
MATHEMATICS OF COMPUTATION
Volume 74, Number 250, Pages 869–903
S 0025-5718(04)01692-8
Article electronically published on July 22, 2004

COMPUTING MULTIPLE ROOTS OF INEXACT POLYNOMIALS

ZHONGGANG ZENG

Abstract. We present a combination of two algorithms that accurately cal-
culate multiple roots of general polynomials.

Algorithm I transforms the singular root-finding into a regular nonlinear
least squares problem on a pejorative manifold, and it calculates multiple roots
simultaneously from a given multiplicity structure and initial root approxima-
tions. To fulfill the input requirement of Algorithm I, we develop a numerical
GCD-finder containing a successive singular value updating and an iterative
GCD refinement as the main engine of Algorithm II that calculates the mul-
tiplicity structure and the initial root approximation. While limitations exist
in certain situations, the combined method calculates multiple roots with high
accuracy and consistency in practice without using multiprecision arithmetic,
even if the coefficients are inexact. This is perhaps the first blackbox-type
root-finder with such capabilities.

To measure the sensitivity of the multiple roots, a structure-preserving
condition number is proposed and error bounds are established. According
to our computational experiments and error analysis, a polynomial being ill-
conditioned in the conventional sense can be well conditioned with the multi-
plicity structure being preserved, and its multiple roots can be computed with
high accuracy.

1. Introduction

In this paper, we present a combination of two numerical algorithms for comput-
ing multiple roots and the multiplicity structures of polynomials. According to our
extensive computational experiments and error estimates, the method accurately
calculates polynomial roots of nontrivial multiplicities without using multiprecision
arithmetic, even if the coefficients are inexact.

Polynomial root-finding is among the classical problems with the longest and
richest history. One of the most difficult issues in root-finding is computing multi-
ple roots. In addition to requiring exact coefficients, multiprecision arithmetic may
be needed when multiple roots are present [27, p. 196]. In fact, using multiprecision
arithmetic has been a common practice in designing root-finding algorithms and
software, such as those in [2, 14, 16]. Moreover, there is a so-called “attainable ac-
curacy” in computing multiple roots [19, 27, 35]: to calculate an m-fold root to the
precision of k correct digits, the accuracy of the polynomial coefficients and the ma-
chine precision must be at least mk digits. This “attainable accuracy” barrier also
suggests the need of using multiprecision arithmetic. Multiprecision software such

Received by the editor January 13, 2003 and, in revised form, September 17, 2003.
2000 Mathematics Subject Classification. Primary 12Y05, 65H05; Secondary 65F20, 65F22,

65F35.

Key words and phrases. Polynomial, root, multiplicity.

c©2004 American Mathematical Society

869

870 ZHONGGANG ZENG

as [1] are available. However, when polynomial coefficients are truncated, multiple
roots turn into clusters, and extending machine precision will never reverse clusters
back to multiple roots. In the absence of accurate methods that are independent
of multiprecision technology, multiple roots of perturbed polynomials would indeed
be intractable.

While multiple roots are considered hypersensitive in numerical computation,
W. Kahan [21] proved that if the multiplicities are preserved, those roots may
actually be well behaved. More precisely, polynomials with a fixed multiplicity
structure form a pejorative manifold. A polynomial is ill-conditioned if it is near
such a manifold. On the other hand, for the polynomial on the pejorative manifold,
its multiple roots are insensitive to multiplicity-preserving perturbations, unless
the polynomial is also near a submanifold of higher multiplicities. Therefore, to
calculate multiple roots accurately, it is important to maintain the computation on
a proper pejorative manifold.

In light of Kahan’s theoretical insight, we propose Algorithm I in §3 that trans-
forms the singular root-finding into a regular nonlinear least squares problem on
a pejorative manifold. By projecting the given polynomial onto the manifold, the
computation remains structure preserving. As a result, the roots can be calculated
simultaneously and accurately.

In applying Algorithm I, one needs a priori knowledge on the initial root approxi-
mation as well as multiplicity identification, which is often attempted by estimation
(e.g., [30, 35]) or clustering (e.g., [4, 15, 25]) with unknown certainty. To fulfill the
input requirement of Algorithm I, it is preferable to have an algorithm that sys-
tematically calculates the multiplicity structure. One of the main difficulties in
identifying the multiplicity structure is the lack of a robust method for computing
the polynomial greatest common divisor (GCD).

Recently, many different approaches and strategies have been proposed for the
numerical computation of approximate GCD of univariate polynomials [5, 6, 13,
18, 22, 26, 28]. We have been inspired by those endeavors, especially the pioneering
work of Corless, Gianni, Trager and Watt [6], which identifies the GCD degree by
the total singular value decomposition (SVD) of the full Sylvester matrix followed
by the suggestion of four possible alternative ways to compute the GCD using the
degree. We propose a numerical GCD-finder that employs a successive updating on
a sequence of Sylvester submatrices for the smallest singular values only, followed
by extracting the degree and the coefficients of the GCD decomposition from the
singular vector as the initial iterate, and finally applies the Gauss-Newton iteration
to refine the approximate GCD decomposition. As a result, the GCD-finder is a
blackbox-type algorithm in its own right and constitutes the main engine of our
proposed Algorithm II in §4 which, with some limitations specified in §4.5, calculates
the multiplicity structure and its initial root approximation for a given polynomial.

In §3.4, we propose a structure-preserving condition number that measures the
sensitivity of multiple roots. A polynomial that is ill-conditioned in the conventional
sense can be well conditioned with the multiplicity structure being preserved, and
its roots can be calculated far beyond the barrier of “attainable accuracy”. This
condition number can be calculated easily. Error bounds on the roots are estab-
lished for inexact polynomials.

COMPUTING MULTIPLE ROOTS OF INEXACT POLYNOMIALS 871

In §3.6 and §4.6, we present separate numerical results for Algorithms I and II.
The numerical results for the combined algorithm are shown in §5. Both algorithms
and their combination are implemented as a Matlab package MultRoot, which
is available electronically from the author. This paper also elaborates on certain
preliminary results in [37] by providing detailed proofs and discussions.

Although our emphasis at this stage is on accuracy rather than fast computation,
we prove local convergence of our Algorithm I when the multiplicity structure and
close initial approximations are available. We also prove the local convergence of
the GCD iteration in the midst of Algorithm II, which calculates the multiplicity
structure with high accuracy and consistency in practice along with initial root
approximations . The combined algorithm takes the coefficient vector as the only
input and output results that include the roots and their multiplicities as well as the
backward error, the estimated forward error, and the structure-preserving condition
number. The most significant features of the algorithm are its high accuracy and
its robustness in handling inexact data. As shown in numerical examples, the code
accurately identifies the multiplicity structure and multiple roots for polynomials
with a coefficient accuracy being as low as seven digits. With given multiplici-
ties, Algorithm I converges even with data accuracy as low as three decimal digits.
While limitations exist when the polynomial is ill-conditioned in the sense of the
structure-preserving sensitivity that we define in §3.4, the code appears to be the
first blackbox-type root-finder with the capability to calculate roots and multiplic-
ities beyond the barrier of “attainable accuracy”.

While numerical experiments reported in the literature seldom reach multiplicity
10, we successfully tested our algorithms on polynomials with root multiplicities
as high as 400 without using multiprecision arithmetic. We are aware of no other
reliable methods that calculate multiple roots accurately by using standard machine
precision. Accurate results for multiple root computation that we have seen in
the literature, such as the methods in [14], can be repeated only if multiprecision
arithmetic is used on exact polynomials. A zero-finder for general analytic functions
with multiple zeros has been developed by Kravanja and Van Barel [23]. The
method uses an accuracy refinement with a modified Newton’s iteration that may
also require multiprecision arithmetic for multiple roots unless the polynomial is
already factored [39].

There exist general-purpose root-finders using O(n2) flops or less, such as those
surveyed in [27]. However, the barrier of “attainable accuracy” may prevent those
root-finders from calculating multiple roots accurately when the polynomials are
inexact (e.g., see Figure 10 in §4.6) even if multiprecision arithmetic is used. Our
algorithms provide the option of reaching high accuracy on multiple roots at the
higher computing cost of O(n3), which may not be a lofty price to pay.

The idea of exploiting the pejorative manifold and problem structure has been
applied extensively for ill-conditioned problems. Besides Kahan’s pioneering work
30 years ago, theories and computational strategies for the matrix canonical forms
have been studied (see [9, 11, 12, 24]) to take advantage of the pejorative mani-
folds or varieties. At present, it is not clear if those methods can be applied to
polynomials with multiple roots.

872 ZHONGGANG ZENG

2. Preliminaries

2.1. Notation. In this paper, R
n and C

n denote the n-dimensional real and com-
plex vector spaces, respectively. Vectors, always considered columns, are denoted
by boldface lower-case letters, and matrices are denoted by upper case letters.
Blank entries in a matrix are filled with zeros. The notation (·)� represents the
transpose of (·), and (·)H is the Hermitian adjoint (i.e., conjugate transpose) of
(·). When we use a (lower case) letter, say p, to denote a polynomial of degree n,
then p0, p1, . . . , pn are its coefficients as in

p(x) = p0x
n + p1x

n−1 + · · · + pn.

The same letter in boldface (e.g., p) denotes the coefficient (column) vector

p = (p0, p1, . . . , pn)�,

unless it is defined otherwise. The degree of p is deg(p). For a pair of polynomials
p and q, their greatest common divisor (GCD) is denoted by GCD(p, q).

2.2. Basic definitions and lemmas.

Definition 2.1. Let p(x) = p0x
n + p1x

n−1 + · · · + pn be a polynomial of degree
n. For any integer k ≥ 0, the matrix

Ck(p) =

k+1︷ ︸︸ ︷


p0

p1
. . .

...
. . . p0

pn p1

. . .
...

pn




is called the kth order convolution matrix associated with p.

Lemma 2.2. Let f and g be polynomials of degrees n and m, respectively, with
h(x) = f(x)g(x). Then h is the convolution of f and g defined by

h = conv(f ,g) = Cm(f)g = Cn(g)f .

Proof. A straightforward verification. �

Definition 2.3. Let p be a polynomial of degree n, and let p′ be its derivative.
For k = 1, 2, . . . n − 1, the matrix of size (n + k) × (2k + 1)

Sk(p) =
[

Ck (p′)
∣∣∣ Ck−1(p)

]
is called the kth Sylvester discriminant matrix.

Lemma 2.4. Let p be a polynomial of degree n, and let p′ be its derivative with u =
GCD(p, p′). For j = 1, . . . , n, let ςj be the smallest singular value of Sj(p). Then
the following are equivalent:

(a) deg(u) = m,
(b) p has k = n − m distinct roots,
(c) ς1, ς2, . . . , ςk−1 > 0, ςk = ςk+1 = · · · = ςn = 0.

COMPUTING MULTIPLE ROOTS OF INEXACT POLYNOMIALS 873

Proof. The equivalence between (a) and (b) is trivial to verify, and the assertion
that (a) is equivalent to (c) is part of Proposition 3.1 in [28]. �

Lemma 2.5. Let p be a polynomial of degree n, and let p′ be its derivative with
u = GCD(p, p′) and deg(u) = m = n − k. Let v and w be polynomials that satisfy

u(x)v(x) = p(x), u(x)w(x) = p′(x).

Then
(a) v and w are coprime, namely they have no common factors;
(b) the (column) rank of Sk(p) is deficient by one;

(c) the normalized vector
[

v
−w

]
is the right singular vector of Sk(p) associ-

ated with the smallest (zero) singular value ςk;
(d) if v is known, the coefficient vector u of u = GCD(p, p′) is the solution to

the linear system Cm(v)u = p.

Proof. Assertion (a) is trivial. Sk(p)
[

v
−w

]
= Ck (p′)v − Ck−1(p)w = 0 because

it is the coefficient vector of p′v − pw ≡ (uw)v − (uv)w ≡ 0. Let v̂ ∈ Ck+1

and ŵ ∈ C
k be coefficient vectors of polynomials v̂ and ŵ, respectively, which

also satisfy Ck (p′) v̂ − Ck−1(p)ŵ = 0. Then we also have (uw)v̂ − (uv)ŵ = 0,
namely wv̂ = vŵ. Since v and w are coprime, there is a polynomial c such
that v̂ = cv and ŵ = cw, and c is obviously a constant. Therefore, the single

vector
[

v
−w

]
forms the basis for the null space of Sk(p). Consequently, both

assertions (b) and (c) follow. The assertion (d) is a direct consequence of Lemma
2.2. �

Lemma 2.6. Let A ∈ Cn×m with n ≥ m be a matrix whose smallest two distinct

singular values are σ̂ > σ̃. Let Q

(
R
0

)
= A be the QR decomposition of A, where

Q ∈ Cn×n is unitary and R ∈ Cm×m is upper triangular. From any vector x0 ∈
Cm that is not orthogonal to the right singular subspace of A associated with σ̃, we
generate the sequences {σj} and {xj} by the inverse iteration


Solve RHyj = xj−1 for yj ∈ Cm,
Solve R zj = yj for zj ∈ Cm,

Calculate xj =
zj

‖zj‖2
, σj =

∥∥∥Rxj

∥∥∥
2
,

j = 1, 2,(2.1)

Then lim
j→∞

σj = lim
j→∞

‖Axj‖2 = σ̃ and

σj =
∥∥∥Axj

∥∥∥
2

= σ̃ + O
(
τ j
)
, where τ =

(
σ̃

σ̂

)2

.

