MATHEMATICS OF COMPUTATION

Volume 74, Number 251, Pages 1053-1065

S 0025-5718(04)01696-5

Article electronically published on September 10, 2004

CONVERGENCE
OF A STEP-DOUBLING GALERKIN METHOD
FOR PARABOLIC PROBLEMS

BRUCE P. AYATI AND TODD F. DUPONT

ABSTRACT. We analyze a single step method for solving second-order parabolic
initial-boundary value problems. The method uses a step-doubling extrapola-
tion scheme in time based on backward Euler and a Galerkin approximation
in space. The technique is shown to be a second-order correct approximation
in time. Since step-doubling can be used as a mechanism for step-size con-
trol, the analysis is done for variable time steps. The stability properties of
step-doubling are contrasted with those of Crank-Nicolson, as well as those of
more general extrapolated theta-weighted schemes. We provide an example
computation that illustrates both the use of step-doubling for adaptive time
step control and the application of step-doubling to a nonlinear system.

1. INTRODUCTION

In this paper we consider a numerical method for solving second-order parabolic
initial-boundary value problems. This single step method consists of taking two
half steps of backward Euler over a time interval to obtain one approximate solution
and then a single step over that same interval to obtain another [8 12]. Having
both approximations gives us two things: the two approximations can be compared
to get an estimate of the size of the time-integration error; and the two first-
order correct approximations can be extrapolated to obtain a second-order correct
approximate solution. The first of these benefits can be used to obtain a simple,
yet effective, adaptive time-stepping algorithm. We use a Galerkin method for the
spatial discretization.

The method can also be viewed as a rational approximation to the exponential
(but not a Padé approximation [9]). Bramble and Sammon [3] showed convergence
in the case of fized time steps for a class of single step methods, including this
method, that can be represented as rational approximations to the exponential.

We compare the stability properties of step-doubling with those of Crank-Nicol-
son for the case of a first-order linear ordinary differential equation, as well as those
of more general extrapolated theta-weighted schemes.
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We analyze step-doubling using an energy method. Since one of the reasons to
use step-doubling is step-size control, the analysis is done for variable time steps.
In this paper, we present a particular step-size control strategy for step-doubling.
A large number of our friends and collaborators have successfully used similar
strategies [1l, 4l 5] [6], [7} [10} [11]. We conjecture, based on watching our colleagues,
that choosing a reasonable first guess at a tolerance based on a change in the
solution is easier for most people than picking a bound for some second or third time
derivative which would appear as a time truncation term that forces the differential
equation. One feature of the analysis presented here is that the size of a time step
is limited to less than three halves the size of the previous time step.

We provide an example computation that illustrates both the use of step-doubling
for adaptive time step control and the application of step-doubling to a nonlinear
system.

2. THE PARABOLIC PROBLEM

We consider a second-order linear parabolic partial differential equation with ini-
tial condition and homogeneous Dirichlet boundary condition on a bounded spatial
domain 2 and a time interval J = [to, tf]:

(2.1) Oy — V- a(x)Vy + bz, t) - Vy = f(x,1), e te,
y(x,t) =0, r e, te
y(x,to) = yo(x), x €8,

where V and V- denote the gradient and divergence, respectively, in . A weak
form for this equation is that for every v € H} (1),

(2.4) (Ory,v) + aly,v) + by, v) = (f,v),

where (-,-) denotes the L? inner product, and the a and b denote the quadratic
forms

a(p, ) = /Qa(x)Vgo -V dax,
o) = [ Oat) - V)i do

The distinction between the forms and the coefficients a(x) and b(z,t) should be
clear from context. We also use the form [a+b] defined by

(2.5) [atb](p, ¢) = alp, ¥) + b(p, ¥).

We assume that the following conditions hold:

Condition 2.1. The functions a(x) and b(x, t) satisfy a(x) > a > 0 and |b(xz,t)] < b
forxeQ, teJ.

