FINDING C_{3}-STRONG PSEUDOPRIMES

ZHENXIANG ZHANG

Abstract. Let $q_{1}<q_{2}<q_{3}$ be odd primes and $N=q_{1} q_{2} q_{3}$. Put
$d=\operatorname{gcd}\left(q_{1}-1, q_{2}-1, q_{3}-1\right)$ and $h_{i}=\frac{q_{i}-1}{d}, i=1,2,3$.
Then we call d the kernel, the triple (h_{1}, h_{2}, h_{3}) the signature, and $H=h_{1} h_{2} h_{3}$ the height of N, respectively. We call N a C_{3}-number if it is a Carmichael number with each prime factor $q_{i} \equiv 3 \bmod 4$. If N is a C_{3}-number and a strong pseudoprime to the t bases b_{i} for $1 \leq i \leq t$, we call N a $C_{3}-\operatorname{spsp}\left(b_{1}, b_{2}, \ldots, b_{t}\right)$. Since C_{3}-numbers have probability of error $1 / 4$ (the upper bound of that for the Rabin-Miller test), they often serve as the exact values or upper bounds of ψ_{m} (the smallest strong pseudoprime to all the first m prime bases). If we know the exact value of ψ_{m}, we will have, for integers $n<\psi_{m}$, a deterministic efficient primality testing algorithm which is easy to implement.

In this paper, we first describe an algorithm for finding $C_{3}-\operatorname{spsp}(2)$'s, to a given limit, with heights bounded. There are in total $21978 C_{3}-\operatorname{spsp}(2)$'s $<10^{24}$ with heights $<10^{9}$. We then give an overview of the $21978 C_{3}{ }^{-}$ $\operatorname{spsp}(2)$'s and tabulate 54 of them, which are C_{3}-spsp's to the first 8 prime bases up to 19 ; three numbers are spsp's to the first 11 prime bases up to 31 . No C_{3}-spsp's $<10^{24}$ to the first 12 prime bases with heights $<10^{9}$ were found. We conjecture that there exist no C_{3}-spsp's $<10^{24}$ to the first 12 prime bases with heights $\geq 10^{9}$ and so that

$$
\begin{aligned}
\psi_{12} & =318665857834031151167461(24 \text { digits }) \\
& =399165290221 \cdot 798330580441,
\end{aligned}
$$

which was found by the author in an earlier paper. We give reasons to support the conjecture. The main idea of our method for finding those $21978 C_{3}-$ $\operatorname{spsp}(2)$'s is that we loop on candidates of signatures and kernels with heights bounded, subject those candidates $N=q_{1} q_{2} q_{3}$ of $C_{3}-\operatorname{spsp}(2)$'s and their prime factors q_{1}, q_{2}, q_{3} to Miller's tests, and obtain the desired numbers. At last we speed our algorithm for finding larger C_{3}-spsp's, say up to 10^{50}, with a given signature to more prime bases. Comparisons of effectiveness with Arnault's and our previous methods for finding C_{3}-strong pseudoprimes to the first several prime bases are given.

1. Introduction

A positive odd integer $n>1$ is called a strong probable prime to base b, or $\operatorname{sprp}(b)$ for short, if it passes the Miller (strong pseudoprime) test 7 to base b, i.e.,

$$
\begin{equation*}
\text { either } b^{q} \equiv 1(\bmod n) \text { or } b^{2^{r} q} \equiv-1(\bmod n) \text { for some } r=0,1, \ldots, s-1 \tag{1.1}
\end{equation*}
$$

[^0]where $n-1=2^{s} q$ with q odd. If, in addition, n is composite, then we say that n is a strong pseudoprime to base b, or $\operatorname{spsp}(b)$ for short. We say that n is an $\operatorname{spsp}\left(b_{1}, b_{2}, \ldots, b_{t}\right)$ if n is a strong pseudoprime to all the t bases b_{i}.

A Carmichael number is a positive composite integer which satisfies Fermat's Little Theorem

$$
\begin{equation*}
b^{n-1} \equiv 1 \quad \bmod n \tag{1.2}
\end{equation*}
$$

for any b with $\operatorname{gcd}(n, b)=1$. It follows that a Carmichael number n must be square free with $p-1 \mid n-1$ for each prime $p \mid n$ and must be a product of at least three odd prime factors. A Carmichael number $n=q_{1} q_{2} q_{3}$ with each prime factor $q_{i} \equiv 3$ $\bmod 4$ is called a C_{3}-number. If n is a C_{3}-number and an $\operatorname{spsp}\left(b_{1}, b_{2}, \ldots, b_{t}\right)$, we call n a $C_{3}-\operatorname{spsp}\left(b_{1}, b_{2}, \ldots, b_{t}\right)$.

Define ψ_{m} to be the smallest strong pseudoprime to all the first m prime bases. If $n<\psi_{m}$, then only m Miller tests are needed to find out whether n is prime or not. This means that if we know the exact value of ψ_{m}, then for integers $n<\psi_{m}$ we will have a deterministic primality testing algorithm which is not only easier to implement but also faster than existing deterministic primality testing algorithms. From Pomerance et al. [9] and Jaeschke 6] we know the exact value of ψ_{m} for $1 \leq m \leq 8$ and upper bounds for ψ_{9}, ψ_{10} and ψ_{11}.

In [11], we tabulated all K2-, K3-, K4-strong pseudoprimes $<10^{24}$ to the first nine or ten prime bases, where $\mathrm{K} k$-numbers are the numbers having the form

$$
\begin{equation*}
n=p q \quad \text { with } p, q \text { odd primes and } q-1=k(p-1) \tag{1.3}
\end{equation*}
$$

with $k=2,3,4$. As a result the upper bounds for ψ_{10} and ψ_{11} were considerably lowered:

$$
\begin{aligned}
\psi_{10} \leq N_{10} & =1955097530374556503981(22 \text { digits }) \\
& =31265776261 \cdot 62531552521 \\
\psi_{11} \leq N_{11} & =7395010240794120709381(22 \text { digits }) \\
& =60807114061 \cdot 121614228121,
\end{aligned}
$$

and a 24 -digit upper bound for ψ_{12} was obtained:

$$
\begin{aligned}
\psi_{12} \leq N_{12} & =318665857834031151167461(24 \text { digits }) \\
& =399165290221 \cdot 798330580441
\end{aligned}
$$

In [12], we found all $C_{3}-\operatorname{spsp}(2,3,5,7,11)$'s $<10^{20}$. There are in total 110 such numbers. We tabulated 36 of them, which are C_{3}-spsp's to the first 6 prime bases; one number is an spsp to the first 11 prime bases up to 31 . As a result the upper bounds for ψ_{9}, ψ_{10} and ψ_{11} are lowered from 20 - and 22 -decimal-digit numbers to a 19-decimal-digit number:

$$
\begin{aligned}
\psi_{9} \leq \psi_{10} \leq \psi_{11} \leq Q_{11} & =3825123056546413051 \quad(19 \text { digits }) \\
& =149491 \cdot 747451 \cdot 34233211
\end{aligned}
$$

Define $\operatorname{SB}(n)=\#\{b \in \mathbb{Z}: 1 \leq b \leq n-1, n$ is an $\operatorname{spsp}(b)\}$ and

$$
P_{R}(n)=\frac{\mathrm{SB}(n)}{\varphi(n)}
$$

where φ is the Euler's function. It is well known that [5], [10] if $n \neq 9$ is odd and composite, then $\mathrm{SB}(n) \leq \varphi(n) / 4$, i.e., $P_{R}(n) \leq 1 / 4$. It is easy to prove that (see
[12, §5])
$P_{R}(n)=1 / 4 \Longleftrightarrow$
either $n=p q$ is a K2-number with $p \equiv 3 \bmod 4$ or n is a C_{3}-number;

$$
\begin{equation*}
\text { if } n \text { is a K2-spsp}(2), \text { then } P_{R}(n)=3 / 16 \tag{1.5}
\end{equation*}
$$

and
(1.6) if n is an $\operatorname{spsp}(2)$, then $P_{R}(n)=1 / 4 \Longleftrightarrow n$ is a C_{3}-number.

We see that the bounds N_{10}, N_{11}, N_{12} above are all K2-numbers and Q_{11} is a C_{3}-number. The reason for these facts is that these numbers n have $P_{R}(n)$ equal to or close to $1 / 4$. So we [12] make the following conjecture.
Conjecture 1. $\psi_{9}=\psi_{10}=\psi_{11}=3825123056546413051$ (19 digits).
The main purpose of this paper is to give reasons and numerical evidence to support the following conjecture.

