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POINTWISE ERROR ESTIMATES
OF THE LOCAL DISCONTINUOUS GALERKIN METHOD

FOR A SECOND ORDER ELLIPTIC PROBLEM

HONGSEN CHEN

Abstract. In this paper we derive some pointwise error estimates for the
local discontinuous Galerkin (LDG) method for solving second-order elliptic
problems in RN (N ≥ 2). Our results show that the pointwise errors of both
the vector and scalar approximations of the LDG method are of the same
order as those obtained in the L2 norm except for a logarithmic factor when
the piecewise linear functions are used in the finite element spaces. Moreover,
due to the weighted norms in the bounds, these pointwise error estimates
indicate that when at least piecewise quadratic polynomials are used in the
finite element spaces, the errors at any point z depend very weakly on the true
solution and its derivatives in the regions far away from z. These localized
error estimates are similar to those obtained for the standard conforming finite
element method.

1. Introduction

The aim of this paper is to derive some pointwise error estimates of the local dis-
continuous Galerkin (LDG) method for solving the second order elliptic problems.
The LDG method is a discontinuous Galerkin method in the mixed formulation and
was introduced by Cockburn and Shu [15]. The LDG method has been used for
solving different types of differential equations including elliptic equations ([14]).
A rigorous error analysis in the L2 norm for the LDG method can be found in
Castillo, Cockburn, Perugia and Shötzau in [9]. To describe our results, we state
that the best error estimate in the L2 norm obtained in [9] for the LDG method is
the following:

(1.1) ‖p− ph‖L2(Ω) + h‖u− uh‖L2(Ω) ≤ Ch1+r‖p‖H1+r(Ω).

Here, Ω ⊂ RN (N ≥ 2), (p,u) ∈ H1+r(Ω)×Hr(Ω)N and (ph,uh) are the true and
approximate solutions of the LDG method, respectively, and r ≥ 1 is the order of
the polynomials used in the finite element space. The pointwise error estimates for
p−ph and u−uh obtained in this paper take the following form (see Theorems 3.1
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and 4.1): for any z ∈ Ω and 0 ≤ s ≤ r − 1,

|(p− ph)(z)| + h|(u − uh)(z)|(1.2)

≤ C| lnh|s̄ (‖σsz,h(p−Qhp)‖L∞(Ω) + h‖σsz,h(u − Πhu)‖L∞(Ω)

)
,

where σsz,h(x) = hs/(|x − z| + h)s, s̄ = 0 if 0 ≤ s < r − 1 and s̄ = 1 if s = r − 1,
and Qh and Πh are, respectively, L2 projections into the scalar and vector finite
element spaces. This result, along with the approximation properties of the finite
element spaces, indicates that the pointwise errors of both the vector and scalar
solutions of the LDG method are of the same order as the corresponding errors
measured in the L2 norm, except the logarithmic factor | lnh| for the finite element
method with the first order approximation (r = 1). Due to the weight function
σz,h, we can see that, when at least piecewise quadratic polynomials are used in
the finite element spaces, these errors at any point z are dependent on the true
solution mainly at points near z and their dependences on the true solution in the
regions far away from z is weak. These localized error estimates are similar to
those obtained by Schatz [22] for the standard continuous Galerkin method and by
Demlow [16] for the standard conforming mixed finite element method. We also
mention that some localized pointwise error estimates for a discontinuous Galerkin
method in its primal formulation have been obtained in Chen and Chen [11]. We
note that the estimate (1.2) reduces to the following global maximum norm error
estimate when s = 0:

‖p− ph‖L∞(Ω) + h‖u−uh‖L∞(Ω) ≤ C| lnh|r̄(‖p−Qhp‖L∞(Ω) + h‖u−Πhu‖L∞(Ω)),

where r̄ = 0 if r > 1 and r̄ = 1 if r = 1. In a forthcoming paper, we will derive
pointwise posterior error estimates for the LDG method so that efficient adaptive
algorithms can be developed for local grid refinements.

The rest of the paper is organized in the following way. In Section 2, we define
notation and the local discontinuous Galerkin method and collect some known
results. In Section 3, we state and prove the pointwise error estimate for the scalar
approximation. The corresponding pointwise error estimate for the vector solution
is in the last section.

2. Preliminaries

For the sake of simplicity, we consider the following model elliptic problem with
homogeneous Dirichlet boundary condition:

(2.1) −∆p = f in Ω, p = 0 on ∂Ω,

where Ω ∈ RN (N ≥ 2) is a bounded domain with smooth boundary ∂Ω and f is
a given function.

