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FINDING C3-STRONG PSEUDOPRIMES

ZHENXIANG ZHANG

Abstract. Let q1 < q2 < q3 be odd primes and N = q1q2q3. Put

d = gcd(q1 − 1, q2 − 1, q3 − 1) and hi = qi−1
d
, i = 1, 2, 3.

Then we call d the kernel, the triple (h1, h2, h3) the signature, and H = h1h2h3

the height of N , respectively. We call N a C3-number if it is a Carmichael num-
ber with each prime factor qi ≡ 3 mod 4. If N is a C3-number and a strong
pseudoprime to the t bases bi for 1 ≤ i ≤ t, we call N a C3-spsp(b1, b2, . . . , bt).
Since C3-numbers have probability of error 1/4 (the upper bound of that for
the Rabin-Miller test), they often serve as the exact values or upper bounds
of ψm (the smallest strong pseudoprime to all the first m prime bases). If we
know the exact value of ψm, we will have, for integers n < ψm, a deterministic
efficient primality testing algorithm which is easy to implement.

In this paper, we first describe an algorithm for finding C3-spsp(2)’s, to
a given limit, with heights bounded. There are in total 21978 C3-spsp(2)’s
< 1024 with heights < 109. We then give an overview of the 21978 C3-
spsp(2)’s and tabulate 54 of them, which are C3-spsp’s to the first 8 prime

bases up to 19; three numbers are spsp’s to the first 11 prime bases up to 31.
No C3-spsp’s < 1024 to the first 12 prime bases with heights < 109 were found.
We conjecture that there exist no C3-spsp’s < 1024 to the first 12 prime bases
with heights ≥ 109 and so that

ψ12 = 3186 65857 83403 11511 67461 (24 digits)

= 399165290221 · 798330580441,
which was found by the author in an earlier paper. We give reasons to support
the conjecture. The main idea of our method for finding those 21978 C3-
spsp(2)’s is that we loop on candidates of signatures and kernels with heights
bounded, subject those candidates N = q1q2q3 of C3-spsp(2)’s and their prime
factors q1, q2, q3 to Miller’s tests, and obtain the desired numbers. At last
we speed our algorithm for finding larger C3-spsp’s, say up to 1050, with
a given signature to more prime bases. Comparisons of effectiveness with
Arnault’s and our previous methods for finding C3-strong pseudoprimes to
the first several prime bases are given.

1. Introduction

A positive odd integer n > 1 is called a strong probable prime to base b, or
sprp(b) for short, if it passes the Miller (strong pseudoprime) test [7] to base b, i.e.,

(1.1) either bq ≡ 1 (mod n) or b2
rq ≡ −1 (mod n) for some r = 0, 1, . . . , s− 1,
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where n − 1 = 2sq with q odd. If, in addition, n is composite, then we say that
n is a strong pseudoprime to base b, or spsp(b) for short. We say that n is an
spsp(b1, b2, . . . , bt) if n is a strong pseudoprime to all the t bases bi.

A Carmichael number is a positive composite integer which satisfies Fermat’s
Little Theorem

(1.2) bn−1 ≡ 1 mod n

for any b with gcd(n, b) = 1. It follows that a Carmichael number n must be square
free with p − 1|n − 1 for each prime p|n and must be a product of at least three
odd prime factors. A Carmichael number n = q1q2q3 with each prime factor qi ≡ 3
mod 4 is called a C3-number. If n is a C3-number and an spsp(b1, b2, . . . , bt), we
call n a C3-spsp(b1, b2, . . . , bt).

Define ψm to be the smallest strong pseudoprime to all the first m prime bases.
If n < ψm, then only m Miller tests are needed to find out whether n is prime or
not. This means that if we know the exact value of ψm, then for integers n < ψm

we will have a deterministic primality testing algorithm which is not only easier to
implement but also faster than existing deterministic primality testing algorithms.
From Pomerance et al. [9] and Jaeschke [6] we know the exact value of ψm for
1 ≤ m ≤ 8 and upper bounds for ψ9, ψ10 and ψ11.

In [11], we tabulated all K2-, K3-, K4-strong pseudoprimes < 1024 to the first
nine or ten prime bases, where Kk-numbers are the numbers having the form

(1.3) n = p q with p, q odd primes and q − 1 = k(p− 1),

with k = 2, 3, 4. As a result the upper bounds for ψ10 and ψ11 were considerably
lowered:

ψ10 ≤ N10 = 19 55097 53037 45565 03981 (22 digits)
= 31265776261 · 62531552521,

ψ11 ≤ N11 = 73 95010 24079 41207 09381 (22 digits)
= 60807114061 · 121614228121,

and a 24-digit upper bound for ψ12 was obtained:

ψ12 ≤ N12 = 3186 65857 83403 11511 67461 (24 digits)
= 399165290221 · 798330580441.

In [12], we found all C3-spsp(2, 3, 5, 7, 11)’s < 1020. There are in total 110 such
numbers. We tabulated 36 of them, which are C3-spsp’s to the first 6 prime bases;
one number is an spsp to the first 11 prime bases up to 31. As a result the upper
bounds for ψ9, ψ10 and ψ11 are lowered from 20- and 22-decimal-digit numbers to
a 19-decimal-digit number:

ψ9 ≤ ψ10 ≤ ψ11 ≤ Q11 = 3825 12305 65464 13051 (19 digits)
= 149491 · 747451 · 34233211.

Define SB(n) = #{b ∈ Z : 1 ≤ b ≤ n− 1, n is an spsp(b)} and

PR(n) =
SB(n)
ϕ(n)

where ϕ is the Euler’s function. It is well known that [5], [10] if n �= 9 is odd and
composite, then SB(n) ≤ ϕ(n)/4, i.e., PR(n) ≤ 1/4. It is easy to prove that (see
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[12, §5])

PR(n) = 1/4⇐⇒
either n = p q is a K2-number with p ≡ 3 mod 4 or n is a C3-number;

(1.4)

(1.5) if n is a K2-spsp(2), then PR(n) = 3/16;

and

(1.6) if n is an spsp(2), then PR(n) = 1/4⇐⇒ n is a C3-number.