Conjecture 2.

$$
\begin{aligned}
\psi_{12}=N_{12} & =318665857834031151167461(24 \text { digits }) \\
& =399165290221 \cdot 798330580441
\end{aligned}
$$

Before stating the main results of this paper, we need the following definition.
Definition 1.1. Let $q_{1}<q_{2}<q_{3}$ be odd primes and $N=q_{1} q_{2} q_{3}$. Let

$$
d=\operatorname{gcd}\left(q_{1}-1, q_{2}-1, q_{3}-1\right) \text { and } h_{i}=\frac{q_{i}-1}{d}, i=1,2,3
$$

Then we call d the kernel, the triple $\left(h_{1}, h_{2}, h_{3}\right)$ the signature, and $H=h_{1} h_{2} h_{3}$ the height of N, respectively. We also call H the height of the triple $\left(h_{1}, h_{2}, h_{3}\right)$.

We describe in Section 2 an algorithm for finding $C_{3}-\operatorname{spsp}(2)$'s to a given limit, with heights bounded. There are in total $21978 C_{3}-\operatorname{spsp}(2)$'s $<10^{24}$ with heights $<10^{9}$. In Section 3 we give an overview of the $21978 C_{3}-\operatorname{spsp}(2)$'s, among which 1434 numbers, including the 110 ones $<10^{20}$ found in [12], are C_{3}-spsp's to the first 5 prime bases; and we tabulate 54 of them, which are C_{3}-spsp's to the first 8 prime bases up to 19 ; three numbers are spsp's to the first 11 prime bases up to 31 . No C_{3}-spsp's $<10^{24}$ to the first 12 prime bases with heights $<10^{9}$ were found. In Section 4 we speed up the algorithm for finding larger C_{3}-spsp's, say up to 10^{50}, with a given signature, to more prime bases. We find $5851 C_{3}$-spsp's $<10^{50}$ to the first 13 prime bases up to 41 with signature $(1,37,41)$, which pass the Axiom release 1.1 test, and we tabulate 25 of them, which are C_{3}-spsp's to the first 17 prime bases up to 59 . In Section 5 we show that C_{3}-numbers N with heights $>N^{1 / 3}$ are rare (such numbers are called hard C_{3}-numbers) and reasonably predict that there exist no C_{3}-spsp's $<10^{24}$ to the first 12 prime bases with heights $\geq 10^{9}$. So, by the foregoing arguments, Conjecture 2 would be most likely correct.

The main idea of our method for finding those $21978 C_{3}-\operatorname{spsp}(2)$'s is that we loop on candidates of signatures and kernels with heights bounded, subject those candidates $N=q_{1} q_{2} q_{3}$ of $C_{3}-\operatorname{spsp}(2)$'s and their prime factors q_{1}, q_{2}, q_{3} to Miller's tests and obtain the desired numbers.

Arnault [2] used a sufficient condition for constructing Carmichael numbers which are spsp's to several prime bases and gave a 56 digit sample C_{3}-spsp, with
signature $(1,37,41)$, to the first 11 prime bases up to 31 , which pass the Axiom release 1.1 test. But his condition is too stringent for most C_{3}-spsp's to satisfy. The $5851 C_{3}$-spsp's could not be found by his method. In our previous method [12], we loop on the largest prime factor q_{3} and propose necessary conditions on $N=q_{1} q_{2} q_{3}$ to be a strong pseudoprime to the first 5 prime bases. Since the q_{i} are in general much larger than the component h_{i} of the signature, our previous method is much more expensive than our new one for finding all $C_{3}-\operatorname{spsp}(2)$'s to a given limit with heights bounded. See Remarks 3.1 and 4.1 for comparisons in details.

2. The method

To state our algorithm more concisely we first need some definitions.
Definition 2.1. Let $h_{1}<h_{2}<h_{3}$ be three positive integers. The triple $\left(h_{1}, h_{2}, h_{3}\right)$ is called Carmichael acceptable (or C-acceptable) if the h_{i} are pairwise relatively prime. A C-acceptable triple $\left(h_{1}, h_{2}, h_{3}\right)$ is called C_{3}-acceptable if the h_{i} are all odd. A C_{3}-acceptable triple $\left(h_{1}, h_{2}, h_{3}\right)$ is called C_{3}-spsp(2)-acceptable if $h_{1} \equiv h_{2} \equiv h_{3}$ $\bmod 4$.

Definition 2.2. Let $\left(h_{1}, h_{2}, h_{3}\right)$ be C-acceptable and

$$
h_{i, j}=h_{i}^{-1} \quad \bmod h_{j}
$$

for $1 \leq i \neq j \leq 3$. Then the system of linear congruences

$$
\begin{cases}x \equiv-h_{2,1}-h_{3,1} & \bmod h_{1} \tag{2.1}\\ x \equiv-h_{1,2}-h_{3,2} & \bmod h_{2} \\ x \equiv-h_{1,3}-h_{2,3} & \bmod h_{3}\end{cases}
$$

has solutions $x \equiv x_{0} \bmod H=h_{1} h_{2} h_{3}$ where x_{0} is the unique solution with $0 \leq x_{0}<H$, which is called the seed of the C-acceptable triple $\left(h_{1}, h_{2}, h_{3}\right)$.

Definition 2.3. Let $q_{1}<q_{2}<q_{3}$ be odd primes and $N=q_{1} q_{2} q_{3}$ with kernel d, signature $\left(h_{1}, h_{2}, h_{3}\right)$, and height $H=h_{1} h_{2} h_{3}$. If $\left(h_{1}, h_{2}, h_{3}\right)$ is C-acceptable, let x_{0} be the seed of the triple $\left(h_{1}, h_{2}, h_{3}\right)$. The kernel d is called C-acceptable if $\left(h_{1}, h_{2}, h_{3}\right)$ is C-acceptable and $d \equiv x_{0} \bmod H$. The kernel d is called $C_{3^{-}}$ acceptable, if $\left(h_{1}, h_{2}, h_{3}\right)$ is C_{3}-acceptable and

$$
d \equiv \overline{x_{0}} \quad \bmod 4 H
$$

where

$$
\overline{x_{0}}=x_{0}+j_{0} H \equiv 2 \quad \bmod 4, \quad j_{0}=\left(2-x_{0}\right) H \quad \bmod 4, \quad 0 \leq j_{0} \leq 3
$$

We call $\overline{x_{0}}$ the C_{3}-seed of the C_{3}-acceptable triple $\left(h_{1}, h_{2}, h_{3}\right)$. The kernel d is called $C_{3}-\operatorname{spsp}(2)$-acceptable if $\left(h_{1}, h_{2}, h_{3}\right)$ is $C_{3}-\operatorname{spsp}(2)$-acceptable and d is C_{3}-acceptable.

Our algorithm is based on the following theorem which needs a lemma.
Lemma 2.1 ([3, Theorem 3.17]). Let $n=q_{1} q_{2} q_{3}$ be a C_{3}-number. Then

$$
n \text { is an } \operatorname{spsp}(b) \Longleftrightarrow\left(\frac{b}{q_{1}}\right)=\left(\frac{b}{q_{2}}\right)=\left(\frac{b}{q_{3}}\right) \neq 0 .
$$

Theorem 2.1. Let $N=q_{1} q_{2} q_{3}$ be a product of three different odd primes. Then we have
(1) N is a Carmichael number if and only if its kernel d is C-acceptable;
(2) N is a C_{3}-number if and only if its kernel d is C_{3}-acceptable;
(3) N is a $C_{3}-s p s p(2)$ if and only if its kernel d is $C_{3}-s p s p(2)$-acceptable.