We shall use the standard notation for the Sobolev spaces and their norms. For
any subdomain D ⊂ Ω, nonnegative integer � and real number 1 ≤ t ≤ ∞, denote
the Sobolev spaces by W �,t(D) = {v : ‖v‖W �,t(D) <∞} with

‖v‖W �,t(D) =

(
�∑
i=0

|v|2W i,t(D)

)1/2

, |v|W i,t(D) =


∑

|α|=i

∫
D

∣∣∣∣∂αv(x)∂xα

∣∣∣∣
t

dx




1/t

.

We also adopt the usual notation for H�(D) = W �,2(D) and Lt(D) = W 0,t(D).
Denote by (·, ·) the inner product in L2(Ω) given by (u, v) =

∫
Ω u(x)v(x)dx. For
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� ≥ 0 and 1 ≤ t <∞, the negative norm ‖ · ‖W−�,t(D) is defined as follows:

‖v‖w−�,t(D) = sup
ϕ∈C∞

0 (D)

(v, ϕ)
‖ϕ‖W �,t′(D)

,

where 1/t + 1/t′ = 1 and C∞
0 (D) denotes the space of functions with continuous

derivatives of arbitrary order and compact supports in D. We write H−�(D) =
W−�,2(D).

To introduce the discontinuous Galerkin method, let Jh denote a partition of
the domain Ω into a finite collection of Nh open subdomains Kj, j = 1, 2, · · · , Nh,
such that

Ω̄ =
⋃

Kj∈Jh

K̄j , and Ki ∩Kj = ∅, if i 	= j.

We assume that the partition Jh is globally shape regular. To be more precise, let
Bρ(z) denote the ball centered at z ∈ RN and with radius ρ and set

hK = diam(K), h = max
K∈Jh

hK , ρK = max{ρ : Bρ(z) ⊂ K, z ∈ K}.
Then, there are constants C1 > 0 and C2 > 0 such that

h ≤ C1 min
K∈Jh

hK ,
hK
ρK

≤ C2, ∀ K ∈ Jh.
We note that the so-called “hanging nodes” are allowed in the partition Jh. Further-
more let Γh denote the set of (N−1)-dimensional open subsets ej , j = 1, 2, · · · , Ne

h,
such that

Nh⋃
j=1

∂Kj =
Ne

h⋃
j=1

ēj , and ei ∩ ej = ∅, if i 	= j

and let
Γ0
h = {e ∈ Jh : e ∩ ∂Ω = ∅} .

We assume that for each e ∈ Γ0
h, there are K, K ′ ∈ Jh such that e ⊂ ∂K∩∂K ′ and

define he = (hK + hK′)/2. If e ∈ Γh\Γ0
h, then there is a k ∈ Jh such that e ∈ ∂K

and we define he = hK . For each K ∈ Jh, let nK ∈ RN denote the unit outward
normal vector on ∂K.

We now introduce notation for function spaces associated with the partition Jh.
For � ≥ 0 and 1 ≤ t ≤ ∞, define the discontinuous Sobolev space

W �,t
h (D) = {v : v ∈W �,t(K) for each K ∈ Jh and ‖v‖W �,t

h (D) <∞}
equipped with the broken norm

‖v‖W �,t
h (D) =

(
�∑
i=0

|v|t
W i,t

h (D)

)1/t

, |v|W i,t
h (D) =

( ∑
K∈Jh

|v|tW i,t(K∩D)

)1/t

.

Again, we write H�
h(D) = W �,2

h (D).
For any v ∈ L2(Ω), we define the average and jump operators as follows: On any

e ∈ Γh, let

{v} =

{ 1
2
(v|K + v|K′) if e ∈ Γ0

h and e ⊂ ∂K ∩ ∂K ′,

v|K if e ∈ Γh\Γ0
h and e ∈ ∂K,

[v] =
{

v|K nK + v|K′ nK′ if e ∈ Γ0
h and e ⊂ ∂K ∩ ∂K ′,

v|K nK if e ∈ Γh\Γ0
h and e ∈ ∂K.
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The jump and average operators can be similarly defined for vectors. It is clear
that [v] is a vector if v is a scalar and [v] is a scalar if v is a vector.

We now proceed with the derivation of the mixed weak formulations of the
problem (2.1) using the discontinuous test functions. To this end we rewrite the
equation as a system of first-order equations. Thus, we introduce u = ∇p and
obtain the equations

(2.2) u = ∇p, −∇ · u = f in Ω.

Multiplying the first equation of (2.2) by a function v ∈ H1
h(Ω)N and the second

equation by a q ∈ H1
h(Ω), integrating by parts on each element K ∈ Jh and

summing up over all elements, we obtain∫
Ω

uvdx +
∑
K∈Jh

∫
K

p∇ · vdx −
∑
K∈Jh

∫
∂K

pv · nKds = 0,

∑
K∈Jh

∫
K

u · ∇qdx−
∑
K∈Jh

∫
∂K

qu · nKds =
∫

Ω

fqdx.

