

u∗ = u∗(u′) is a continuous function of u′. In addition, u∗ is piecewise linear by
(4.7). Since on each piece, u∗ is nondecreasing in u′, it follows from continuity that
u∗ is globally nondecreasing in u′, which establishes (4.4). �

The scheme can now be defined using the solution of the discrete minimal Lips-
chitz extension problem at each point.

Definition (Scheme definition). Define the scheme at each grid point to be u0−u∗
where u∗ = u∗(u1, . . . , un) is the solution of the discrete minimal Lipschitz extension
problem, computed with respect to neighbors.
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The scheme is in the form (2.1), since it can be written

u0 − u∗ =
didj

di + dj

(
u0 − uj

dj
+

u0 − ui

di

)
,

where i, j are the indices defined by (4.3).
We remark that it is the expression u−u∗, not (u−u∗)/(didj) which is discretely

elliptic, so in fact the scheme computes didj∆∞u at each grid point, where i, j may
vary. This is acceptable, since the scheme nevertheless finds solutions of ∆∞ = 0.
In addition, the Lipschitz constant of the scheme is unity, which is also convenient.

Next we prove consistency.

Definition (Spatial and directional resolution). Given distinct points, x0, x1, . . . ,
xn in R

m, define the direction vectors vi = x0 − xi, the distances di = |vi|, and the
unit direction vectors v̂i = vi/di. Define the local spatial resolution

(4.8) dx =
n

max
i=1

|vi|
and the local directional resolution

(4.9) dθ = max
v∈Sn

n
min
i=1

|v − v̂i|,
which is a bound on the distance from an arbitrary direction vector (unit vector)
to the set of grid direction vectors. Finally, define the variation in the distances,

(4.10) dx′ =
n

max
i=1

di −
n

min
i=1

di.

In the theorem below we will assume

if v̂i is a direction vector, then so is −v̂i,(4.11)

dx′ = O(1),(4.12)

simply to ensure that the di are interchangeable with dx in the computations below.

Theorem 6 (Consistency of discrete minimal Lipschitz extensions). Let u be a
C2 function in a neighborhood of x0. Suppose we are given neighbors x1, . . . , xn,
arranged symmetrically so that (4.11) holds and so that the mild technical condition
(4.12) holds. Let u∗ be the solution of the discrete minimal Lipschitz extension
problem computed with respect to the points x1, . . . , xn, and let i, j be the indices
which maximize the relaxed discrete gradient (4.3). Then

(4.13) −∆∞u(x0) =
1

didj
(u(x0) − u∗) + O(dθ + dx).

Proof. 1. First assume Du �= 0. The Taylor expansion gives

(4.14) ui = u(x0) + div̂iDu(x0) +
d2

i

2
v̂T

i D2u(xO) v̂i + O(dx3), i = 1, . . . , n.

Then (4.3), which is to be maximized, gives
uk − ul

dk + dl
= (v̂k − v̂l)Du + O(dx).

Up to order dx, the last expression is maximized by choosing v̂k as close as possible
to D̂u and v̂l close to −D̂u. Furthermore, taking dx, dθ small enough, by (4.11) we
may assume that

(4.15) v̂i = −v̂j .
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By assumption, there are indices i, j so that

(4.16) |v̂i − D̂u|, |v̂j + D̂u| ≤ dθ

Then using the Taylor expansion (4.14) and the solution formula (4.2) gives

u∗ = u0 +
didj

di + dj
(v̂i + v̂j)Du +

1
2
didj(v̂iD

2uv̂i + v̂jD
2uv̂j) + O(dx3)

and using (4.15) and applying (4.16), we get (4.13), as desired.
2. Next, assume Du = 0. Then for any indices i, j, we have from (4.14)

1
didj

(
u0 − djui + diuj

di + dj

)
=

1
2
(v̂iD

2uv̂i + v̂jD
2uv̂j) + O(dx)

which is consistent up to O(dx) with −∆∞u in the viscosity sense. �
Theorem 7 (Convergence). The solution of the difference scheme defined above
converges (uniformly on compact sets) as dx, dθ goes to 0 to the solution of (IL).

Proof. Convergence to the solution of (IL) follows from consistency (Theorem 6)
and monotonicity (Theorem 5) and Theorem 1 of the scheme by [7]. �

5. Implementation

In this section, the numerical implementation of the scheme is discussed, and
numerical solutions are presented. Solutions are displayed in Figure 2.

