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INSTABILITY ANALYSIS OF SADDLE POINTS
BY A LOCAL MINIMAX METHOD

JIANXIN ZHOU

Abstract. The objective of this work is to develop some tools for local insta-
bility analysis of multiple critical points, which can be computationally carried
out. The Morse index can be used to measure local instability of a nondegen-
erate saddle point. However, it is very expensive to compute numerically and
is ineffective for degenerate critical points. A local (weak) linking index can
also be defined to measure local instability of a (degenerate) saddle point. But
it is still too difficult to compute. In this paper, a local instability index, called
a local minimax index, is defined by using a local minimax method. This new
instability index is known beforehand and can help in finding a saddle point
numerically. Relations between the local minimax index and other local insta-
bility indices are established. Those relations also provide ways to numerically
compute the Morse, local linking indices. In particular, the local minimax
index can be used to define a local instability index of a saddle point relative
to a reference (trivial) critical point even in a Banach space while others failed
to do so.

1. Introduction

Multiple solutions with different performance, maneuverability and instability
indices exist in many nonlinear problems in the natural or social sciences [1, 7, 9,
24, 29, 31, 33, 35]. When cases are variational, the problems reduce to solving the
Euler-Lagrange equation

(1.1) J ′(u) = 0,

where J is a C1 generic energy functional on a Banach space H and J ′ is its Frechet
derivative. A solution u∗ ∈ H to the Euler-Lagrange equation (1.1) is called a
critical point of J . Its value J(u∗) is called a critical value. A critical point u∗ of
J is nondegenerate if the second Frechet derivative J ′′(u∗) exists and is invertible
as a linear operator. Otherwise u∗ is said to be degenerate. The first candidates
for a critical point are naturally the local extrema to which the classical critical
point theory was devoted in calculus of variation. Most conventional numerical
algorithms focus on finding such stable solutions. Critical points that are not local
extrema are unstable and are called saddle points, that is, critical points u∗ of J s.t.
any neighborhood of u∗ in H contains points v, w satisfying J(v) < J(u∗) < J(w).
In physical systems, saddle points appear as unstable equilibria or transient excited
states.
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When multiple solutions exist in a nonlinear system, some are stable and others
are unstable. Among those unstable solutions, their instability behavior can be
very different. Stability/instability is one of the main concerns in system design
and control theory. On the other hand, in many applications, performance or
maneuverability is more desirable. An unstable solution can be stable enough to
accomplish a short term mission before being excited to decay to another desirable
state. Unstable solutions may have much higher maneuverability or performance
indices, which could be crucial in a mission critical situation. For instance, traveling
waves have been observed to exist in suspended bridges [9] and have been shown
to be saddle points, therefore unstable solutions, to their corresponding variational
problem ((10) and (11) in [9]). Those unstable solutions have been observed to
have quite different amplitudes and instability behavior. Vector solitons arise in
many fields, such as condensed matter physics, dynamics of biomolecules, nonlinear
optics, etc. For example, in the study of self-guided light waves in nonlinear optics
[14, 15, 25], excited states are of great interests. All those solitons are saddle points,
thus unstable solutions. Among them, solutions which are not ground states, are
the so-called excited states. Among many different modes of excited states are
the vortex-mode and dipole-mode vector solitons. It has been experimentally and
numerically proved that these two unstable solutions have very different instability
and maneuverability properties. The vortex-mode can be easily perturbed to decay
into a dipole-mode. While the dipole-modes are much more stable, “stable enough
for experimental observation, . . . , extremely robust, have a typical lifetime of several
hundred diffraction lengths and survive a wide range of perturbations” [14], they
thus are hard to excite.

Can one find those multiple solutions and measure their instabilities or maneu-
verabilities? This is certainly an interesting engineering problem in system design
and control.

The objective of this work is to develop some tools for local instability analysis
of saddle points which can be computationally carried out. To fulfill the objective,
first one has to find a method to numerically approximate an unstable solution in
a stable way. This is a vary challenging task. Previous works [20], [21] have laid
a solid foundation. Then one needs to find a way to measure local instabilities of
saddle points. Usually this is done by defining a certain local instability index. Here
we want to define a local instability index for a saddle point which is general enough
to be applied to usual cases and meanwhile can be easily numerically computed.

There is a well-known theorem in ordinary differential equations, tracing back
to Poincaré, which states that the stability of a rest point can be inferred from
“linearization.” More precisely, if one considers the ordinary differential equation
u′ = f(u) in R

n with ū a rest point, i.e., f(ū) = 0, the linearization equation
is u′ = df(ū)u and u = 0 is a rest point. Then if the differential df(ū) (an n × n
matrix) has all of its eigenvalues in the left-hand plane, Re z < 0, it follows that ū is
asymptotically stable; i.e., if u0 is near ū, then the solution of the equation through
u0 tends to ū as t → +∞. This idea has been extended to the study of (in)stability
of solutions to variational problems (Euler-Lagrange equation), such as a stationary
(time-harmonic) solution to a semilinear reaction-diffusion or hyperbolic equation,
standing wave or traveling wave solutions to many nonlinear wave phenomena, e.g.,
the nonlinear Schrodinger equation ivt + ∆v + f(|v|)v = 0, or, periodic solutions
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to many nonlinear Hamiltonian systems and nonlinear wave equation, e.g.,

(1.2)
{

utt = uxx − f(u), 0 < x < π, 0 < t < T,
u(0, t) = u(π, t) = 0, u(x, t + T ) = u(x, t),

to which a solution u∗ corresponds to a critical point of the generic energy functional

J(u) =
∫ T

0

∫ π

0

(1
2
(|ux|2 − |ut|2) − F (u)

)
dxdt,

where F (r) =
∫ r

0
f(τ)dτ .

Let u∗ be a critical point of J . Consider the negative gradient flow of J at u∗

defined by

(1.3)
{

d
dτ σ(τ, u) = −∇J(σ(τ, u)),

σ(0, u) = u∗.

Then it is clear that σ(τ, u) ≡ u∗ is a rest point of (1.3). When J ′′(u∗) is nonsingu-
lar, u∗ is a nondegenerate rest point. Now we consider the flow for the “linearization
equation”

(1.4) v′ = −J ′′(u∗)v.

Clearly, v = 0 is a rest point of (1.4). When J ′′(u∗) is self-adjoint, its eigenvalues are
all real. Thus if all eigenvalues of J ′′(u∗) are positive, then u∗ is a stable solution.
Otherwise u∗ is unstable and the number of negative eigenvalues of J ′′(u∗), i.e.,
the Morse index of u∗, can be used as an index to measure the “instability” [31].
However, when J ′′(u∗) is singular, the above argument fails. Note that starting
from a critical point u∗, along an eigenvector corresponding to a negative (positive)
eigenvalue of J ′′(u∗), J is decreasing (increasing).

Definition 1.1. A vector v ∈ H is said to be a decreasing (increasing) direction
of J at a critical point u∗ ∈ H if there exists T > 0 s.t.

(1.5) J(u∗ + tv) < (>)J(u∗) ∀ T > t > 0.

In general, the set of all decreasing (or increasing) vectors of J at a critical point
does not form a linear vector space. The maximum dimension of a subspace of
decreasing directions of J at a critical point u∗ is called the local instability index
of J at u∗.

Since such an index lacks characterization and is too difficult to compute, let us
study several alternatives.

Morse index. According to spectral theory, when J ′′(u∗) exists and is a self-
adjoint Fredholm operator from H → H at a critical point u∗, the Hilbert space H
has an orthogonal spectral decomposition

(1.6) H = H− ⊕ H0 ⊕ H+

where H−, H0 and H+ are, respectively, the maximum negative definite subspace,
the null subspace and the maximum positive definite subspace of J ′′(u∗) in H with
dim(H0) < ∞ and are all closed invariant subspaces under J ′′(u∗). Following Morse
theory, the Morse index of the critical point u∗ is MI(u∗) = dim(H−). It is clear
that a nondegenerate critical point u∗ with MI(u∗) = 0 is a local minimum point
of the generic energy function J and therefore is a stable solution, and a critical
point u∗ of J with MI(u∗) > 0 is an unstable solution. When u∗ is nondegenerate,
i.e., H0 = {0}, MI(u∗) is the local instability index of J at u∗. Thus the Morse
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index has been used [31] to measure local instabilities of basically nondegenerate
critical points. Numerical computation of the Morse index of a saddle point u∗

basically consists of two steps, first to numerically compute the unstable solution
u∗ and then to numerically solve for the number of negative eigenvalues of the
corresponding linearized problem at u∗. It is very expensive. Therefore researchers
(see, e.g., [2], [3], [5], [7], [17], [30], [32], and others) tried to establish some (bound)
estimates of the Morse index of saddle points based on certain (global) minimax
characterizations. On the other hand, the Morse index is ineffective in measuring
local instability of a degenerate critical point, since many different situations may
happen in the nullspace H0.