Using the following identity for any q ∈ H1
h(Ω), v ∈ H1

h(Ω)N

∑
K∈Jh

∫
∂K

v · nKqds =
∑
e∈Γh

∫
e

[q]{v}ds+
∑
e∈Γ0

h

∫
e

{q}[v]ds,

the continuities of the solution p and u and homogeneous boundary condition, we
have ∫

Ω

uvdx +
∑
K∈Jh

∫
K

p∇ · vdx −
∑
e∈Γ0

h

∫
e

{p}[v]ds = 0,(2.3)

∑
K∈Jh

∫
K

u · ∇qdx −
∑
e∈Γh

∫
e

[q]{u}ds =
∫

Ω

fqdx.(2.4)

These are the basic weak formulas satisfied by the solution (p,u) of the original
elliptic problem. We now introduce the following bilinear forms:

a(u,v) =
∫

Ω

uvdx, c(p, q) =
∑
e∈Γh

∫
e

λ1h
−1
e [p][q]ds,(2.5)

b(v, q) =
∑
K∈Jh

∫
K

q∇ · vdx −
∑
e∈Γ0

h

∫
e

{q}[v]ds−
∑
e∈Γ0

h

∫
e

λ2[q][v]ds,(2.6)

where λ1 and λ2 are two bounded functions and λ1 is also bounded below by a
positive constant. Noting that b(v, q) can also be rewritten as

(2.7) b(v, q) = −
∑
K∈Jh

∫
K

v · ∇qdx+
∑
e∈Γh

∫
e

{v}[q]ds−
∑
e∈Γ0

h

∫
e

λ2[q][v]ds,

we can write (2.3) and (2.4) in the following form: for any q ∈ H2
h(Ω) and v ∈

H2
h(Ω)N

(2.8)
a(u,v) + b(v, p) = 0,

−b(u, q) + c(p, q) = (f, q).
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To define the finite element approximations, let r ≥ 1 be a fixed integer and let
Vh ⊂ H2

h(Ω)N and Wh ⊂ H2
h(Ω) be two families of finite dimensional subspaces.

For simplicity, we assume that Vh is a tensor product of Wh:

Vh = (Wh)N , Wh = {q ∈ L∞(Ω) : v|K ∈ S(K), K ∈ Jh},
where Pr(K) ⊂ S(K) ⊂ Pr1(K) and r ≤ r1, Pr(K) denotes the set of all polyno-
mials of degree less than or equal to r. In the local discontinuous Galerkin method,
the finite element approximation (uh, ph) ∈ Vh ×Wh of (u, p) is sought to satisfy

(2.9)
a(uh,v) + b(v, ph) = 0,

−b(uh, q) + c(ph, q) = (f, q)

for any q ∈ H2
h(Ω) and v ∈ H2

h(Ω)N . Therefore, we have the following error
equation: For any q ∈Wh and v ∈ Vh, it holds that

(2.10) a(u − uh,v) + b(v, p− ph) = 0,
−b(u− uh, q) + c(p− ph, q) = 0.

We shall need some special norms. For any D ⊂ Ω, define

‖v‖2
a,D = ‖v‖2

L2(D) +
∑
e∈Γ0

h

∫
e∩D

he|[v]|2ds,(2.11)

‖v‖a,1,D = ‖v‖L1(D) +
∑
e∈Γ0

h

∫
e∩D

he|[v]|ds,(2.12)

|q|2c,D =
∑
e∈Γh

∫
e∩D

h−1
e |[q]|2ds, |q|c,1,D =

∑
e∈Γh

∫
e∩D

|[q]|ds.(2.13)

Moreover, ‖| · |‖L2(D) denotes a modified L2 norm:

‖|q|‖2
L2(D) = ‖q‖2

L2(D) + h2‖q‖2
H1

h(D).

As a result of a trace theorem, the inequality

(2.14) |q|c,D ≤ Ch−1‖|q|‖L2(D1), ∀ q ∈ H1
h(D1),

holds, where D ⊂ D1 satisfies dist(D, ∂D1\∂Ω) > κh for some κ > 0 (see also
Lemma 3.5 in Chen [10]).

Additionally, for the derivation of the pointwise error estimates we also need
some weighted norms. Following Schatz [22], we introduce the weight function

σsz,h(x) =
(

h

|x− z| + h

)s
, x, z ∈ Ω,−∞ < s <∞.