If σ̃ is simple, then xj converges to the right singular vector x̃ of A associated with
σ̃.

Proof. See [32] for straightforward verifications. �

874 ZHONGGANG ZENG

2.3. The Gauss-Newton iteration. The Gauss-Newton iteration is an effective
method for solving nonlinear least squares problems. Let G : Cm −→ Cn with
n > m, and a ∈ Cn. The nonlinear system G(z) = a for z ∈ Cm is overdetermined
with no conventional solutions in general. We thereby seek a weighted least squares
solution. Let W = diag(ω1, . . . , ωn) be a diagonal weight matrix with positive
weights ωj ’s. Let ‖ · ‖W denote the weighted 2-norm

(2.2)
∥∥∥v
∥∥∥

W
≡
∥∥∥W v

∥∥∥
2
≡
√√√√ n∑

j=1

ω2
j v2

j , for all v = (v1, . . . , vn)� ∈ C
n.

Our objective is to solve the minimization problem min
z∈Cm

∥∥∥G(z) − a
∥∥∥2

W
.

Lemma 2.7. Let F : Cm −→ Cn be analytic with its Jacobian being J (z). If
there is a neighborhood Ω of z̃ in C

m such that ‖F (z̃) ‖2 ≤ ‖F (z) ‖2 for all z ∈ Ω,
then J (z̃)HF (z̃) = 0.

Proof. The real case F : Rm −→ Rn of the lemma is proved in [10]. The proof
for the complex case is nearly identical, except for using the Cauchy-Riemann
equation. �

By Lemma 2.7, let J(z) be the Jacobian of G(z). To find a local minimum of
‖F (z)‖2 ≡ ‖W [G(z) − a]‖2 with J (z) = WJ(z), we look for z̃ ∈ Cm satisfying

J (z̃)HF (z̃) =
[
WJ(z̃)

]H
W
[
G(z̃) − a

]
= J(z̃)H W 2

[
G(z̃) − a

]
= 0.

In other words, G(z̃) − a is orthogonal, with respect to 〈v,w〉 ≡ vHW 2w, to the
tangent plane of the manifold Π =

{
u = G(z)

∣∣∣ z ∈ Cm
}

at ũ = G(z̃).
The Gauss-Newton iteration can be derived as follows (see Figure 1). To find

a least squares solution z = z̃ to the equation G(z) = a, we look for the point
ũ = G(z̃) that is the orthogonal projection of a onto Π. Let u0 = G (z0) in Π
be near ũ = G(z̃). We can approximate the manifold Π with the tangent plane
P0 =

{
G (z0) + J(z0) (z − z0)

∣∣∣ z ∈ Cm
}
. Then the point a is orthogonally

new
 iterate

initial iterate

The manifold Π u
 = G

(z)
0

0

P0

The tangent plane u=G(z)+J(z)(z−z)0 0 0

u=G(z)+
J(z)(z

 −z)

0

0

0
1

^

project to
 the tangent plane

u
 = G

(z)
1

1

u
 = G

(z)
~

~
the solution

u = G(z)

The right−hand side a

Figure 1. Illustration of the Gauss-Newton iteration.

COMPUTING MULTIPLE ROOTS OF INEXACT POLYNOMIALS 875

projected onto the tangent plane P0 at û = G(z0) + J(z0)(z1 − z0) by solving the
overdetermined linear system

(2.3) G (z0) + J(z0) (z − z0) = a or J(z0) (z − z0) = −[G (z0) − a]

for its weighted least squares solution
(2.4)

z1 = z0 −
[
J(z0)+W

]
[G(z0) − a] with J(z0)+W =

[
J(z0)HW 2J(z0)

]−1

J(z0)HW 2.

As long as J(z0) is of full (column) rank, the pseudo inverse J(z0)+W exists. There-
fore u1 = G(z1) is well defined and is expected to be a better approximation to
ũ = G(z̃) than u0 = G(z0). The Gauss-Newton iteration is then a recursive appli-
cation of (2.4) (also see [7, 10]).

The convergence theory of the Gauss-Newton iteration has been well established
for overdetermined systems in real spaces [10]. The following lemma is a straightfor-
ward generalization of Theorem 10.2.1 in [10] to complex spaces. Since the lemma
itself as well as the proof are nearly identical to those in the real case in [10], we
shall present the lemma without proof.

Lemma 2.8. Let Ω ⊂ Cm be a bounded open convex set and F : D ⊂ Cm −→ Cn

be analytic in an open set D ⊃ Ω. Let J (z) be the Jacobian of F (z). Suppose that
there exists z̃ ∈ Ω such that J (z̃)HF (z̃) = 0 with J (z̃) full rank. Let σ be the
smallest singular value of J (z̃). Let δ ≥ 0 be a constant such that

(2.5)
∥∥∥∥ [J (z) − J (z̃)

]H
F (z̃)

∥∥∥∥
2

≤ δ
∥∥∥ z − z̃

∥∥∥
2

for all z ∈ Ω.

If δ < σ2, then for any c ∈ (1
σ , σ

δ

)
, there exists ε > 0 such that for all z0 ∈ Ω with

‖z0 − z̃‖2 < ε, the sequence generated by the Gauss-Newton iteration

zk+1 = zk − J (zk)+F (zk), where J (zk)+ = [J (zk)HJ (zk)]−1J (zk)H

for k = 0, 1, . . . , is well defined inside Ω, converges to z̃, and satisfies

(2.6)
∥∥∥zk+1 − z̃

∥∥∥
2
≤ cδ

σ

∥∥∥zk − z̃
∥∥∥

2
+

cαγ

2σ

∥∥∥zk − z̃
∥∥∥2

2
,

where α > 0 is the upper bound of ‖J (z)‖2 on Ω, and γ > 0 is the Lipschitz
constant of J (z) in Ω, namely, ‖J (z+h)−J (z) ‖2 ≤ γ ‖h ‖ for all z, z+h ∈ Ω.

3. Algorithm I: Root-finding with given multiplicities

In this section, we assume that the multiplicity structure of a given polynomial
is known. We shall deal with the problem of determining this multiplicity structure
in §4. A condition number will be introduced to measure the sensitivity of multiple
roots. When the condition number is moderate, the multiple roots can be calculated
accurately by our algorithm.

3.1. Remarks on previous work. In Part II of [21], Kahan discussed the sensi-
tivity of polynomial roots with enlightening insight, and pointed out that it may be
a misconception to consider multiple roots to be infinitely ill-conditioned. Kahan’s
work on roots of a polynomial p in [21] can be briefly summarized as follows. First,
Kahan describes the “pejorative manifold” of polynomials with multiple roots. Sec-
ondly, the differentiability is proved for an m-fold isolated root with respect to
coefficients that are constrained to preserve the multiplicity m of that root. This

876 ZHONGGANG ZENG

differentiability then naturally leads to the existence of a finite local condition num-
ber of an isolated m-fold root under the perturbation that is constrained to preserve
the multiplicity m of that root. Kahan also proves the existence of a vanishing point
for p(m−1)(x) in a region containing a cluster of m roots of p. Finally, a possible
approach is proposed, based on the Lagrange multipliers, for finding the polynomial
nearest to p while possessing an m-fold root.

Kahan’s work [21] emphasizes theoretical analysis rather than computational
methodology. The sensitivity analysis is rigorous while the description of the pejo-
rative manifold is heuristic. The condition number defined in [21] exists in theory
with unknown practical attainability. The implementability of the proposed La-
grange multiplier method in numerical computation is still unknown.

In this section, we shall attempt to formulate the pejorative manifold rigorously.
More importantly, we emphasize the practical computation of multiple roots. Our
main contribution in this section also includes the following. First, we convert the
singular root-finding problem to a least squares problem and prove its regularity.
Second, we establish the local convergence of the Gauss-Newton iteration for solving
the least squares problem. Our third contribution is the formulation of a global
structure-preserving condition number measuring the combined sensitivity of all
roots that are constrained in a multiplicity structure instead of an isolated multiple
root considered by Kahan. Not only is this condition number easily computable,
but it also enables us to estimate the computing error quite accurately according
to our error analysis and numerical experiments. Finally, we establish practical
procedures that carry out the necessary computation on the pejorative manifold.
By assembling these elements, we construct our Algorithm I.

3.2. The pejorative manifold. A polynomial of degree n corresponds to a vector
(or point) in C

n

p(x) = p0x
n + p1 xn−1 + · · · + pn ∼ a = (a1, . . . , an)� ≡

(
p1

p0
, . . . ,

pn

p0

)�
,

where “∼” denotes this correspondence. For a partition of n, namely a fixed array
of positive integers 	1, . . . , 	m with 	1 + · · ·+ 	m = n, a polynomial p that has roots
z1, . . . , zm with multiplicities 	1, . . . , 	m, respectively, can be written as

(3.1)
1
p0

p(x) =
m∏

j=1

(x − zj)�j = xn +
n∑

j=1

gj(z1, . . . , zm) xn−j ,

where each gj is a polynomial in z1, . . . , zm. We have the correspondence

(3.2) p ∼ G�(z) ≡


 g1(z1, . . . , zm)

...
gn(z1, . . . , zm)


 ∈ C

n, where z =


 z1

...
zm


 ∈ C

m.

We now define the pejorative manifold rigorously based on Kahan’s heuristic de-
scription.

Definition 3.1. An ordered array of positive integers 	 = [1, . . . , 	m] is called
a multiplicity structure of degree n if 	1 + · · · + 	m = n. For any such given
multiplicity structure 	, the collection of vectors Π� ≡ {G�(z)

∣∣ z ∈ Cm
} ⊂ Cn

is called the pejorative manifold of multiplicity structure 	, where

COMPUTING MULTIPLE ROOTS OF INEXACT POLYNOMIALS 877

Figure 2. Pejorative manifolds of polynomials with degree 3
(viewed from two angles).

G� : C
m −→ C

n defined in (3.1)–(3.2) is called the coefficient operator asso-
ciated with the multiplicity structure 	.

For example, we consider polynomials of degree 3. First, for multiplicity struc-
ture 	 = [1, 2],

(x − z1)(x − z2)2 = x3 + (−z1 − 2z2)x2 + (2z1z2 + z2
2)x + (−z1z

2
2).

A polynomial with one simple root z1 and one double root z2 corresponds to the
vector

(3.3) G[1,2](z) ≡




−z1 − 2z2

2z1z2 + z2
2

−z1z
2
2


 ∈ C

3, with z =
(

z1

z2

)
∈ C

2.

The vectors G[1,2](z) in (3.3) for all z ∈ C2 form the pejorative manifold Π[1,2].
Similarly,

Π[3] =
{

(−3 z, 3 z2, −z3)�
∣∣∣ z ∈ C

}
when 	 = [3]. Π[3] is a submanifold of Π[1,2] that contains all polynomials with a
single triple root. Figure 2 shows the manifolds Π[1,2] (the wings) and Π[3] (the
sharp edge) in R3.

As a special case, Π[1,1,...,1] = Cn is the vector space of all monic polynomials
with degree n.

3.3. Solving the nonsingular least squares problem. Let 	 = [1, . . . , 	m] be
a multiplicity structure of degree n, and let Π� be the corresponding pejorative
manifold. If the polynomial p ∼ a ∈ Π�, then there is a vector z ∈ Cm such that
G�(z) = a. In general, the polynomial system

(3.4)




g1(z1, . . . , zm) = a1

g2(z1, . . . , zm) = a2

...
...

...
gn(z1, . . . , zm) = an

or G�(z) = a

878 ZHONGGANG ZENG

is overdetermined except for the plain structure 	 = [1, 1, . . . , 1]. Let the weight
matrix be W = diag(ω1, . . . , ωn). and ‖ ·‖W denote the weighted 2-norm defined in
(2.2). We seek a weighted least squares solution to (3.4) by solving the minimization
problem
(3.5)

min
z∈Cm

∥∥∥G�(z)−a
∥∥∥2

W
≡ min

z∈Cm

∥∥∥∥W(G�(z)−a
)∥∥∥∥2

2

≡ min
z∈Cm




n∑
j=1

ω2
j

∣∣∣gj(z) − aj

∣∣∣2

 .

Two common types of weights can be used. To minimize the overall backward
error of the roots, we set W = diag(1, 1, . . . , 1). On the other hand, the weights

(3.6) ωj = min
{

1, |aj |−1
}

, j = 1, . . . , n,

lead to minimization of the relative backward error at every coefficient larger than
one. All our numerical experiments for Algorithm I are conducted using the weights
(3.6).