Local linking index. A local linking defined in [19] can also be used to define a
local instability index (LLI) for saddle points that are not necessarily nondegener-
ate.

Definition 1.2 ([19]). A function J ∈ C1(H, R) has a local linking at u∗ ∈ H if
there exist subspaces HI , HD in H and a constant r > 0 s.t. H = HI ⊕ HD and

J(u∗ + u1) ≥ J(u∗), ∀u1 ∈ HI , with 0 < ‖u1‖ ≤ r,(1.7)

J(u∗ + u2) ≤ J(u∗), ∀u2 ∈ HD, with 0 < ‖u2‖ ≤ r.(1.8)

It is clear that each point u �= 0 in HI (HD) is an increasing (decreasing)
direction of J at u∗ and HI (HD) is the space of increasing (decreasing) directions
of J at u∗. We may consider using dim(HD) as a local instability index (LLI).
The notion of a local linking is introduced by Li and Liu in [18] and then modified
by Li and Willem in [19] to prove the existence of multiple critical points. It is
extensively used with dim(HD) < ∞ in [30] by Silva to establish the existence of
multiple critical points and to estimate their Morse indices. We can see that if J
has a local linking at u∗, then u∗ is a critical point of J .

According to the Morse lemma [7], the uniform bound r in the definition of a
local linking can be obtained if J is C2 and u∗ is a nondegenerate critical point.
Thus a nondegenerate saddle point is a local linking with H− = HD and H+ = HI .
For a degenerate saddle point if we have H0 = H0D ⊕ H0I where H0D and H0I

consist, respectively, of decreasing and increasing directions of J at u∗, then u∗ is
also a local linking with HD = H− ⊕HOD, HI = H+ ⊕H0I . However, in general
such a splitting is not available.

Example 1.1. Let

J1(x1, x2) = (x1 − x∗
1)

2 − (x2 − x∗
2)

2 and J2(x1, x2) = (x1 − x∗
1)

2 − (x2 − x∗
2)

4.

Then x∗ = (x∗
1, x

∗
2) is a critical point for both J1 and J2. However, for J1, MI (x∗) =

LLI(x∗) = 1 and for J2, 0 = MI (x∗) < LLI(x∗) = 1. Due to degeneracy, the Morse
index fails to describe the local instability of J2 at x∗. While LLI serves well.

Example 1.2. For H = R
3, let J(x1, x2, x3) = x2

1 − x2
3. Then 0 is a critical point

with H+ = {e1}, H0 = {e2} and H− = {e3}. This is a degenerate case, since J is
constant along the direction e2. In this case, we may either set HI = {e1, e2}, HD =
{e3} or set HI = {e1}, HD = {e2, e3}. In either case, HI is an increasing space
and HD is a decreasing space and 0 is a local linking with H = HI ⊕HD. But two
HD’s have a dimension difference 1. Thus the LLI index at 0 is not well defined. If
we limit the inequality in (1.8) to be strict, then the second case will be eliminated.
There will be no ambiguity.
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The definition of a local linking provides a generalization of the Morse index to
a degenerate critical point. However, the dimensions of the spaces HI and HD in
the definition are not uniquely determined. We also note that the uniform bound
r in the definition of a local linking is difficult to obtain when either HI or HD

is infinite-dimensional, in particular, at a degenerate saddle point. Therefore it is
reasonable for us to weaken the uniform bound condition and to allow individual
bounds. We introduce the following definition.

Definition 1.3. A function J ∈ C1(H, R) has a weak local linking at u∗ ∈ H if
H = HI ⊕HD for some subspaces HI , HD in H and for each u1 ∈ HI and u2 ∈ HD

with ‖u1‖ = 1 and ‖u2‖ = 1 there exist constants r1 > 0 and r2 > 0 s.t.

J(u∗ + tu1) ≥ J(u∗), ∀ 0 < |t| ≤ r1,(1.9)
J(u∗ + tu2) < J(u∗), ∀ 0 < |t| ≤ r2.(1.10)

We define the local linking index (LLI) of J at u∗ by

LLI(u∗) ≡ dim(HD).

Lemma 1.1. If J has a weak local linking at u∗, then LLI(u∗) is well defined.

Proof. We only have to show that if H = H̃I ⊕ H̃D for some subspaces H̃I , H̃D

in H and for each u1 ∈ H̃I and u2 ∈ H̃D with ‖u1‖ = 1 and ‖u2‖ = 1 there exist
constants r1 > 0 and r2 > 0 s.t.

J(u∗ + tu1) ≥ J(u∗), ∀ 0 < |t| ≤ r1,(1.11)
J(u∗ + tu2) < J(u∗), ∀ 0 < |t| ≤ r2,(1.12)

then dim(H̃D) = dim(HD). Suppose dim(H̃D) < dim(HD). We have H̃I ∩HD �=
{0}. But this is impossible, since H̃I is an increasing direction space of J at u∗

and HD is a strictly decreasing direction space of J at u∗. �

The definition of a local linking lacks characterization and it is still too difficult
to compute numerically. So far no constructive method to compute such an index
is available in the literature.

In this paper, we use a local minimax method developed in [20], [21] to define
a new local instability index which is known beforehand and can help in finding a
saddle point numerically.

Throughout this paper, when the Morse index is involved, we always assume that
J ′′(u∗) is a self-adjoint Fredholm linear operator from H → H where u∗ is a critical
point of J . Thus the orthogonal spectral decomposition (1.6) is always available;
when a local linking is involved, we always assume that H = HI ⊕ HD where
HI and HD are, respectively, the increasing direction subspace and the maximum
decreasing direction subspace as stated in (1.9) and (1.10).

2. A local minimax index and its relation to MI and LLI

Since Ljusternik-Schnirelmann, under a deformation assumption, proved (1930)
the existence of a saddle point as a minimax solution, i.e., a solution to

min
A∈A

max
v∈A

J(v)

where A is a collection of (compact) subsets in H , the minimax principle becomes
one of the most popular approaches in critical point theory.
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The Mountain Pass Lemma proved (1973) by Ambrosetti and Rabinowitz [1]
set a milestone in nonlinear analysis. Since then, the subject area has undergone
explosive growth. Many minimax theorems, such as various linking and saddle
point theorems, have been successfully established to prove the existence of multiple
solutions to various nonlinear PDE’s and dynamic systems [1], [6], [4], [10], [11],
[12], [16], [23], [24], [27], [28], [29], [33], [34], [35]. But almost all minimax theorems
in critical point theory focus only on the existence issue. They require one to
solve a two-level global optimization problem and therefore are not for algorithm
implementation and they cannot precisely describe the local instability behavior of
a saddle point.

Inspired by the numerical works of Choi and McKenna [8] and Ding, Costa,
and Chen [13], and motivated by Morse theory and the idea of defining a (stable)
solution manifold [26], [27], [28], a local minimax method is developed in [20] which
characterizes a saddle point as a local minimax solution. Based on the local minimax
characterization, a numerical local minimax algorithm is developed and successfully
applied to solve many semilinear elliptic PDE on various domains for multiple
solutions [20], [21]. In this paper, we show that the local minimax method can be
used to define an index to measure the local instability of a local minimax solution
in a way much better than the Morse and other (local linking) indices. Furthermore
this index is known even before we numerically compute the local minimax solution.

Let H be a Hilbert space. For a subspace H ′ ⊂ H , denote SH′ = {v|v ∈
H ′, ‖v‖ = 1}. Let L be a closed subspace, called a support, in H and let L⊥ be
its orthogonal complement in H . Thus H = L

⊕
L⊥. For each v ∈ SL⊥ , denote

{L, v} = {tv + vL|t ∈ R, vL ∈ L}.
Definition 2.1. A set-valued mapping P : SL⊥ → 2H is called the peak mapping
of J w.r.t. H = L

⊕
L⊥ if for any v ∈ SL⊥ , P (v) is the set of all local maximum

points of J in {L, v}. A single-valued mapping p : SL⊥ → H is a peak selection of
J w.r.t. L if p(v) ∈ P (v) ∀v ∈ SL⊥ . Let v ∈ SL⊥ . Then J is said to have a
local peak selection p w.r.t. L at v if there exist a neighborhood N (v) of v and a
mapping p : N (v) ∩ SL⊥ → H s.t.

p(u) ∈ P (u) ∀u ∈ N (v) ∩ SL⊥ .