Condition 2.2. The form [a+)] is nonsingular.
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3. THE METHOD

To solve (ZI)-([23), we use a step-doubling method based on a backward Euler
method with local in time extrapolation. We consider a nonuniform time discretiza-
tion, tg < t1 < - <ty =ty. Weset At, =t, —tp_q, forn =1,...,m. Let
¢n denote the value of ¢ at time ¢, and ¢,_1/o denote the value of ¢ at time
(tn + tn-1)/2. We let M denote a finite dimensional subspace of H}(Q2). We take
Dy, _1/2, Dy, Sy Yn-1 to be in M. We solve the system

B (P ) e Dunt) = (famagao)
(32) (Pt 200) + D) = (o)
(3.3) (%,0)4-[@4—1)](3”,1)) = (fu0).

The computed solution at time ¢, is set to Y, = 2D,, — S,.

4. USING STEP-DOUBLING TO CONTROL THE TIME STEP

The idea of using step-doubling to estimate the time-integration error goes back
at least to Gear [8], and Shampine [12]| provides an overview of step-doubling meth-
ods as well as some issues with local extrapolation. In this section we provide a
description of one of the ways that we have used step-doubling and remark on some
of the aspects of its use that we like. There is a considerable degree of arbitrariness
to the choices we make, and there are many other ways that one could deal with the
details of using this method. The step-doubling process studied here provides two
first-order correct approximations in time for each time step, S,, and D,,. These
can be compared to obtain a measure of the local time-truncation error. We choose
a norm, || -], and a tolerance, tol. If ||S,, — D,|| < tol, we accept the results
of the step and extrapolate to remove the first-order component of the error. If
[ISn, — Dy|| > tol, we reject the results of the step and recalculate using a smaller
time step. In addition, we can adjust the next time step by the closeness of the
error to the tolerance. The choice of the norm can depend strongly on what one
feels is important about the solution.

An example scheme that tries to maintain the local time truncation error between
itol and %tol is given below. Take o = V2.

o If ||S,, — Dy > tol, then we reject the step, and try again with a step size
At

>
e If ||S,, — D, || < tol, then we accept the step and possibly adjust the next
step according to the rules.

If ||S,, — Dy > 2 then At = At/o.

If ||S, — Dl < tT()l, then At = Ato, provided the last three steps
were not rejected.

The choice of o = v/2 is reasonable, but all that is needed is some number slightly
greater than 1. With the o given, if we are very far below the proper step size,
At will double every four steps or increase by a factor of 1024 in 40 steps. The
reason for not increasing the step even if the error is far below the tolerance is
that a rejected step indicates a dramatic change in the behavior of the solution;
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if we stepped across such a change and rejected a step we may well have a very
small error indicator, but we have been warned there is roughness just ahead. In
our experience this approach leads to a very small fraction of the time steps being
rejected.

Two more remarks about step selection may be useful. If we have a target time
tprint that we want to be the end of a step, then we add a couple of rules to the
step selection. When starting a step with a recommended time step that would
take us past tprint, adjust the step to hit it exactly. When starting a step with a At
that will not make it to tprint, if fprint 1S less than two such steps away, try to take
a step with size half the distance to ¢ppint. This pair of rules allows us to land at
the given time without decreasing the size of the step by a large factor, something
that is important given the moderate increases permitted by the rules. Of course,
even these steps, where special rules were used to pick the At, can be rejected. The
second situation that we have seen frequently is that the system is nonlinear and
must be solved approximately. In this case the difficulty of solving the nonlinear
system should be included in the choice to reject a step or to adjust the size of the
step.

We note that the determination of tol for a particular application still requires a
convergence study; this would be true even if we did not do the local extrapolation
to try to remove the leading term in the error.

As mentioned in the Introduction, a number of our colleagues have used step-
doubling with time-stepping strategies similar to the one above [T} [}, [5], [6] [7], [T0} [TT].
We believe, based on this common experience, that most people will find that
choosing a reasonable initial tolerance is easier than bounding second- and third-
order derivatives in a time truncation term.