From Lemma 2.7, let J(z) be the Jacobian of G�(z). In order to find a local
minimum point of F (z) ≡ W

[
G�(z) − a

]
with J (z) = WJ(z), we look for z̃ ∈ Cm

such that

(3.7) J (z̃)HF (z̃) =
[
WJ(z̃)

]H
W
[
G�(z̃) − a

]
= J(z̃)H W 2

[
G�(z̃) − a

]
= 0.

Definition 3.2. Let p ∼ a be a polynomial of degree n. For any given multiplicity
structure 	 of the same degree, the vector z̃ satisfying (3.7) is called a pejorative
root vector or simply a pejorative root of p corresponding to the multiplicity
structure 	 and weight W .

Our algorithms emanate from the following fundamental theorem by which one
may convert the singular problem of computing multiple roots with standard meth-
ods to a regular problem by seeking the least squares solution of (3.4).

Theorem 3.3. Let G� : Cm −→ Cn be the coefficient operator associated with
a multiplicity structure 	 = [1, . . . , 	m]. Then the Jacobian J(z) of G�(z) is of full
(column) rank if and only if the components of z = (z1, . . . , zm)� are distinct.

Proof. Let z1, . . . , zm be distinct. To prove J(z) is of full (column) rank, or the
columns of J(z) are linearly independent, write the jth column of J(z) as Jj =(

∂g1(z)
∂zj

, . . . ,
∂gn(z)

∂zj

)�
. For j = 1, . . . , m, let qj(x), a polynomial in x, be defined

as follows,

qj(x) =
(

∂g1(z)
∂zj

)
xn−1 + · · · +

(
∂gn−1(z)

∂zj

)
x +

(
∂gn(z)

∂zj

)

=
∂

∂zj

[
xn + g1(z)xn−1 + · · · + gn(z)

]
=

∂

∂zj

[
(x − z1)�1 · · · (x − zm)�m

]

= −	j (x − zj)�j−1


∏

k �=j

(x − zk)�k


 .

(3.8)

COMPUTING MULTIPLE ROOTS OF INEXACT POLYNOMIALS 879

If c1J1 + · · · + cmJm = 0 for constants c1, . . . , cm, then

q(x) ≡ c1 q1(x) + · · · + cm qm(x) = −
m∑

j=1


cj	j (x − zj)�j−1


∏

k �=j

(x − zk)�k






= −
[

m∏
σ=1

(x − zσ)�σ−1

]
m∑

j=1


 cj	j

∏
k �=j

(x − zk)




is a zero polynomial, yielding r(x) =
∑m

j=1 cj	j

[∏
k �=j(x − zk)

]
≡ 0. Therefore, for

l = 1, . . . , m, r(zl) = cl

[
	l

∏
k �=l(zl − zk)

]
= 0 implies cl = 0 since 	l’s are positive

and zk’s are distinct. Therefore, Jj ’s are linearly independent.
On the other hand, suppose z1, . . . , zm are not distinct, say, for instance, z1 = z2.

Then the first two columns of J(z) are coefficients of polynomials h1(x) and h2(x)
defined as

−	1 (x−z1)�1−1(x−z2)�2

m∏
k=3

(x−zk)�k and −	2 (x−z1)�1(x−z2)�2−1
m∏

k=3

(x−zk)�k ,

respectively. Since z1 = z2, these two polynomials differ by constant multiples 	1

and 	2. Therefore J(z) is (column) rank deficient. �
With the system (3.4) being nonsingular from Theorem 3.3, the Gauss-Newton

iteration

(3.9) zk+1 = zk −
[
J(zk)+W

]
[G�(zk) − a], k = 0, 1, . . . ,

on Π� is well defined. Moreover, we have the convergence theorem based on Lemma
2.8.

Theorem 3.4. Let z̃ = (z̃1, . . . , z̃m)� ∈ Cm be a pejorative root of p ∼ a associated
with multiplicity structure 	 and weight W . Assume z̃1, z̃2, . . . , z̃m are distinct.
Then there are ε, ε > 0 such that, if ‖ a − G�(z̃) ‖W < ε and ‖ z0 − z̃ ‖2 < ε,
iteration (3.9) is well defined and converges to the pejorative root z̃ with at least a
linear rate. If we have a = G�(z̃) in addition, then the convergence is quadratic.

Proof. Let F (z) = W
[
G�(z)−a

]
and J (z) be its Jacobian. F (z) is obviously ana-

lytic. From Theorem 3.3, the smallest singular value σ of J (z̃) is strictly positive.
If a is sufficiently close to G�(z̃), then∥∥∥F (z̃)

∥∥∥
2

=
∥∥∥G�(z̃) − a

∥∥∥
W

will be small enough, making (2.5) hold with δ < σ2. Therefore all conditions of
Lemma 2.8 are satisfied and there is a neighborhood Ω of z̃ such that if z0 ∈ Ω, the
iteration (3.9) converges and satisfies (2.6). If in addition a = G�(z̃), then F (z̃) = 0
and, therefore, δ = 0 in (2.5) and (2.6). The convergence becomes quadratic. �

As a special case for the structure 	 = [1, 1, . . . , 1], equations in (3.4) form
Viéte’s system of n-variate polynomial system. Solving this system via Newton’s
iteration is equivalent to the Weierstrass (Durand-Kerner) algorithm [27]. When a
polynomial has multiple roots, Viéte’s system becomes singular at the nondistinct
root vector. This singularity appears to be the very reason that causes the ill-
condition of conventional root-finders: a wrong pejorative manifold is used.

880 ZHONGGANG ZENG

3.4. The structure-preserving condition number. There are many insightful
discussions on the numerical condition of polynomial roots in the literature, such
as [8, 17, 21, 33, 29, 34]. In general, a condition number can be characterized as
the smallest number satisfying

(3.10)
[
forward error

]
≤
[
condition number

]
×
[
backward error

]
+ h.o.t.,

where h.o.t represents higher order terms of the backward error. For a polynomial
with multiple roots, under unrestricted perturbation, the only condition number
satisfying (3.10) is infinity. For a simple example, let polynomial p(x) = x2. A
backward error ε makes the perturbed polynomial p̃(x) = x2 + ε, which has
roots ±√

εi with forward error
√

ε in magnitude. The only “constant” c which
accounts for

√
ε ≤ c ε for all ε > 0 must be infinity.

By changing the computational objective from solving a polynomial equation
p(x) = 0 to the nonlinear least squares problem in the form of (3.5), the structure-
altering noise is filtered out, and the multiplicity structure is preserved. With this
shift in computing strategy, the sensitivity of the roots can be analyzed differently.

Let us consider the root vector z of p ∼ a = G�(z). The polynomial p is
perturbed, with multiplicity structure 	 being preserved, to be p̂ ∼ â = G�(ẑ). In
other words, both p and p̂ are on the same pejorative manifold Π�. Then

â − a = G�(ẑ) − G�(z) = J(z)(ẑ − z) + O
(‖ ẑ − z ‖2

)
,

where J(z) is the Jacobian of G�(z). Assuming the entries of z are distinct, by
Theorem 3.3, J(z) is of full rank. Consequently,∥∥∥W (â − a)

∥∥∥
2

=
∥∥∥ [WJ(z)](ẑ − z)

∥∥∥
2

+ h.o.t. ,

namely,
∥∥∥ â − a

∥∥∥
W

≥ σmin

∥∥∥ ẑ − z
∥∥∥

2
+ h.o.t.,

or
∥∥∥ ẑ − z

∥∥∥
2

≤
(

1
σmin

) ∥∥∥ â− a
∥∥∥

W
+ h.o.t.(3.11)

where σmin , the smallest singular value of WJ(z), is strictly positive since W and
J(z) are of full rank. The distance ‖ ẑ− z ‖2 is the forward error and the weighted
distance ‖ â − a ‖W measures the backward error. Therefore, the sensitivity of the
root vector is asymptotically bounded by 1

σmin
times the size of the multiplicity-

preserving perturbation. In this sense, the multiple roots are not infinitely sensitive.

Definition 3.5. Let p be a polynomial and z be its pejorative root corresponding
to a given multiplicity structure 	 and weight W . Let G� be the coefficient oper-
ator associated with 	, J be its Jacobian, and σmin be the smallest singular value
of WJ(z). Then the condition number of z with respect to the multiplicity
structure 	 and weight W is defined as

κ�,w(z) =
1

σmin
.

Remark. The condition number κ�,w(z) is structure dependent. The array 	 =
[1, . . . , 	m] may or may not be the actual multiplicity structure. A polynomial has
different condition numbers corresponding to different pejorative roots on various
pejorative manifolds. For example, see Table 4 in §3.6.2.

We now estimate the error on pejorative roots of polynomials with inexact coef-
ficients. In this case, the given polynomial p̂ is assumed to be arbitrarily perturbed

COMPUTING MULTIPLE ROOTS OF INEXACT POLYNOMIALS 881

from p with both polynomials near a pejorative manifold Π�. In the exact sense,
neither polynomial possesses the structure 	. The nearby pejorative manifold causes
both polynomials to be ill-conditioned in the conventional sense. Consequently, the
exact roots of p̂ can be far from those of p even if two polynomials are close to
each other. However, the following theorem ensures that their pejorative roots, not
exact roots, may still be insensitive to perturbation.

Theorem 3.6. For a fixed 	 = [1, . . . , 	m], let the polynomial p̂ ∼ b̂ be an
approximation to p ∼ b with pejorative roots ẑ and z, respectively, that are corre-
sponding to the multiplicity structure 	 and a weight W . Assume the components
of z are distinct while ‖G�(ẑ)− b̂ ‖W reaches a local minimum at ẑ. If ‖b− b̂ ‖W

and ‖G�(z) − b ‖W are sufficiently small, then

(3.12)
∥∥∥ z − ẑ

∥∥∥
2
≤ 2 · κ�,w(z) ·

(∥∥∥G�(z) − b
∥∥∥

W
+
∥∥∥b− b̂

∥∥∥
W

)
+ h.o.t.

Proof. From (3.11),∥∥∥ z − ẑ
∥∥∥

2
≤ κ�,w(z)

∥∥∥G�(z) − G�(ẑ)
∥∥∥

W
+ h.o.t.

≤ κ�,w(z)
(∥∥∥G�(z) − b

∥∥∥
W

+
∥∥∥b − b̂

∥∥∥
W

+
∥∥∥G�(ẑ) − b̂

∥∥∥
W

)
+ h.o.t.

Since ‖G�(ẑ) − b̂ ‖W is a local minimum, we have∥∥∥G�(ẑ) − b̂
∥∥∥

W
≤
∥∥∥G�(z) − b̂

∥∥∥
W

≤
∥∥∥G�(z) − b

∥∥∥
W

+
∥∥∥b− b̂

∥∥∥
W

,

and the assertion of the theorem follows. �

By the above theorem, when a polynomial is perturbed, the error on the pejo-
rative roots depends on the magnitude of the perturbation (i.e., ‖b − b̂ ‖W), the
distance to the pejorative manifold (namely ‖G�(z) − b ‖W), as well as the con-
dition number κ�,w(z). Although the (exact) roots may be hypersensitive, their
pejorative roots are stable if κ�,w(z) is moderate.

For a polynomial p having multiplicity structure 	, we can now estimate the error
of its multiple roots computed from its (inexact) approximation p̂. The perturbation
from p to p̂ can be arbitrary, such as rounding up digits in coefficients. The (exact)
roots of p̂ are all simple in general and far from the multiple roots of p. The following
corollary ensures that the pejorative root ẑ of p̂ with respect to the multiplicity
structure 	 can be an accurate approximation to the multiple roots z of p.

Corollary 3.7. Under the condition of Theorem 3.6, if z is the exact root vector
of p with multiplicity structure 	, then

(3.13)
∥∥∥ z − ẑ

∥∥∥
2
≤ 2 · κ�,w(z) ·

∥∥∥b− b̂
∥∥∥

W
+ h.o.t.

Proof. Since z is exact, ‖G�(z) − b ‖W = 0 in (3.12). �

The “attainable accuracy” barrier suggests that when multiplicity increases, the
root sensitivity intensifies. However, there is no apparent correlation between the
magnitude of the multiplicities and the structure-constraint sensitivity. For exam-
ple, consider the polynomials

p�(x) = (x + 1)�1(x − 1)�2(x − 2)�3

882 ZHONGGANG ZENG

multiplicities condition
	1 	2 	3 number
1 1 1 3.1499
1 2 3 2.0323

10 20 30 0.0733
100 200 300 0.0146

Figure 3. The sensitivity and multiplicities.

with different multiplicities 	 = [1, 	2, 	3]. For the weight W defined in (3.6),
Figure 3 lists the condition numbers for different multiplicities. As seen in this
example, the magnitude of root error can actually be less than that of the data
error when the condition number is less than one. The condition theory described
above indicates that multiprecision arithmetic may not be a necessity, and the
“attainable accuracy” barrier appears to be highly questionable.