In [20], [21], the peak mapping P (v) for v ∈ SL⊥ is defined by using the half
space [L, v] = {tv + vL : t ≥ 0, vL ∈ L} and not the whole space {L, v} due to the
fact that the model problem considered there has a certain symmetric property.
When more general cases are considered, it is better to use the whole space. The
corresponding change is minor; however, it makes the proof of nonemptiness of
P (v) easier.

Theorem 2.1 ([20]). Let v∗ ∈ SL⊥ be a point. If J has a local peak selection p
w.r.t. L at v∗ s.t. (i) p is continuous at v∗, (ii) p(v∗) �∈ L and (iii) v∗ is a local
minimum point of J(p(v)) on SL⊥ , u∗ = p(v∗) is a critical point of J .

Note that in the above theorem both the maximization, i.e., p(v∗), at the first
level and the minimization at the second level are locally defined. If we define a
(stable) solution set

M =
{
p(v) : v ∈ SL⊥

}
,

then a local minimum point of J on M is a critical point and can be approximated,
e.g., by a steepest descent search [20] and [21].



INSTABILITY ANALYSIS OF SADDLE POINTS 1397

Now we have three types of decreasing direction spaces of J at u∗, namely,
{L, v∗}, H− and HD. The dimensions of those three spaces can be used to measure
local instability at u∗. Their relations will be explored.

In this paper, we use the local minimax characterization to classify those saddle
points with which a local instability index can be assigned. In particular, we show
that once a local minimax solution is found by the local minimax method, a local
instability index of the solution is automatically known

Definition 2.2. A critical point u∗ of J is said to be a (local) minimax solution,
if there is a closed subspace (support) L ⊂ H , a point v∗ ∈ SL⊥ and a local peak
selection p of J w.r.t. L at v∗ s.t. u∗ = p(v∗) and

v∗ = arg min
v∈S

L⊥
J(p(v)) = arg min

v∈S
L⊥

max
u∈{L,v}

J(u),

where the local peak selection p is continuous at v∗ and either the local maximum
at the first level or the local minimum at the second level is strict.

Lemma 2.1. If u∗ is a minimax solution of J w.r.t. the support L s.t. u∗ �∈ L,
then L is maximum in the sense that any proper subspace L′ of L is not a support
with which u∗ is a minimax solution.

Proof. Let u∗ = p(v∗) be a minimax solution w.r.t. the support L where v∗ ∈ SL⊥

and p is a local peak selection continuous at v∗ and meanwhile let u∗ = p̃(ṽ) also
be a minimax solution w.r.t. the support L̃ where ṽ ∈ SL̃⊥ and p̃ is a local peak
selection continuous at ṽ. Suppose L̃ ⊂ L is proper. We have L̃⊥∩L �= {0}. Choose
any v ∈ L̃⊥ ∩ L with ‖v‖ = 1. Since ṽ ∈ L̃⊥, for any real number s with |s| small,
set

ṽ(s) =
ṽ + sv

‖ṽ + sv‖ ∈ N (ṽ) ∩ SL̃⊥ ,

where N (ṽ) is a neighborhood of ṽ in which the local peak selection p̃ is defined.
We have

(2.1) J(p̃(ṽ(s))) > (≥)J(p̃(ṽ)) = J(u∗).

On the other hand, since u∗ = p(v∗) �∈ L, we have

u∗ ≡ p(v∗) = t∗v∗ + v∗L and u∗ ≡ p̃(ṽ) = t̃ṽ + ṽL̃

for some nonzero scalars t∗ and t̃, and points v∗L ∈ L, and ṽL̃ ∈ L̃ ⊂ L. Equating
the last two expressions, we obtain ṽ ∈ {L, v∗}. Note that p̃(ṽ(s)) = t̃sṽ(s) + ṽL̃(s)
for some scalar t̃s and point ṽL̃(s) ∈ L̃ ⊂ L, and ṽ ∈ {L, v∗} and v ∈ L̃⊥ ∩L imply

p̃(ṽ(s)) ∈ {{L, v∗}, v} ⊂ {L, v∗}.
Since ṽ(s) → ṽ as s → 0 and p̃ is continuous at ṽ, we have

p̃(ṽ(s)) → p̃(ṽ) = u∗ = p(v∗) as s → 0.

Now u∗ = p(v∗) is a local maximum point of J in {L, v∗}; when |s| > 0 is small,
we have

J(p̃(ṽ(s))) ≤ (<)J(p(v∗)) = J(u∗),
which contradicts (2.1). Thus L = L̃, i.e., L is maximum. �
Definition 2.3. Let u∗ be a local minimax solution of J w.r.t. the support L. The
local minimax index (MMI) of the saddle point u∗ w.r.t. L is defined by

MMI (u∗) ≡ dim{L, v∗} ≡ dim(L) + 1.
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Note that in general a support for a local minimax solution is not unique. We
may define a local minimax index of u∗ by assuming that L is the one with either
maximum or minimum dimension among all the supports. However, in this paper,
we focus on what information the integer dim(L)+1 can tell about local instability
of u∗. When L is spanned by previously found critical points at a lower critical
level, u∗ can be perturbed by vectors in {L, v∗} to decay into a critical point at a
lower critical level. Thus, the number dim(L) + 1 can also be used to measure the
maneuverability of u∗.

Following the local minimax method, MMI (u∗) is known even before we numer-
ically find the solution u∗. Note that MMI may not be defined for a general critical
point. However, we will show that for a class of familiar critical points, MMI is well
defined. Usually when an index is defined to a solution, to compute the index, one
has to find the solution first and then follow certain rules or a certain method to
compute the index of the solution, e.g., the Morse and local linking indices. Expe-
rience tells us, this is usually difficult and expensive. Here we reverse the process.
The local minimax method utilizes the geometric and topological structure of the
local minimax index to numerically compute a critical point with such an index.

We now start to establish some relations between MMI, MI and LLI.

Theorem 2.2. If u∗ = t∗v∗ + v∗L for some v∗ ∈ SL⊥ , t∗ �= 0 and v∗L ∈ L is a
critical point of J s.t. u∗ is not a local minimum point of J along any direction
v ∈ {L, v∗}, then

dim(L) + 1 ≤ LLI(u∗),(2.2)
dim(L) + 1 ≤ MI (u∗) + dim(H0 ∩ {L, u∗}),(2.3)

MI (u∗) + dim(H0 ∩ {L, u∗}) ≤ LLI(u∗),(2.4)

or

(2.5) dim(L) + 1 ≤ MI (u∗) + dim(H0 ∩ {L, u∗}) ≤ LLI(u∗).

Proof. Suppose (2.2) does not hold, and let H = HI ⊕ HD as in (1.9) and (1.10).
Then

dim(L) + 1 > LLI(u∗) ≡ dim(HD) implies HI ∩ {L, v∗} �= {0}.
Thus u∗ is a local minimum point of J along any direction in HI ∩{L, v∗} and this
leads to a contradiction. Therefore (2.2) holds.

To prove (2.3), let H = H− ⊕ H0 ⊕ H+ as in (1.6). If (2.3) is not true, then

dim({L, v∗}) > dim(H−) + dim(H0 ∩ {L, v∗})
implies

(H+ ⊕ (H0 ∩ {L, v∗})⊥H0 ) ∩ {L, v∗} �= {0},
since

H = H− ⊕ (H0 ∩ {L, v∗}) ⊕ H+ ⊕ (H0 ∩ {L, v∗})⊥H0 .

Choose any v = v+ + v0 ∈ (H+ ⊕ (H0 ∩{L, v∗})⊥H0)∩{L, v∗} with v �= 0, v+ ∈ H+

and v0 ∈ (H0 ∩ {L, v∗})⊥H0 . Since v+ = 0 will lead to

v = v0 ∈ (H0 ∩ {L, v∗}) ∩ ((H0 ∩ {L, v∗})⊥H0) = {0},
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which is a contradiction, we must have v+ �= 0. Note that H+ and H0 are mutually
orthogonal invariant subspaces of the operator J ′′(u∗). For such v = v+ + v0 ∈
{L, v∗}, we have

〈J ′′(u∗)(v+ + v0), v+ + v0〉 = 〈J ′′(u∗)v+, v+〉 > 0,

i.e., v is a strictly increasing direction of J at u∗ in {L, v∗}, a contradiction to our
assumption.

To verify (2.4), we note that

MI (u∗) + dim(H0 ∩ {L, v∗}) > LLI(u∗)

implies
HI ∩

(
H− ⊕ (H0 ∩ {L, v∗})

)
�= {0}.