We see that the bounds N10, N11, N12 above are all K2-numbers and Q11 is a
C3-number. The reason for these facts is that these numbers n have PR(n) equal
to or close to 1/4. So we [12] make the following conjecture.

Conjecture 1. ψ9 = ψ10 = ψ11 = 3825 12305 65464 13051 (19 digits).

The main purpose of this paper is to give reasons and numerical evidence to
support the following conjecture.

Conjecture 2.
ψ12 = N12 = 3186 65857 83403 11511 67461 (24 digits)

= 399165290221 · 798330580441.

Before stating the main results of this paper, we need the following definition.

Definition 1.1. Let q1 < q2 < q3 be odd primes and N = q1q2q3. Let

d = gcd(q1 − 1, q2 − 1, q3 − 1) and hi =
qi − 1
d

, i = 1, 2, 3.

Then we call d the kernel, the triple (h1, h2, h3) the signature, and H = h1h2h3 the
height of N , respectively. We also call H the height of the triple (h1, h2, h3).

We describe in Section 2 an algorithm for finding C3-spsp(2)’s to a given limit,
with heights bounded. There are in total 21978 C3-spsp(2)’s < 1024 with heights
< 109. In Section 3 we give an overview of the 21978 C3-spsp(2)’s, among which
1434 numbers, including the 110 ones < 1020 found in [12], are C3-spsp’s to the
first 5 prime bases; and we tabulate 54 of them, which are C3-spsp’s to the first
8 prime bases up to 19; three numbers are spsp’s to the first 11 prime bases up
to 31. No C3-spsp’s < 1024 to the first 12 prime bases with heights < 109 were
found. In Section 4 we speed up the algorithm for finding larger C3-spsp’s, say
up to 1050, with a given signature, to more prime bases. We find 5851 C3-spsp’s
< 1050 to the first 13 prime bases up to 41 with signature (1, 37, 41), which pass the
Axiom release 1.1 test, and we tabulate 25 of them, which are C3-spsp’s to the first
17 prime bases up to 59. In Section 5 we show that C3-numbers N with heights
> N1/3 are rare (such numbers are called hard C3-numbers) and reasonably predict
that there exist no C3-spsp’s < 1024 to the first 12 prime bases with heights ≥ 109.
So, by the foregoing arguments, Conjecture 2 would be most likely correct.

The main idea of our method for finding those 21978 C3-spsp(2)’s is that we
loop on candidates of signatures and kernels with heights bounded, subject those
candidates N = q1q2q3 of C3-spsp(2)’s and their prime factors q1, q2, q3 to Miller’s
tests and obtain the desired numbers.

Arnault [2] used a sufficient condition for constructing Carmichael numbers
which are spsp’s to several prime bases and gave a 56 digit sample C3-spsp, with
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signature (1, 37, 41), to the first 11 prime bases up to 31, which pass the Axiom
release 1.1 test. But his condition is too stringent for most C3-spsp’s to satisfy. The
5851 C3-spsp’s could not be found by his method. In our previous method [12], we
loop on the largest prime factor q3 and propose necessary conditions on N = q1q2q3
to be a strong pseudoprime to the first 5 prime bases. Since the qi are in general
much larger than the component hi of the signature, our previous method is much
more expensive than our new one for finding all C3-spsp(2)’s to a given limit with
heights bounded. See Remarks 3.1 and 4.1 for comparisons in details.

2. The method

To state our algorithm more concisely we first need some definitions.

Definition 2.1. Let h1 < h2 < h3 be three positive integers. The triple (h1, h2, h3)
is called Carmichael acceptable (or C-acceptable) if the hi are pairwise relatively
prime. A C-acceptable triple (h1, h2, h3) is called C3-acceptable if the hi are all odd.
A C3-acceptable triple (h1, h2, h3) is called C3-spsp(2)-acceptable if h1 ≡ h2 ≡ h3

mod 4.

Definition 2.2. Let (h1, h2, h3) be C-acceptable and

hi,j = h−1
i mod hj

for 1 ≤ i �= j ≤ 3. Then the system of linear congruences

(2.1)



x ≡ −h2,1 − h3,1 mod h1,

x ≡ −h1,2 − h3,2 mod h2,

x ≡ −h1,3 − h2,3 mod h3

has solutions x ≡ x0 mod H = h1h2h3 where x0 is the unique solution with
0 ≤ x0 < H , which is called the seed of the C-acceptable triple (h1, h2, h3).

Definition 2.3. Let q1 < q2 < q3 be odd primes and N = q1q2q3 with kernel
d, signature (h1, h2, h3), and height H = h1h2h3. If (h1, h2, h3) is C-acceptable,
let x0 be the seed of the triple (h1, h2, h3). The kernel d is called C-acceptable
if (h1, h2, h3) is C-acceptable and d ≡ x0 mod H . The kernel d is called C3-
acceptable, if (h1, h2, h3) is C3-acceptable and

d ≡ x0 mod 4H,

where

x0 = x0 + j0H ≡ 2 mod 4, j0 = (2− x0)H mod 4, 0 ≤ j0 ≤ 3.

We call x0 the C3-seed of the C3-acceptable triple (h1, h2, h3). The kernel d is called
C3-spsp(2)-acceptable if (h1, h2, h3) is C3–spsp(2)-acceptable and d is C3-acceptable.

Our algorithm is based on the following theorem which needs a lemma.