For 1 ≤ t ≤ ∞, define

‖q‖Lt(D),z,s = ‖σsz,hq‖Lt(D),

‖q‖W 1,t
h (D),z,s = ‖q‖Lt(D),z,s +

∑
KJh

‖∇q‖Lt(K∩D),z,s,

‖v‖a,1,D,z,s = ‖v‖L1(D),z,s +
∑
e∈Γ0

h

∫
e∩D

heσ
s
z,h|[v]|ds,

|q|c,1,D,z,s = |σsz,hq|c,1,D.
We note that although some of the norms are defined for scalar functions, they

also apply to vector-valued functions in an obvious way.
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In this paper, the notation for the L2 projections into spaces Wh and Vh will
be denoted by Qh the Πh, respectively. More precisely, Πh : L2(Ω)N → Vh and
Qh : L2(Ω) → Wh satisfy the equations

(Qhq, χ) = (q, χ), ∀ q ∈ L2(Ω) and χ ∈ Wh,

(Πhv, ψ) = (v, ψ), ∀ v ∈ L2(Ω)N and ψ ∈ Vh.

Because of the discontinuity of functions in Vh and Wh, the operators Πh and Qh

are eventually defined elementwise.
Before we end this section, we shall collect some known results about the ap-

proximation properties of the finite element spaces, global and local error estimates
in the L2 norm for the finite element solutions.

The first lemma below collects the standard approximation properties of the
finite element spaces. These results can be easily derived by using the property of
L2 projection and the approximation properties of the finite element spaces.

Lemma 2.1. Let 0 ≤ i ≤ j ≤ 1 + r. Then we have the following approximation
properties:

(i) For any K ∈ Jh and v ∈ Hj(K)N , q ∈ Hj(K), it holds that

‖v − Πhv‖Hi(K) ≤ Chj−i‖v‖Hj(K),

‖q −Qhq‖Hi(K) ≤ Chj−i‖q‖Hj(K).

(ii) If D0 ⊂ D1 ⊂ Ω with dist(D0, ∂D1\∂Ω) ≥ κh for some κ > 0, then for
v ∈ Hj(K)N , q ∈ Hj(K), it holds that

‖v − Πhv‖Hi(D0) ≤ Chj−i‖v‖Hj(D1),

‖q −Qhq‖Hi(D0) ≤ Chj−i‖q‖Hj(D1).

In the next lemma, we state the error estimates in the L2 norm which can be
found in Castillo, et al. [9]. The error estimate in the L2 norm is optimal for the
scalar approximation but is only sub-optimal for the vector approximation because
the optimal order of approximation in Vh is 1 + r. However, it does not seem we
can improve this as the numerical experiments in [9] indicate.

Lemma 2.2. Let (p,u) and (ph,uh) satisfy (2.10) and (p,u) ∈ Hr+1(Ω)×Hr(Ω)N .
Then we have

‖p− ph‖L2(Ω) + h|p− ph|c,Ω + h‖u− uh‖a,Ω ≤ Ch1+r‖p‖H1+r(Ω).

The results in the following lemma, which are based on the local error estimates
obtained in Chen [10], are crucial to the proof of the pointwise error estimates.

Lemma 2.3. Let Ω0 ⊂ Ω1 ⊂ Ω be subdomains with d = dist(Ω0, ∂Ω1\∂Ω) ≥ Mh
for sufficiently large M > 1 and let ∂Ω1 ∩ ∂Ω be sufficiently smooth. Let (p,u)
and (ph,uh) satisfy (2.10) and (p,u) ∈ Hr+1(Ω1) × Hr(Ω1)N , and let t ≥ 0 and
t1 = 0, 1. Then we have

‖p− ph‖L2(Ω0) ≤ Ch1+r‖p‖H1+r(Ω1)(2.15)

+Cd−N/2−t
(‖p− ph‖W−t,1(Ω1) + d1−t1‖u− uh‖W−t−t1,1(Ω1)

)
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and for any fixed ε ∈ (0, 1
2 )

‖u− uh‖a,Ω0 + |p− ph|c,Ω0 ≤ Chr‖p‖H1+r(Ω1)

(2.16)

+ Cd−N/2−t−1

(
h

d

)−ε (‖p− ph‖W−t,1(Ω1) + d1−t1‖u− uh‖W−t−t1,1(Ω1)

)
.

Here the positive constant C in (2.16) depends on ε.

Proof. Without loss of generality, we assume that Ω is the unit ball in RN . It
suffices to show Lemma 2.3 with Ω0 and Ω1 being the spheres of radii d/2 and
d, respectively, with centers at x = 0. Assume that x denotes the variable on Ω.
Let x̃ = x/d be the new variable on the transferred regions Ω̃0 and Ω̃1. Then
dist(Ω̃0, ∂Ω̃1) = 1/2. Set

p̃(x̃) =
p(x̃d)
d

, ũ(x̃) = u(x̃d), p̃hh =
ph(x̃d)
d

, ũh = uh(x̃d), f̃(x̃) = f(x̃d).