Let w ∈ HI ∩
(
H− ⊕ (H0 ∩ {L, v∗})

)
with ‖w‖ = 1. Thus w ∈ HI is an increasing

direction of J at u∗. Write w = w− + w0 with w− ∈ H− and w0 ∈ H0 ⊕ {L, v∗}.
If w− �= 0, then w is a strictly decreasing direction of J at u∗. It leads to a contra-
diction. Thus we have w− = 0 which implies w = w0 ∈ HI ∩ (H0 ∩{L, v∗}), i.e., w
is an increasing direction of J at u∗ in {L, v∗}. Thus J attains its local minimum
at u∗ along w ∈ {L, v∗}, which contradicts our assumption again. Therefore (2.4)
must be true. Combining (2.3) and (2.4), we obtain (2.5). �
Theorem 2.3. MI (u∗) + dim(H0 ∩ HD) = LLI(u∗).

Proof. Note that

H− ⊕ (H0 ∩ HD) ⊕ (H0 ∩ HD)⊥H0 ⊕ H+ = H = HI ⊕ HD.

First let us suppose that

MI (u∗) + dim(H0 ∩ HD) > LLI(u∗).

Then we must have (
H− ⊕ (H0 ∩ HD)

)
∩ HI �= {0}.

For any w ∈ (
H− ⊕ (H0 ∩ HD)

) ∩ HI with w �= 0, we write w = w− + w0 where
w− ∈ H− and w0 ∈ H0 ∩ HD. If w− �= 0, then w is a strictly decreasing direction
of J at u∗, which will contradict the condition that w ∈ HI . Thus we must have
w− = 0, i.e., w = w0 ∈ H0 ∩ HD. It ends up with 0 �= w ∈ HD ∩ HI = {0}.
Therefore

MI (u∗) + dim(H0 ∩ HD) ≤ LLI(u∗).
Next let us suppose that

MI (u∗) + dim(H0 ∩ HD) < LLI(u∗).

Then we must have (
H+ ⊕ (H0 ∩ HD)⊥H0

)
∩ HD �= {0}.

For any w ∈ (
H+ ⊕ (H0 ∩ HD)⊥H0

) ∩ HD with w �= 0, we write w = w+ + w0

where w+ ∈ H+ and w0 ∈ (H0 ∩ HD)⊥H0 . Since w0 ∈ H0, w+ �= 0 will imply that
w = w++w0 is a strictly increasing direction; thus w cannot be in HD at same time.
Therefore we must have w+ = 0. Then it leads to w = w0 ∈ (H0 ∩HD)⊥H0 ∩HD =
{0}. But we assume w �= 0. Thus we must have

MI (u∗) + dim(H0 ∩ HD) ≥ LLI(u∗).
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Combining the two inequalities, we conclude that

MI (u∗) + dim(H0 ∩ HD) = LLI(u∗). �

Combining the last two theorems, we have

dim(L) + 1 ≤ MI (u∗) + dim(H0 ∩ {L, v∗}) ≤ MI (u∗) + dim(H0 ∩HD) = LLI(u∗).

The inequality (2.4) displays the relation between the Morse index (MI) and the
local linking index (LLI). It is clear that

dim(L) + 1 = MI (u∗) + dim(H0 ∩ {L, v∗}) = LLI(u∗),

if {L, v∗}⊥ contains no decreasing direction, i.e., {L, v∗}⊥ ∩ HD = {0}. But this
condition is not easy to check. Thus next we establish the above equality with a
condition that can be computationally checked.

Lemma 2.2. Let p be a local peak selection of J w.r.t. L and continuous at
v∗ ∈ SL⊥ . Assume u∗ ≡ p(v∗) �∈ L and v∗ = argminv∈S

L⊥ J(p(v)). Then

(2.6)
(
J ′′(u∗)(H− ∩ {L, v∗}⊥)

)
∩ {L, v∗}⊥ = {0}.

Proof. Since u∗ = p(v∗) ∈ {L, v∗} is a critical point of J and also a local maximum
point of J in {L, v∗}, we have

(2.7) 〈J ′′(u∗)v, v〉 ≤ 0, ∀ v ∈ {L, v∗}.
Suppose that the conclusion does not hold, i.e.,(

J ′′(u∗)(H− ∩ {L, v∗}⊥)
)
∩ {L, v∗}⊥ �= {0}.

Note that (
J ′′(u∗)(H− ∩ {L, v∗}⊥)

)
∩ {L, v∗}⊥

is a subspace. We can choose w ∈ {L, v∗}⊥ ∩ H− with ‖w‖ = 1 s.t.

J ′′(u∗)(w) ∈
(
{L, v∗}⊥ \ {0}

)
.

Since H− is an invariant subspace of J ′′(u∗), it implies that

(2.8) J ′′(u∗)(w) ∈ {L, v∗}⊥ ∩ H− and J ′′(u∗)(w) �= 0.

For any real number s with |s| small, we define

v∗(s) =
v∗ + sw

‖v∗ + sw‖ ∈ N (v∗) ∩ SL⊥ .

Following the definition of the local peak selection, we can write

p(v∗(s)) − u∗ = p(v∗(s)) − p(v∗) = t∗(s)w + tsv
∗ + vs

L

for some scalars t∗(s), ts and vector vs
L ∈ L where since p is continuous at v∗ and

p(v∗) �∈ L, we have t∗(s) �= 0 and t∗(s) → 0 as s → 0. By (2.8), taking (2.7) into
account and with J ′′(u∗) self-adjoint, we have

〈J ′′(u∗)(p(v∗(s)) − u∗), (p(v∗(s)) − u∗)〉 < 0 ∀s �= 0 and |s| is small.

Then for |s| sufficiently small and s �= 0, it follows that

J(p(v∗(s))) < J(u∗) ≡ J(p(v∗)).
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On the other hand we have

v∗ = arg min
v∈S

L⊥
J(p(v))

and v∗(s) ∈ N (v∗) ∩ SL⊥ or J(p(v∗(s))) ≥ J(u∗), which leads to a contradiction.
Thus (2.6) must hold. �

It is clear that (2.6) implies that u− �∈ {L, v∗}⊥ where u− is an eigenfunction of
J ′′(u∗) w.r.t. a negative eigenvalue and (2.6) holds if H− ∩ {L, v∗} = {0}.

The proof of the following lemma follows a similar line to the proof of Lemma 2.1
in [22], but the conclusion is much stronger.

Lemma 2.3. Let v∗ ∈ SL⊥ . Assume that there exist a neighborhood N (v∗) of
v∗ and a locally defined mapping p : N (v∗) ∩ SL⊥ → H s.t. p(v) ∈ {L, v} ∀v ∈
N (v∗) ∩ SL⊥ . If p is differentiable at v∗ and u∗ = p(v∗) /∈ L, then

w ∈ {p′(v∗)(w), L, v∗} ∀w ∈ {L, v∗}⊥,(2.9)

p′(v∗)(w) �∈ {L, v∗} ∀w ∈ {L, v∗}⊥ with w �= 0(2.10)

or

(2.11) p′(v∗)({L, v∗}⊥) ⊕ {L, v∗} = H.

Proof. For any w ∈ {L, v∗}⊥, ‖w‖ = 1, denote v∗(s) =
v∗ + sw

‖v∗ + sw‖ . Then there

exists s0 > 0 s.t. when |s| < s0, we have v∗(s) ∈ N (v∗) ∩ SL⊥ .
Consider the one-dimensional vector function α(s) = PL⊥(p(v∗(s))), where PL⊥

is the projection onto L⊥. Since p is differentiable at v∗ and v∗(s) smoothly depends
on s, α is differentiable at 0 and

(2.12) α′(0) = PL⊥(p′(v∗)(
∂v∗(s)

∂s
)) = PL⊥(p′(v∗)(w)).

On the other hand, p(v∗(s)) ∈ {L, v∗(s)}, and we have α(s) = tsv
∗(s), where

ts = 〈α(s), v∗(s)〉 is differentiable. Thus α′(0) = t′0v
∗ + t0w, where due to our

assumption that u∗ = p(v∗) /∈ L, we have t0 �= 0. The two different expressions of
α′(0) imply

PL⊥(p′(v∗)(w)) = t′s(0)v∗ + t0w.

Then it leads to w ∈ {p′(v∗)(w), L, v∗}, i.e., (2.9) is verified.
Now if w ∈ {L, v∗}⊥ with w �= 0 and p′(v∗)(w) ∈ {L, v∗}, (2.9) will lead to

w ∈ {L, v∗} and therefore w = 0, a contradiction. Thus (2.10) holds. It is clear
that (2.9) and (2.10) imply (2.11). �
Lemma 2.4. Let v∗ ∈ SL⊥ . Assume that there exist a neighborhood N (v∗) of
v∗ and a locally defined mapping p : N (v∗) ∩ SL⊥ → H s.t. p(v) ∈ {L, v} ∀v ∈
N (v∗) ∩ SL⊥, p is differentiable at v∗ and u∗ = p(v∗) /∈ L is a critical point of J .
Denote

H−
0 = H− ⊕ (H0 ∩ {L, v∗}).