Lemma 2.1 ([3, Theorem 3.17]). Let n = q1q2q3 be a C3-number. Then

n is an spsp(b)⇐⇒
( b

q1

)
=

( b

q2

)
=

( b

q3

)
�= 0.
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Theorem 2.1. Let N = q1q2q3 be a product of three different odd primes. Then
we have

(1) N is a Carmichael number if and only if its kernel d is C-acceptable;
(2) N is a C3-number if and only if its kernel d is C3-acceptable;
(3) N is a C3-spsp(2) if and only if its kernel d is C3-spsp(2)-acceptable.

Proof. Let d be the kernel, (h1, h2, h3) the signature, and H = h1h2h3 the height of
N , and let x0 be the seed of the triple (h1, h2, h3) when (h1, h2, h3) is C-acceptable.

(1) N is a Carmichael number

⇐⇒ qi − 1 | N − 1 for i = 1, 2, 3

⇐⇒



q1q2 − 1 = d2h1h2 + d(h1 + h2) ≡ 0 mod q3 − 1 = dh3,

q1q3 − 1 = d2h1h3 + d(h1 + h3) ≡ 0 mod q2 − 1 = dh2,

q2q3 − 1 = d2h2h3 + d(h2 + h3) ≡ 0 mod q1 − 1 = dh1

⇐⇒ (h1, h2, h3) is C-acceptable and d ≡ x0 mod H
⇐⇒ d is C-acceptable.

(2) Suppose N is a Carmichael number and so d is C-acceptable. Then at least
two of the hi are odd and d = x0 + jH for some j ≥ 0. We have

qi = dhi + 1 = (x0 + jH)hi + 1 ≡ 3 mod 4 for i = 1, 2, 3

⇐⇒ (x0 + jH)hi ≡ 2 mod 4 for i = 1, 2, 3

⇐⇒ x0 + jH is even, each hi is odd and j ≡ (2− x0)H mod 4
⇐⇒ d is C3-acceptable.

(3) Suppose N is a C3-number and so d is C3-acceptable. Then the hi are all
odd and d ≡ 2 mod 4. We have by Lemma 2.1

N is an spsp(2)⇐⇒
( 2
q1

)
=

( 2
q2

)
=

( 2
q3

)
⇐⇒ q1 ≡ q2 ≡ q3 mod 8 ⇐⇒ dh1 ≡ dh2 ≡ dh3 mod 8

⇐⇒ h1 ≡ h2 ≡ h3 mod 4⇐⇒ d is C3-spsp(2)-acceptable. �

Before describing our algorithm, we need one more lemma.

Lemma 2.2. Let N = q1q2q3 be a Carmichael number with signature (h1, h2, h3).
Then

h3 <
1
2k

(
h1 + h2 +

√
(h1 + h2)2 + 4h1h2

√
kN

)
,

where k = 2. If N = q1q2q3 is a C3-spsp(2), then we can take k = 4.

Proof. Let d be the kernel of N . Since

q3 − 1 = dh3 | q1q2 − 1 = d(dh1h2 + h1 + h2),

we have, q1q2 − 1 = k3(q3 − 1) for some k3 ≥ 2. Thus

(2.2) h3 ≤ 1
k

(dh1h2 + h1 + h2)

where k = 2. If N = q1q2q3 is a C3-spsp(2), then q1 ≡ q2 ≡ q3 mod 8. Thus we can
take k = 4, since in this case q1q2 − 1 = k3(q3 − 1) for some k3 ≥ 4.
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From (2.2) we have

d ≥ kh3 − h1 − h2

h1h2
.

Since q1q2 − 1 = k3(q3 − 1) ≥ k(q3 − 1), we have

√
N >

√
(q1q2 − 1)(q3 − 1) ≥

√
k(q3 − 1) =

√
kdh3 ≥

√
kh3

kh3 − h1 − h2

h1h2
.

Then k3/2h2
3 − k1/2(h1 + h2)h3 − h1h2

√
N < 0. Thus

h3 <
1
2k

(
h1 + h2 +

√
(h1 + h2)2 + 4h1h2

√
kN

)
. �

Now we are ready to describe a procedure to compute all C3-spsp(2)’s N =
q1q2q3 < L, say, L = 1024, with heights H = h1h2h3 < H, say, H = 109 > L1/3.
PROCEDURE. Finding C3-spsp(2)’s looping on signatures with heights bounded;

BEGIN h1 ← 1;
Repeat h2 ← h1;

repeat h2 ← h2 + 4; If gcd(h2, h1) = 1 Then

begin h3 ← h2; h3 ← 1
8

(
h1 + h2 +

√
(h1 + h2)2 + 8h1h2

√
L

)
;

If h3 > H/(h1h2) Then h3 ← H/(h1h2);
Repeat h3 ← h3 + 4; If (gcd(h3, h1) = 1) And (gcd(h3, h2) = 1) Then

Begin {Now the triple (h1, h2, h3) is C3-spsp(2)-acceptable}
Using Euclidean Algorithm and the Chinese Remainder Theorem
to compute the seed x0 of the triple (h1, h2, h3);
x0 ← x0; j0 ← (6− x0 mod 4)H mod 4;
If j0 > 0 Then x0 ← x0 + j0H ;
For i := 1 To 3 Do qi ← x0hi + 1;
q1q2 ← q1 · q2; N ← q1q2 · q3;
If N < L Then

repeat If 2N ≡ 2 mod q1q2 Then
begin If (q1, q2 and q3 are all sprp’s to the first several prime

bases) And (N is an spsp(2)) Then
output(N, q1, q2, q3, h1, h2, h3, x0, . . . )

end;
For i := 1 To 3 Do qi ← qi + 4hiH ;
q1q2 ← q1 · q2; N ← q1q2 · q3

until N > L
End

Until h3 > h3

end
until h2 > (H/h1)1/2;
h1 ← h1 + 2

Until h1 > H1/3

END.