Proof. Let d be the kernel, $\left(h_{1}, h_{2}, h_{3}\right)$ the signature, and $H=h_{1} h_{2} h_{3}$ the height of N, and let x_{0} be the seed of the triple $\left(h_{1}, h_{2}, h_{3}\right)$ when $\left(h_{1}, h_{2}, h_{3}\right)$ is C-acceptable.
(1) N is a Carmichael number

$$
\begin{aligned}
& \Longleftrightarrow q_{i}-1 \mid N-1 \text { for } i=1,2,3 \\
& \Longleftrightarrow \begin{cases}q_{1} q_{2}-1=d^{2} h_{1} h_{2}+d\left(h_{1}+h_{2}\right) \equiv 0 \quad \bmod q_{3}-1=d h_{3}, \\
q_{1} q_{3}-1=d^{2} h_{1} h_{3}+d\left(h_{1}+h_{3}\right) \equiv 0 \quad \bmod q_{2}-1=d h_{2}, \\
q_{2} q_{3}-1=d^{2} h_{2} h_{3}+d\left(h_{2}+h_{3}\right) \equiv 0 \quad \bmod q_{1}-1=d h_{1}\end{cases} \\
& \Longleftrightarrow\left(h_{1}, h_{2}, h_{3}\right) \text { is } C \text {-acceptable and } d \equiv x_{0} \quad \bmod H \\
& \Longleftrightarrow d \text { is } C \text {-acceptable. }
\end{aligned}
$$

(2) Suppose N is a Carmichael number and so d is C-acceptable. Then at least two of the h_{i} are odd and $d=x_{0}+j H$ for some $j \geq 0$. We have

$$
\begin{aligned}
& q_{i}=d h_{i}+1=\left(x_{0}+j H\right) h_{i}+1 \equiv 3 \quad \bmod 4 \text { for } i=1,2,3 \\
\Longleftrightarrow & \left(x_{0}+j H\right) h_{i} \equiv 2 \quad \bmod 4 \text { for } i=1,2,3 \\
\Longleftrightarrow & x_{0}+j H \text { is even, each } h_{i} \text { is odd and } j \equiv\left(2-x_{0}\right) H \quad \bmod 4 \\
\Longleftrightarrow & d \text { is } C_{3} \text {-acceptable. }
\end{aligned}
$$

(3) Suppose N is a C_{3}-number and so d is C_{3}-acceptable. Then the h_{i} are all odd and $d \equiv 2 \bmod 4$. We have by Lemma 2.1

$$
\begin{aligned}
& N \text { is an } \operatorname{spsp}(2) \Longleftrightarrow\left(\frac{2}{q_{1}}\right)=\left(\frac{2}{q_{2}}\right)=\left(\frac{2}{q_{3}}\right) \\
\Longleftrightarrow & q_{1} \equiv q_{2} \equiv q_{3} \quad \bmod 8 \Longleftrightarrow d h_{1} \equiv d h_{2} \equiv d h_{3} \quad \bmod 8 \\
\Longleftrightarrow & h_{1} \equiv h_{2} \equiv h_{3} \quad \bmod 4 \Longleftrightarrow d \text { is } C_{3}-\operatorname{spsp}(2) \text {-acceptable. }
\end{aligned}
$$

Before describing our algorithm, we need one more lemma.
Lemma 2.2. Let $N=q_{1} q_{2} q_{3}$ be a Carmichael number with signature $\left(h_{1}, h_{2}, h_{3}\right)$. Then

$$
h_{3}<\frac{1}{2 k}\left(h_{1}+h_{2}+\sqrt{\left(h_{1}+h_{2}\right)^{2}+4 h_{1} h_{2} \sqrt{k N}}\right)
$$

where $k=2$. If $N=q_{1} q_{2} q_{3}$ is a $C_{3}-$ spsp(2), then we can take $k=4$.
Proof. Let d be the kernel of N. Since

$$
q_{3}-1=d h_{3} \mid q_{1} q_{2}-1=d\left(d h_{1} h_{2}+h_{1}+h_{2}\right)
$$

we have, $q_{1} q_{2}-1=k_{3}\left(q_{3}-1\right)$ for some $k_{3} \geq 2$. Thus

$$
\begin{equation*}
h_{3} \leq \frac{1}{k}\left(d h_{1} h_{2}+h_{1}+h_{2}\right) \tag{2.2}
\end{equation*}
$$

where $k=2$. If $N=q_{1} q_{2} q_{3}$ is a $C_{3}-\operatorname{spsp}(2)$, then $q_{1} \equiv q_{2} \equiv q_{3} \bmod 8$. Thus we can take $k=4$, since in this case $q_{1} q_{2}-1=k_{3}\left(q_{3}-1\right)$ for some $k_{3} \geq 4$.

From (2.2) we have

$$
d \geq \frac{k h_{3}-h_{1}-h_{2}}{h_{1} h_{2}}
$$

Since $q_{1} q_{2}-1=k_{3}\left(q_{3}-1\right) \geq k\left(q_{3}-1\right)$, we have

$$
\sqrt{N}>\sqrt{\left(q_{1} q_{2}-1\right)\left(q_{3}-1\right)} \geq \sqrt{k}\left(q_{3}-1\right)=\sqrt{k} d h_{3} \geq \sqrt{k} h_{3} \frac{k h_{3}-h_{1}-h_{2}}{h_{1} h_{2}}
$$

Then $k^{3 / 2} h_{3}^{2}-k^{1 / 2}\left(h_{1}+h_{2}\right) h_{3}-h_{1} h_{2} \sqrt{N}<0$. Thus

$$
h_{3}<\frac{1}{2 k}\left(h_{1}+h_{2}+\sqrt{\left(h_{1}+h_{2}\right)^{2}+4 h_{1} h_{2} \sqrt{k N}}\right) .
$$

Now we are ready to describe a procedure to compute all C_{3} - $\operatorname{spsp}(2)$'s $N=$ $q_{1} q_{2} q_{3}<L$, say, $L=10^{24}$, with heights $H=h_{1} h_{2} h_{3}<\mathcal{H}$, say, $\mathcal{H}=10^{9}>L^{1 / 3}$. PROCEDURE. Finding $C_{3}-\operatorname{spsp}(2)$'s looping on signatures with heights bounded;

BEGIN $h_{1} \leftarrow 1$;

Repeat $h_{2} \leftarrow h_{1}$;
repeat $h_{2} \leftarrow h_{2}+4$; If $\operatorname{gcd}\left(h_{2}, h_{1}\right)=1$ Then
begin $h_{3} \leftarrow h_{2} ; \overline{h_{3}} \leftarrow \frac{1}{8}\left(h_{1}+h_{2}+\sqrt{\left(h_{1}+h_{2}\right)^{2}+8 h_{1} h_{2} \sqrt{L}}\right) ;$
If $\overline{h_{3}}>\mathcal{H} /\left(h_{1} h_{2}\right)$ Then $\overline{h_{3}} \leftarrow \mathcal{H} /\left(h_{1} h_{2}\right)$;
Repeat $h_{3} \leftarrow h_{3}+4$; If $\left(\operatorname{gcd}\left(h_{3}, h_{1}\right)=1\right)$ And $\left(\operatorname{gcd}\left(h_{3}, h_{2}\right)=1\right)$ Then Begin \{Now the triple $\left(h_{1}, h_{2}, h_{3}\right)$ is $C_{3}-\operatorname{spsp}(2)$-acceptable \}

Using Euclidean Algorithm and the Chinese Remainder Theorem
to compute the seed x_{0} of the triple $\left(h_{1}, h_{2}, h_{3}\right)$;
$\overline{x_{0}} \leftarrow x_{0} ; j_{0} \leftarrow\left(6-x_{0} \bmod 4\right) H \bmod 4 ;$
If $j_{0}>0$ Then $\overline{x_{0}} \leftarrow x_{0}+j_{0} H$;
For $i:=1$ To 3 Do $q_{i} \leftarrow \overline{x_{0}} h_{i}+1$;
$q_{1} q_{2} \leftarrow q_{1} \cdot q_{2} ; \quad N \leftarrow q_{1} q_{2} \cdot q_{3} ;$
If $N<L$ Then
repeat If $2^{N} \equiv 2 \bmod q_{1} q_{2}$ Then
begin If (q_{1}, q_{2} and q_{3} are all sprp's to the first several prime bases) And (N is an $\operatorname{spsp}(2))$ Then $\operatorname{output}\left(N, q_{1}, q_{2}, q_{3}, h_{1}, h_{2}, h_{3}, x_{0}, \ldots\right)$
end;
For $i:=1$ To 3 Do $q_{i} \leftarrow q_{i}+4 h_{i} H$;
$q_{1} q_{2} \leftarrow q_{1} \cdot q_{2} ; N \leftarrow q_{1} q_{2} \cdot q_{3}$ until $N>L$
End
Until $h_{3}>\overline{h_{3}}$
end
until $h_{2}>\left(\mathcal{H} / h_{1}\right)^{1 / 2}$;
$h_{1} \leftarrow h_{1}+2$
Until $h_{1}>\mathcal{H}^{1 / 3}$
END.
Remark 2.1. One may easily modify the procedure a little for computing all Carmichael numbers $N=q_{1} q_{2} q_{3}<L$, with heights $H=h_{1} h_{2} h_{3}<\mathcal{H}$, instead of just only C_{3}-spsp's.