If dim(H−
0 ) > dim L + 1, then

p′(v∗)({L, v∗}⊥) ∩ H−
0 �= {0},(2.13)

p′(v∗)({L, v∗}⊥) ∩ (H0 ∩ {L, v∗}) = {0}(2.14)

or

(2.15) p′(v∗)({L, v∗}⊥) ∩
(
H−

0 \ (H0 ∩ {L, v∗})
)
�= {0}.



1402 JIANXIN ZHOU

Proof. Suppose that k ≡ dim(L) + 1 < dim(H−
0 ). By applying (2.11), there exit

linearly independent vectors e0, e1, . . . , ek ∈ H−
0 that can be written as ei = gi + fi

with gi ∈ p′(v∗)({L, v∗}⊥) and fi ∈ {L, v∗}. Here f0, f1, . . . , fk have to be linearly
dependent because k = dimL+1. Thus we can find real numbers a0, a1, . . . , ak s.t.∑k

i=0 a2
i �= 0 and

∑k
i=0 aifi = 0. Therefore

k∑
i=0

aiei =
k∑

i=0

aigi ∈ p′(v∗)({L, v∗}⊥) ∩ H−
0 .

Because e0, e1, . . . , ek are linearly independent,
∑k

i=0 aiei �= 0. Thus, (2.13) holds.
While (2.14) follows from (2.10) directly, (2.15) is a combination of (2.13) and
(2.14). �

Theorem 2.4. Let v∗ ∈ SL⊥ . Assume that J has a local peak selection p w.r.t. L
at v∗ s.t. p is continuous at v∗, u∗ ≡ p(v∗) �∈ L and v∗ = argminv∈S

L⊥ J(p(v)). If
either H− ∩ {L, v∗}⊥ = {0} or p is differentiable at v∗, then u∗ is a critical point
with

(2.16) dim(L) + 1 = MI (u∗) + dim(H0 ∩ {L, v∗})
where H0 is the null space of J ′′(u∗) as stated in (1.6).

Proof. By Theorem 2.1, u∗ ≡ p(v∗) = t∗v∗ + v∗L for some t∗ �= 0 and v∗L ∈ L is a
critical point of J ; therefore, we only have to verify that equality (2.16) holds. Let
N (v∗) be a neighborhood of v∗ in which the local peak selection p is defined and
let H = H− ⊕ H0 ⊕ H+ as in (1.6). Denote

H−
0 = H− ⊕ (H0 ∩ {L, v∗}).

Suppose that (2.16) does not hold, by Theorem 2.2, we have

(2.17) dim(H−
0 ) > dim(L) + 1 implies {L, v∗}⊥ ∩ H−

0 �= {0}.
For any w ∈ {L, v∗}⊥ ∩H−

0 with w �= 0, we can write w = w− +w0 with w− ∈ H−

and w0 ∈ H0 ∩ {L, v∗}. Taking the inner product of w with w0 gives w0 = 0. Thus(
{L, v∗}⊥ ∩ H−

0

)
=

(
{L, v∗}⊥ ∩ H−

)
�= {0}.

Therefore if {L, v∗}⊥ ∩ H− = {0}, (2.16) must hold.
If instead we assume that p is differentiable at v∗, then (2.17) and Lemma 2.4

imply that

p′({L, v∗}⊥) ∩
(
H−

0 \ (H0 ∩ {L, v∗})
)
�= {0}.

Choose any w ∈ {L, v∗}⊥, ‖w‖ = 1, s.t. p′(v∗)(w) ∈
(
H−

0 \ (H0 ∩ {L, v∗})
)
.

Around u∗ = p(v∗), we have the second order Taylor expansion

(2.18) J(u) = J(u∗) +
1
2
〈J ′′(u∗)(u − u∗), u − u∗〉 + o(‖u − u∗‖2).

Denote v∗(s) = v∗+sw
‖v∗+sw‖ . We have v∗(s) ∈ N (v∗)∩SL⊥ for |s| small and dv∗(s)

ds |s=0

= w. Thus it follows that

(2.19) us ≡ p(v∗(s)) = u∗ + sp′(v∗)(w) + o(|s|).



INSTABILITY ANALYSIS OF SADDLE POINTS 1403

Combining the above two estimates (2.18) and (2.19), we obtain

J(p(v∗(s))) = J(u∗) +
1
2
s2〈J ′′(u∗)(p′(v∗)(w)), p′(v∗)(w)〉 + o(s2) < J(u∗),

where the last strict inequality holds for |s| sufficiently small because

p′(v∗)(w) ∈
(
H−

0 \ (H0 ∩ {L, v∗})
)

implies 〈J ′′(u∗)(p′(v∗)(w)), p′(v∗)(w)〉 < 0.

Since v∗(s) ∈ N (v∗)∩ SL⊥ and u∗ = p(v∗), the above violates the assumption that
v∗ is a local minimum point of J ◦ p on SL⊥ . Therefore (2.16) is verified. �
Remark 2.1. The result in the last theorem is multi-fold. First, it provides a method
to evaluate the Morse index of a saddle point without actually finding dim(H−),
a very expensive job. Secondly, it indicates that dim(L) + 1 is better than MI
in measuring local instability for a degenerate saddle point u∗. It also provides a
guideline in numerical computation. It implies that to have a stable convergence
in computing a critical point of MI= n, the support L must contain at least n − 1
critical points at lower critical level.

Two questions still remain: how to determine dim(H0 ∩ {L, v∗}) and how to
check if p is differentiable at v∗? Since it is usually very expensive to find H0, we
point out that one does not have to find H0 to determine dim(H0 ∩ {L, v∗}). To
see this, let L = {w1, . . . , wn} where w1, . . . , wn are linearly independent and define
the quadratic function

Q(t0, t1, . . . , tn)

≡ 1
2
〈J ′′(u∗)(t0v∗ + t1w1 + · · · + tnwn), (t0v∗ + t1w1 + · · · + tnwn)〉.(2.20)

We have
Q(t0, t1, . . . , tn) =

1
2
(t0, t1, . . . , tn)Q′′(t0, t1, . . . , tn)T

where Q′′ is the (n + 1) × (n + 1) matrix

(2.21) Q′′ =




〈J ′′(u∗)v∗, v∗〉 〈J ′′(u∗)v∗, w1〉 · · · 〈J ′′(u∗)v∗, wn〉
〈J ′′(u∗)w1, v

∗〉 〈J ′′(u∗)w1, w1〉 · · · 〈J ′′(u∗)w1, wn〉
· · · · · · · · · · · ·

〈J ′′(u∗)wn, v∗〉 〈J ′′(u∗)wn, w1〉 · · · 〈J ′′(u∗)wn, wn〉


 .

Let us observe that (t0v∗+t1w1+· · ·+tnwn) ∈ H0∩{L, v∗} implies (t0, t1, . . . , tn) ∈
ker(Q′′), i.e.,

(H0 ∩ {L, v∗}) ⊂
{

t0v
∗ + t1w1 + · · · + tnwn : (t0, t1, . . . , tn) ∈ ker{Q′′}

}
.

Thus if ker{Q′′} = {0} or |Q′′| �= 0, then dim(H0 ∩ {L, v∗}) = 0 even if H0 �=
{0}. When ker{Q′′} �= {0}, let {T1, . . . , Tr} be a basis of ker{Q′′} where Ti =
(T 0

i , T 1
i , . . . , T n

i ) ∈ Rn+1. Denote

zi = T 0
i J ′′(u∗)v∗ +

n∑
j=1

T j
i J ′′(u∗)wj , i = 1, . . . , r

and solve the linear homogenous system

(2.22) t1z1 + · · · + trzr = 0

for (t1, . . . , tr) ∈ Rr. Then dim(H0∩{L, v∗}) = the dimension of the solution space
to (2.22).
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The above analysis together with Theorem 2.4 can be summarized as

Theorem 2.5. Let v∗ ∈ SL⊥ . Assume J has a local peak selection p w.r.t. L at
v∗ s.t. p is continuous at v∗, u∗ ≡ p(v∗) �∈ L and v∗ = argminv∈S

L⊥ J(p(v)). If
either H− ∩ {L, v∗}⊥ = {0} or p is differentiable at v∗, then u∗ is a critical point
with

(2.23) 0 ≤ dim(L)+1−MI (u∗) = dim(Solution Space to (2.22)) ≤ dim(ker{Q′′})
where the matrix Q′′ is defined in (2.21). In addition, if the matrix Q′′ is nonsin-
gular, then

dim(L) + 1 = MI (u∗).