5. A COMPARISON WITH CRANK-NICOLSON
AND EXTRAPOLATED THETA-WEIGHTED METHODS

We consider the problem y’ = Ay, where A is a diagonalizable matrix. If —a
is an eigenvalue of A, we solve 1y = —ay over a time step At, by step-doubling
extrapolation to get

2
1 1
Y,=|2 - Yo-1,
<1 + %) 1+ aAt, '
and by Crank-Nicolson to get

2 — alAt,
Y,=|—— )Y, 1.
" <2+aAtn> nt

It should be noted that step-doubling involves three times the work of Crank-
Nicolson. These rational approximations to exp(—aAt,,) are compared in Figure [Tl
for aAt, € RT. Note that the amplification factor for Crank-Nicolson tends to
—1 as aAt gets large, so grossly under-resolved components bounce while slowly
decaying.

We consider a theta-weighted scheme for the problem y' = —ay. A single step
of a theta-weighted scheme gives

Sn - Ynfl

AL —0aSy, + (0 — 1)aY,_1, 0<0< 1.
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——  Step-doubling
— —  Crank-Nicolson
= exp(-aAt)

0 10 20 30
a Al tn

FIGURE 1. Amplification factors of step-doubling and Crank-
Nicolson for the problem 3y’ = —ay.

0 10 20 30 40 50
a At

FIGURE 2. Amplification factors of step-doubling for various val-
ues of § for a theta-weighted method.

If we take two half steps over this time interval to get an approximate solution D,
and then extrapolate Y,, = 2D,, — S,,, we get a second-order correct approximation

2
v — o L+ (0 -1\ 14 (0—1)aAt,
" 1+ 0950 1+ faAt,

Yo_1.

For 0 <60 < %, step-doubling is only conditionally stable. In particular, by taking
0= %, step-doubling takes Crank-Nicolson, a stable second-order correct method,

and yields only a conditionally stable second-order correct method. Figure[2shows
the amplification factors for various values of 6.
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6. CONVERGENCE

In this section we state the main convergence result. The result is stated with
some degree of generality with respect to the approximation space in space.

Let ||-|| and ||-|| -1 denote the L2-norm and H ~!-norm, respectively, over 2. By
H~! we mean the dual space of H}. Let || - |4 denote the norm induced by af(-, -).
We denote by LP(t;,t; X) the LP norm on (¢;,¢5) of the X-norm of a function.

Let 0y denote dy/0t and y,, denote y(-,t,). Define, for n =1,...,m,

(At,)?

dn_1/2 = Yn-1/2t 3 O Yn—1/2,
At,)?
d, = Yn + ( 4 ) 3fyn

These functions will be used in the analysis because they are closer to the approx-
imate solutions than the corresponding value of y by one power of At,.

We use elliptic projections in our convergence result [14]. Let P be the projection
with respect to the [a+b] form where we choose P = W € M such that, for every
v €M, [atb](¢ — W,v) = 0. As is well known, Py, is a good approximation of y,,.
Thus, bounding the difference between Y,, and Py, is sufficient. We set

N = Yn — PYn, Un =Yy — Pyn,
Xn:dn_Pdn7 5n:Dn_Pdn7
Xn—-1/2 = dn—1/2 - Pdn—l/Za 5n—1/2 = Dn—1/2 - Pdn—1/2~
For a function of time ¢, we define (At)¥¢ to be (At,)* ¢ on (t,_1.tn).

Theorem 6.1. Assume At, < %Atn,l for 2 < n < m, where £ is an arbitrary
positive constant less than one. There exist positive constants At. and C, dependent

only on a, b, and &, such that if At, < At. for 1 <n <m, then
W2 < © (1190117 + Ata 963
+ (I - P)8ty|‘%2(0,tm;H*1) + At — P)atoH%?(O,tm;H*l)

+ (A2 x(0,0 i) + 1 (AO2Y32(0,0, 001 )-

7. PROOF OF THE CONVERGENCE RESULT

For the homogeneous case of equations (2.1)—(23) with b = 0, with constant time
steps and without spatial discretization, this method can be analyzed by eigenvalue
expansion methods (see Section Bl). For the generality desired in this paper, par-
ticularly the use of variable time steps, we show second-order convergence in time
by an energy analysis [13].

Let C* denote an arbitrary positive constant with dependencies at most on g
and b. Let C¢ denote an arbitrary positive constant with dependencies at most on
a,band & Let K = Z_)/\/@.