Remark 2.2. Alford, Granville and Pomerance [1] have proved that there are infinitely many Carmichael numbers, but no one has yet been able to show that there are infinitely many Carmichael numbers n with a fixed number of prime factors. Let $\left(h_{1}, h_{2}, h_{3}\right)$ be a C-acceptable triple with height H and seed x_{0}. If the widely believed Prime k-Tuples Conjecture (see [4, Conjecture 1.2.1]) is true, then there would exist infinitely many integers

$$
0 \leq j_{1}<j_{2}<j_{3}<\cdots
$$

such that

$$
q_{i, u}=q_{i, u}\left(h_{1}, h_{2}, h_{3}\right)=d_{u} h_{i}+1=x_{0} h_{i}+1+j_{u} h_{i} H
$$

are all primes for $1 \leq i \leq 3$ and $u=1,2,3, \ldots$, where $d_{u}=x_{0}+j_{u} H$. Let $N_{u}=N_{u}\left(h_{1}, h_{2}, h_{3}\right)=q_{1, u} q_{2, u} q_{3, u}, u=1,2,3, \ldots$ Then

$$
\begin{equation*}
N_{1}<N_{2}<N_{3}<\cdots \tag{2.3}
\end{equation*}
$$

would be infinitely many Carmichael numbers with three prime factors. We call (2.3) the chain of Carmichael numbers with signature $\left(h_{1}, h_{2}, h_{3}\right)$. Since there exist infinitely many C-acceptable triples, there would exist infinitely many pairwise disjoint chains of Carmichael numbers with three prime factors. The same arguments can be applied to C_{3}-numbers and C_{3} - $\operatorname{spsp}(2)$'s.

Example 2.1. The C-acceptable triple having the smallest height among all C acceptable ones is $(1,2,3)$ with height $H=6$ and seed $x_{0}=0$; the first (the smallest) element of the Carmichael number chain with signature $(1,2,3)$ is

$$
1729=7 \cdot 13 \cdot 19
$$

with kernel $d=6=0+6 \cdot 1$. The C_{3}-acceptable triple having the smallest height among all C_{3}-acceptable ones is $(1,3,5)$ with height $H=15$, seed $x_{0}=12$ and C_{3}-seed $\overline{x_{0}}=42=12+15 \cdot 2$; the first (the smallest) element of the C_{3}-number chain with signature $(1,3,5)$ is

$$
1152271=43 \cdot 127 \cdot 211
$$

with kernel $d=42=42+(15 \cdot 4) \cdot 0$. The $C_{3}-\operatorname{spsp}(2)$-acceptable triple having the smallest height among all $C_{3}-\operatorname{spsp}(2)$-acceptable ones is $(1,5,9)$ with height $H=45$, seed $x_{0}=15$, and C_{3}-seed $\overline{x_{0}}=150=15+45 \cdot 3$; the first (the smallest) element of the $C_{3}-\operatorname{spsp}(2)$ chain with signature $(1,5,9)$ is

$$
83828294551=1231 \cdot 6151 \cdot 11071
$$

with kernel $d=1230=150+(45 \cdot 4) \cdot 6$.

3. Numerical results and statistics

The Pascal program (with multi-precision package partially written in Assembly language) ran about 50 hours on a PC Pentium III/800 to get all $C_{3}-\operatorname{spsp}(2)$'s $<10^{24}$ with heights $<10^{9}$. There are in total 21978 numbers, among which 54 numbers are spsp's to the first 8 prime bases up to 19 (listed in Table 1), 21 numbers are spsp's to base 23,8 numbers are spsp's to bases 23 and 29,3 numbers are spsp's to the first 11 prime bases up to 31 . No C_{3}-spsp's $<10^{24}$ with heights $<10^{9}$, to the first 12 prime bases, are found.

TABLE 1. List of all C_{3}-spsp's $<10^{24}$, with heights $<10^{9}$, to the first 8 prime bases

$N=q_{1} q_{2} q_{3}$	q_{1}	h_{1}	h_{2}	h_{3}	x_{0}	spsp-base		
						23	29	31
230245660726188031	214831	3	11	19	132	0	0	1
3825123056546413051	149491	1	5	229	640	1	,	1
5474093792130026911	21319	1	105	5381	21318	0	0	0
7361235187296010651	412339	1	5	21	3	0	0	0
8276442534101054431	209431	1	17	53	398	0	0	1
195069335909566505311	393031	1	17	189	1044	0	0	0
254699850156491854531	712219	1	5	141	168	1	0	0
406109173515574567039	307399	1	41	341	13797	1	0	0
1127737640453498269651	1133731	3	7	995	1800	0	1	1
1397794271514875845651	1336891	1	9	65	165	0	0	0
2242921587179041518751	3993991	7	23	75	3045	1	0	0
3194607429820896878251	526051	1	105	209	21315	0	1	0
4412130885405879485851	1570339	11	91	1515	142758	0	0	0
5701046551584439525471	2518231	1	17	21	309	0	0	0
5958695097405523240951	2897311	1	5	49	185	1	0	0
9113145253407751789351	976951	15	247	8903	65130	0	1	0
9939727319790001375351	6778351	15	43	167	21030	0	1	1
10370556164168370465751	1395871	1	41	93	312	1	1	0
11766571723662840188371	12264211	21	29	97	52353	0	1	0
13138898535179034186031	1360591	11	347	1819	123690	1	0	1
17661599911521864964667	334643	1	13	36253	334642	0	0	1
22377871579629220240951	2281231	1	29	65	380	0	1	0
23803627414421799913051	4756771	5	57	97	11424	0	0	0
24641960187979924539751	2320399	51	451	11375	45498	1	0	0
31114093717651985564707	2248507	1	17	161	1429	1	0	1
34957194928469840636443	3436987	1	21	41	735	0	1	1
36311562703426066768531	574939	1	265	721	1743	0	0	0
40415893466198304051271	2327599	1	5	641	768	1	1	0
45555991965773372374831	7570399	1	5	21	3	0	0	0
46672089968136299211091	4983931	1	13	29	367	0	1	0
48857493627509540231611	2505859	1	5	621	123	1	0	0
52534131015423500638651	7002451	1	9	17	99	0	0	0
126174611480842540712251	4585051	1	17	77	932	1	1	0
138199734583474439306971	3157771	1	21	209	2079	0	0	0
170738089381697431624031	3926231	1	13	217	2219	1	0	1
209312276410824043446991	11881879	19	99	455	625362	0	0	1
216637667956488044143151	5003951	1	13	133	224	0	1	1
233534116295099077548091	784939	1	221	2185	302053	1	0	0
255517570304002813885651	9047611	1	5	69	330	1	0	1
286102310653298641736431	17614759	7	27	95	2694	1	0	1
334277210819500412182291	2771011	9	13	97889	307890	0	0	0
351738842489919281301451	3400531	1	5	1789	1430	1	1	0
368676478516093734323107	10507267	7	87	179	83895	0	1	1
427343918229393756373567	10617847	1	17	21	309	1	1	1
470919365444700352493587	36877387	29	53	149	126569	0	1	0
544513293798193773190411	5744131	1	17	169	1003	0	0	0
604862030394148915227451	4783819	1	25	221	4693	0	1	1
694377826663618499764231	11493871	31	99	4439	370770	1	1	0
739642924951631011438471	2960791	1	69	413	25599	1	0	0
769506747162635763214363	4035043	1	53	221	5770	0	0	0
793644330003453987232231	754111	1	393	4709	754110	0	0	0
858104265182620413802951	15186511	1	5	49	185	1	1	1
867433972583793467874451	35988811	13	17	185	29075	0	1	1
896098460552472805377751	5389231	1	25	229	2005	0	0	1

For the rest of this paper let b_{i} be the i th prime. Define sets

$$
\begin{cases}C_{3}(t, L) & =\left\{N: N \text { is a } C_{3}-\operatorname{spsp}\left(b_{1}, b_{2}, \ldots, b_{t}\right)<L\right\} \tag{3.1}\\ C_{3}(t, L, \mathcal{H}) & =\left\{N: N \in C_{3}(t, L) \text { with height }<\mathcal{H}\right\}\end{cases}
$$

and functions

$$
\begin{equation*}
f(t, L)=\# C_{3}(t, L) \quad \text { and } \quad f(t, L, \mathcal{H})=\# C_{3}(t, L, \mathcal{H}) \tag{3.2}
\end{equation*}
$$

for $t \geq 1$. The sets and functions can be extended for $t=0$, in which case $C_{3}(0, L)$ is the set of all C_{3}-numbers $<L$, etc. Then we have

$$
C_{3}(0, L) \supseteq C_{3}(1, L) \supseteq C_{3}(2, L) \supseteq \cdots
$$

In Table 2 we give $f\left(t, L, 10^{9}\right)$ for $t=1,2, \ldots, 11$ and $L=10^{10}, 10^{12}, \ldots, 10^{24}$. In Table 3, we give $f\left(t, 10^{24}, \mathcal{H}\right)$ for $1 \leq t \leq 11$ and $\mathcal{H}=10^{2}, 10^{3}, \ldots, 10^{9}$.