Since u∗ is a critical point of J and also a local maximum point of J in {L, v∗},
we have

Q(t0, t1, . . . , tn) ≤ 0 ∀ (t0, t1, . . . , tn) close to (0, . . . , 0).
But Q(t0, t1, . . . , tn) is quadratic and Q(0, . . . , 0) = 0. It follows that

Q(t0, t1, . . . , tn) ≤ 0 ∀ (t0, t1, . . . , tn) ∈ R
n+1,

i.e., Q′′ has to be semi-negative definite. Thus

(2.24) |Q′′| �= 0

will be enough to ensure that Q′′ is negative definite and dim(H0 ∩ {L, v∗}) = 0.
For L = {0}, (2.24) becomes

(2.25) Q′′ = 〈J ′′(u∗)v∗, v∗〉 < 0

and for L = {w1}, (2.24) has to be

(2.26) |Q′′| =
∣∣∣∣ 〈J ′′(u∗)v∗, v∗〉 〈J ′′(u∗)v∗, w1〉
〈J ′′(u∗)w1, v

∗〉 〈J ′′(u∗)w1, w1〉
∣∣∣∣ > 0

which implies 〈J ′′(u∗)v∗, v∗〉 < 0 and 〈J ′′(u∗)w1, w1〉 < 0. To see this, first we
note that |Q′′| < 0 implies that (0, 0) is a saddle point of Q(t0, t1). Thus the 2 × 2
matrix Q′′ has a positive and a negative eigenvalue. But this is impossible, since
Q′′ has to be semi-negative definite. Therefore it must be that |Q′′| > 0. Next
we note that J ′′(u∗) is self-adjoint, J attains its local maximum in {w1, v

∗} at u∗

and J ′(u∗) = 0; thus 〈J ′′(u∗)v∗, v∗〉 ≤ 0 and 〈J ′′(u∗)w1, w1〉 ≤ 0. Then |Q′′| > 0
implies that 〈J ′′(u∗)v∗, v∗〉 < 0 and 〈J ′′(u∗)w1, w1〉 < 0.

Note that Q′′ is a restriction of J ′′(u∗) to the finite-dimensional space {L, v∗} in
some sense. When the infinite-dimensional linear operator J ′′(u∗) is singular, i.e.,
H0 �= {0}, the (n + 1) × (n + 1) matrix Q′′ can still be nonsingular.

In numerical computation, at each iteration, we numerically compute |Q′′| at an
approximation solution uk. Numerous numerical examples have been carried out
by us. In all the examples including many degenerate cases, the |Q′′| are bounded
away from zero.

Next let us study how to check if p is differentiable at v∗. This is very difficult for
two reasons; first p has no explicit formula and secondly a limit of a sequence of local
maximum points of J is not necessarily a local maximum point of J , i.e., the graph of
p may be not closed. Research to solve this problem has inspired us to develop a new
approach which is already beyond the scope of a minimax principle. More profound
analysis is required. Details will be reported in a companion paper [36]. Here we
briefly describe the idea. In [36], the local peak selection p is generalized to satisfy
an orthogonal condition, i.e., for v ∈ SL⊥ , p(v) ∈ {L, v} s.t. J ′(p(v)) ⊥ {L, v},
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called a local orthogonal selection. It is clear that if p is a local peak selection, then
p(v) ∈ {L, v} and J ′(p(v)) ⊥ {L, v}, i.e., p is also a local orthogonal selection. For
such a defined p, it is proved in [36] that if

v∗ = arg min
v∈S

L⊥∩N (v∗)
J(p(v)),

u∗ = p(v∗) �∈ L and p is continuous at v∗, then u∗ is a critical point of J . However,
since such a saddle point is in general not a minimax solution, instability analy-
sis will be much more complicated. For such a local orthogonal selection p, from
the implicit function theorem if the matrix Q′′ in (2.21) is nonsingular, then p is
differentiable near v∗. Then an interesting question can be asked if in addition
u∗ = p(v∗) happens to be a local maximum point of J in {L, v∗}: will such a dif-
ferentiable local orthogonal selection p become a differentiable local peak selection
near v∗? The answer is yes.

Theorem 2.6. Let L be a finite-dimensional subspace of a Hilbert space H, let
v∗ ∈ SL⊥ and let p be a local orthogonal selection of J w.r.t. L at v∗ s.t. u∗ =
p(v∗) �∈ L and the matrix Q′′ in (2.21) is invertible. Assume that

v∗ = arg min
v∈S

L⊥∩N (v∗)
J(p(v))

where N (v∗) is a neighborhood of v∗ s.t. the local orthogonal selection p is defined
in SL⊥ ∩ N (v∗) and where u∗ = p(v∗) is a local maximum point of J in {L, v∗}.
Then

(1) p is a differentiable local peak selection near v∗,
(2) u∗ = p(v∗) is a strict local maximum point of J in {L, v∗},
(3) u∗ = p(v∗) is a critical point of J with dim(L) + 1 = MI (u∗).

Proof. Let L = {w1, w2, . . . , wn}. We only have to show that under the conditions,
the local orthogonal selection p is differentiable near v∗ and there exists r > 0 s.t.
for v ∈ SL⊥ ∩N (v∗) with ‖v − v∗‖ < r, u = p(v) is also a local maximum point of
J in {L, v}.

First note that when u∗ = p(v∗) is a local maximum point of J in {L, v∗} and
the matrix Q′′ in (2.21) is invertible, Q′′ has to be negative definite and therefore
u∗ = p(v∗) is a strict local maximum point of J in {L, v∗}. Next observe that from
its definition [36], the local orthogonal selection u = p(v) = t0v + t1w1 + · · ·+ tnwn

is solved from the system

F0(v, t0, t1, . . . , tn) ≡ 〈J ′(t0v + t1w1 + · · · + tnwn), v〉 = 0,

F1(v, t0, t1, . . . , tn) ≡ 〈J ′(t0v + t1w1 + · · · + tnwn), w1〉 = 0,

· · · · · ·
Fn(v, t0, t1, . . . , tn) ≡ 〈J ′(t0v + t1w1 + · · · + tnwn), wn〉 = 0

for each given v ∈ SL⊥ ∩ N (v∗). The Jacobian matrix

∂(F0, F1, . . . , Fn)
∂(t0, t1, . . . , tn)

∣∣∣∣
(v,t0,t1,...,tn)=(v∗,t∗0 ,t∗1,...,t∗n)

= Q′′

as in (2.21) where u∗ = t∗0v∗ + t∗1w1 + · · ·+ t∗nwn. By the implicit function theorem,
when the matrix Q′′ is invertible, there is a neighborhood N0(v∗) of v∗, s.t. the
local orthogonal selection p is uniquely defined and differentiable for each v ∈ SL⊥ ∩
N0(v∗).
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Suppose that such a local orthogonal selection p is not a local peak selection.
Then for any r > 0 there exists v ∈ SL⊥ ∩ N (v∗) with ‖v − v∗‖ < r s.t. for any
δ > 0 there is w ∈ {L, v} with ‖w − u‖ < δ and J(w) > J(u) where u = p(v).
Under the conditions, u∗ = p(v∗) is a strict local maximum point of J in {L, v∗}.
Let δ0 > 0 be s.t.

J(u∗) > J(w) ∀w ∈ {L, v∗} with 0 < ‖w − u∗‖ < δ0.

For any 0 < δ < δ0, since {w ∈ {L, v} : ‖w−p(v)‖ = δ} is a compact set, we denote

Jδ(v) = max{J(w) : w ∈ {L, v}, ‖w − p(v)‖ = δ}.
Let ε = 1

4 (J(u∗) − Jδ(v∗)) > 0. By the continuities of J and p at v∗, there exists
r0 > 0 s.t. for any r with 0 < r < r0, when v ∈ SL⊥ with ‖v − v∗‖ < r, p(v) is
defined and

Jδ(v∗) − ε < Jδ(v) < Jδ(v∗) + ε and thus J(u∗) > Jδ(v).

Since v∗ = arg minv∈S
L⊥∩N (v∗) J(p(v)), if u = p(v) is not a local maximum point

of J in {L, v}, there exists wδ ∈ {L, v} with ‖wδ − p(v)‖ < δ s.t.

J(wδ) > J(u) ≥ J(u∗).

Next we note that J is continuous, and it attains its maximum on the compact set
{w ∈ {L, v} : ‖w − u‖ ≤ δ} at, say, wv. We have

J(wv) ≥ J(wδ) > J(u) ≥ J(u∗) > Jδ(v).