Then we have for any q̃ ∈ H2
h(Ω̃) and ṽ ∈ H2

h(Ω̃)N

(2.17)
ã(ũ, ṽ) + b̃(ṽ, p̃) = 0,

−b̃(ũ, q̃) + c̃(p̃, q̃) = (f̃ , q̃)

and for any q̃h ∈ W̃h and ṽh ∈ Ṽh

(2.18)
ã(ũh, ṽh) + b̃(ṽh, p̃h) = 0,

−b̃(ũh, q̃h) + c̃(p̃h, q̃h) = (f̃ , q̃h).

Here

ã(ũ, ṽ) =
∫

Ω̃

ũṽdx̃, c̃(p̃, q̃) =
∑
ẽ∈Γ̃h

∫
ẽ

λ1(he/d)−1[p̃][q̃]ds.(2.19)

b̃(ṽ, q̃) =
∑
K̃∈J̃h

∫
K̃

q̃∇ · ṽdx̃−
∑
ẽ∈Γ̃0

h

∫
ẽ

{q̃}[ṽ]ds−
∑
ẽ∈Γ̃0

h

∫
ẽ

λ2[q̃][ṽ]ds.(2.20)

Applying the results of Theorem 4.1 in Chen [10] for p̃− p̃h, we have

‖p̃− p̃h‖L2(Ω̃0) ≤ C

(
h

d

)1+r

|p̃|H1+r(Ω̃1)(2.21)

+C
(
‖p̃− p̃h‖W−t,1(Ω̃) + ‖ũ− ũh‖W−t−t1,1(Ω̃)

)
.

Changing the variable x̃ back to the original variable x in (2.21) gives (2.15). Like-
wise, the estimate (2.16) can be proved in a similar way. �

3. Pointwise error estimate

The main result of this section is the pointwise error estimate for the scalar
approximation ph which is stated in Theorem 3.1. The proof of the main result is
based on a series of lemmas provided in the section.

Theorem 3.1. Let (p,u) and (ph,uh) satisfy (2.10) and 0 ≤ s ≤ r−1. Then there
is a constant C > 0 such that for any z ∈ Ω̄, we have

|(p− ph)(z)| ≤ C| ln h|s̄ (‖p−Qhp‖L∞(Ω),z,s + h‖u− Πhu‖L∞(Ω),z,s

)
,

where s̄ = 0 if 0 ≤ s < r − 1 and s̄ = 1 if s = r − 1.
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Proof. Let Kz ∈ Jh be such that z ∈ K̄z. Construct a function δz ∈ C1
0 (K̄z).

Namely, δz and its partial derivatives are continuous in Ω and have a compact
support in the closure of Kz. In addition to this, we require that function δz
satisfies the following properties:

(δz , qh) = qh(z), ∀ qh ∈ Wh,

and
‖δz‖Lt(Ω) + h‖δz‖W 1,t(Ω) ≤ Ch−N/t

′
, 1 ≤ t ≤ ∞,

1
t

+
1
t′

= 1.

We point out that the requirements on the derivatives of δz are not used in this
proof but in the proof of Theorem 4.1. By the triangle inequality,

|(p− ph)(z)| ≤ |(p−Qhp)(z)| + |(δz , Qhp− ph)|(3.1)

≤ |(p−Qhp)(z)| + |(δz , Qhp− p)| + |(δz, p− ph)|
≤ C‖p−Qhp‖L∞(Ω),z,s + |(δz , p− ph)|.

Let gz ∈ H1
0 (Ω) be the solution of the elliptic problem

(3.2) −∆gz = δz

and Gz = ∇gz. We may call gz a regularized Green’s function. Furthermore, let
(gz,h,Gz,h) ∈ Wh × Vh be the finite element approximation of (gz,Gz) satisfying

(3.3)
a(Gz − Gz,h,v) + b(v, gz − gz,h) = 0,

−b(Gz − Gz,h, q) + c(gz − gz,h, q) = 0

for any (q,v) ∈Wh × Vh. Then a simple manipulation leads to

(δz, p− ph) = −b(Gz, p− ph) + c(gz , p− ph)(3.4)

= a(Gz,h − Gz ,u− Πhu) + b(u − Πhu, gz,h − gz)

+b(Gz − Gz,h, Q
hp− p) + c(gz ,−gz,h, p−Qhp).