Table 2. The function $f\left(t, L, 10^{9}\right)$

L	10^{10}	10^{12}	10^{14}	10^{16}	10^{18}	10^{20}	10^{22}	10^{24}
$t=1$	1	8	35	157	522	1790	6179	21978
$t=2$	1	6	28	100	364	1277	4381	15575
$t=3$	1	4	18	60	203	710	2446	8581
$t=4$	1	1	7	19	89	337	1205	4205
$t=5$	0	0	3	6	28	110	393	1434
$t=6$	0	0	1	2	8	36	128	481
$t=7$	0	0	0	1	2	12	48	165
$t=8$	0	0	0	0	1	5	17	54
$t=9$	0	0	0	0	0	1	5	21
$t=10$	0	0	0	0	0	1	1	8
$t=11$	0	0	0	0	0	1	1	3

Table 3. The function $f\left(t, 10^{24}, \mathcal{H}\right)$

\mathcal{H}	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}	10^{9}
$t=1$	1883	7214	12290	16280	19040	20675	21562	21978
$t=2$	1883	6009	9481	12106	13836	14851	15344	15575
$t=3$	1341	3523	5336	6704	7646	8186	8464	8581
$t=4$	321	1888	2728	3355	3800	4036	4167	4205
$t=5$	81	568	886	1124	1285	1364	1419	1434
$t=6$	29	170	283	366	428	456	476	481
$t=7$	6	53	91	119	144	155	163	165
$t=8$	0	14	29	39	47	50	53	54
$t=9$	0	5	13	17	18	19	20	21
$t=10$	0	2	7	7	7	7	8	8
$t=11$	0	2	3	3	3	3	3	3

Remark 3.1. The smallest five numbers $<10^{20}$ in Table 1 appeared earlier in [12] Table 5] where we used 1600 hours of CPU time on a PC Pentium III/800 to find all $110 C_{3}-\operatorname{spsp}(2,3,5,7,11)$'s $<10^{20}$. Since all the 110 numbers have heights $<10^{9}$, they were caught once again (see Table 2: $f\left(5,10^{20}, 10^{9}\right)=110$) and much more information than that was obtained by our new method, using only 50 hours of CPU time on the same machine. In our previous method, we loop on the largest prime factor q_{3} and propose necessary conditions on $N=q_{1} q_{2} q_{3}$ to be a strong pseudoprime to the first 5 prime bases. In the new method we loop on $C_{3}-\operatorname{spsp}(2)$ acceptable signatures $\left(h_{1}, h_{2}, h_{3}\right)$ and kernels d. For a given C_{3}-spsp(2)-acceptable triple $\left(h_{1}, h_{2}, h_{3}\right)$, the procedure loops at most $\left\lfloor\left(L /\left(4^{3} H^{4}\right)\right)^{1 / 3}\right\rfloor$ times in the "repeat \cdots until $N>L$ " loop. So, when L is not too large, say, $L=10^{24}$, it does not take much time on a modern PC (say, Pentium III/800) for a given triple $\left(h_{1}, h_{2}, h_{3}\right)$ until $N>L$. Since the h_{i} are in general much smaller than the prime factors q_{i} of N, our new method is much faster than the previous one for finding all those $N<L$ with heights H to a given limit, say, $H<L^{1 / 3}$ or $H<L^{3 / 8}$.
Remark 3.2. From Table 3 we see the following facts:
(1) there is only one $C_{3}-\operatorname{spsp}\left(b_{1}, b_{2}, \ldots, b_{9}\right)<10^{24}$ with $10^{8}<H<10^{9}$;
(2) there is no $C_{3}-\operatorname{spsp}\left(b_{1}, b_{2}, \ldots, b_{10}\right)<10^{24}$ with $10^{8}<H<10^{9}$;
(3) there is no $C_{3}-\operatorname{spsp}\left(b_{1}, b_{2}, \ldots, b_{11}\right)<10^{24}$ with $10^{4}<H<10^{9}$.

Reasons for these facts will be discussed in Remark 5.2 below.
Remark 3.3. A difficult problem is the decision of a favorable upper bound \mathcal{H} of heights of $C_{3}-\operatorname{spsp}(2)$-acceptable triples $\left(h_{1}, h_{2}, h_{3}\right)$ so that we can obtain all C_{3} spsp's $<L$, say, $L=10^{24}$, to the first t, say, $t \geq 11$, prime bases. We will explain in Section 5 why we choose $\mathcal{H}=10^{9}$, i.e., why we did not run the procedure for $H=h_{1} h_{2} h_{3}>10^{9}$.

4. LARGER C_{3}-SPSP's TO MORE BASES

In this section we will speed up the method so that we can find all C_{3}-spsp's less than a larger limit L, say $L=10^{50}$, with the same signature, say $(1,37,41)$, to $t \geq 9$ prime bases.
Definition 4.1. Let $N, q_{1}, q_{2}, q_{3}, h_{1}, h_{2}, h_{3}, x_{0}, \overline{x_{0}}, d$ be as in Definition 2.3. Let b be an odd prime, and suppose $\left(h_{1}, h_{2}, h_{3}\right)$ is C_{3}-acceptable. Define the set

$$
S_{b}^{\left(h_{1}, h_{2}, h_{3}\right)}=\left\{u: u=2+4 k, 0 \leq k<b,\left(\frac{b}{u h_{1}+1}\right)=\left(\frac{b}{u h_{2}+1}\right)=\left(\frac{b}{u h_{3}+1}\right)\right\} .
$$

A C_{3}-acceptable triple $\left(h_{1}, h_{2}, h_{3}\right)$ is called $C_{3}-\operatorname{spsp}(b)$-acceptable, if the set

$$
\begin{equation*}
S_{b}^{\left(h_{1}, h_{2}, h_{3}\right)} \neq \emptyset \tag{4.1}
\end{equation*}
$$

and if the system of linear congruences

$$
\left\{\begin{array}{l}
x \equiv x_{0} \quad \bmod H \tag{4.2}\\
x \equiv u \quad \bmod 4 b \text { for some } u \in S_{b}^{\left(h_{1}, h_{2}, h_{3}\right)}
\end{array}\right.
$$

has solutions. The kernel d is called $C_{3}-\operatorname{spsp}(b)$-acceptable if $\left(h_{1}, h_{2}, h_{3}\right)$ is $C_{3^{-}}$ $\operatorname{spsp}(b)$-acceptable and $d=x_{0}+j H \equiv u \bmod 4 b$ for some $u \in S_{b}^{\left(h_{1}, h_{2}, h_{3}\right)}$ with $j \equiv\left(2-x_{0}\right) H \bmod 4$, or in other words, if

$$
\left\{\begin{array}{l}
d \equiv \overline{x_{0}} \quad \bmod 4 H, \tag{4.3}\\
d \equiv u \quad \bmod 4 b \text { for some } u \in S_{b}^{\left(h_{1}, h_{2}, h_{3}\right)} .
\end{array}\right.
$$