In §3.6 and §5, more examples will show that our iterative algorithm indeed
reaches the accuracy permissible by the condition number κ�,w(z), which can be
calculated with negligible cost. The QR decomposition of the Jacobian J(z) is
required by the iteration (3.9), and can be recycled to calculate κ�,w(z). The
inverse iteration in Lemma 2.6 is suitable for finding the smallest singular value.

3.5. The numerical procedures. Iteration (3.9) requires calculation of the vec-
tor value of G�(zk) and matrix value of J(zk), where the components of G�(z) are
defined in (3.1) and (3.2) as coefficients of the polynomial p(x) = (x − z1)�1 · · ·
(x−zm)�m . While the explicit formulas for each gj(z1, . . . , zm) and ∂gj

∂zi
can be sym-

bolically (inefficiently in general) computed using software like Maple, we propose
more efficient numerical procedures for computing G�(z) and J(z) in Figure 4.

Polynomial multiplication is equivalent to vector convolution (Lemma 2.2). The
polynomial p(x) = (x − z1)�1 · · · (x − zm)�m can thereby be constructed from re-
cursive convolution with vectors (1,−zj)�, j = 1, 2, . . . , m. As a result, G�(z) is

Algorithm EvalG:

input: m, n, z = (z1, . . . , zm)�,
� = [�1, . . . , �m]

output: vector G�(z) ∈ Cn

s = (1)
for i = 1, 2, . . . m do

for l = 1, 2, . . . , �i do

s = conv
(
s, (1,−zi)

�)
end do

end do

gj(z) = (j + 1)th component

of s for j = 1, . . . , n

Algorithm EvalJ:

input: m, n, z = (z1, . . . , zm)�,
� = [�1, . . . , �m]

output: Jacobian J(z) ∈ C
n×m

u ∼ ∏(x − zj)
�j−1 by EvalG

for j = 1, 2, . . . , m do

s = −�j u
for l = 1, . . . , m, l �= j do

s = conv
(
s, (1,−zl)

�)
end do

jth column of J(z) = s
end do

Figure 4. Pseudo-codes for evaluating G�(z) and J(z).

COMPUTING MULTIPLE ROOTS OF INEXACT POLYNOMIALS 883

Pseudo-code PejRoot (Algorithm I):

input: m, n, a ∈ C
n, weight matrix W, initial iterate z0,

multiplicity structure �, error tolerance τ
output: Roots z = (z1, . . . , zm), or message of failure

for k = 0, 1, . . . do

Calculate G�(zk) and J(zk) with EvalG and EvalJ

Compute the least squares solution ∆zk to the linear

system [WJ(zk)](∆zk) = W [G�(zk) − a]
Set zk+1 = zk − ∆zk and δk = ‖∆zk‖2

if k ≥ 1 then

if δk ≥ δk−1 then, stop, output failure message

else if
δ2

k
δk−1−δk

< τ then, stop, output z = zk+1

end if

end if

end do

Figure 5. Pseudo-code of Algorithm I.

computed through the nested loops shown in Figure 4 as Algorithm EvalG. It
takes n2 + O(n) flops (additions and multiplications) to calculate G�(z).

The jth column of the Jacobian J(z), as shown in the proof of Theorem 3.3,
can be considered to be the coefficients of the polynomial qj(x) defined in (3.8).
The cost of computing J(z) is no more than mn2 + O(n) flops. Each step of the
Gauss-Newton iteration takes O(nm2) flops. Therefore, for a polynomial of degree
n with m distinct roots, the complexity of Algorithm I is O(m2n + mn2). The
worst case occurs when m = n and the complexity becomes O(n3). The complete
pseudo-code of the Algorithm I is shown in Figure 5.

3.6. Numerical results for Algorithm I. Algorithm I is implemented as a Mat-
lab code PejRoot. All the tests of PejRoot are conducted with IEEE double
precision (16 decimal digits) without extension. In comparison, other algorithms
and software may use unlimited machine precision in some cases.

3.6.1. The effect of “attainable accuracy”. Conventional methods, such as Farmer-
Loizou methods [14], are subject to the “attainable accuracy” barrier. We made
a straightforward implementation of the Farmer-Loizou third-order iteration sug-
gested in [14] and applied it to the same example they used,

p1(x) = (x − 1)4(x − 2)3(x − 3)2(x − 4).

Both iterations start from z0 = (1.1, 1.9, 3.1, 3.9) using the standard IEEE double
precision. The “attainable accuracy” of the roots are 4, 5, 8, 16 digits, respectively.
For 100 iteration steps, the Farmer-Loizou method produces iterates that bounce
around the roots. In contrast, our iteration smoothly converges to the roots and
reaches an accuracy of 14 digits. The “attainable accuracy” barrier has no effect
on our algorithm. The iterations are shown in Table 1 for three roots x = 1, 2, 3
with highest multiplicities.

In the same problem, we increase the multiplicities 10 times as large, generating

p2(x) = (x − 1)40(x − 2)30(x − 3)20(x − 4)10

884 ZHONGGANG ZENG

Table 1. Comparison with the Farmer-Loizou third-order iter-
ation in the low multiplicity case. Three roots are shown with
unimportant digits truncated.

Farmer-Loizou third order iteration | PejRoot result
step iterateas |step iterates
1 1.0009 1.998 3.001 | 1 1.03 1.8 3.4
2 0.99997 1.9999992 3.000000008 | 2 0.997 1.98 2.6
3 0.01 3.4 2.9988 | 3 1.00009 2.05 2.8
4 0.8 2.3 3.000007 | 4 0.99994 1.994 2.98
5 0.998 2.007 3.0000001 | 5 1.000003 2.0001 2.9990
6 1.0000007 2.00000007 2.99996 | 6 0.999999997 2.000000005 2.9999990

... ... | 7 1.00000000000000 2.0000000000002 2.999999999998
100 1.00000008 3.3 2.99999997 | 8 1.00000000000000 2.00000000000000 2.99999999999999

Table 2. Comparison with the Farmer-Loizou third-order itera-
tion in the high multiplicity case. Three roots are shown with
unimportant digits truncated.

Farmer-Loizou third order iteration | PejRoot result
step iterateas |steps iterates
1 0.47 -.33 3.02 | 1 1.004 1.98 3.05
2 32.92 -4.65 2.69 | 2 1.0001 1.998 3.003
3 4.75 -1.80 1.75 | 3 0.9999998 2.000006 2.99997
4 205.96 .40 1.54 | 4 0.999999999994 2.00000000001 2.9999999990
... ... | 5 1.00000000000000 2.00000000000001 2.99999999999997
100 5.99 1.10 0.30 | 6. 1.00000000000000 2.00000000000001 2.99999999999998

with 16-digit accuracy in coefficients. In this test, our method still uses the standard
16-digit arithmetic and attains 14 correct digits on the roots, while the Farmer-
Loizou method uses 1000-digit operations in Maple and fails (three root iterations
are shown in Table 2).

The true accuracy barrier of Algorithm I is the condition number κ�,w(z). Matlab
constructed the test polynomial with a relative coefficient error of 4.56×10−16, the
condition number is 29.3. The root error is approximately 1×10−14, which is within
the error bound 2× (29.3)× (4.56× 10−16) = 2.67× 10−14 established in Corollary
3.7.

There are state-of-art root-finding packages available using multiprecision arith-
metic, such as MPSolve implemented by Bini et al. [2] and Eigensolve by Fortune
[16]. If the given polynomial is exact (e.g., a polynomial with rational coefficients),
those packages in general are capable of calculating all roots to the desired accu-
racy via extending the machine precision according to “attainable accuracy”. For
inexact polynomials, the accuracy of those packages on multiple roots is limited
no matter how many digits the machine precision is extended to. For example,
consider the polynomial

p(x) =
(
x −

√
2
)20 (

x −
√

3
)10

.

The coefficients are calculated to 100-digit accuracy. The “attainable accuracy” for
the roots

√
2 and

√
3 are 5 and 10 digits, respectively. MPSolve and Eigensolve

output nearly identical results in accordance with this “attainable accuracy”. In
contrast, our software using only 16-digit precision in coefficients without extending
the machine precision, still outputs roots of 15-digit accuracy along with accurate
multiplicities (see Table 3).

COMPUTING MULTIPLE ROOTS OF INEXACT POLYNOMIALS 885

Table 3. Comparison with multiprecision root-finders MPSolve

and Eigensolve.

MPSolve and Eigensolve results | MultRoot results with 16-digit input/machine precision
with 100-digit input accuracy |

(unimportant digits are truncated) | THE CONDITION NUMBER: 0.90775
1.41412 - 0.000013i | THE BACKWARD ERROR: 6.66E-016
1.41412 + 0.000013i | THE ESTIMATED FORWARD ROOT ERROR: 1.21e-15
... ... |

1.73205077 - 0.0000000094i | computed roots multiplicities
1.73205077 + 0.0000000094i | 1.732050807568876 10
... ... | 1.414213562373096 20

3.6.2. Clustered multiple roots. Let

f(x) = (x − 0.9)18(x − 1)10(x − 1.1)16.

The roots are highly multiple and clustered. The Matlab function roots produces
44 ill-conditioned roots scattered in a box of 2.0×2.0 (see Figure 6). In contrast, the
Algorithm I code PejRoot obtains all three multiple roots for at least 14 digits in
accuracy by taking two additional iteration steps on the information of multiplicity
structure and the initial iterate provided by Algorithm II in §4.

step z1 z2 z3
0 0.89999999993 0.9999999993 1.0999999998
1 0.999999999999991 1.00000000000001 1.10000000000001
2 0.999999999999991 1.000000000000001 1.10000000000001

The backward accuracy can easily be verified to be less than 1.36 × 10−15. The
condition number is 60.4. Therefore, with perturbation at the 16th digit of the
coefficients, 14 correct digits constitute the best possible accuracy that can be
expected from any method.

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 6. The root cluster from three multiple roots calculated
by Matlab roots.

886 ZHONGGANG ZENG

Table 4. Partial list of multiple roots on different pejorative manifolds.

multiplicity pejorative backward error condition
structure roots (relative) number

[1,1,...,1] (see Figure 6) .0000000000000006 1390704851032436
[18,10,16] (.9000, 1.0000, 1.1000) .000000000000002 60.4
[17,11,16] (.8980, .9934, 1.1006) .0000004 53.8
[14,16,14] (.8890, .9892, 1.1090) .000003 29.0
[10,24,10] (.8711, .9906, 1.1315) .000008 26.7
[2, 40, 2] (.7390, .9917, 1.3277) .00009 23.6
[1, 43] (.5447, 1.0054) .004 1.3

[44] (.9925) .04 .0058

An important feature of Algorithm I is that it does not require the correct mul-
tiplicity structure. Computation with different structures is permissible with Algo-
rithm I and is often needed when the structure is unclear. If the computation is on
a “wrong” pejorative manifold, then either the condition number or the backward
error becomes large. Table 4 is a partial list of pejorative roots under different mul-
tiplicity structures. The apparent deviations on the pejorative roots in comparison
with (0.9, 1.0, 1.1) are the effect of the difference in structure, not the failure of the
the error bounds in §3.4 where structure preservation is assumed.

For any polynomial of degree n, the nearest pejorative manifold(s) always in-
clude Π� ≡ Cn with structure 	 = [1, 1, . . . , 1] because every other manifold is its
subset. For that reason, an unconstrained minimization of the backward error (i.e.,
the distance to a pejorative manifold) will naturally lead to the simple, clustered,
and incorrect roots as shown in Figure 6. Notice that pejorative roots with differ-
ent multiplicity structures correspond to different backward errors and condition
numbers κ�,w. Generally, reduction in sensitivity may exclude root sets of higher
backward accuracy. In this example, minimizing the backward error among all
pejorative roots with a sensitivity constraint, say κ�,w(z) < 100, leads to the ac-
curate roots with correct multiplicity structure. In short, conventional methods
seek unconstrained minimization of the backward error among all pejorative roots,
while computing multiple roots of inexact polynomials may be accomplished as a
constrained optimization problem that minimizes the distance to a manifold subject
to the condition that the roots are insensitive to perturbation with respect to the
structure.

3.6.3. Roots with huge multiplicities. The accuracy as well as stability of Algorithm
I seems independent of the multiplicities of the roots. For instance, let us consider
the polynomial of degree 1000

g(x)=[x− (0.3+0.6i)]100 [x− (0.1+0.7i)]200 [x− (0.7+0.5i)]300 [x− (0.3+0.4i)]400.

The multiplicities of the roots are 100, 200, 300 and 400. These multiplicities are
“huge” compared to other numerical examples, usually with multiplicities less than

Table 5. Iterates on the degree 1000 polynomial.