Remark 2.1. One may easily modify the procedure a little for computing all
Carmichael numbers N = q1q2q3 < L, with heights H = h1h2h3 < H, instead of
just only C3-spsp’s.
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Remark 2.2. Alford, Granville and Pomerance [1] have proved that there are infin-
itely many Carmichael numbers, but no one has yet been able to show that there
are infinitely many Carmichael numbers n with a fixed number of prime factors.
Let (h1, h2, h3) be a C-acceptable triple with height H and seed x0. If the widely
believed Prime k-Tuples Conjecture (see [4, Conjecture 1.2.1]) is true, then there
would exist infinitely many integers

0 ≤ j1 < j2 < j3 < · · ·
such that

qi,u = qi,u(h1, h2, h3) = duhi + 1 = x0hi + 1 + juhiH

are all primes for 1 ≤ i ≤ 3 and u = 1, 2, 3, . . . , where du = x0 + juH . Let
Nu = Nu(h1, h2, h3) = q1,uq2,uq3,u, u = 1, 2, 3, . . . . Then

(2.3) N1 < N2 < N3 < · · ·
would be infinitely many Carmichael numbers with three prime factors. We call
(2.3) the chain of Carmichael numbers with signature (h1, h2, h3). Since there exist
infinitely many C-acceptable triples, there would exist infinitely many pairwise dis-
joint chains of Carmichael numbers with three prime factors. The same arguments
can be applied to C3-numbers and C3-spsp(2)’s.

Example 2.1. The C-acceptable triple having the smallest height among all C-
acceptable ones is (1, 2, 3) with height H = 6 and seed x0 = 0; the first (the
smallest) element of the Carmichael number chain with signature (1, 2, 3) is

1729 = 7 · 13 · 19

with kernel d = 6 = 0 + 6 · 1. The C3-acceptable triple having the smallest height
among all C3-acceptable ones is (1, 3, 5) with height H = 15, seed x0 = 12 and
C3-seed x0 = 42 = 12 + 15 · 2; the first (the smallest) element of the C3-number
chain with signature (1, 3, 5) is

1152271 = 43 · 127 · 211

with kernel d = 42 = 42 + (15 · 4) · 0. The C3-spsp(2)-acceptable triple having
the smallest height among all C3-spsp(2)-acceptable ones is (1, 5, 9) with height
H = 45, seed x0 = 15, and C3-seed x0 = 150 = 15 + 45 · 3; the first (the smallest)
element of the C3-spsp(2) chain with signature (1, 5, 9) is

83828294551 = 1231 · 6151 · 11071

with kernel d = 1230 = 150 + (45 · 4) · 6.

3. Numerical results and statistics

The Pascal program (with multi-precision package partially written in Assembly
language) ran about 50 hours on a PC Pentium III/800 to get all C3-spsp(2)’s
< 1024 with heights < 109. There are in total 21978 numbers, among which 54
numbers are spsp’s to the first 8 prime bases up to 19 (listed in Table 1), 21
numbers are spsp’s to base 23, 8 numbers are spsp’s to bases 23 and 29, 3 numbers
are spsp’s to the first 11 prime bases up to 31. No C3-spsp’s < 1024 with heights
< 109, to the first 12 prime bases, are found.



1016 ZHENXIANG ZHANG

Table 1. List of all C3-spsp’s < 1024, with heights < 109, to the
first 8 prime bases

spsp-base

23 29 31
N = q1q2q3 q1 h1 h2 h3 x0

230245660726188031 214831 3 11 19 132 0 0 1
3825123056546413051 149491 1 5 229 640 1 1 1
5474093792130026911 21319 1 105 5381 21318 0 0 0
7361235187296010651 412339 1 5 21 3 0 0 0
8276442534101054431 209431 1 17 53 398 0 0 1

195069335909566505311 393031 1 17 189 1044 0 0 0
254699850156491854531 712219 1 5 141 168 1 0 0
406109173515574567039 307399 1 41 341 13797 1 0 0

1127737640453498269651 1133731 3 7 995 1800 0 1 1
1397794271514875845651 1336891 1 9 65 165 0 0 0
2242921587179041518751 3993991 7 23 75 3045 1 0 0
3194607429820896878251 526051 1 105 209 21315 0 1 0
4412130885405879485851 1570339 11 91 1515 142758 0 0 0
5701046551584439525471 2518231 1 17 21 309 0 0 0
5958695097405523240951 2897311 1 5 49 185 1 0 0
9113145253407751789351 976951 15 247 8903 65130 0 1 0
9939727319790001375351 6778351 15 43 167 21030 0 1 1

10370556164168370465751 1395871 1 41 93 312 1 1 0
11766571723662840188371 12264211 21 29 97 52353 0 1 0
13138898535179034186031 1360591 11 347 1819 123690 1 0 1
17661599911521864964667 334643 1 13 36253 334642 0 0 1
22377871579629220240951 2281231 1 29 65 380 0 1 0
23803627414421799913051 4756771 5 57 97 11424 0 0 0
24641960187979924539751 2320399 51 451 11375 45498 1 0 0
31114093717651985564707 2248507 1 17 161 1429 1 0 1
34957194928469840636443 3436987 1 21 41 735 0 1 1
36311562703426066768531 574939 1 265 721 1743 0 0 0
40415893466198304051271 2327599 1 5 641 768 1 1 0
45555991965773372374831 7570399 1 5 21 3 0 0 0
46672089968136299211091 4983931 1 13 29 367 0 1 0
48857493627509540231611 2505859 1 5 621 123 1 0 0
52534131015423500638651 7002451 1 9 17 99 0 0 0