By the Cauchy-Schwarz inequality and the definitions of the related norms, the first
and the last terms in (3.4) can be bounded as follows:

a(Gz,h − Gz,u− Πhu) + c(gz − gz,h, p−Qhp)(3.5)

≤ C‖u− Πhu‖L∞(Ω),z,s‖Gz − Gz,h‖L1(Ω),z,−s
+Ch−1‖p−Qhp‖L∞(Ω),z,s|gz − gz,h|c,1,Ω,z,−s.

Next, we shall deal with the second and third terms on the right-hand side of (3.4).
According to (2.7), (2.6) and the orthogonal properties of the operators Qh and
Πh, we have

b(u − Πhu, gz − gz,h) = −
∑
K∈Jh

∫
K

(u − Πhu)∇(gz −Qhgz)dx(3.6)

+
∑
e∈Γh

∫
e

{u− Πhu}[gz − gz,h]ds−
∑
e∈Γ0

h

∫
e

λ2[gz − gz,h][u − Πhu]ds

and

b(Gz − Gz,h, Q
hp− p) =

∑
K∈Jh

∫
K

(p−Qhp)∇ · (Gz − ΠhGz)dx(3.7)

−
∑
e∈Γh

∫
e

{p−Qhp}[Gz − Gz,h]ds−
∑
e∈Γ0

h

∫
e

λ2[p−Qhp][Gz − Gz,h]ds.
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As a result of using the Cauchy-Schwarz inequality for the six integrals on the
right-hand side of (3.6) and (3.7), one has

b(u − Πhu, gz − gz,h)(3.8)

≤ C‖u− Πhu‖L∞(Ω),z,s(‖∇(gz −Qhgz)‖L1(Ω),z,−s + |gz − gz,h|c,1,Ω,z,−s)
and

b(Gz − ΠhGz, Q
hp− p) ≤ Ch−1‖p−Qhp‖L∞(Ω),z,s(3.9)

·(h|∇ · (Gz − ΠhGz)|L1(Ω),z,−s + ‖Gz − Gz,h‖a,1,Ω,z,−s).
Consequently, inserting (3.5), (3.8) and (3.9) in (3.4) results in

|(δz , p− ph)|(3.10)

≤ (
h−1‖p−Qhp‖L∞(Ω),z,s + ‖u− Πhu‖L∞(Ω),z,s

)
· (‖∇(gz −Qhgz)‖L1(Ω),z,−s + h‖∇ · (Gz − ΠhGz)‖L1(Ω),z,−s
+|gz − gz,h|c,1,Ω,z,−s + ‖Gz − Gz,h‖a,1,Ω,z,−s) .

Applying the estimates contained in Lemmas 3.2 and 3.4 into the above inequality
and then inserting the resulting estimate into (3.1), we deduce the desired estimate
of the theorem. The proof is complete. �

The rest of this section is devoted to providing error estimates for gz − gz,h and
Gz − Gz,h through a number of lemmas. Without loss of generality we assume
diam(Ω) ≤ 1 and define

dj = 2−j for j = 0, 1, 2, . . . ,

and for any fixed z ∈ Ω̄, set

(3.11)

Ωj = {x ∈ Ω : dj+1 < |x− z| < dj},
Ω(1)
j = {x ∈ Ω : dj+2 < |x− z| < dj−1},

Ω(2)
j = {x ∈ Ω : dj+3 < |x− z| < dj−2},

Ω(3)
j = {x ∈ Ω : dj+4 < |x− z| < dj−3}.

We start with the following result about an auxiliary problem used in the proof
Lemma 3.4.

Lemma 3.1. For ϕ ∈ C∞
0 (Ω(1)

j ) satisfying ‖ϕ‖Lt(Ω) ≤ 1, let w ∈ H1
0 (Ω) be the

solution of −∆w = ϕ in Ω. Then we have

‖w‖
W 1+r,∞(Ω\Ω(2)

j )
≤ Cd

1−r−N/t
j , 1 ≤ t ≤ ∞.(3.12)

Proof. For any x ∈ Ω\Ω(2)
j , let Gx denote the Green’s function of problem (2.1)

with singularity at x. Then we have (see Agmon, Douglis and Nirenberg [1])

(3.13) w(x) =
∫

Ω

Gx(y)ϕ(y) dy

and

(3.14)
∣∣∣∣∂α+βGx(y)
∂xα∂yβ

∣∣∣∣ ≤ C|x− y|2−N−|α|−|β| for |α| + |β| > 0.
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Differentiating (3.13) with respect to x, for x ∈ Ω\Ω(2)
j and |α| ≤ 1 + r we have∣∣∣∣∂αw(x)

∂xα

∣∣∣∣ =
∣∣∣∣
∫

Ω

∂αGx(y)
∂xα

ϕ(y) dy
∣∣∣∣

≤ C

∫
Ω

(1)
j

|x− y|2−N−|α| |ϕ(y)| dy

≤ Cd1−N−r
j d

N(1−1/t)
j ‖ϕ‖

Lt(Ω
(1)
j )

≤ Cd
1−r−N/t
j .