Definition 4.2. Let $N, q_{1}, q_{2}, q_{3}, h_{1}, h_{2}, h_{3}, x_{0}, \overline{x_{0}}, d$ be as in Definition 2.3. Let b_{i} be the i th prime, $t \geq 2$ and $M_{t}=4 b_{2} \cdots b_{t}$; and suppose (h_{1}, h_{2}, h_{3}) is $C_{3}-\operatorname{spsp}(2)$ acceptable. Define the set
$R_{t}^{\left(h_{1}, h_{2}, h_{3}\right)}=\left\{r: 0 \leq r<M_{t}, r \equiv u_{i} \bmod 4 b_{i}\right.$ for some $\left.u_{i} \in S_{b_{i}}^{\left(h_{1}, h_{2}, h_{3}\right)}, 2 \leq i \leq t\right\}$.
The triple $\left(h_{1}, h_{2}, h_{3}\right)$ is called $C_{3}-\operatorname{spsp}\left(b_{1}, b_{2}, \ldots, b_{t}\right)$-acceptable if the system of linear congruences

$$
\begin{cases}x \equiv \overline{x_{0}} \quad \bmod 4 H \tag{4.4}\\ x \equiv u_{i} \quad \bmod 4 b_{i} \text { for some } u_{i} \in S_{b_{i}}^{\left(h_{1}, h_{2}, h_{3}\right)}, 2 \leq i \leq t\end{cases}
$$

has solutions, or in other words, the system

$$
\left\{\begin{array}{l}
x \equiv \overline{x_{0}} \quad \bmod 4 H \tag{4.5}\\
x \equiv r \quad \bmod M_{t} \text { for some } r \in R_{t}^{\left(h_{1}, h_{2}, h_{3}\right)}
\end{array}\right.
$$

has solutions. The kernel d is called $C_{3}-\operatorname{spsp}\left(b_{1}, b_{2}, \ldots, b_{t}\right)$-acceptable if $\left(h_{1}, h_{2}, h_{3}\right)$ is $C_{3}-\operatorname{spsp}\left(b_{1}, b_{2}, \ldots, b_{t}\right)$-acceptable and (4.5) holds with x replaced by d.

Example 4.1. The triple $(1,5,13)$ is $C_{3}-\operatorname{spsp}(b)$-acceptable for $b=2$ and 3 , but it is not $C_{3}-\operatorname{spsp}(5)$-acceptable. Clearly, if $\operatorname{gcd}(b, H)=1$ with $H=h_{1} h_{2} h_{3}$, then a C_{3}-acceptable triple $\left(h_{1}, h_{2}, h_{3}\right)$ must be $C_{3}-\operatorname{spsp}(b)$-acceptable. But the converse is not true. For example, the triple $(1,5,9)$ is C_{3} - $\operatorname{spsp}(b)$-acceptable for all primes b, including $b=3$ and 5 .

Theorem 4.1. Let $N=q_{1} q_{2} q_{3}$ be a product of three different odd primes and let b be an odd prime. Then we have

$$
N \text { is a } C_{3}-s p s p(b) \Longleftrightarrow \text { its kernel d is } C_{3}-s p s p(b) \text {-acceptable. }
$$

Proof. Suppose N is a C_{3}-number and so d is C_{3}-acceptable. Then we have by Theorem 2.1 and Lemma 2.1

$$
\begin{aligned}
& N \text { is an } \operatorname{spsp}(b) \\
\Longleftrightarrow & \left(\frac{b}{d h_{1}+1}\right)=\left(\frac{b}{d h_{2}+1}\right)=\left(\frac{b}{d h_{3}+1}\right) \\
\Longleftrightarrow & d \equiv u \bmod 4 b \text { for some } u \in S_{b}^{\left(h_{1}, h_{2}, h_{3}\right)} \\
\Longleftrightarrow & d \text { is } C_{3}-\operatorname{spsp}(b) \text {-acceptable. }
\end{aligned}
$$

By the Chinese Remainder Theorem, we have the following corollary.
Corollary 4.1. Let $N=q_{1} q_{2} q_{3}$ be a product of three different odd primes and let b_{i} be the ith prime and $t \geq 2$; and suppose $\left(h_{1}, h_{2}, h_{3}\right)$ is $C_{3}-s p s p(2)$-acceptable. Then N is a $C_{3}-\operatorname{spsp}\left(b_{1}, b_{2}, \ldots, b_{t}\right)$ if and only if its kernel d is $C_{3}-\operatorname{spsp}\left(b_{1}, b_{2}, \ldots, b_{t}\right)$ acceptable.

Example 4.2. The triple $(1,37,41)$ is $C_{3}-\operatorname{spsp}(b)$-acceptable for all primes b, with seed $x_{0}=563$ and height $H=1 \cdot 37 \cdot 41=1517$. Let $t=9$ and $M_{t}=4 b_{2} \cdots b_{t}=$ 446185740. We have $\overline{x_{0}}=x_{0}+3 H=5114$ and $\# R_{9}^{(1,37,41)}=2880$. In Table 4 we give $S_{b_{i}}=S_{b_{i}}^{(1,37,41)}$ and $\# R_{i}=\# R_{i}^{(1,37,41)}$ for $2 \leq i \leq 9$.

Table 4.

i	b_{i}	M_{i}	$\# S_{b_{i}}$	$S_{b_{i}}$	$\# R_{i}$
2	3	12	1	$\{6\}$	1
3	5	60	2	$\{6,10\}$	2
4	7	420	2	$\{2,14\}$	4
5	11	4620	3	$\{18,22,38\}$	12
6	13	60060	2	$\{10,26\}$	24
7	17	1021020	4	$\{10,18,30,34\}$	96
8	19	19399380	5	$\{26,38,50,54,74\}$	480
9	23	446185740	6	$\{38,42,46,82,86,90\}$	2880

A procedure based on Corollary 4.1 ran about 5 hours on a PC Pentium III/800 to get all $C_{3}-\operatorname{spsp}\left(b_{1}, b_{2}, \ldots, b_{9}\right)$'s $<10^{50}$ with signature $(1,37,41)$. There are in total 86687 numbers, among which 5851 numbers are spsp's to the first 13 prime bases up to 41,25 numbers are spsp's to the first 17 prime bases up to 59 (listed in Table 5), 7 numbers are spsp's to base 61,3 numbers are spsp's to the first 19 prime bases up to 67 .

TABLE 5. List of all C_{3}-spsp's $<10^{50}$ with signature $(1,37,41)$ to the first 17 prime bases up to 59

$N=q_{1} q_{2} q_{3}$	q_{1}	spsp-base		
		61	67	71
664285341720894140846825851168090899459337851067	759375118130107	0	0	0
1801188787585914139564810592131100649232502090131	1058907159503971	0	0	0
2254188563707371059999034172489288735827395166967	1141129380182767	1	0	0
2295419709119519138624774107607428487397986227711	1148044815933991	1	0	0
4830615526563629640707213324003423570276032239067	1471201968695707	0	0	1
5606141065699774478327048822491526469151721036191	1546059297919111	0	0	0
6079037109932002285849522788586785893918822839651	1588362912440851	0	0	0
6177545012072454394180280121837534201011666749867	1596896537577547	0	0	0
6792469965351873320846123947106517207243763369651	1648215707510851	1	0	0
9231658871799183872380918591735012360063879509367	1825708296411247	0	1	0
9688312712744590973050578123260748216127001625571	1855328670525331	1	1	0
17077389050992177663907511962926227202811796430411	2241189765445291	1	1	0
20419468508849496652785114968040727226399506005367	2378772729204847	0	0	0
24989407894883186945549938905182259644632907446867	2544427779105187	0	0	1
26706083736620248445278451981338590391039943640367	2601406424985847	0	0	0
29976443610578528721850170580010674973747257453171	2703531964889731	0	0	1
37022269021333497793028821196322216146297759893567	2900630998141927	0	1	0
39397023402592750173016278148536552680399692486831	2961369573201271	1	0	1
49765723320580275663033246960798005905092493704271	3201215516700631	0	0	0
54137204419251617397822551921251265769160917390091	3292330421343211	1	1	0
60182972252640561414204431408975362441401651006367	3410588713549447	0	0	1
63627021553793884438571687827273322639293179452371	3474444171754531	0	1	0
68172488800119872312050407892588071592239057698791	3555285837408511	0	0	1
69102192250587765543843633166409535362271092418091	3571374676875211	0	0	0
95305641129861756749783024175271806664680889298311	3975371093655391	0	0	0

Remark 4.1. Arnault [2, Equation (4)] used a sufficient condition derived from the condition

$$
\begin{equation*}
\left(\frac{b}{q_{1}}\right)=\left(\frac{b}{q_{2}}\right)=\left(\frac{b}{q_{3}}\right)=-1 \tag{4.6}
\end{equation*}
$$

for finding C_{3}-spsp's $n=q_{1} q_{2} q_{3}$ to all the first several prime bases b with C_{3} -$\operatorname{spsp}(2)$-acceptable signature $\left(h_{1}, h_{2}, h_{3}\right)$ satisfying additional conditions $h_{1}=1$ and $\operatorname{gcd}\left(b, h_{2} h_{3}\right)=1$, whereas our method has no restrictions either on h_{1} or on $\operatorname{gcd}\left(b, h_{2} h_{3}\right)$ (see Definition 4.1, Example 4.2, Theorem 4.1). Arnault found a 56digit C_{3}-spsp to the first 11 prime bases (actually his 56 -digit sample is an spsp to the first 13 prime bases up to 41), which passes the Axiom release 1.1 test. All our $5851 C_{3}-\operatorname{spsp}\left(b_{1}, b_{2}, \ldots, b_{13}\right)$'s $<10^{50}$ with signature $(1,37,41)$ also pass the Axiom release 1.1 test, but they are much smaller than his 56 -digit sample. Arnault's Condition (4.6) is too stringent for most C_{3}-spsp's to satisfy. Our 5851 numbers could not be found by Arnault's condition.