126174611480842540712251 4585051 1 17 77 932 1 1 0
138199734583474439306971 3157771 1 21 209 2079 0 0 0
170738089381697431624031 3926231 1 13 217 2219 1 0 1
209312276410824043446991 11881879 19 99 455 625362 0 0 1
216637667956488044143151 5003951 1 13 133 224 0 1 1
233534116295099077548091 784939 1 221 2185 302053 1 0 0
255517570304002813885651 9047611 1 5 69 330 1 0 1
286102310653298641736431 17614759 7 27 95 2694 1 0 1
334277210819500412182291 2771011 9 13 97889 307890 0 0 0
351738842489919281301451 3400531 1 5 1789 1430 1 1 0
368676478516093734323107 10507267 7 87 179 83895 0 1 1
427343918229393756373567 10617847 1 17 21 309 1 1 1
470919365444700352493587 36877387 29 53 149 126569 0 1 0
544513293798193773190411 5744131 1 17 169 1003 0 0 0
604862030394148915227451 4783819 1 25 221 4693 0 1 1
694377826663618499764231 11493871 31 99 4439 370770 1 1 0
739642924951631011438471 2960791 1 69 413 25599 1 0 0
769506747162635763214363 4035043 1 53 221 5770 0 0 0
793644330003453987232231 754111 1 393 4709 754110 0 0 0
858104265182620413802951 15186511 1 5 49 185 1 1 1
867433972583793467874451 35988811 13 17 185 29075 0 1 1
896098460552472805377751 5389231 1 25 229 2005 0 0 1
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For the rest of this paper let bi be the ith prime. Define sets

(3.1)

{
C3(t, L) = {N : N is a C3-spsp(b1, b2, . . . , bt) < L},
C3(t, L,H) = {N : N ∈ C3(t, L) with height < H}

and functions

(3.2) f(t, L) = #C3(t, L) and f(t, L,H) = #C3(t, L,H)

for t ≥ 1. The sets and functions can be extended for t = 0, in which case C3(0, L)
is the set of all C3-numbers < L, etc. Then we have

C3(0, L) ⊇ C3(1, L) ⊇ C3(2, L) ⊇ · · · .
In Table 2 we give f(t, L, 109) for t = 1, 2, . . . , 11 and L = 1010, 1012, . . . , 1024.

In Table 3, we give f(t, 1024,H) for 1 ≤ t ≤ 11 and H = 102, 103, . . . , 109.

Table 2. The function f(t, L, 109)

L 1010 1012 1014 1016 1018 1020 1022 1024

t = 1 1 8 35 157 522 1790 6179 21978
t = 2 1 6 28 100 364 1277 4381 15575
t = 3 1 4 18 60 203 710 2446 8581
t = 4 1 1 7 19 89 337 1205 4205
t = 5 0 0 3 6 28 110 393 1434
t = 6 0 0 1 2 8 36 128 481
t = 7 0 0 0 1 2 12 48 165
t = 8 0 0 0 0 1 5 17 54
t = 9 0 0 0 0 0 1 5 21
t = 10 0 0 0 0 0 1 1 8
t = 11 0 0 0 0 0 1 1 3

Table 3. The function f(t, 1024,H)

H 102 103 104 105 106 107 108 109

t = 1 1883 7214 12290 16280 19040 20675 21562 21978
t = 2 1883 6009 9481 12106 13836 14851 15344 15575
t = 3 1341 3523 5336 6704 7646 8186 8464 8581
t = 4 321 1888 2728 3355 3800 4036 4167 4205
t = 5 81 568 886 1124 1285 1364 1419 1434
t = 6 29 170 283 366 428 456 476 481
t = 7 6 53 91 119 144 155 163 165
t = 8 0 14 29 39 47 50 53 54
t = 9 0 5 13 17 18 19 20 21
t = 10 0 2 7 7 7 7 8 8
t = 11 0 2 3 3 3 3 3 3
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Remark 3.1. The smallest five numbers < 1020 in Table 1 appeared earlier in [12,
Table 5] where we used 1600 hours of CPU time on a PC Pentium III/800 to find all
110 C3-spsp(2, 3, 5, 7, 11)’s < 1020. Since all the 110 numbers have heights < 109,
they were caught once again (see Table 2: f(5, 1020, 109) = 110) and much more
information than that was obtained by our new method, using only 50 hours of
CPU time on the same machine. In our previous method, we loop on the largest
prime factor q3 and propose necessary conditions on N = q1q2q3 to be a strong
pseudoprime to the first 5 prime bases. In the new method we loop on C3-spsp(2)-
acceptable signatures (h1, h2, h3) and kernels d. For a given C3-spsp(2)-acceptable
triple (h1, h2, h3), the procedure loops at most �(L/(43H4))1/3� times in the “repeat
· · · until N > L” loop. So, when L is not too large, say, L = 1024, it does not take
much time on a modern PC (say, Pentium III/800) for a given triple (h1, h2, h3)
until N > L. Since the hi are in general much smaller than the prime factors qi
of N , our new method is much faster than the previous one for finding all those
N < L with heights H to a given limit, say, H < L1/3 or H < L3/8.

Remark 3.2. From Table 3 we see the following facts:
(1) there is only one C3-spsp(b1, b2, . . . , b9) < 1024 with 108 < H < 109;
(2) there is no C3-spsp(b1, b2, . . . , b10) < 1024 with 108 < H < 109;
(3) there is no C3-spsp(b1, b2, . . . , b11) < 1024 with 104 < H < 109.

Reasons for these facts will be discussed in Remark 5.2 below.

Remark 3.3. A difficult problem is the decision of a favorable upper bound H of
heights of C3-spsp(2)-acceptable triples (h1, h2, h3) so that we can obtain all C3-
spsp’s < L, say, L = 1024, to the first t, say, t ≥ 11, prime bases. We will explain
in Section 5 why we choose H = 109, i.e., why we did not run the procedure for
H = h1h2h3 > 109.