Adding equations (Bl) and (3:2)) and subtracting equation (B3], recalling that
Y, =2D, — S, gives

(7.1) (%,v) + [a+D] (Yo, v) + [aHD](Dy—1/2 — Dy v) = (fa—1/2,v).
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For the true solution, we consider the variational form equation (2.4)) at time ¢,,_; 2
to get

1) (5= 0) + st ) + 12~ vor0)

= (fn71/2a U) + (pm ’U),

where

Yn — Yn—1

= - 8 n— .
Pn At tYn—1/2

Subtracting equation (Z2) from (1) gives

Uy — U
<T17U) + a(ﬂn,v) + a(5n71/2 - 57La U) = Gn(“)v
where

Gn(’l]) = (% - pn7v) - b(ﬂn,’l]) - b(5n71/2 - 5%)”)'

We take v = 9, to get

1
s (10l = 19n1l® + 19 — Inal?) + 19l

2At,
+ a(én—l/Q - 5n719n) = Gn(ﬁn)

Since %||19n||?4 +a(0n = Op—1/2,0n) + [|0n — (5n,1/2||?4 =|9n/2+ 6 — (5n,1/2||124, we
have

1 3
(13) 5ar (1902 = 190l + 19 = 90 2) + 310
+ ||79n/2 + 0n — 5n71/2||,24 - ||5n - 5n71/2||il = Gn(ﬁn)-
It is apparent that we need to control d,, —d,,_1/2. We can manipulate equation

(Z4) to obtain
dy 172 — Yn—
(7.4) <1A/i—/31,v> + [at+b](dp—1/2,v)
At,)?
8

= (fn-1/2:v) + (Hn—1/2,v) + ( [a—l—b](aton—l/Z;v);

(7.5) <%ﬂ’;‘2m,v> + [ab](dp, v)

(At,)?
4

= (fnsv) + (ptn; 0) + [atb] (7 yn, v),

where the time truncation terms are

. dn71/2 “Yn-1 o
Bp—1/2 = —Atn/Z tYn—1/2,
dn — dn71/2
= ———= — Oyn-
Mo Atn/2 tYn

The terms ji,,_y /2 and p,, will be seen to be of second order in time.
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Subtracting equation (7)) from (B1l) and equation (ILH) from (B2 gives

On_1/2 — Un—
(7.5) (25 ) + by = R
Op — O
(77) (T;/Z,’U) + a(5n7'U) - Qn(v)a
where the operators
_ Xn—-1/2 -1
R,(v) = (—Atn/Z Mn—1/2,’0>
Aty,)?
B 4] 3212 0) — BB 20),
- Xn — Xn—1/2 . N (Atn)2 2 _
Q) = (MG o) — E a0, ) o).

If we set v = 0,,_1/2 — U1 in equation (7.6)) and v = &,, — d,,_1 2 in equation (7.7),
we obtain

2 1
(7.8) K 10n-1/2 = Inal® + 5 (10n-1/2lld = [9nalZ + [10n-1/2 = In1l2)

At,
= Rn(5n71/2 - ﬁn—l);
2 1
(79) ol — ol + 5 (18I — 15 jelld + 160 — G0 oll?)
= Qn(én - 6n—1/2)~
Subtracting equation (Z.6) from equation (1), with v = d,, — 0,,_1/2, gives
1

(7.10) -

(160 = 617201 = 16n—1/2 = In—1]® + 160 — 26,—1/2 + Fn—1]*)

+ ||5n - 5n71/2||?4 = Qn(én - 5n71/2) - Rn(én - 5n71/2)-
Adding equations (Z.8)—([ZI0) gives
1

(7.11) AL

(3116 = n—1/2lI> + 3)165—1/2 — In—1[I> + [|0n — 26,12 + In—1]?)