.289 +.601i | .100 +.702i | .702 +.498i | .301 +.399i

.309 +.602i | .097 +.698i | .698 +.499i | .299 +.400i

.293 +.596i | .101 +.7003i | .7002 +.5005i | .3007 +.4003i

.3003 +.5994i | .09994 +.70008 i | .69996 +.50003i | .29996 +.40007i

.300005 +.600006 | .099998 +.6999992i | .69999992 +.4999993i | .2999992 +.3999992i

.3000002 +.60000005i | .09999995 +.69999998i | .69999997 +.49999998i | .29999997 +.400000002i

COMPUTING MULTIPLE ROOTS OF INEXACT POLYNOMIALS 887

−15 −10 −5 0 5 10 15 20 25 30 35
−10

−5

0

5

10

15

20

25

30

35

real part

im
ag

in
ar

y
pa

rt

Figure 7. Result for the degree 1000 polynomial by Matlab func-
tion roots.

ten, used in the root-finding literature. In addition to such high multiplicities, we
perturb the sixth digits of all coefficients of g by multiplying (1 ± 10−6) on each
one of them. Using any conventional approach, this perturbation will result in a
total loss of forward accuracy, even if multiprecision arithmetic is used. The code
PejRoot of Algorithm I takes a few seconds under Matlab to calculate all roots
up to seven digits accuracy as iterates, shown in Table 5. Taking the condition
number 0.58 into account, this accuracy is optimal. On the same machine, Matlab
function roots takes about 15 minutes to produce 1000 incorrect roots, as shown
in Figure 7.

4. Algorithm II: the multiplicity structure

and initial root estimates

While Algorithm I can be used on any particular pejorative manifold, of course,
the “correct” multiplicity structure is preferred if it is attainable. We present
Algorithm II which calculates the multiplicity structure of a given polynomial as
well as the initial root approximation for Algorithm I.

4.1. Remarks on the univariate GCD computation. For a given polynomial
p with u = GCD(p, p′), Lagrange pointed out in 1769 that v = p/u has the same
distinct roots as p, and all roots of v are simple. If v is obtainable, its simple
roots can be calculated using standard root-finders. Based on this observation, the
following process, described by Gauss in 1863, is a natural approach to attain total

888 ZHONGGANG ZENG

factorization of the polynomial p.

(4.1)




u0 = p
for j = 1, 2, . . . , while deg(uj−1) > 0 do

calculate uj = GCD
(
uj−1, u

′
j−1

)
, vj =

uj−1

uj

calculate the (simple) roots of vj(x)
end do

In this process, a k-fold root of p will be calculated k times as simple roots of vj ’s.
Other square-free factorization processes, such as Yun’s algorithm [36], have also
been proposed in the context of computer algebra.

The difficulty in carrying out the process (4.1) is the GCD computation. The
classical Euclidean GCD algorithm requires recursive polynomial division which
may not be numerically stable (see §4.2.3). Therefore, implementations of (4.1)
based on the Euclidean GCD-finder [3, 31] may fail to reach desirable reliability or
accuracy (see the numerical comparison in §4.6).

Numerical GCD computation has been studied extensively [5, 6, 13, 18, 22,
26, 28]. However, a reliable blackbox-type software is still not available. In [6],
Corless, Gianni, Trager, and Watt proposed a novel approach using the singular-
value decomposition in finding the degree of the GCD, and suggested the possibility
of solving a GCD system similar to (4.3) below as a least squares problem, along
with several other possibilities, including using the Euclidean algorithm.

There are several unresolved issues in the approach of Corless et al., especially in
the stage of calculating the GCD after determining its degree. Among the possible
avenues suggested, they seem to prefer using iterative methods to solve the least
squares problem similar to (4.3) below. However, their least squares system is
underdetermined by one equation. Moreover, with no clearly decided initial iterate
being given, one can only leave this crucial ingredient to guessing or some sort of
expensive global search [5]. From [6] and its follow-up work, such as [5, 22], it
is also not clear which standard optimization algorithm should be selected. We
shall demonstrate that the Gauss-Newton iteration, absent from the above works,
is apparently the simplest, most efficient, and most suitable method for solving the
GCD system (4.3), and it is at least locally convergent.

The key to carrying out the procedure (4.1) is the capability of factoring an
arbitrary polynomial f and its derivative f ′ with a GCD triplet (u, v, w):

(4.2)
{

u(x) v(x) = f(x),
u(x)w(x) = f ′(x), u is monic, v and w are coprime.

In light of the Corless-Gianni-Trager-Watt approach, which calculates all singular
values of a single Sylvester matrix Sn−1(f), we employ a successive updating process
that calculates only the smallest singular values of the Sylvester matrices Sj(f),
j = 1, 2, . . . , and stop at the first rank-deficient matrix Sk(f). With this Sk(f), not
only the degrees of the GCD triplet u, v, w are available, we also obtain coefficients
of v and w automatically from the resulting right singular vector. In combination
with a least squares division in §4.2.3 of the unstable long division, we can generate
an approximation to the GCD triplet, and obtain an initial iterate that is not clearly
indicated in the approach of Corless et al. Consequently, a blackbox-type software
computing GCD(f, f ′) is developed for the process (4.1).

COMPUTING MULTIPLE ROOTS OF INEXACT POLYNOMIALS 889

The discussion on GCD computation is limited to GCD(f, f ′) because our objec-
tive is mainly root-finding in this paper. With minor modifications, our GCD-finder
can easily be adapted to the general GCD problem of arbitrary polynomial pairs.

4.2. Calculating the greatest common divisor. Algorithm II is based on the
following GCD-finder for an arbitrary polynomial f :

STEP 1. Find the degree m of GCD(f, f ′).
STEP 2. Set up the system (4.2) in accordance with the degree m.
STEP 3. Find an initial approximation to u, v and w for the GCD system (4.2).
STEP 4. Use the Gauss-Newton iteration to refine the GCD triplet (u, v, w).

We shall describe each step in detail.

4.2.1. Finding the degrees of the GCD triplet. Let f be a polynomial of degree n.
By Lemma 2.4, the degree of u = GCD(f, f ′) is m = n − k if and only if the
kth Sylvester discriminant matrix is the first one being rank deficient. Therefore,
m = deg(u) can be identified by calculating the sequence of the smallest singular
values ςj of Sj(f), j = 1, 2, . . . , until reaching ςk that is approximately zero. Since
only one singular pair (i.e., the singular value and the right singular vector) is
needed, the inverse iteration described in Lemma 2.6 is suitable for this purpose.
Moreover, we can reduce the computing cost even further by recycling and updating
the QR decomposition of Sj(f)’s along the way. More specifically, let

f(x) = a0x
n + a1x

n−1 + · · · + an, f ′(x) = b0x
n−1 + b1x

n−2 + · · · + bn−1.

We rotate the columns of Sj(f) to form Ŝj(f) in such a way,

j+1︷ ︸︸ ︷ j︷ ︸︸ ︷


b0 a0

b1
. . . a1

. . .

...
. . . b0

...
. . . a0

bn−1 b1 an a1

. . .
..
.

. . .
..
.

bn−1 an




−→

2j+1︷ ︸︸ ︷


b0 a0

b1 a1 b0 a0

.

..
.
.. b1 a1

. . .

bn−1 an−1

...
... b0 a0

an bn−1 an−1 b1 a1 b0

an

. . .
.
..

.

.. b1

bn−1 an−1

...
an bn−1




,

that the odd and even columns of Ŝj(f) consist of the coefficients of f ′ and f ,
respectively. Consequently, the matrix Ŝj+1(f) is simply formed by adding a zero

890 ZHONGGANG ZENG

row at the bottom and two columns in the right on Ŝj(f). Updating the QR de-
composition of each Ŝj(f) requires only O(n) additional flops. The inverse iteration
(2.1) requires O(j2) flops at each Sj(f).

Let θ be a given zero singular-value threshold, which shall be discussed more in
§4.4. With successive QR updating and the inverse iteration, the process of finding
the degrees of the GCD triplet (u, v, w) can be summarized as follows.

Calculate the QR decomposition of the (n + 1) × 3 matrix Ŝ1(f) = Q1R1

For j = 1, 2, . . . do
use the inverse iteration (2.1) to find the smallest singular value ςj

of Ŝj(f) and the corresponding right singular vector yj

if ςj ≤θ‖ f ‖2, then k=j, m=n−k, extract v and w from yj , exit
else update Ŝj(f) to Ŝj+1(f) = Qj+1Rj+1

end if
end do

4.2.2. The quadratic GCD system. Let m = n − k be the degree of GCD(f, f ′)
calculated in STEP 1. We now formulate the GCD system (4.2) of STEP 2 in vector
form with unknown vectors u, v and w:

(4.3)


 u0

conv(u,v)
conv(u,w)


 =


 1

f
f ′


 , for


 u

v
w


 ∈ C

m+1 × C
k+1 × C

k.

Here, the convolution conv(·, ·) is defined in Lemma 2.2. The following lemma
ensures that this quadratic system is nonsingular.

Lemma 4.1. The Jacobian of the quadratic system (4.3) is

J(u,v,w) =


 e�1

Cm(v) Ck(u)
Cm(w) Ck−1(u)


 ,(4.4)

where e1 = (1, 0, . . . , 0)� ∈ C
m+1.

If u = GCD(f, f ′) with (u,v,w) satisfying (4.3), then J(u,v,w) is of full (column)
rank.

Proof. It is straightforward to verify (4.4) by using Lemma 2.2. To prove J(u,v,w)
is of full rank, we assume the existence of polynomials q(x) =

∑m
j=0 qjx

m−j , r(x) =∑k
j=0 rjx

k−j and s(x) =
∑k−1

j=0 sjx
k−j−1 such that

(4.5) J(u,v,w)


 q

r
s


 = 0, or




q0 = 0,
vq + ur = 0,
wq + us = 0.

Here, as before, q, r and s are coefficient vectors of q, r and s, respectively. From
(4.5), we have vq = −ur and wq = −us. So, wvq−vwq = −uwr+uvs = 0, namely
−wr + vs = 0 or wr = vs. Since v and w are coprime, there is a polynomial t
such that r = tv and s = tw. Consequently, vq = −ur = −utv leads to q = −tu.
Because deg(q) = deg(tu) ≤ m, deg(u) = m ≥ 0 and u0 = 1, the degree of t must
be zero. So the polynomial t is a constant. Using the first equation in (4.5) and
u0 = 1, we have q0 = −tu0 = −t = 0. It follows that q = −tu = 0, r = tv = 0 and
s = tw = 0. Consequently, J(u,v,w) is of full rank. �

COMPUTING MULTIPLE ROOTS OF INEXACT POLYNOMIALS 891

The equation u0 = 1, absent in the Corless-Gianni-Trager-Watt GCD method [6],
needs to be included either explicitly with an equation or implicitly by eliminating
u0 from the variables to ensure the regularity of the system (4.3). In Remark 1
of [5, §4.3] with a heuristic explanation, Chin, Corless, and Corless realized that
the restriction u0 = 1 may make their divisor-quotient iteration converge, but
abandoned it since their “test showed that the overall performance was worse when
this constraint was in place” [5, §5.1.4]. Because we use a different refinement
approach in our GCD-finder, preserving this constraint and, thereby the regularity
of the GCD system (4.3), may be the very reason why our method obtains robust
test results. Without this regularity, the local convergence of the Gauss-Newton
iteration we use would not be guaranteed.

Theorem 4.2. Let ũ = GCD(f, f ′) with ṽ and w̃ satisfying (4.3), and let W be
a weight matrix. Then there exists ε > 0 such that for all u0, v0, w0 satisfying∥∥∥u0 − ũ

∥∥∥
2

< ε,
∥∥∥v0 − ṽ

∥∥∥
2

< ε and
∥∥∥w0 − w̃

∥∥∥
2

< ε, the Gauss-Newton iteration
 uj+1

vj+1

wj+1


 =


 uj

vj

wj


− J(uj ,vj ,wj)+W


 e�1 uj − 1

conv(uj ,vj) − f
conv(uj ,wj) − f ′


 ,(4.6)

j = 0, 1, . . . ,

converges to [ũ, ṽ, w̃]� quadratically. Here J(·)+W = [J(·)HW 2J(·)]−1J(·)HW 2 is
the weighted pseudo-inverse of the Jacobian J(·) as defined in (4.4).

Proof. A straightforward verification by using Lemma 2.8 and Lemma 4.1. �

4.2.3. Setting up the initial iterate. We now need initial iterates u0,v0,w0 for the
Gauss-Newton iteration (4.6). In STEP 1, when the singular value ςk is calculated,
the associated singular vector yk consists of v0 and w0, which are approximations
to v and w in (4.3), respectively (see Lemma 2.5). Because of the column rotation
in §4.2.1, the odd and even entries of yk form v0 and w0, respectively. For the
initial approximation u0, notice that in theory the long division yields

(4.7) f(x) = v0(x)q(x) + r(x)

with u0(x) = q(x) and r(x) = 0. The process itself may not be numerically stable.
In the context of the Corless-Gianni-Trager-Watt method, Corless et al. [6,

Lemma 3] propose the use of the least squares method to minimize ‖∆f‖2 =
‖Cn−m(d)h − f ‖2 whenever a candidate d of degree m approximating GCD(f, g)
is available. In our approach, there is no candidate for u = GCD(f, f ′) at the
end of STEP 1. Instead, we have v0 and w0 available which approximate v and w,
respectively, such that u = f/v = f ′/w; whereas we can adapt the least squares
strategy (used by Corless et al. to calculate ‖∆f‖2 from given u0), to calculate the
approximation u0 of GCD(f, f ′) from given v0 and w0 in our method, and justify
it via a condition theory of linear systems.