Thus wv ∈ {L, v} with ‖wv − u‖ < δ and wv �= u. Therefore J ′(wv) ⊥ {L, v} or
wv ∈ P (v), i.e., both wv and u = p(v) are in the local orthogonal mapping P (v).
Since this holds for any 0 < δ < δ0 and 0 < r < r0, it violates the uniqueness
conclusion of the implicit function theorem. Thus p is a differentiable local peak
selection of J w.r.t. L near v∗, and u∗ = p(v∗) is a critical point of J as proved
in [36]. Finally, by |Q′′| �= 0 and Theorem 2.5 we conclude that dim(L) + 1 =
MI (u∗). �

3. Instability relative to a reference critical point

The above definition of MMI can be viewed as an instability index of a saddle
point u∗ relative to a local minimum critical point. This idea can be extended to
define a local instability index of a saddle point u∗ relative to a given reference
critical point u0, either a trivial or nontrivial one for which information on local
structure is available. This idea is particularly useful when a local minimum of
J does not exist or when MI(u∗) = +∞ for every saddle point u∗ of J . In this
case the Morse indices of two critical points cannot tell the difference in their local
instabilities, while our MMI can be used to measure a relative local instability
between those two critical points.

Definition 3.1. Let u0 be a given reference critical point and let L0 be a closed
maximum subspace of H consisting of decreasing directions of J at u0. Let L be
a finite-dimensional subspace of H , consisting of only increasing directions of J at
u0 and write L1 = L0 ⊕L. If v1 ∈ SL1⊥ and if there is a local peak selection pL1 of
J w.r.t. L1 near v1 s.t. pL1 is continuous at v1, u1 = pL1(v1) �∈ L1 and

(3.1) v1 = arg min
v∈S

L1⊥
J(pL1(v)),
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then the number dim(L) + 1 is called the local minimax index of the saddle point
u1 relative to the reference critical point u0.

Similar to Definition 2.3, one can use minimization or maximization to make the
definition unique. We focus on the instability information that the number dim(L)+
1 provides. There are several ways to define L0 depending on the information
available on the local structure of the reference critical point u0.
(1) If u0 is a minimax solution with a support L0, then L0 = L0 ⊕ {v0} where

u0 = pL0(v
0) for some local peak selection pL0 of J w.r.t. L0. By Lemma 2.1,

{L0, v
0} is maximum.

(2) If the orthogonal spectral decomposition H = H− ⊕ H0 ⊕ H+ as in (1.6) is
available at u0, where H0 is finite-dimensional, then L0 = H− ⊕ H0D where
H0D a maximum subspace of H0 consisting of decreasing directions of J at u0.
It is clear that such a subspace L0 is maximum.

(3) If u0 is a local linking with H = HD ⊕ HI as in (1.9) and (1.10), then simply
L0 = HD is maximum.

In all the above three cases, L0 and {L1, v1} are, respectively, the decreasing direc-
tion subspaces of J at u0 = pL0(v

0) and u1 = pL1(v
1), and L0 ⊂ L1 with

dim(L1) + 1 = dim(L0) + dim(L) + 1.

Since L0 consists of decreasing directions common to both u0 and u1, it is natural
to use the difference dim(L) + 1 to measure the local instability of u1 relative to
u0, in particular, when dim(L0) = ∞ and therefore dim(L1) = ∞.

As in the notation in Definition 3.1, if L0 is finite-dimensional and H = H−
0 ⊕

H0
0 ⊕ H+

0 and H−
1 ⊕ H0

1 ⊕ H+
1 are, respectively, the orthogonal spectral decompo-

sitions of H at u0 and u1, then we can prove the following theorems.

Theorem 3.1.

dim(L) + 1 ≤ MI (u1) + dim(H0
1 ∩ {L1, v1}) − dim(L0).

Proof. Similar to that of Theorem 2.2. �

Theorem 3.2. If the local peak selection pL1 near v1 is differentiable at v1, respec-
tively, then

dim(L) + 1 = MI (u1) + dim(H0
1 ∩ {L1, v1}) − dim(L0).

Proof. Similar to that of Theorem 2.4. �

Theorem 3.3. If the local peak selections pL0 near v0 and pL1 near v1 are differ-
entiable at v0 and v1, respectively, then

dim(L) + 1 = MI (u1) − MI (u0) + dim(H0
1 ∩ {L1, v1}) − dim(H0

0 ∩ {L0, v
0}).

Proof. Similar to that of Theorem 2.4. �

4. Applications

Consider a nonlinear functional

(4.1) J(u) =
1
2
〈Au, u〉 −

∫
Ω

F (x, u(x)) dx, ∀u ∈ H

where Ω is a bounded open domain in R
n with smooth boundary ∂Ω and H = H(Ω)

is a Hilbert space of functions defined on Ω, A : H → H is a bounded self-adjoint
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linear operator with the orthogonal spectral decomposition H = H− ⊕ H0 ⊕ H+

as stated in (1.6) and F (x, ξ) =
∫ ξ

0
f(x, t) dt. The function f(x, ξ) satisfies some

standard regularity and growth hypothesis s.t. J is C2 and has a local minimum
at u = 0. In addition, we assume that

(H) f ′
ξ(x, tξ) >

f(x, tξ)
tξ

∀x ∈ Ω, t > 0, ξ �= 0.

For all numerical examples computed in [20] and [21], condition (H) is satisfied. If
u∗ ∈ H is a saddle point of J , let u = u∗

‖u∗‖ and tu = ‖u∗‖ > 0. For all t > 0, we
have

J(tu) =
t2

2
〈Au, u〉 −

∫
Ω

F (x, tu(x)) dx

and
dJ(tu)

dt
|t=tu = tu〈Au, u〉 −

∫
Ω

f(x, tuu(x))u(x) dx = 0

or

〈Au, u〉 =
∫

Ω

f(x, tuu(x))
tuu(x)

u2(x) dx.

Condition (H) implies that f(x,tu(x))
tu(x) is monotone in t > 0; therefore, such a tu > 0

is unique and satisfies

d2J(tu)
dt2

|t=tu = 〈J ′′(tuu)u, u〉 = 〈Au, u〉 −
∫

Ω

f ′
ξ(x, tuu(x))u2(x) dx

< 〈Au, u〉 −
∫

Ω

f(x, tuu(x))
tuu(x)

u2(x) dx = 0.(4.2)

That is, inequality (2.25) is satisfied. Thus u∗ must be a local maximum point of
J in the direction of u. We obtain

Proposition 4.1. Let condition (H) be satisfied and u = 0 be a local minimum
point of J . If u∗ = tuu = arg minv∈SH J(p(v)) is a nonzero critical point of J with
‖u‖ = 1 and tu > 0, then the local peak selection p : v ∈ SH → tvv p w.r.t. L = {0}
is differentiable at u and, consequently, u∗ is not in the nullspace of J ′′(u∗) and
MI(u∗) = 1.

For superlinear elliptic equations studied in [20] and [21], we have

〈Au, u〉 =
∫

Ω

|∇u(x)|2 dx.

Thus H− = H0 = {0}. We first let L = {0} and find a minimax solution u∗ by our
local minimax method. From our analysis above we have MI(u∗) = dim(L)+1 = 1
even if u∗ is degenerate.

Next let w1 = u∗, set L = {w1} and write w2 = t∗v∗ + t∗1w1. Then (2.26)
becomes

(4.3)(
〈Av∗, v∗〉 −

∫
Ω

f ′
ξ(x, w2(x))v∗2(x) dx

)(
〈Aw1, w1〉 −

∫
Ω

f ′
ξ(x, w2(x))w2

1(x) dx
)

−
(
〈Av∗, w1〉 −

∫
Ω

f ′
ξ(x, w2(x))v∗(x)w1(x) dx

)2

> 0.
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This inequality has been numerically checked to be satisfied for each saddle point
w2 = argminv∈S

L⊥ J(p(v)) to every superlinear elliptic equation computed in
[20, 21], which concludes MI(w2) = 2. The inequality (2.21) corresponding to the
saddle point with higher order instability index has also been numerically checked
to be satisfied for each superlinear elliptic equation computed in [20, 21].

Next we consider the case where

(4.4) 〈Au, u〉 =
∫

Ω

(
|∇u(x)|2 − λu2(x)

)
dx

where λk < λ < λk+1 and λk is the k-th eigenvalue of the Laplacian operator
−∆. Thus we have H0 = {0} and H− = {u1, . . . , uk} where u1, . . . , uk are the
eigenfunctions of −∆ corresponding to the first k eigenvalues λ1, . . . , λk. When f
is superlinear, it is clear that MI(0) = k. Thus we set L0 = {u1, . . . , uk}. First let
L = {0} and let the support L1 = L0⊕L. Then we apply the local minimax method
to find a saddle point u∗. The instability index of u∗ relative to 0 is dim(L)+1 = 1.
Next we set w1 = u∗ and L = {w1}, use the local minimax method with the support
L1 = L0 ⊕L to find a new saddle point whose instability index relative to 0 will be
dim(L) + 1 = 2, etc.