1
+ 5 (10l = 19n 113 + 10n-1/2 = 1% + 3ll6n = dn1/2[1%)
= Rn(én—l/Q - 19”,1) + 2Qn(§n - 6n—1/2) - Rn(én - 6n—1/2);

Equation (1)) provides the desired control of 8, —8,,_1 /2. We note that [|6,[/% +
16— 601214 = 2110n—1/2/12 = 2/6n— 26, —1/2]4 = 0. Then adding equation (Z.11])
to equation (3]) gives
(7.12)

1
= (192112 = 19112 4 61160-1/2 = 6ll? + 201612 = Is )
1
7 (319l = 20013 + 180 = 8011

1
+ 10all% + 5100 1/20% + 206172 = Pl )
- Gn(ﬁn) + Rn(én—l/Z - 197171) + 2Qn(6n - 6n—1/2) - Rn((sn - 6n—1/2)'
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We now require bounds on the right-hand side of equation (TI2]). We note that
[a+b](w, 2) < |lwlla|lz]la + K| w||a 2|, where we recall that K = b/,/a. Using
Holder’s Inequality and the inequality ||v|| g1 < (1/y/@)||v|la + ||v]|, we obtain the
following bounds on the operators:

M — Tin—1 1
_— + - —||v||a + ||V
(z=t |+ ol ) (gheta+ o)

TK[Onllalloll + Kll(6n-1/2 = dn)l[a 0],

Xn—1/2 — Nln—1 L
(Pe=zmge]| sl ) (Stolla el
612l o]

(At,)?

)
3
=
INA

=
3
=
INA

0L (1575 sl ol + K031l o).
Xn = Xn—-1/2 1
- ) (R K|
) < ([[Fog 2| el ) (ol Iel) + Kl
(Atn)?
+ 8L 07yl ol + K197l 1)

Let £ denote an arbitrary positive constant that is less than one. We use the above
bounds on Gy, R,, and @,, and assume At,, is sufficiently small. Then using the
arithmetic—geometric mean inequality, wz < ew? /2 + 22/(2¢), with the appropriate
< +
o oo e

choices of ¢, we obtain
2
H1>
+ C* (lpnllir—1 + ln—1y2llF-2 + llnllz—1)

(7.13)
Gn(Un-1) + Rn(6n—1/2 — In—1) + 2Qn(0n — 6p—1/2) — Rn(dn — dp_1/2)
Xn—1/2 = Nln—1 2 Xn = Xn—1/2
. S
b O (A (102l + 1020 12) + 100+ Cellton?

2
Mn — Tin—1
At,

4

H-1

+ E(6||5n 1/2 = On 12 4 216,,— 172 = Un—1l| )

1
3180 = Bucayo %+ 16015 + 51602l + 202 — P,

We recall that C* is an arbitrary constant with dependencies on at most a and b
and C¢ with dependencies on at most a, b and €.

We now need bounds on the H'-norms of p,,, ttn_1 /2, and pi,. Manipulation of
Taylor series gives the following equations for the errors due to approximating the
time derivatives (see [2] for details):

L[ ety =t
P = oo gyt dee [ B apy(an) at ).
At, < s 2 t s 2 t

n—1

1 tn—1/2 93
Fn—1/2 = 73~ (tn—1/2 —1)°07y(x,t) dt,
n n—1
At, [ f
fn = — (0Fyn — OFyn—1/2) + E/ (tn—1/2 — t)*0}y(, 1) dt.
n n—1/2
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Note that for a function ¢ € H!(z,w), we have the inequality p(w) — p(2) =
fzw 1-¢'(s) ds < /Jw — 2| [|¢]| 2(jz,w))- We then get the following bounds:

At,)3/?

(714) loalla-r < B e,
(At,,)3/?

(7.15) nasellas < B 0o,
(At,)3/?

(7.16) T

Using the bounds (ZI3)—(I6) and applying a discrete Gronwall’s Inequalitﬂ
to equation (TIZ) gives Theorem

8. AN EXAMPLE SYSTEM

We present an example system that illustrates the utility of step-doubling ex-
trapolation for the adaptive time integration of parabolic problems. Although the
parabolic system considered in the analysis is linear, we choose an example system
that is nonlinear in space to show the applicability of step-doubling to nonlinear
systems.