5. Discussion

Let $N, q_{1}, q_{2}, q_{3}, h_{1}, h_{2}, h_{3}, H, x_{0}, \overline{x_{0}}, d$ be as in Definition 2.3. Define

$$
\begin{equation*}
\beta=\beta(N)=\log _{H} N=\frac{\log N}{\log H} \tag{5.1}
\end{equation*}
$$

which is called the height index of N. We call N a hard Carmichael number (resp. hard C_{3}-number or hard $\left.C_{3}-\operatorname{spsp}\left(b_{1}, \ldots, b_{t}\right)\right)$ if $N=q_{1} q_{2} q_{3}$ is a Carmichael number (resp. C_{3}-number or $C_{3}-\operatorname{spsp}\left(b_{1}, \ldots, b_{t}\right)$) with height index $\beta<3$.
Proposition 5.1. If N is a hard Carmichael number, then we have

$$
\begin{equation*}
x_{0}=d<H^{2 / 3} \tag{5.2}
\end{equation*}
$$

Proof. Put $\alpha=\log _{H} d=\frac{\log d}{\log H}$. Then

$$
x_{0} \leq d=H^{\alpha}
$$

Since $d^{3} H<N$, we have

$$
\alpha<\frac{1}{3}(\beta-1)
$$

where $\beta=\frac{\log N}{\log H}$ is the height index of N. If N is a hard Carmichael number, then $\beta<3$. Thus $\alpha<2 / 3$, and therefore equation (5.2) holds since $d \equiv x_{0} \bmod H$.

Corollary 5.1. If N is a hard C_{3}-number, then we have

$$
\begin{equation*}
x_{0}=\overline{x_{0}}=d<H^{2 / 3} \tag{5.3}
\end{equation*}
$$

moreover if N is a hard $C_{3}-\operatorname{spsp}\left(b_{1}, \ldots, b_{t}\right)$ with $t \geq 2$, then we have

$$
\begin{equation*}
x_{0} \equiv r \quad \bmod M_{t} \text { for some } r \in R_{t}^{\left(h_{1}, h_{2}, h_{3}\right)} \tag{5.4}
\end{equation*}
$$

where M_{t} and $R_{t}^{\left(h_{1}, h_{2}, h_{3}\right)}$ are as defined in Definition 4.2.
Example 5.1. We list in Table 6 hard $C_{3}-\operatorname{spsp}\left(b_{1}, \ldots, b_{t}\right)$'s for $0 \leq t \leq 9$ with the smallest height indices among the three sets of C_{3}-numbers: the $2837 C_{3}$-numbers $<10^{18}$; the $110 C_{3}-\operatorname{spsp}(2,3,5,7,11)$'s $<10^{20}$ and the $21978 C_{3}-\operatorname{spsp}(2)$'s $<10^{24}$.

Table 6. Sample hard $C_{3}-\operatorname{spsp}\left(b_{1}, \ldots, b_{t}\right)$

t	N	h_{1}	h_{2}	h_{3}	H	$x_{0}=d$	β
0	67902031	7	45	971	305865	6	$1.427 \cdots$
1	145936981694079451	115	903	1324151	137506460595	102	$1.541 \cdots$
2	145936981694079451	115	903	1324151	137506460595	102	$1.541 \cdots$
3	64770695384645251	67	147	92675	912756075	414	$1.876 \cdots$
4	90022554326251	29	125	2681	9718625	210	$1.997 \cdots$
5	3948835658621975551	117	397	4985	231548265	2574	$2.223 \cdots$
6	3948835658621975551	117	397	4985	231548265	2574	$2.223 \cdots$
7	24641960187979924539751	51	451	11375	261636375	45498	$2.660 \cdots$
8	24641960187979924539751	51	451	11375	261636375	45498	$2.660 \cdots$
9	24641960187979924539751	51	451	11375	261636375	45498	$2.660 \cdots$

Define

$$
\begin{equation*}
C_{3}^{\prime}(t, L, \bar{\beta})=\left\{N: N \text { is a } C_{3}-\operatorname{spsp}\left(b_{1}, \ldots, b_{t}\right)<L \text { with height index }<\bar{\beta}\right\} \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{3}^{\prime}(t, L, \bar{\beta}, \mathcal{H})=\left\{N: N \in C_{3}^{\prime}(t, L, \bar{\beta}) \text { with height }<\mathcal{H}\right\} \tag{5.6}
\end{equation*}
$$

for $t \geq 1$ and $C_{3}^{\prime}(0, L, \bar{\beta})$ is the set of all C_{3}-numbers $<L$ with height index $<\bar{\beta}$. Thus $C_{3}^{\prime}(0, L, 3)$ is the set of all hard C_{3}-numbers $<L$ and $C_{3}(t, L, 3)$ is the set of hard $C_{3}-\operatorname{spsp}\left(b_{1}, \ldots, b_{t}\right)$'s $<L$ for $t \geq 1$. Define

$$
\begin{equation*}
g(t, L, \bar{\beta})=\# C_{3}^{\prime}(t, L, \bar{\beta}) \text { and } g(t, L, \bar{\beta}, \mathcal{H})=\# C_{3}^{\prime}(t, L, \bar{\beta}, \mathcal{H}) \tag{5.7}
\end{equation*}
$$

Studying the $2837 C_{3}$-numbers $<10^{18}$ given by Pinch [8] and the $110 C_{3}-\operatorname{spsp}(2$, $3,5,7,11$)'s $<10^{20}$ obtained in [12], we obtain values of $g(t, L, 3)$ and $f(t, L)$ (see equation (3.2) for the definition) tabulated in Table 7, where the numerator is $g(t, L, 3)$ and the denominator is $f(t, L)$. If both $g(t, L, 3)$ and $f(t, L)$ are 0 , we write only 0 instead of $\frac{0}{0}$. The values of $g\left(t, 10^{20}, 3\right)$ and $f\left(t, 10^{20}\right)$ for $0 \leq t \leq 4$ are unknown.

Remark 5.1. If $N<L$ with height $H>L^{1 / \bar{\beta}}$, then $\beta(N)=\log _{H} N<\log _{H} L<\bar{\beta}$. So, we have

$$
\begin{equation*}
f(t, L)-f\left(t, L, L^{1 / \bar{\beta}}\right) \leq g(t, L, \bar{\beta}) \tag{5.8}
\end{equation*}
$$

The left side of inequality (5.8) is the number of $C_{3}-\operatorname{spsp}\left(b_{1}, \ldots, c_{t}\right)$'s $<L$ with height $H>L^{1 / \bar{\beta}}$. For example, $f\left(0,10^{18}\right)-f\left(0,10^{18}, 10^{6}\right)=2837-2620=217<$ $384=g\left(0,10^{18}, 3\right)$.

Remark 5.2. Since x_{0} is a positive residue modulo H (see Definition 2.2), condition (5.2) (resp. condition (5.3)) is too stringent for most Carmichael numbers with three prime factors (resp. C_{3}-numbers) to satisfy. So, hard Carmichael numbers are rare, and hard C_{3}-numbers are even more rare. Because of the even more stringent condition (5.4), hard $C_{3}-\operatorname{spsp}\left(b_{1}, \ldots, b_{t}\right)$'s are even more rare as t increases as can be seen in Table 7. This explains Remark 3.2.