4. Larger C3-spsp’s to more bases

In this section we will speed up the method so that we can find all C3-spsp’s
less than a larger limit L, say L = 1050, with the same signature, say (1, 37, 41), to
t ≥ 9 prime bases.

Definition 4.1. Let N, q1, q2, q3, h1, h2, h3, x0, x0, d be as in Definition 2.3. Let b
be an odd prime, and suppose (h1, h2, h3) is C3-acceptable. Define the set

S
(h1,h2,h3)
b =

{
u : u = 2 + 4k, 0 ≤ k < b,

( b

uh1 + 1

)
=

( b

uh2 + 1

)
=

( b

uh3 + 1

)}
.

A C3-acceptable triple (h1, h2, h3) is called C3-spsp(b)-acceptable, if the set

(4.1) S
(h1,h2,h3)
b �= ∅

and if the system of linear congruences

(4.2)

{
x ≡ x0 mod H,
x ≡ u mod 4b for some u ∈ S(h1,h2,h3)

b

has solutions. The kernel d is called C3-spsp(b)-acceptable if (h1, h2, h3) is C3-
spsp(b)-acceptable and d = x0 + jH ≡ u mod 4b for some u ∈ S

(h1,h2,h3)
b with

j ≡ (2− x0)H mod 4, or in other words, if

(4.3)

{
d ≡ x0 mod 4H,
d ≡ u mod 4b for some u ∈ S(h1,h2,h3)

b .
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Definition 4.2. Let N, q1, q2, q3, h1, h2, h3, x0, x0, d be as in Definition 2.3. Let bi
be the ith prime, t ≥ 2 and Mt = 4b2 · · · bt; and suppose (h1, h2, h3) is C3-spsp(2)-
acceptable. Define the set

R
(h1,h2,h3)
t =

{
r : 0 ≤ r < Mt, r ≡ ui mod 4bi for some ui ∈ S(h1,h2,h3)

bi
, 2 ≤ i ≤ t

}
.

The triple (h1, h2, h3) is called C3-spsp(b1, b2, . . . , bt)-acceptable if the system of
linear congruences

(4.4)

{
x ≡ x0 mod 4H,
x ≡ ui mod 4bi for some ui ∈ S(h1,h2,h3)

bi
, 2 ≤ i ≤ t,

has solutions, or in other words, the system

(4.5)

{
x ≡ x0 mod 4H,
x ≡ r mod Mt for some r ∈ R(h1,h2,h3)

t

has solutions. The kernel d is called C3-spsp(b1, b2, . . . , bt)-acceptable if (h1, h2, h3)
is C3-spsp(b1, b2, . . . , bt)-acceptable and (4.5) holds with x replaced by d.

Example 4.1. The triple (1, 5, 13) is C3-spsp(b)-acceptable for b = 2 and 3, but
it is not C3-spsp(5)-acceptable. Clearly, if gcd(b,H) = 1 with H = h1h2h3, then a
C3-acceptable triple (h1, h2, h3) must be C3-spsp(b)-acceptable. But the converse
is not true. For example, the triple (1, 5, 9) is C3-spsp(b)-acceptable for all primes
b, including b = 3 and 5.

Theorem 4.1. Let N = q1q2q3 be a product of three different odd primes and let b
be an odd prime. Then we have

N is a C3-spsp(b)⇐⇒ its kernel d is C3-spsp(b)-acceptable.

Proof. Suppose N is a C3-number and so d is C3-acceptable. Then we have by
Theorem 2.1 and Lemma 2.1

N is an spsp(b)

⇐⇒
( b

dh1 + 1

)
=

( b

dh2 + 1

)
=

( b

dh3 + 1

)
⇐⇒ d ≡ u mod 4b for some u ∈ S(h1,h2,h3)

b

⇐⇒ d is C3-spsp(b)-acceptable.

�

By the Chinese Remainder Theorem, we have the following corollary.

Corollary 4.1. Let N = q1q2q3 be a product of three different odd primes and let bi
be the ith prime and t ≥ 2; and suppose (h1, h2, h3) is C3-spsp(2)-acceptable. Then
N is a C3-spsp(b1, b2, . . . , bt) if and only if its kernel d is C3-spsp(b1, b2, . . . , bt)-
acceptable.

Example 4.2. The triple (1, 37, 41) is C3-spsp(b)-acceptable for all primes b, with
seed x0 = 563 and height H = 1 · 37 · 41 = 1517. Let t = 9 and Mt = 4b2 · · · bt =
446185740. We have x0 = x0 + 3H = 5114 and #R(1,37,41)

9 = 2880. In Table 4 we
give Sbi = S

(1,37,41)
bi

and #Ri =#R(1,37,41)
i for 2 ≤ i ≤ 9.
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Table 4.

i bi Mi #Sbi Sbi #Ri

2 3 12 1 {6} 1
3 5 60 2 {6, 10} 2
4 7 420 2 {2, 14} 4
5 11 4620 3 {18, 22, 38} 12
6 13 60060 2 {10, 26} 24
7 17 1021020 4 {10, 18, 30, 34} 96
8 19 19399380 5 {26, 38, 50, 54, 74} 480
9 23 446185740 6 {38, 42, 46, 82, 86, 90} 2880

A procedure based on Corollary 4.1 ran about 5 hours on a PC Pentium III/800
to get all C3-spsp(b1, b2, . . . , b9)’s < 1050 with signature (1, 37, 41). There are in
total 86687 numbers, among which 5851 numbers are spsp’s to the first 13 prime
bases up to 41, 25 numbers are spsp’s to the first 17 prime bases up to 59 (listed
in Table 5), 7 numbers are spsp’s to base 61, 3 numbers are spsp’s to the first 19
prime bases up to 67.