The approximate solutions computed in this section were obtained using the
freely available software toolkit BuGS [1]. BuGS is a toolkit for solving single space
dimensional, nonlinear systems of partial differential equations which are at most
order one in time and order two in space. The user defines the spatial discretiza-
tion of the equations by writing a residual function based on first-order backward
differences in time. BuGS then uses the step-doubling method described in this pa-
per to get a second-order accurate in time implicit finite difference scheme. BuGS
also features step control for the convergence of Newton’s method and automatic
approximation of the Jacobi matrix.

For the spatial discretization, we used finite differences in space which correspond
to continuous piecewise linear finite elements with mass lumping as the quadrature
rule [13].

8.1. Problem. We consider the system, for 8(z,t), p(x,t), and a(z,t):
(8.1) B — (BBz)z — K(Bpz)z = 0, z €10,a], t €10,TY],
(8.2)  pi— B — K(Bpz). +rate(p,a) = 0, z €10,a], t €10,TY],
(8.3) ap —rate(p,a) = 0, z €10,qa], t €10,TY%],
where

(8.4) rate(p, ) = max{Cp(max — @), 0}.

We take the boundary conditions
(85) B = pz =0 on {Oa a’}

ITake m positive and vp nonnegative. Suppose that for 1 < j < m, At; is positive, v;, a;,

v, and B; are nonnegative, and At;3; < % Let Cr = exp(2.2 Z;nzl B;Atj;). If, for each j,

% +75 < aj +B;(vj +vj—1), then vm + 377 1 Aty < Cm{vo + 3572 o At;}. Note that
if B; < g for every j and some constant g, then Cpn, < exp(2.2¢tm).
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FIGURE 3. Bacterial population density profiles. Profiles are t = 2 apart.

0.15

0.1

0.05

FIGURE 4. Repellent concentration profiles. Profiles are t = 2 apart.

and the initial conditions

B(x,0) = max{b — x2,0}, x € 1[0,al,
(86) P(l', O) =0, T € [07 a]v
a(z,0) =0, z € [0, al.

This system models the movement of bacteria on a petri dish. The bacteria are
moving away from their own waste. The dependent variable § is the bacterial
population density, p is the concentration of waste or repellent, and « is the amount
of repellent absorbed by the laboratory medium.

8.2. Results. We consider the system of equations (BI)—(B6]) with constants K =
100, C' = 100, tmax = 0.06, a = 25, b = 0.5, Ty = 16, and with N = 501 uniform
spatial nodes. BuGS gives Figures BHbl as part of its output. Figures BHBlshow the
solutions as time profiles; each curve is the solution over space at a different point
in time. The profiles are At = 2 apart. Figure [6lshows the time steps taken during
the solution of the system of partial differential equations. The oscillations in the
time steps are due to the degenerate diffusion in the equations. When the sharp
bacterial front enters a new space interval, step-doubling measures this as a more
difficult problem and cuts the time step.
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X

FI1GURE 5. Absorbed repellent concentration profiles. Profiles are
t = 2 apart.

FIGURE 6. Step size for the calculation, measured log;,. The os-
cillations are due to degeneracies in the parabolic system. When a
new space interval is breached by the bacterial front, the error as
measured by step-doubling increases.

For adaptivity in time, if s is the solution from the single step and d the solution
from the two half-steps, then we required ||d — s||oc < 0.001 as the criterion for
accepting a step. For other computational details, see the BuGS User Guide [1].

9. SUMMARY

In this paper we discussed the use of step-doubling for time integration of par-
abolic partial differential equations. We presented one way to implement the step-
doubling algorithm that we have found particularly effective, and then compared
step-doubling with Crank-Nicolson and theta-weighted extrapolation methods. The
core of the paper consisted of a convergence analysis that was sufficiently general to
allow for variable time steps, a useful result given that step-doubling is meant to be
used as an adaptive method. One corollary of the convergence theorem is that the
step-doubling Galerkin method is order h%+ (At)?, where h is the spatial mesh size,
when the approximation space in space is the space of continuous piecewise linear
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functions. A spatial discretization using center finite differences corresponds to the
use of continuous piecewise linear functions with mass lumping as the quadrature
rule. We presented an example system whose numerical solution demonstrates the
use of step-doubling for adaptive time-stepping, as well as its extension to nonlinear
problems.
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13.

14.
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