Studying the $21978 C_{3}-\operatorname{spsp}(2)$'s $<10^{24}$ with heights $<10^{9}$, we obtain values of $g\left(t, L, 3,10^{9}\right)$ (the number of hard $C_{3}-\operatorname{spsp}\left(b_{1}, \ldots, b_{t}\right)$'s $<L$ with heights $<10^{9}$ for $t \geq 1$) tabulated in Table 8, whereas $g\left(0, L, 3,10^{9}\right)$ (the number of hard C_{3}-numbers $<L$ for $L \leq 10^{18}$ with heights $<10^{9}$) are obtained from Pinch [8].

TABLE 7. The functions $g(t, L, 3)$ (numerator) and $f(t, L)$ (denominator)

L	10^{4}	10^{6}	10^{8}	10^{10}	10^{12}	10^{14}	10^{16}	10^{18}	10^{20}
$t=0$	$\frac{1}{1}$	$\frac{1}{1}$	$\frac{4}{8}$	$\frac{13}{29}$	$\frac{27}{79}$	$\frac{70}{271}$	$\frac{163}{868}$	$\frac{384}{2837}$	
$t=1$	0	0	0	$\frac{0}{1}$	$\frac{3}{8}$	$\frac{10}{35}$	$\frac{36}{157}$	$\frac{89}{527}$	
$t=2$	0	0	0	$\frac{0}{1}$	$\frac{1}{6}$	$\frac{6}{28}$	$\frac{20}{100}$	$\frac{49}{366}$	
$t=3$	0	0	0	$\frac{0}{1}$	$\frac{0}{4}$	$\frac{3}{18}$	$\frac{10}{60}$	$\frac{25}{203}$	
$t=4$	0	0	0	$\frac{0}{1}$	$\frac{0}{1}$	$\frac{1}{7}$	$\frac{3}{19}$	$\frac{6}{89}$	
$t=5$	0	0	0	0	0	$\frac{0}{3}$	$\frac{0}{6}$	$\frac{2}{28}$	$\frac{7}{110}$
$t=6$	0	0	0	0	0	$\frac{0}{1}$	$\frac{0}{2}$	$\frac{0}{8}$	$\frac{2}{36}$
$t=7$	0	0	0	0	0	0	$\frac{0}{1}$	$\frac{0}{2}$	$\frac{0}{12}$

TABLE 8. The function $g\left(t, L, 3,10^{9}\right)$

$\log _{10} L$	12	14	16	18	20	22	24
$t=0$	27	69	161	369			
$t=1$	3	10	36	84	198	424	874
$t=2$	1	6	20	47	105	237	480
$t=3$	0	3	10	25	52	120	248
$t=4$	0	1	3	6	20	44	95
$t=5$	0	0	0	2	7	21	42
$t=6$	0	0	0	0	2	6	12
$t=7$	0	0	0	0	0	2	5
$t=8$	0	0	0	0	0	1	2
$t=9$	0	0	0	0	0	0	1
$t=10$	0	0	0	0	0	0	0

From Tables 7 and 8 we find that

$$
\begin{aligned}
g\left(0,10^{18}, 3\right) & =g\left(0,10^{18}, 3,10^{9}\right)+15 \\
g\left(1,10^{18}, 3\right) & =g\left(1,10^{18}, 3,10^{9}\right)+5 \\
g\left(2,10^{18}, 3\right) & =g\left(2,10^{18}, 3,10^{9}\right)+2 \\
g\left(t, 10^{18}, 3\right) & =g\left(t, 10^{18}, 3,10^{9}\right) \text { for } t \geq 3, \\
g\left(t, 10^{20}, 3\right) & =g\left(t, 10^{20}, 3,10^{9}\right) \text { for } t \geq 5 .
\end{aligned}
$$

So we may predict that

$$
g\left(t, 10^{24}, 3\right)=g\left(t, 10^{24}, 3,10^{9}\right) \text { for } t \geq t_{0}
$$

for some $t_{0} \geq 9$. To be safe, we may take $t_{0}=12$. If so, i.e., if $g\left(t, 10^{24}, 3\right)=$ $g\left(t, 10^{24}, 3,10^{9}\right)=0$ for $t \geq 12$, there would exist no hard C_{3}-spsp's to the first 12 prime bases. Then from (5.8) we would have

$$
f\left(t, 10^{24}\right)-f\left(t, 10^{24}, 10^{8}\right) \leq g\left(t, 10^{24}, 3\right)=0
$$

for $t \geq 12$. This means that there would exist no C_{3}-spsp's $<10^{24}$ to the first 12 prime bases, with heights $>10^{8}$. These arguments explain Remark 3.3.

At last, we point out an argument which is perhaps unfavorable for our method. Given any small $\varepsilon>0$, does there always exist a C-acceptable triple $\left(h_{1}, h_{2}, h_{3}\right)=$ $\left(h_{1}, h_{2}, h_{3}\right)(\varepsilon)$ with height $H=h_{1} h_{2} h_{3}$ and positive seed $x_{0}<H^{\varepsilon}$? If so, and if one wants to compute ALL! Carmichael numbers $<L$ with three prime factors, one should check as many as $O\left(L^{1+o(1)}\right) C$-acceptable triples. The algorithm would take time $O\left(L^{1+o(1)}\right)$. The same argument can be used for finding ALL! C_{3}-numbers or ALL! $C_{3}-\operatorname{spsp}(2)$'s with a smaller constant for the big O - and/or a smaller order for the small $o(1)$. To this end, a favorable estimate of \mathcal{H} in Remark 3.3 as a function of L and t would be an interesting but difficult problem.

Acknowledgment

I thank the referee for kind and helpful comments that improved the presentation of the paper.

References

1. W. R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael numbers, Annals of Math. 140 (1994), 703-722. MR95k:11114
2. F. Arnault, Constructing Carmichael numbers which are strong pseudoprimes to several bases, J. Symbolic Computation 20 (1995), 151-161. MR96k:11153
3. D. Bleichenbacher, Efficiency and Security of Cryptosystems Based on Number Theory, ETH Ph. D. dissertation 11404, Swiss Federal Institute of Technology, Zurich (1996).
4. R. Crandall and C. Pomerance, Prime numbers, a computational perspective, Springer-Verlag, New York, 2001. MR2002a:11007
5. I. Damgård, P. Landrock, and C. Pomerance, Average case estimates for the strong probable prime test, Math. Comp. 61 (1993), 177-194. MR94b:11124
6. G. Jaeschke, On strong pseudoprimes to several bases, Math. Comp. 61 (1993), 915-926. MR94d:11004
7. G. Miller, Riemann's hypothesis and tests for primality, J. Comput. and System Sci. 13 (1976), 300-317. MR.58:470a
8. R. G. E. Pinch, All Carmichael numbers with three prime factors up to 10^{18}, http://www. chalcedon.demon.co.uk/carpsp.html.
9. C. Pomerance, J. L. Selfridge and Samuel S. Wagstaff, Jr., The pseudoprimes to $25 \cdot 10^{9}$, Math. Comp. 35 (1980), 1003-1026. MR82g:10030
10. M. O. Rabin, Probabilistic algorithms for testing primality, J. Number Theory 12 (1980), 128-138. MR81f:10003
11. Zhenxiang Zhang, Finding strong pseudoprimes to several bases, Math. Comp. 70 (2001), 863872. http://www.ams.org/journal-getitem?pii=S0025-5718-00-01215-1 MF2001g:11009
12. Zhenxiang Zhang and Min Tang, Finding strong pseudoprimes to several bases. II, Math. Comp. 72 (2003), 2085-2097. http://www.ams.org/journal-getitem?pii=S0025-5718-03-01545-X MR2004c:11008

Department of Mathematics, Anhui Normal University, 241000 Wuhu, Anhui, Peoples Republic of China

E-mail address: zhangzhx@mail.ahwhptt.net.cn

[^0]: Received by the editor August 16, 2003 and, in revised form, January 8, 2004.
 2000 Mathematics Subject Classification. Primary 11Y11, 11A15, 11A51.
 Key words and phrases. Carmichael numbers, C_{3}-numbers, strong pseudoprimes, C_{3}-spsp's, Rabin-Miller test, Chinese Remainder Theorem.

 Supported by the NSF of China Grant 10071001, the SF of Anhui Province Grant 01046103, and the SF of the Education Department of Anhui Province Grant 2002KJ131.