By Lemma 2.5, the long division (4.7) with r(x) = 0 is equivalent to solving the
linear system

(4.8) Cm(v0)u0 = f

for a least squares solution u0 that minimizes
∥∥∥ conv(u0,v0) − f

∥∥∥
2
. This “least

squares division” is more accurate than the long division (4.7). In fact, the long

892 ZHONGGANG ZENG

division (4.7) is equivalent to solving the (n + 1) × (n + 1) lower triangular linear
system

(4.9) Lm(v0)
(

q
r

)
= f , with Lm(v0) =

(
Cm(v0)

∣∣∣∣ 0(m+1)×(n−m)

I(n−m)×(n−m)

)
.

The following theorem indicates that solving (4.8) for u0 may be preferable to using
the long division (4.7).

Theorem 4.3. Let κ(A) denote the condition number of an arbitrary matrix A
with respect to the matrix 2-norm. Then κ (Cm(v)) ≤ κ(Lm(v)) for any polynomial
v and m > 0.
Proof. For any matrix A, κ(A) = σmax(A)

σmin(A) , where

σmax(A) = max
‖x‖2=1

∥∥∥Ax
∥∥∥

2
and σmin(A) = min

‖x‖2=1

∥∥∥Ax
∥∥∥

2

are the largest and smallest singular values of A, respectively. Therefore

σmax(Cm(v)) = max
‖u‖2=1

∥∥∥Cm(v)u
∥∥∥

2
= max

‖q‖2=1,r=0

∥∥∥Cm(v)q + r
∥∥∥

2

= max
‖q‖2=1,r=0

∥∥∥∥Lm(v)
(

q
r

)∥∥∥∥
2

≤ max
‖y‖2=1

∥∥∥Lm(v)y
∥∥∥

2
= σmax(Lm(v)).

Similarly, σmin(Cm(v)) ≥ σmin(Lm(v)), and consequently, κ(Cm(v)) ≤ κ(Lm(v)).
�

The magnitude gap between the condition numbers κ(Cm(v)) and κ(Lm(v)) can
be tremendous for seemingly harmless v and moderate m. Actually, Lm(v) can
be pathetically ill-conditioned, making the long division (4.7) virtually a singu-
lar process, while Cm(v) is still well conditioned. For example, consider a simple

Table 6. The comparison between the conditions of (4.7) and
(4.8) for v(x) = x + 25.

m = 1 m = 5 m = 10 m = 20
κ(Cm(v)) 1 1.0668 1.0791 1.0823
κ(Lm(v)) 627 1.01 × 107 9.92 × 1013 9.46 × 1027

Table 7. A numerical comparison between long division and least
squares division.

Data Comparison
approx. coef. coefficients known coef.’s of least squares long

of f(x) of v(x) f(x) ÷ v(x) division division
1.00000000 1.00000000 1.00000000 0.9999999999 1.00000000

23.35360257 23.01829201 0.33531056 0.3353105599 0.33531056
29.89831582 22.05776405 0.12227539 0.1222753902 0.122275385
10.75803809 0.54726624 0.5472662398 0.5472663
15.57240922 0.27815340 0.2781534002 0.278151
18.76038493 0.28629915 0.2862991496 0.28634
13.73079603 1.00523653 1.0052365305 1.004
30.45600101 1.00205392 1.0020539195 1.02
46.21275197 0.97391204 0.9739120403 0.5
44.89871211 0.37785145 0.3778514500 11.
30.17981700
8.33455813

COMPUTING MULTIPLE ROOTS OF INEXACT POLYNOMIALS 893

polynomial v(x) = x + 25. When m increases, κ(Lm(v)) grows exponentially but
κ(Cm(v)) stays as nearly a constant (see Table 6). In fact, we have not encoun-
tered a truly ill-conditioned least squares division (4.8) in our extensive numerical
experiments. On the other hand, the example shown in Table 7 is quite common.
In which f = conv(u,v) is rounded up at the eighth digit after the decimal point.
The difference between the long division (Matlab deconv) and the least squares
division is quite substantial.

Extracting v0 and w0 from the singular vector and solving (4.8) for u0, we shall
use them as the initial iterates for the Gauss-Newton iteration (4.6) that refines
the GCD triplet. Moreover, the linear system (4.8) is banded, with bandwidth
being one plus the number of distinct roots. Therefore, the cost of solving (4.8) is
insignificant in the overall complexity.

4.2.4. Refining the GCD with the Gauss-Newton iteration. The Gauss-Newton it-
eration is expected to reduce the residual

(4.10)
∥∥∥∥
(

conv(uj ,vj)
conv(uj ,wj)

)
−
(

f
f ′

)∥∥∥∥
W

=
∥∥∥∥W

(
conv(uj ,vj) − f
conv(uj ,wj) − f ′

)∥∥∥∥
2

at each step until it is numerically unreducible. We stop the iteration when this
residual no longer decreases. The diagonal weight matrix W is used to scale the

GCD system (4.3) so that the entries of W

[
f
f ′

]
are of similar magnitude. Each

step of the Gauss-Newton iteration requires solving an overdetermined linear system

[
WJ(uj ,vj ,wj)

]
z = W


 e�1 uj − 1

conv(uj ,vj) − f
conv(uj ,wj) − f ′




for its least squares solution z, and requires a QR decomposition of the Jacobian
WJ(uj ,vj ,wj) and a backward substitution for an upper triangular linear system.
This Jacobian is a sparse matrix with a special sparsity structure that can largely
be preserved during the process. Figure 8 shows the typical sparsity of WJ(u,v,w)

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

40

45

50

nz = 409

QR−−→

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

40

45

50

nz = 330

Figure 8. Sparsity of J(u,v,w) and its triangularization.

894 ZHONGGANG ZENG

along with its triangularization. When f is a polynomial of degree n, a straight-
forward QR decomposition of WJ(u,v,w) costs O(n3) flops. Taking the sparsity
of WJ(u,v,w) into account, it can be verified that the sparse QR decomposition
costs O(mk2 + m2k + k3), where, as before, k is the number of distinct roots and
m = n − k. If k is o(n), then the complexity is reduced to O(kn2).

4.3. Computing the multiplicity structure and initial root estimates. For
a given polynomial p, the procedure (4.1) generates a sequence of square-free poly-
nomials v1, v2, . . . , vs of degrees d1 ≥ d2 ≥ · · · ≥ ds, respectively, such that p =
v1 v2 · · · vs with

{roots of v1} ⊇ {roots of v2} ⊇ · · · ⊇ {roots of vs}.
Moreover, for each j = 1, . . . , s, all roots of vj are simple. Roots of v1 consist
of all distinct roots of p, while roots of v2 consist of all distinct roots of p/v1,
etc. With these properties, the multiplicity structure is determined by the degrees
d1, d2, . . . , ds. For example, consider

p(x) = (x − a)(x − b)3(x − c)4

for any a, b and c. We have the following.
vj ’s degrees of vj ’s roots

v1(x) = (x − a)(x − b)(x − c) d1 = 3 a b c
v2(x) = (x − b)(x − c) d2 = 2 b c
v3(x) = (x − b)(x − c) d3 = 2 b c
v4(x) = (x − c) d4 = 1 c

multiplicity structure of p: 1 3 4
Without locating the roots a, b and c, the multiplicity structure [1, 	2, 	3] = [1, 3, 4]
is determined solely from the degrees d1, . . . , d4.

	1 = 1 since d1 ≥ 3 = (d1 + 1) − 1
	2 = 3 since d1, d2, d3 ≥ 2 = (d1 + 1) − 2
	3 = 4 since d1, d2, d3, d4 ≥ 1 = (d1 + 1) − 3

Generally, we have the following theorem on identifying the multiplicity structure.

Theorem 4.4. For a given polynomial p, let v1, . . . , vs be the square-free factors
of p generated by the procedure (4.1) with degrees d1 ≥ d2 ≥ · · · ≥ ds, respectively.
Let k = d1 = deg(v1). Then the multiplicity structure 	 of p consists of components

(4.11) 	j = max
{

t
∣∣∣ dt ≥ (d1 + 1) − j

}
, j = 1, 2, . . . , k.

Proof. A straightforward verification. �

The location of the roots is not needed in deciding the structure.
The initial root approximation is determined based on the fact that an l-fold root

of p(x) appears l times as a simple root of each polynomial among v1, . . . , vl. After
calculating the roots of each vj with a standard root-finder, numerically “identical”
roots of vj ’s are grouped in a straightforward manner, according to the multiplicity
structure [1, . . . , 	k] determined by (4.11), to form the initial root approximation
(z1, . . . , zk) that is needed by Algorithm I.

COMPUTING MULTIPLE ROOTS OF INEXACT POLYNOMIALS 895

4.4. Control parameters. We use three control parameters for the recursive GCD
computation. The default values of those parameters given below are selected un-
der the assumption that the IEEE standard double precision of 16 decimal digits
is used. The first control parameter is the zero singular-value threshold θ for iden-
tifying the zero singular value. The default choice is θ = 10−8. When the smallest
singular value ςl of Ŝl(um−1) is less than θ

∥∥∥um−1

∥∥∥
2
, it will be tentatively consid-

ered as a zero (pending confirmation from the residual information produced by the
Gauss-Newton iteration). Then the Gauss-Newton iteration is initiated to further
reduce the residual, as in (4.10), to its numerical limit. We use the second control
parameter, the initial residual tolerance �, to decide if the refined residual is accept-
able. Our default choice is � = 10−10. We accept the GCD triplet (um, vm, wm)
when the residual

(4.12) ρm =
∥∥∥∥
(

conv(um,vm) − um−1

conv(um,wm) − u′
m−1

)∥∥∥∥
W

≤ �
∥∥∥um−1

∥∥∥
2
.

Otherwise, we continue to update Sl(um−1) to Sl+1(um−1) and check ςl+1,

Pseudo-code GcdRoot (Algorithm II)

input: The polynomial p of degree n, singular threshold θ,
residual tolerance �, residual growth factor φ.
(If only p is provided, set θ = 10−8, � = 10−10, φ = 100)

output: the root estimates (z1, . . . , zk)� and

multiplicity structure [�1, . . . , �k]

Initialize u0 = p
for m = 1, 2, . . . , s, until deg(us) = 0 do

for l = 1, 2, . . . until residual ρ < �
∥∥∥um−1

∥∥∥
2
do

calculate the singular pair (ςl, yl) of Ŝl(um−1)
by iteration (2.1)

if ςl < θ
∥∥∥um−1

∥∥∥
2
then

set up the GCD system (4.3) with f = um−1

(see Section 4.2.2)

extract v
(0)
m , w

(0)
m from yl and calculate u

(0)
m

(see Section 4.2.3)

apply the Gauss-Newton iteration (4.6) from

u
(0)
m , v

(0)
m , w

(0)
m to obtain um, vm, wm

extract the residual ρ = ρm as in (4.12)

end if

end do

adjust the residual tolerance � to be max{�, φρj}, and

set dm = deg(vm)
end do

set k = d1, �j = max
{

t
∣∣∣ dt ≥ k − j + 1

}
, j = 1, 2, . . . , k.

match the roots of vm(x), m = 1, 2, . . . , s
according to the multiplicities �j’s.

Figure 9. Pseudo-code of Algorithm II.

896 ZHONGGANG ZENG

The third parameter is the residual tolerance growth factor φ. Whenever a GCD
triplet (um, vm, wm) and ρm are calculated, the error in (um, vm, wm) may cause the
residual ρm+1 of (um+1, vm+1, wm+1) to grow. Therefore, the tolerance � may need
adjustment. Our default growth factor is 100. After obtaining ρm, the residual
tolerance � is adjusted to be max

{
�, φ ρm

}
. Notice that the growth factor

is applied to the residual ρm rather than the residual tolerance �. The residual
tolerance � itself may not grow at every step.

From our computing experience, the default control parameters work well for
“normal” polynomials, such as those with unclustered roots of moderate multiplic-
ities. For difficult problems, one may manually adjust the parameters. The overall
Algorithm II shown in Figure 9 is implemented as Matlab code GcdRoot and
included in the MultRoot package.

4.5. Remarks on the convergence of Algorithm II. There are two iterative
components in Algorithm II. One of them is the inverse iteration (2.1). By Lemma
2.6, the iteration converges for all starting vectors x0, unless x0 is orthogonal to
the intended singular vector y. The probability of the occurrence of this orthogo-
nality is zero. But even if it occurs, roundoff errors in the numerical computation
will quickly destroy the orthogonality during iteration. Therefore, the inverse iter-
ation (2.1) always converges. The other iterative component is the Gauss-Newton
iteration (4.6) whose local convergence is ensured in Theorem 4.2. Therefore, as
long as the rank decision on the Sylvester matrices is accurate and the error on the
initial approximation of the GCD triplet is small, Algorithm II will produce correct
multiplicity structure and a root approximation.