This completes the proof. �

In the next lemma, we show a bound for the derivatives of the “regularized
Green’s function” gz in the regions away from its singularity and an error estimate
for the L2 projection of gz in the weighted W 1,1 norm.

Lemma 3.2. Let gz ∈ H1
0 (Ω) be the solution of (3.2). Then we have

(3.15) ‖gz‖H1+r(Ω
(1)
j )

≤ Cd
1−r−N/2
j

and

(3.16) ‖∇(gz −Qhgz)‖L1(Ω),z,−s + h‖∇ · (Gz − ΠhGz)‖L1(Ω),z,−s ≤ Ch| lnh|s̄,
where Gz = ∇gz, s̄ = 1 if 0 ≤ s < r − 1 and s̄ = 1 if s = r − 1.

Proof. For any x ∈ Ω(1)
j , letGx be Green’s function of problem (2.1) with singularity

at x. Then we have

(3.17) gz(x) =
∫

Ω

Gx(y)δz(y) dy

and Gx(y) satisfies the inequality (3.14). Differentiating (3.17) with respect to x,
we have for x ∈ Ω(1)

j and |α| ≤ 1 + r∣∣∣∣∂αg(x)∂xα

∣∣∣∣ =
∣∣∣∣
∫

Ω

∂αGx(y)
∂xα

δz(y) dy
∣∣∣∣(3.18)

≤ C

∫
Kz

|x− y|2−N−|α| |δz(y)| dy

≤ Cd1−N−r
j ‖δz‖L1(Kz) ≤ Cd1−N−r

j .

Integrating (3.18) over Ω(1)
j gives us the desired result (3.15). We now show (3.16).

By the triangle and the Cauchy-Schwarz inequalities, we have

‖∇(gz −Qhgz)‖L1(Ω),z,−s(3.19)

≤ ‖∇(gz −Qhgz)‖L1(BMh(z)),z,−s +
J∑
j=0

‖∇(gz −Qhgz)‖L1(Ωj),z,−s

≤ ChN/2+1‖gz‖H2(Ω) + C
J∑
j=0

d
N/2+s
j hr−s‖gz‖H1+r(Ω

(1)
j )

.

Using the H2 a priori regularity ‖gz‖H2(Ω) ≤ C‖δz‖L2(Kz) ≤ Ch−N/2 and the
estimate (3.15) in (3.19), we have

(3.20) ‖∇(gz −Qhgz)‖L1(Ω),z,−s ≤ Ch+ CΘ(r − 1 − s)h ≤ Ch| lnh|s̄.
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Here the function Θ(γ) is defined by

(3.21) Θ(γ) =
J∑
j=0

(
h

dj

)γ
≤ C




ln
1
h

if γ = 0,

1
Mγ(1 − 2−γ)

if γ > 0.

With a similar procedure, we can obtain

(3.22) ‖∇(Gz − ΠhGz)‖L1(Ω),z,−s ≤ C + CΘ(r − s) ≤ C

for any 0 ≤ s ≤ r − 1. Thus, (3.20) and (3.22) prove the lemma. �

The next lemma is used in the proof of Lemma 3.4 for q = gz, v = Gz, qh = gz,h
and vh = Gz,h. It will also be used in the next section for different q, qh, v and
vh.

Lemma 3.3. For ϕ ∈ C∞
0 (Ω(1)

j ) satisfying ‖ϕ‖L∞(Ω) ≤ 1, let w ∈ H1
0 (Ω) be the

solution of −∆w = ϕ in Ω and Φ = ∇w. Then for any vh ∈ Vh, qh ∈ Wh and
v ∈ H1

h(Ω)N , q ∈ H1
h(Ω), we have

a(Φ− ΠhΦ,v − vh) + b(Φ− ΠhΦ, q − qh)

+b(v − vh, w −Qhw) − c(w −Qhw, q − qh)

≤ Ch1+rd
N/2
j

(
‖q‖

H1+r(Ω
(3)
j )

+ ‖v‖
Hr(Ω

(3)
j )

)
+Chrd1−r

j (|∇(q −Qhq)|L1(Ω) + h|∇ · (v − Πhv)|L1(Ω))

+Chrd1−r
j (|q − qh|c,1,Ω + ‖v − vh‖a,1,Ω)

+ChdN/2j (‖v − vh‖a,Ω(2)
j

+ |q − qh|c,Ω(2)
j

).