The scheme was implemented on a uniform rectilinear grid, in two dimensions.
The directional resolution dθ was reduced by increasing the number of neighbors
associated with each node. This was accomplished as follows. Taking as neighbors
four nodes on the boundary of the square of radius dx gave the five point scheme.
Taking as neighbors all nine nodes on the boundary of the square of radius dx
gave the nine point scheme. Finally, taking as neighbors all sixteen nodes on the
boundary of the square of radius 2 dx gave the seventeen point scheme. See Figure 1.

dθ
dθ dθ}

dx dx

} }

dx

Figure 1. Grids for the 5, 9, and 17 point schemes and level sets
of the cones for the corresponding schemes.
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Table 1. Discretization error as a function of dθ, computed using
neighbors on the boundary of a circle, and on a square, for different
choices of quadratic functions.

Circle: # points 16 32 64 200 1000 105

error .1553 .0123 .0.123 -0.016 -0.0024 -.00008

Square: # levels 2 4 8 16 32 64 128 256

error q1 .11 .11 .11 -.11 .05 .027 -.013 .0068

error q2 -.2 -.2 -.2 .05 -.004 -.004 -.004 .0015

Near the boundary, the seventeen point scheme was modified to also include points
on the boundary of the square of radius dx, which gave a twenty-five point scheme;
this was needed for continuity at the boundary.

Each choice of neighbors induces a natural metric on the grid. The cones in the
induced metric were computed by solving |Du|G = 1, using the discretely elliptic
discretization, |Du|G = maxni

i=1 {(u0 − ui)/di}. The level sets of the cones are
shown in Figure 1.

Nonconvergent methods. In preliminary investigations, several other methods were
attempted, all of which failed to converge. A naive difference method for (IL)
is to first compute the gradient and then compute the second derivative of the
function in the direction determined by the gradient. This method violates the
comparison principle: increasing the value of the function at one of the grid points
used to compute the gradient will change the resulting direction, and in general the
resulting value of the second derivative is not greater. Implementing this method
led to spurious finite amplitude oscillations in the solutions. Other methods were
either insensitive to sharp corners (failing to see that a cone with interior vertex is
not a solution) or produced spurious sharp saddles of the approximate form |x|−|y|.

Discretization error. An independent check of the discretization error was per-
formed for data on the unit circle and also for data on the nodes of a uniform box.
Quadratic data was assigned to the grid points, and the Lipschitz extension problem
was solved to compute u − u∗. Data was deliberately chosen so that the gradients
did not line up with the grid. The observed accuracy, presented in Table 1, was
linear in dθ, confirming the accuracy analysis.

For the calculations on the square, lattice points on the boundary of the square
of radius dx times the number of levels were used. For the calculations on the circle,
equally spaced points on the boundary of the circle of radius dx were used.

Table 2. Numerical error computed in the maximum norm for the
5 point, 9 point, and 25 point stencils, on a grid with n2 points.
Calculated using the exact Aronsson solution x4/3 − y4/3 .

Stencil n = 41 n = 81 n = 161 n = 241 n = 401

5 .09 .09 .067 .015 .0057

9 .023 .018 .0058 .0028 .00079

25 .0052 .0057 .0033 .0035 .00072
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Numerical convergence. The observed convergence was much better than predicted
by the analysis: the observed error was linear in dx, even for fixed dθ, as evidenced
by Table 2, where the error was computed using the exact solution x4/3 − y4/3.

Implementation. The scheme was implemented on a uniform grid. The number of
grid points used varied from 412 to 4012. The implementation was performed in
MATLAB, on a laptop computer. The entire code was less than two hundred lines.
Convergence was defined to be when u − u∗ < dx/200 at each node. Convergence
required on the order of 1000 iterations. Convergence time was less than a minute
of computer time for n = 100 and several minutes for n = 401. Solutions are
displayed in Figure 2. Solutions appear differentiable, but not twice differentiable.

Figure 2. Surface and contour plots using the 25 neighbor
method, for boundary data |x|, and x3 − 3xy2, on a square, and
boundary data the characteristic function of a point, on a circle.
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The singularities are visualized using the lighting effects. Singularities appeared
along lines which meet at saddle points. The kinks in the solution are not numerical
artifacts. The third solution shown is for boundary data the characteristic function
of a point, on a circle. The problem has been studied by Evans [15]. The contours
have corners which reflect the metric on the grid. As dθ → 0, we expect the corners
to vanish.

The logic of the scheme is such that the number of neighbors determined how
the local Lipschitz constant was minimized. Thus boundary nodes (nodes with
zero neighbors and Dirichlet data assigned) could be placed anywhere. Likewise,
nodes on the boundary of the computational domain were simply nodes with fewer
neighbors and need not have Dirichlet data assigned.

As observed in §1.1, the scheme simplifies when the neighboring grid points are
equidistant. An implementation using a hexagonal grid would be simpler: the
resulting iteration requires simply replacing the value at each point by the average
of the min and max of its neighbors.
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