However, due to the nature of the problem, there is no guarantee that the orig-
inal multiplicity structure can be identified from an inexact polynomial. When a
polynomial is perturbed to a place that has equal distances to two or more different
pejorative manifolds, it is somewhat unrealistic to expect any method to recover
reliably from the perturbation. Therefore, we have conducted extensive numerical
experiments in addition to the results exhibited in this paper. As reported in our
software release note [38], we made a comprehensive test suite of 104 polynomials
based on Jenkins-Traub Testing Principles [20]. These polynomials include all the
test examples we have seen in the literature that have been used by experts to
test the robustness, stability, accuracy, and efficiency of root-finders intended for
multiple roots. On all the polynomials with multiple roots in the test suite, our
package MultRoot consistently outputs accurate root/multiplicity results near
machine precision. They are far beyond the “attainable accuracy” barrier that
other algorithms are subject to. The test suite is available electronically from the
author.

4.6. Numerical results for Algorithm II. The effectiveness of Algorithm II can
be shown by the polynomial

(4.13) p(x) = (x − 1)20(x − 2)15(x − 3)10(x − 4)5

generated by the Matlab polynomial generator poly, with coefficients rounded up at
16 digits. Using the default control parameters, the Algorithm II code GcdRoot

correctly identifies the multiplicity structure. The roots are approximated to an
accuracy of 10 digits or more. With this result as input to Algorithm I code

COMPUTING MULTIPLE ROOTS OF INEXACT POLYNOMIALS 897

Table 8. Roots of p(x) in (4.13) computed in two stages.

Algorithm II (code GcdRoot) result: | Algorithm I (code PejRoot) result
| THE BACKWARD ERROR: 6.16e-016

The backward error is 6.057721e-010 | THE ESTIMATED FORWARD ROOT ERROR: 9.46e-014
|

computed roots multiplicities | computed roots multiplicities
|

4.000000000109542 5 | 3.999999999999985 5
3.000000000176196 10 | 3.000000000000011 10
2.000000000030904 15 | 1.999999999999997 15
1.000000000000353 20 | 1.000000000000000 20

0 1 2 3 4 5 6
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

real part

im
ag

in
ar

y
pa

rt

Figure 10. MPSolve results for the polynomial (4.13) using multiprecision.

PejRoot, we obtained all multiple roots in the end with at least 14 correct digits
(Table 8).

Polynomials with such high multiplicities are extremely difficult by any standard
for root-finding. The magnitude of its coefficients stretches from 1 to 1021. Remark-
ably, our algorithms have no difficulty finding all its multiple roots. To the best
of our knowledge, there are no other methods that can calculate multiple roots for
such polynomials. Since the coefficients are inexact, multiprecision root-finders also
fail to calculate the roots with meaningful accuracy. Figure 10 shows the computed
roots by MPSolve [2] using a virtually unlimited number of digits in machine
precision. Those results are quite remote from the roots 1, 2, 3, 4.

The Euclidean method has also been used to find GCD in order to identify
the multiplicities [3, 31]. Uhlig’s pzero [31] is a Matlab implementation based on
the Euclidean method. The drawback of the Euclidean method is its reliance on
recursive long division that is numerically unstable (see §4.2.3). Here we compare

898 ZHONGGANG ZENG

Table 9. Partial results on pk(x)=(x−1)4k(x−2)3k(x−3)2k(x−4)k

and comparison between pzero and GcdRoot. Numbers in paren-
theses are computed multiplicities. Wrong multiplicities are in bold-
face.

k code x1 = 1 x2 = 2 x3 = 3

1 pzero 1.00000000001 (4) 1.99999999998 (3) 3.000000000005 (2)
GcdRoot 0.999999999999990 (4) 1.99999999999998 (3) 3.0000000000005 (2)

2 pzero 1.0000000001 (8) 2.000000002 (6) 3.000000004 (4)
GcdRoot 0.9999999999998 (8) 1.999999999983 (6) 2.99999999991 (4)

3 pzero 0.9999999897 (13) 1.99999990 (8) 2.9999998 (5)
GcdRoot 0.9999999999997 (12) 1.99999999997 (9) 2.9999999998 (6)

4 pzero 0.9999995 (21) 1.999994 (6) 2.999990 (7)
GcdRoot 1.0000000000003 (16) 2.00000000002 (12) 3.0000000001 (8)

5 pzero 1.0000009 (28) 2.00001 (8) 3.00002 (6)
GcdRoot 1.0000000000004 (20) 2.00000000003 (15) 3.0000000002 (10)

6 pzero − − −− (1) − − −− (1) − − −− (1)
GcdRoot 1.0000000000002 (24) 2.00000000001 (18) 3.00000000004 (12)

7 pzero − − −− (1) − − −− (1) − − −− (1)
GcdRoot 1.0000000000001 (28) 2.00000000001 (21) 3.00000000006 (14)

our code GcdRoot with pzero on the polynomials

pk(x) = (x − 1)4k(x − 2)3k(x − 3)2k(x − 4)k for k = 1, 2, . . . , 8.

When the multiplicities increase, the root accuracy deteriorates with pzero, which
successfully identifies the multiplicity structure for k = 1 and k = 2 but fails to do so
afterwards. In comparison, GcdRoot consistently attains at least 11 digits in root
accuracy with increasing multiplicities. The multiplicity structures are identified
correctly for k up to 7 and multiplicities up to 28. For the current implementation,
the limitation of GcdRoot on this sequence is for k ≤ 7, whereas the root accuracy
will stay the same for even larger k (see Table 9).

5. Numerical results for the combined method

5.1. The effect of inexact coefficients. In application, input data are expected
to be inexact. The following experiment tests the effect of data error on the accuracy
as well as robustness of both Algorithm I and II. For

p(x) =
(

x − 10

11

)5 (
x − 20

11

)5 (
x − 30

11

)5

in general form, every coefficient is rounded up to k-digit accuracy, where k =
10, 9, 8,

For this sequence of problems, Algorithm II code GcdRoot correctly identifies
the multiplicity structure if the coefficients have at least seven accurate digits. If the
multiplicities are manually given rather than computed by GcdRoot, Algorithm
I code PejRoot continues to converge even when data accuracy is down to three
digits. For lower data accuracy, the residual tolerance � in GcdRoot needs to be
adjusted accordingly. Table 10 shows the results of both programs.

As shown in this test, both methods allow inexact coefficients to a certain extent.
As usual, Algorithm I is more robust than Algorithm II, but Algorithm I depends
on a structure identifier.

COMPUTING MULTIPLE ROOTS OF INEXACT POLYNOMIALS 899

Table 10. Effect of coefficient error on computed roots.

number of control
correct parameters code x1 = 0.9̇0̇ x2 = 1.8̇1̇ x3 = 2.7̇2̇ backward
digits �, θ error

k = 10 � = 1e − 9 GcdRoot 0.90909090 1.8181818 2.7272727 1.7e-08
θ = 1e − 7 PejRoot 0.909090909 1.81818181 2.7272727 2.4e-10

k = 9 � = 1e − 8 GcdRoot 0.909090 1.81818 2.72727 7.0e-06
θ = 1e − 6 PejRoot 0.9090909 1.8181818 2.727272 2.3e-09

k = 8 � = 1e − 7 GcdRoot 0.90909 1.8182 2.727 1.3e-04
θ = 1e − 5 PejRoot 0.9090909 1.818181 2.72727 2.3e-08

k = 7 � = 1e − 6 GcdRoot 0.9090 1.82 2.7 1.3e-02
θ = 1e − 4 PejRoot 0.90909 1.81818 2.7272 2.3e-07

k = 6 − − −− PejRoot 0.9090 1.8181 2.727 3.7e-06
k = 5 − − −− PejRoot 0.909 1.818 2.72 2.4e-05
k = 4 − − −− PejRoot 0.90 1.81 2.7 1.9e-04
k = 3 − − −− PejRoot 0.9 1.8 2.8 1.8e-03

5.2. The effect of nearby multiple roots. When two or more multiple roots
are nearby, it can be difficult to identify the correct multiplicity structure. We test
the example

pε(x) = (x − 1 + ε)20(x − 1)20(x + 0.5)5

for the decreasing root gap ε = 0.1, 0.01, . . . , making the root x1 = 0.9, 0.99,
0.999, . . . along with fixed roots x2 = 1 and x3 = −0.5. When the root gap
decreases, the control parameters may need adjustment. In this test, we use the
default parameters for all cases except ε = 0.0001, in which the residual growth
factor φ = 5. GcdRoot is used to find the initial input for PejRoot. Computing
results are shown for both programs in Table 11.

When the default growth factor stays the same as the default φ = 100 and
the gap ε ≤ 0.0001, GcdRoot outputs a multiplicity structure [40, 5]. Namely,
GcdRoot treats the two nearby 20-fold roots 1 and 1 − ε as a single 40-fold
one. From the computed backward error and the condition number, this may
not necessarily be incorrect (see Table 12). When the backward error becomes
10−12 and the condition number is tiny (0.0066), they are numerically accurate!
In contrast, using the “correct” multiplicity structure [20, 20, 5], PejRoot outputs
roots with backward error 10−10 and a large condition number 5791.8 (last line in
Table 11).

By adjusting the control parameters, GcdRoot can find different pejorative
manifolds that are close to the given polynomial. PejRoot then calculates cor-
responding pejorative roots. The selection of the most suitable solution should be
application dependent.

Table 11. Effect of decreasing the root gap on computed roots.

gap backward cond.
ε code x1 = 1 − ε x2 = 1 x3 = −0.5 error num.

GcdRoot 0.89999999999 0.99999999999 -0.49999999999999 9.7e-10

10−1
PejRoot 0.9000000000000 0.9999999999999 -0.50000000000000 2.7e-13 .7
GcdRoot 0.98999999 0.99999999 -0.50000000000000 3.2e-07

10−2
PejRoot 0.989999999999 1.000000000000 -0.49999999999999 1.0e-12 6.7
GcdRoot 0.99900 1.00000 -0.49999999999999 1.9e-04

10−3
PejRoot 0.99899999999 1.00000000000 -0.500000000000000 4.1e-13 62.5
GcdRoot 0.9997 0.99996 -0.4999999999999 1.1e-02

10−4
PejRoot 0.999900000 0.999999999 -0.50000000000000 4.0e-12 621.7

10−5
PejRoot 0.999989990 1.0000000 -0.50000000000000 4.0e-10 5791.8

900 ZHONGGANG ZENG

Table 12. If the control parameter is not adjusted, the tiny root
gap makes computed roots identical. However, from the backward
errors and the condition number, they are not necessarily wrong
answers.

root gap backward cond.
ε code x1 = 1 − ε x2 = 1 x3 = −0.5 error num.

ε = 0.0001 GcdRoot 0.99994999 0.99994999 -0.5000000000 5.7e-08
PejRoot 0.999949999 0.999949999 -0.500000000 2.2e-08 0.0066

ε = 0.00001 GcdRoot 0.9999949999 0.9999949999 -0.500000000000 1.1e-10
PejRoot 0.99999499999 0.99999499999 -0.50000000000 4.0e-12 0.0066

5.3. A large inexact problem. By implementing the combination of two meth-
ods, we have produced a Matlab code MultRoot. We conclude this report by
testing this code on our final test problem. First of all, 20 complex numbers are
randomly generated and used as roots

.5 ± i, −1 ± .2i, −.1 ± i, −.8 ± .6i, −.7 ± .7i, 1.4, −.4 ± .9i,

.9, −.8 ± .3i, .3 ± .8i, .6 ± .4i

to generate a polynomial f of degree 20. We then round all coefficients to 10 decimal
digits. The coefficients are shown below.

coefficients of f

1
−0.7
−0.19

0.177
−0.7364
−0.43780
−0.952494
−0.2998258
−0.00322203
−0.328903811
−0.4959527435
−0.9616679762

0.4410459281
0.1090273141
0.6868094008
0.0391923826
0.0302248540
0.6603775863

−0.1425784968
−0.3437618593

0.4357949015

We construct multiple roots by squaring f repeatedly. Namely,

gk(x) = [f(x)]2
k

, k = 1, 2, 3, 4, 5.

At k = 5, g5 has a degree 640 and 20 complex roots of multiplicity 32. Since the
machine precision is 16 digits, the polynomials gk are inexact. Using the default
control parameters, our combined program encounters no difficulty in calculating
all the roots as well as finding accurate multiplicities. The worst accuracy of the
roots is 11-digits. Here is the final result.