Table 5. List of all C3-spsp’s < 1050 with signature (1, 37, 41) to
the first 17 prime bases up to 59

spsp-base

61 67 71N = q1q2q3 q1

664285341720894140846825851168090899459337851067 759375118130107 0 0 0
1801188787585914139564810592131100649232502090131 1058907159503971 0 0 0
2254188563707371059999034172489288735827395166967 1141129380182767 1 0 0
2295419709119519138624774107607428487397986227711 1148044815933991 1 0 0
4830615526563629640707213324003423570276032239067 1471201968695707 0 0 1

5606141065699774478327048822491526469151721036191 1546059297919111 0 0 0
6079037109932002285849522788586785893918822839651 1588362912440851 0 0 0
6177545012072454394180280121837534201011666749867 1596896537577547 0 0 0
6792469965351873320846123947106517207243763369651 1648215707510851 1 0 0
9231658871799183872380918591735012360063879509367 1825708296411247 0 1 0
9688312712744590973050578123260748216127001625571 1855328670525331 1 1 0

17077389050992177663907511962926227202811796430411 2241189765445291 1 1 0
20419468508849496652785114968040727226399506005367 2378772729204847 0 0 0
24989407894883186945549938905182259644632907446867 2544427779105187 0 0 1
26706083736620248445278451981338590391039943640367 2601406424985847 0 0 0
29976443610578528721850170580010674973747257453171 2703531964889731 0 0 1
37022269021333497793028821196322216146297759893567 2900630998141927 0 1 0
39397023402592750173016278148536552680399692486831 2961369573201271 1 0 1
49765723320580275663033246960798005905092493704271 3201215516700631 0 0 0
54137204419251617397822551921251265769160917390091 3292330421343211 1 1 0
60182972252640561414204431408975362441401651006367 3410588713549447 0 0 1
63627021553793884438571687827273322639293179452371 3474444171754531 0 1 0
68172488800119872312050407892588071592239057698791 3555285837408511 0 0 1
69102192250587765543843633166409535362271092418091 3571374676875211 0 0 0
95305641129861756749783024175271806664680889298311 3975371093655391 0 0 0
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Remark 4.1. Arnault [2, Equation (4)] used a sufficient condition derived from the
condition

(4.6)
( b

q1

)
=

( b

q2

)
=

( b

q3

)
= −1

for finding C3-spsp’s n = q1q2q3 to all the first several prime bases b with C3-
spsp(2)-acceptable signature (h1, h2, h3) satisfying additional conditions h1 = 1
and gcd(b, h2h3) = 1, whereas our method has no restrictions either on h1 or on
gcd(b, h2h3) (see Definition 4.1, Example 4.2, Theorem 4.1). Arnault found a 56-
digit C3-spsp to the first 11 prime bases (actually his 56-digit sample is an spsp to
the first 13 prime bases up to 41), which passes the Axiom release 1.1 test. All our
5851 C3-spsp(b1, b2, . . . , b13)’s < 1050 with signature (1, 37, 41) also pass the Axiom
release 1.1 test, but they are much smaller than his 56-digit sample. Arnault’s
Condition (4.6) is too stringent for most C3-spsp’s to satisfy. Our 5851 numbers
could not be found by Arnault’s condition.

5. Discussion

Let N, q1, q2, q3, h1, h2, h3, H, x0, x0, d be as in Definition 2.3. Define

(5.1) β = β(N) = logH N =
logN
logH

,

which is called the height index of N . We call N a hard Carmichael number (resp.
hard C3-number or hard C3-spsp(b1, . . . , bt)) if N = q1q2q3 is a Carmichael number
(resp. C3-number or C3-spsp(b1, . . . , bt)) with height index β < 3.

Proposition 5.1. If N is a hard Carmichael number, then we have

(5.2) x0 = d < H2/3.

Proof. Put α = logH d = log d
log H . Then

x0 ≤ d = Hα.

Since d3H < N , we have

α <
1
3
(β − 1)

where β = log N
log H is the height index of N . If N is a hard Carmichael number, then

β < 3. Thus α < 2/3, and therefore equation (5.2) holds since d ≡ x0 mod H . �

Corollary 5.1. If N is a hard C3-number, then we have

(5.3) x0 = x0 = d < H2/3;

moreover if N is a hard C3-spsp(b1, . . . , bt) with t ≥ 2, then we have

(5.4) x0 ≡ r mod Mt for some r ∈ R(h1,h2,h3)
t

where Mt and R(h1,h2,h3)
t are as defined in Definition 4.2.

Example 5.1. We list in Table 6 hard C3-spsp(b1, . . . , bt)’s for 0 ≤ t ≤ 9 with the
smallest height indices among the three sets of C3-numbers: the 2837 C3-numbers
< 1018; the 110 C3-spsp(2, 3, 5, 7, 11)’s < 1020 and the 21978 C3-spsp(2)’s < 1024.
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Table 6. Sample hard C3-spsp(b1, . . . , bt)

t N h1 h2 h3 H x0 = d β

0 67902031 7 45 971 305865 6 1.427 · · ·
1 145936981694079451 115 903 1324151 137506460595 102 1.541 · · ·
2 145936981694079451 115 903 1324151 137506460595 102 1.541 · · ·
3 64770695384645251 67 147 92675 912756075 414 1.876 · · ·
4 90022554326251 29 125 2681 9718625 210 1.997 · · ·
5 3948835658621975551 117 397 4985 231548265 2574 2.223 · · ·
6 3948835658621975551 117 397 4985 231548265 2574 2.223 · · ·
7 24641960187979924539751 51 451 11375 261636375 45498 2.660 · · ·
8 24641960187979924539751 51 451 11375 261636375 45498 2.660 · · ·
9 24641960187979924539751 51 451 11375 261636375 45498 2.660 · · ·

Define

(5.5) C′
3(t, L, β) = {N : N is a C3-spsp(b1, . . . , bt) < L with height index < β}

and

(5.6) C′
3(t, L, β,H) = {N : N ∈ C′

3(t, L, β) with height < H}
for t ≥ 1 and C′

3(0, L, β) is the set of all C3-numbers < L with height index < β.
Thus C′

3(0, L, 3) is the set of all hard C3-numbers < L and C3(t, L, 3) is the set of
hard C3-spsp(b1, . . . , bt)’s < L for t ≥ 1. Define

(5.7) g(t, L, β) = #C′
3(t, L, β) and g(t, L, β,H) = #C′

3(t, L, β,H).