As a last example, we consider a semilinear Schrodinger equation of the form
[33]

(4.5) −∆u + V (x)u = f(x, u), u ∈ H1(Rn),

where V and f are periodic with respect to x, 0 lies in a gap of the spectrum of
the operator A : u → −∆u + V (x)u and f(x, 0) = 0 satisfies some standard regu-
larity and growth conditions [33] to guarantee the existence of multiple nontrivial
solutions. The corresponding generic energy functional is

J(u) = 〈Au, u〉 −
∫

Rn

F (x, u) dx

where

〈Au, u〉 =
∫

Rn

{
1
2
|∇u|2 +

1
2
V (x)u2

}
dx and F (x, t) =

∫ t

0

f(x, τ) dτ.

Then H ≡ H1(Rn) = H− ⊕ H+, where H− and H+ are, respectively, the infinite-
dimensional maximum negative and positive definite subspaces of the operator A.
It is clear that 0 is a trivial solution with MI(0) = +∞. As a matter of fact, any
solution has MI = +∞. Thus we cannot distinguish their local instabilities by using
their Morse indices or (weak) local linking indices. However, by our formulation
above, we can set L0 = H− and use our local minimax method with a support
L1 = L0 ⊕ L for some closed subspace L ⊂ H+. If we can find a local minimax
solution u∗, then the local minimax index of u∗ relative to the trivial solution 0 is
dim(L)+1. Thus local instability analysis of different solutions can be carried out.
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Boston, 1993. MR 94e:58023

8. Y. S. Choi and P. J. McKenna, A mountain pass method for the numerical solution of semi-
linear elliptic problems, Nonlinear Analysis, Theory, Methods and Applications, 20 (1993),
417-437. MR 94c:65133

9. Y. Chen and P. J. McKenna, Traveling waves in a nonlinearly suspended beam: Theoretical
results and numerical observations, J. Diff. Equ., 136 (1997), 325-355. MR 98g:73014

10. C.V. Coffman, A nonlinear boundary value problem with many positive solutions, J. Diff. Eq.,
54 (1984), 429-437. MR 86e:35055

11. E.N. Dancer, The effect of domain shape on the number of positive solutions of certain non-
linear equations, J. Diff. Eq., 74 (1988), 120-156. MR 89h:35256

12. W.Y. Ding and W.M. Ni, On the existence of positive entire solutions of a semilinear elliptic
equation, Arch. Rational Mech. Anal., 91 (1986), 238-308. MR 87b:35056

13. Z. Ding, D. Costa and G. Chen, A high linking method for sign changing solutions for semi-
linear elliptic equations, Nonlinear Analysis, 38 (1999) 151-172. MR 2000d:65208

14. J.J. Garcia-Ripoll, V.M. Perez-Garcia, E.A. Ostrovskaya and Y. S. Kivshar, Dipole-mode
vector solitons, Phy. Rev. Lett., 85 (2000), 82-85.

15. J.J. Garcia-Ripoll and V.M. Perez-Garcia, Optimizing Schrodinger functionals using Sobolev
gradients: Applications to quantum mechanics and nonlinear optics, SIAM Sci. Comp., 23
(2001), 1316-1334. MR 2002k:35266

16. I. Kuzin and S. I. Pohozaev, Entire Solutions of Semilinear Elliptic Equations, Birkhauser,
Boston, 1997.

17. A. C. Lazer and S. Solimini, Nontrivial solutions of operator equations and Morse indices of
critical points of min-max type, Nonlinear Analysis, 12 (1988), 761-775. MR 89i:58018

18. J. Q. Liu and S. J. Li, Some existence theorems on multiple critical points and their applica-
tions, Kexue Tongbao, 17 (1984).

19. S.J. Li and M. Willem, Applications of local linking to critical point theory, J. Math. Anal.
Appl., 189 (1995), 6-32. MR 96a:58045

20. Y. Li and J. Zhou, A minimax method for finding multiple critical points and its applications
to semilinear PDE, SIAM J. Sci. Comp., 23 (2001), 840-865. MR 2002h:49012

21. Y. Li and J. Zhou, Convergence results of a local minimax method for finding multiple critical
points, SIAM J. Sci. Comp., 24 (2002), 865-885. MR 2004a:58013

22. Y. Li and J. Zhou, Local characterization of saddle points and their Morse indices, Control
of Nonlinear Distributed Parameter Systems, pp. 233-252, Marcel Dekker, New York, 2001.
MR 2002c:49048

23. Y.Y. Li, Existence of many positive solutions of semilinear elliptic equations on annulus, J.
Diff. Eq., 83 (1990), 348-367. MR 91a:35073

24. J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag,
New York, 1989. MR 90e:58016

25. Z.H. Musslimani, M. Segev, D.N. Christodoulides and M. Soljacic, Composite Multihump
vector solitons carrying topological charge, Phy. Rev. Lett., 84 (2000) 1164-1167.

26. Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math.
Soc., 95 (1960), 101-123. MR 22:2756

27. W.M. Ni, Some Aspects of Semilinear Elliptic Equations, Dept. of Math., National Tsing
Hua Univ., Hsinchu, Taiwan, Rep. of China, 1987.

28. W.M. Ni, Recent progress in semilinear elliptic equations, in RIMS Kokyuroku 679, Kyoto
University, Kyoto, Japan, 1989, 1-39.

29. P. Rabinowitz, Minimax Method in Critical Point Theory with Applications to Differential
Equations, CBMS Regional Conf. Series in Math., No. 65, AMS, Providence, 1986. MR
87j:58024

30. E. A. Silva, Multiple critical point for asymptotically quadratic functionals, Comm. Part. Diff.
Equ., 21 (1996), 1729-1770. MR 97m:58037

http://www.ams.org/mathscinet-getitem?mr=97m:35076
http://www.ams.org/mathscinet-getitem?mr=2001c:35079
http://www.ams.org/mathscinet-getitem?mr=92i:58032
http://www.ams.org/mathscinet-getitem?mr=94e:58023
http://www.ams.org/mathscinet-getitem?mr=94c:65133
http://www.ams.org/mathscinet-getitem?mr=98g:73014
http://www.ams.org/mathscinet-getitem?mr=86e:35055
http://www.ams.org/mathscinet-getitem?mr=89h:35256
http://www.ams.org/mathscinet-getitem?mr=87b:35056
http://www.ams.org/mathscinet-getitem?mr=2000d:65208
http://www.ams.org/mathscinet-getitem?mr=2002k:35266
http://www.ams.org/mathscinet-getitem?mr=89i:58018
http://www.ams.org/mathscinet-getitem?mr=96a:58045
http://www.ams.org/mathscinet-getitem?mr=2002h:49012
http://www.ams.org/mathscinet-getitem?mr=2004a:58013
http://www.ams.org/mathscinet-getitem?mr=2002c:49048
http://www.ams.org/mathscinet-getitem?mr=91a:35073
http://www.ams.org/mathscinet-getitem?mr=90e:58016
http://www.ams.org/mathscinet-getitem?mr=22:2756
http://www.ams.org/mathscinet-getitem?mr=87j:58024
http://www.ams.org/mathscinet-getitem?mr=97m:58037


INSTABILITY ANALYSIS OF SADDLE POINTS 1411

31. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.
MR 84d:35002

32. S. Solimini, Morse index estimates in min-max theorems, Manuscripta Math., 63 (1989),
421-453. MR 90f:58028

33. C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrodinger equation, Com-
mun. Part. Diff. Equat., 21 (1996), 1431-1449. MR 98i:35034

34. Z. Wang, On a superlinear elliptic equation, Ann. Inst. Henri Poincare, 8 (1991), 43-57. MR
92a:35064

35. M. Willem, Minimax Theorems, Birkhauser, Boston, 1996. MR 97h:58037
36. J. Zhou, A min-orthogonal method for finding multiple saddle points., J. Math. Anal. Appl.,

291 (2004), 66-81.

Department of Mathematics, Texas A&M University, College Station, Texas 77843

E-mail address: jzhou@math.tamu.edu

http://www.ams.org/mathscinet-getitem?mr=84d:35002
http://www.ams.org/mathscinet-getitem?mr=90f:58028
http://www.ams.org/mathscinet-getitem?mr=98i:35034
http://www.ams.org/mathscinet-getitem?mr=92a:35064
http://www.ams.org/mathscinet-getitem?mr=97h:58037

	1. Introduction
	Morse index
	Local linking index

	2. A local minimax index and its relation to MI and LLI
	3. Instability relative to a reference critical point
	4. Applications
	References