COMPUTING MULTIPLE ROOTS OF INEXACT POLYNOMIALS 901

THE STRUCTURE PRESERVING CONDITION NUMBER: 0.0780464
THE BACKWARD ERROR: 6.38e-012
THE ESTIMATED FORWARD ROOT ERROR: 9.96e-013

computed roots multiplicities | computed roots multiplicities
|

0.499999999999399 + 1.000000000006247 i 32 | 1.400000000000303 + 0.000000000000000 i 32
0.499999999999399 - 1.000000000006247 i 32 | -0.399999999999482 + 0.899999999996264 i 32
-1.000000000003141 + 0.200000000004194 i 32 | -0.399999999999482 - 0.899999999996264 i 32
-1.000000000003140 - 0.200000000004193 i 32 | 0.899999999996995 - 0.000000000000000 i 32
-0.099999999996612 + 1.000000000001018 i 32 | -0.799999999987544 + 0.299999999995441 i 32
-0.099999999996612 - 1.000000000001018 i 32 | -0.799999999987544 - 0.299999999995441 i 32
0.800000000001492 + 0.600000000001814 i 32 | 0.299999999995789 + 0.799999999976189 i 32
0.800000000001492 - 0.600000000001815 i 32 | 0.299999999995789 - 0.799999999976189 i 32
-0.699999999997635 + 0.699999999997984 i 32 | 0.599999999989084 + 0.399999999997279 i 32
-0.699999999997635 - 0.699999999997984 i 32 | 0.599999999989084 - 0.399999999997279 i 32

Acknowledgments

The author wishes to thank the following scholars for their contributions which
improved this paper. T. Y. Li, Ross Lippert, Hans Stetter, Joab Winkler, and
the anonymous referees made valuable suggestions on the presentation. One of the
referees pointed out some important previous works in [6, 36], Barry Dayton found
an error in an early version of the manuscript. Frank Uhlig provided his insight
on the subject in e-correspondence along with his software. Peter Kravanja also
freely shared his code. D. A. Bini and G. Fiorentino, as well as S. Fortune made
their root-finders freely available for electronic download. The author is grateful to
the Program Committee of the ACM 2003 International Symposium on Symbolic
and Algebraic Computation (ISSAC) for their recognition of this work with its
Distinguished Paper Award.

References

1. D. H. Bailey, A Fortran-90 based multiprecision system, ACM Trans. Math. Software, 21
(1995), pp. 379–387.

2. D. Bini and G. Fiorentino, Numerical computation of polynomial roots using MPSolve – ver-
sion 2.0. manuscript, Software and paper available at ftp://ftp.dm.unipi.it/pub/mpsolve/,
1999.

3. L. Brugnanao and D. Trigiante, Polynomial roots: the ultimate answer?, Linear Alg. and Its
Appl., 225 (1995), pp. 207–219. MR 96b:65050

4. L. Brugnano, Numerical implementation of a new algorithm for polynomials with multiple
roots, J. Difference Eq. and Appl., 1 (1995), pp. 187–207. MR 96m:12001a

5. P. Chin, R. M. Corless, and G. F. Corless, Optimization strategies for the approximate GCD
problem, Proceedings of 1998 International Symposium on Symbolic and Algebraic Compu-
tation (ISSAC ’98), New York, 1998, ACM Press, pp. 228–235. MR 2001m:68004

6. R. M. Corless, P. M. Gianni, B. M. Trager, and S. M. Watt, The singular value decomposi-
tion for polynomial systems, Proceedings of 1995 nternational Symposium on Symbolic and
Algebraic Computation (ISSAC ’95), ACM Press, New York, 1995, pp. 195–207.

7. J.-P. Dedieu and M. Shub, Newton’s method for over-determined system of equations, Math.
Comp., 69 (1999), pp. 1099–1115. MR 2000j:65133

8. J. W. Demmel, On condition numbers and the distance to the nearest ill-posed problem,
Numer. Math., 51 (1987), pp. 251–289. MR 88i:15014

9. J. W. Demmel and B. Kagström, The generalized Schur decomposition of an arbitrary pencil
A − λB: robust software with error bounds and applications. Part I & Part II, ACM Trans.

Math. Software, 19 (1993), pp. 161–201. MR 96d:65060a; MR 96d:65060b
10. J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and

Nonlinear Equations, Prentice-Hall Series in Computational Mathematics, Prentice-Hall, En-
glewood Cliffs, New Jersey, 1983. MR 85j:65001

http://www.ams.org/mathscinet-getitem?mr=96b:65050
http://www.ams.org/mathscinet-getitem?mr=96m:12001a
http://www.ams.org/mathscinet-getitem?mr=2001m:68004
http://www.ams.org/mathscinet-getitem?mr=2000j:65133
http://www.ams.org/mathscinet-getitem?mr=88i:15014
http://www.ams.org/mathscinet-getitem?mr=96d:65060a
http://www.ams.org/mathscinet-getitem?mr=96d:65060b
http://www.ams.org/mathscinet-getitem?mr=85j:65001

902 ZHONGGANG ZENG

11. A. Edelman, E. Elmroth, and B. Kagström, A geometric approach to perturbation theory of
matrices and and matrix pencils. Part I: Versal deformations, SIAM J. Matrix Anal. Appl.,
18 (1997), pp. 693–705. MR 99e:58021

12. A. Edelman, E. Elmroth, and B. Kagström, A geometric approach to perturbation theory of
matrices and and matrix pencils. Part II: a stratification-enhanced staircase algorithm, SIAM
J. Matrix Anal. Appl., 20 (1999), pp. 667–699. MR 2000c:65032

13. I. Z. Emiris, A. Galligo, and H. Lombardi, Certified approximate univariate GCDs, J. Pure
Appl. Algebra, 117/118 (1997), pp. 229–251. MR 98f:65135

14. M. R. Farmer and G. Loizou, An algorithm for the total, or partial, factorization of a poly-
nomial, Math. Proc. Camb. Phil. Soc., 82 (1977), pp. 427–437. MR 57:14402

15. M. R. Farmer and G. Loizou, Locating multiple zeros interactively, Comp. Math. Appl., 11
(1985), pp. 595–603. MR 86h:65067

16. S. Fortune, An iterated eigenvalue algorithm for approximating roots of univariate polynomi-
als, J. Symbolic Comput., 33 (2002), pp. 627–646. MR 2003e:13039

17. W. Gautschi, Questions of numerical condition related to polynomials, in MAA Studies in
Mathematics, Vol. 24, Studies in Numerical Analysis, G. H. Golub, ed., USA, 1984, The
Mathematical Association of America, pp. 140–177. MR 88i:65007

18. V. Hribernig and H. J. Stetter, Detection and validation of clusters of polynomial zeros, J.
Symb. Comput., 24 (1997), pp. 667–681. MR 2000b:68275

19. M. Igarashi and T. Ypma, Relationships between order and efficiency of a class of methods for
multiple zeros of polynomials, J. Comput. Appl. Math., 60 (1995), pp. 101–113. MR 96f:65059

20. M. A. Jenkins and J. F. Traub, Principles for testing polynomial zerofinding programs, ACM
Trans. Math. Software, 1 (1975), pp. 26–34. MR 53:2009

21. W. Kahan, Conserving confluence curbs ill-condition. Technical Report 6, Computer Science,
University of California, Berkeley, 1972.

22. N. K. Karmarkar and Y. N. Lakshman, On approximate polynomial greatest common divisors,
J. Symb. Comput., 26 (1998), pp. 653–666. MR 99j:68059

23. P. Kravanja and M. Van Barel, Computing Zeros of Analytic Functions, Lecture Notes in
Mathematics, 1727, Springer-Verlag, 2000. MR 2001c:65004

24. R. A. Lippert and A. Edelman, The computation and sensitivity of double eigenvalues, in
Advances in computational mathematics, Lecture Notes in Pure and Appl. Math. 202, New
York, 1999, Dekker, pp. 353–393. MR 2000e:65043

25. T. Miyakoda, Iterative methods for multiple zeros of a polynomial by clustering, J. Comput.
Appl. Math., 28 (1989), pp. 315–326. MR 91k:65086

26. V. Y. Pan, Numerical computation of a polynomial gcd and extensions. Research Report 2996,
Institut National de Recherche en Informatique et en Automatique (INRIA), Sophia-Antipolis,
France, 1996.

27. V. Y. Pan, Solving polynomial equations: some history and recent progress, SIAM Review,
39 (1997), pp. 187–220. MR 99b:65066

28. D. Rupprecht, An algorithm for computing certified approximate GCD of n univariate poly-
nomials, J. Pure and Appl. Alg., 139 (1999), pp. 255–284. MR 2000d:65255

29. H. J. Stetter, Condition analysis of overdetermined algebraic problems, in Computer Algebra
in Scientific Computing–CASC 2000, e. a. V.G. Ganzha, ed., Springer, 2000, pp. 345–365.
MR 2002e:65088

30. J. A. Stolan, An improved Šiljak’s algorithm for solving polynomial equations converges
quadratically to multiple zeros, J. Comput. Appl. Math., 64 (1995), pp. 247–268. MR
96h:65074

31. F. Uhlig, General polynomial roots and their multiplicities in O(n) memory and O(n2) time,
Linear and Multilinear Algebra, 46 (1999), pp. 327–359. MR 2000i:12010

32. S. Van Huffel, Iterative algorithms for computing the singular subspace of a matrix associ-
ated with its smallest singular values, Linear Alg. Appl., 154-156 (1991), pp. 675–709. MR
92d:65065

33. J. H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs,
N.J., 1963. MR 28:4661

34. J. R. Winkler, Condition numbers of a nearly singular simple root of a polynomial, Appl.
Numer. Math., (2001), pp. 275–285.

35. T. J. Ypma, Finding a multiple zero by transformations and Newton-like methods, SIAM
Review, 25 (1983), pp. 365–378. MR 85a:65078

http://www.ams.org/mathscinet-getitem?mr=99e:58021
http://www.ams.org/mathscinet-getitem?mr=2000c:65032
http://www.ams.org/mathscinet-getitem?mr=98f:65135
http://www.ams.org/mathscinet-getitem?mr=57:14402
http://www.ams.org/mathscinet-getitem?mr=86h:65067
http://www.ams.org/mathscinet-getitem?mr=2003e:13039
http://www.ams.org/mathscinet-getitem?mr=88i:65007
http://www.ams.org/mathscinet-getitem?mr=2000b:68275
http://www.ams.org/mathscinet-getitem?mr=96f:65059
http://www.ams.org/mathscinet-getitem?mr=53:2009
http://www.ams.org/mathscinet-getitem?mr=99j:68059
http://www.ams.org/mathscinet-getitem?mr=2001c:65004
http://www.ams.org/mathscinet-getitem?mr=2000e:65043
http://www.ams.org/mathscinet-getitem?mr=91k:65086
http://www.ams.org/mathscinet-getitem?mr=99b:65066
http://www.ams.org/mathscinet-getitem?mr=2000d:65255
http://www.ams.org/mathscinet-getitem?mr=2002e:65088
http://www.ams.org/mathscinet-getitem?mr=96h:65074
http://www.ams.org/mathscinet-getitem?mr=2000i:12010
http://www.ams.org/mathscinet-getitem?mr=92d:65065
http://www.ams.org/mathscinet-getitem?mr=28:4661
http://www.ams.org/mathscinet-getitem?mr=85a:65078

COMPUTING MULTIPLE ROOTS OF INEXACT POLYNOMIALS 903

36. D. Y. Y. Yun, On square-free decomposition algorithms, in Proceedings of 1976 ACM Sym-
posium of Symbolic and Algebraic Computation (ISSAC’76), ACM Press, Yorktown Heights,
New York, 1976, pp. 26–35.

37. Z. Zeng, A method computing multiple roots of inexact polynomials, Proceedings of 2003
International Symposium of Symbolic and Algebraic Computation (ISSAC ’03), ACM Press,
New York, 2003, pp. 266–272.

38. Z. Zeng, Algorithm 835 : Multroot – a Matlab package computing polynomial roots and mul-
tiplicities, ACM Trans. Math. Software, 30 (2004), pp. 218-235.

39. Z. Zeng, On ill-conditioned eigenvalues, multiple roots of polynomials, and their accurate
computation. MSRI Preprint No. 1998-048, (1998).

Department of Mathematics, Northeastern Illinois University, Chicago, Illinois

60625

E-mail address: zzeng@neiu.edu

	1. Introduction
	2. Preliminaries
	2.1. Notation
	2.2. Basic definitions and lemmas
	2.3. The Gauss-Newton iteration

	3. Algorithm I: Root-finding with given multiplicities
	3.1. Remarks on previous work
	3.2. The pejorative manifold
	3.3. Solving the nonsingular least squares problem
	3.4. The structure-preserving condition number
	3.5. The numerical procedures
	3.6. Numerical results for Algorithm I

	4. Algorithm II: the multiplicity structureand initial root estimates
	4.1. Remarks on the univariate GCD computation
	4.2. Calculating the greatest common divisor
	4.3. Computing the multiplicity structure and initial root estimates
	4.4. Control parameters
	4.5. Remarks on the convergence of Algorithm II
	4.6. Numerical results for Algorithm II

	5. Numerical results for the combined method
	5.1. The effect of inexact coefficients
	5.2. The effect of nearby multiple roots
	5.3. A large inexact problem

	Acknowledgments
	References