Studying the 2837 C3-numbers < 1018 given by Pinch [8] and the 110 C3-spsp(2,
3, 5, 7, 11)’s < 1020 obtained in [12], we obtain values of g(t, L, 3) and f(t, L) (see
equation (3.2) for the definition) tabulated in Table 7, where the numerator is
g(t, L, 3) and the denominator is f(t, L). If both g(t, L, 3) and f(t, L) are 0, we
write only 0 instead of 0

0 . The values of g(t, 1020, 3) and f(t, 1020) for 0 ≤ t ≤ 4 are
unknown.

Remark 5.1. If N < L with height H > L1/β, then β(N) = logH N < logH L < β.
So, we have

(5.8) f(t, L)− f(t, L, L1/β) ≤ g(t, L, β).

The left side of inequality (5.8) is the number of C3-spsp(b1, . . . , ct)’s < L with
height H > L1/β. For example, f(0, 1018)− f(0, 1018, 106) = 2837− 2620 = 217 <
384 = g(0, 1018, 3).

Remark 5.2. Since x0 is a positive residue modulo H (see Definition 2.2), condition
(5.2) (resp. condition (5.3)) is too stringent for most Carmichael numbers with three
prime factors (resp. C3-numbers) to satisfy. So, hard Carmichael numbers are rare,
and hard C3-numbers are even more rare. Because of the even more stringent
condition (5.4), hard C3-spsp(b1, . . . , bt)’s are even more rare as t increases as can
be seen in Table 7. This explains Remark 3.2.

Studying the 21978 C3-spsp(2)’s < 1024 with heights < 109, we obtain values of
g(t, L, 3, 109) (the number of hard C3-spsp(b1, . . . , bt)’s < L with heights < 109 for
t ≥ 1) tabulated in Table 8, whereas g(0, L, 3, 109) (the number of hard C3-numbers
< L for L ≤ 1018 with heights < 109) are obtained from Pinch [8].
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Table 7. The functions g(t, L, 3) (numerator) and f(t, L) (denominator)

L 104 106 108 1010 1012 1014 1016 1018 1020

t = 0 1
1

1
1

4
8

13
29

27
79

70
271

163
868

384
2837

t = 1 0 0 0 0
1

3
8

10
35

36
157

89
527

t = 2 0 0 0 0
1

1
6

6
28

20
100

49
366

t = 3 0 0 0 0
1

0
4

3
18

10
60

25
203

t = 4 0 0 0 0
1

0
1

1
7

3
19

6
89

t = 5 0 0 0 0 0 0
3

0
6

2
28

7
110

t = 6 0 0 0 0 0 0
1

0
2

0
8

2
36

t = 7 0 0 0 0 0 0 0
1

0
2

0
12

Table 8. The function g(t, L, 3, 109)

log10 L 12 14 16 18 20 22 24
t = 0 27 69 161 369
t = 1 3 10 36 84 198 424 874
t = 2 1 6 20 47 105 237 480
t = 3 0 3 10 25 52 120 248
t = 4 0 1 3 6 20 44 95
t = 5 0 0 0 2 7 21 42
t = 6 0 0 0 0 2 6 12
t = 7 0 0 0 0 0 2 5
t = 8 0 0 0 0 0 1 2
t = 9 0 0 0 0 0 0 1
t = 10 0 0 0 0 0 0 0

From Tables 7 and 8 we find that

g(0, 1018, 3) = g(0, 1018, 3, 109) + 15,

g(1, 1018, 3) = g(1, 1018, 3, 109) + 5,

g(2, 1018, 3) = g(2, 1018, 3, 109) + 2,

g(t, 1018, 3) = g(t, 1018, 3, 109) for t ≥ 3,

g(t, 1020, 3) = g(t, 1020, 3, 109) for t ≥ 5.

So we may predict that

g(t, 1024, 3) = g(t, 1024, 3, 109) for t ≥ t0
for some t0 ≥ 9. To be safe, we may take t0 = 12. If so, i.e., if g(t, 1024, 3) =
g(t, 1024, 3, 109) = 0 for t ≥ 12, there would exist no hard C3-spsp’s to the first 12
prime bases. Then from (5.8) we would have

f(t, 1024)− f(t, 1024, 108) ≤ g(t, 1024, 3) = 0

for t ≥ 12. This means that there would exist no C3-spsp’s < 1024 to the first 12
prime bases, with heights > 108. These arguments explain Remark 3.3.
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At last, we point out an argument which is perhaps unfavorable for our method.
Given any small ε > 0, does there always exist a C-acceptable triple (h1, h2, h3) =
(h1, h2, h3)(ε) with height H = h1h2h3 and positive seed x0 < Hε? If so, and if
one wants to compute ALL! Carmichael numbers < L with three prime factors, one
should check as many as O(L1+o(1)) C-acceptable triples. The algorithm would take
time O(L1+o(1)). The same argument can be used for finding ALL! C3-numbers or
ALL! C3-spsp(2)’s with a smaller constant for the big O- and/or a smaller order for
the small o(1). To this end, a favorable estimate of H in Remark 3.3 as a function
of L and t would be an interesting but difficult problem.
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