Proof. Let us consider the following decomposition:

a(Φ− ΠhΦ,v − vh) + b(Φ− ΠhΦ, q − qh)

+b(v − vh, w −Qhw) − c(w −Qhw, q − qh) = I1 + I2,

where

I1 = a
Ω\Ω(2)

j
(Φ− ΠhΦ,v − vh) + b

Ω\Ω(2)
j

(Φ − ΠhΦ, q − qh)(3.23)

+b
Ω\Ω(2)

j
(v − vh, w −Qhw) − c

Ω\Ω(2)
j

(w −Qhw, q − qh),

I2 = a
Ω

(2)
j

(Φ− ΠhΦ,v − vh) + b
Ω

(2)
j

(Φ − ΠhΦ, q − qh)(3.24)

+b
Ω

(2)
j

(v − vh, w −Qhw) − c
Ω

(2)
j

(w −Qhw, q − qh).

We shall estimate all terms of I1 and I2. For the first and last term of I1, applying
the Cauchy-Schwarz inequality and Lemma 3.1 with t = ∞, we have

|a
Ω\Ω(2)

j
(Φ − ΠhΦ,v − vh)| + |c

Ω\Ω(2)
j

(w −Qhw, q − qh)|(3.25)

≤ Chr‖w‖
W 1+r,∞(Ω\Ω(1)

j )
(‖v − vh‖L1(Ω) + |q − qh|c,1,Ω)

≤ Chrd1−r
j (‖v − vh‖L1(Ω) + |q − qh|c,1,Ω).
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For the second term of I1, we recall the formula (2.7) for the bilinear b and note
that ∇Wh ⊂ Vh. We have

b
Ω\Ω(2)

j
(Φ − ΠhΦ, q − qh)(3.26)

= −
∑
K∈Jh

∫
K∩(Ω\Ω(2)

j )

(Φ − ΠhΦ)∇(q −Qhq)dx

+
∑
e∈Γh

∫
e∩(Ω\Ω(2)

j )

{Φ− ΠhΦ}[q − qh]ds

−
∑
e∈Γ0

h

∫
e∩(Ω\Ω(2)

j )

λ2[q − qh][Φ − ΠhΦ]ds.

By the Cauchy-Schwarz inequality and Lemma 3.1 with t = ∞, the terms on the
right-hand side of (3.26) are bounded as follows:

−
∑
K∈Jh

∫
K∩(Ω\Ω(2)

j )

(Φ− ΠhΦ)∇(q −Qhq)dx(3.27)

≤ Chr‖w‖
W 1+r,∞(Ω\Ω(1)

j )
‖∇(q −Qhq)‖

W 1,1(Ω\Ω(2)
j )

≤ Chrd1−r
j ‖∇(q −Qhq)‖L1(Ω),

∑
e∈Γh

∫
e∩(Ω\Ω(2)

j )

{Φ− ΠhΦ}[q − qh]ds(3.28)

≤ Chr‖w‖
W 1+r,∞(Ω\Ω(2)

j )
|q − qh|c,1,Ω\Ω(2)

j

≤ Chrd1−r
j |q − qh|c,1,Ω,

∑
e∈Γ0

h

∫
e∩(Ω\Ω(2)

j )

λ2[q − qh][Φ − ΠhΦ]ds ≤ Chrd1−r
j |q − qh|c,1,Ω.(3.29)

Hence, inserting (3.27), (3.28) and (3.29) in (3.26), we obtain the estimate for the
second term of I1:

(3.30) b
Ω\Ω(2)

j
(Φ − ΠhΦ, q − qh) ≤ Chrd1−r

j (‖∇(q −Qhq)‖L1(Ω) + |q − qh|c,1,Ω).

For the third term of I1, we use the formula (2.6) of bilinear form b to write

b
Ω\Ω(2)

j
(v − vh, w −Qhw)(3.31)

= −
∑
K∈Jh

∫
K∩(Ω\Ω(2)

j )

(w −Qhw)∇ · (v − Πhv)dx

−
∑
e∈Γ0

h

∫
e∩(Ω\Ω(2)

j )

{w −Qhw}[v − vh]ds

−
∑
e∈Γ0

h

∫
e∩(Ω\Ω(2)

j )

λ2[w −Qhw][v − vh]ds.

The three term on the right-hand side of (3.31) can be estimated in the same way
as those of (3.26). We deduce that

(3.32) b
Ω\Ω(2)

j
(v−vh, w−Qhw) ≤ Chrd1−r

j (h‖∇·(v−Πhv)‖L1(Ω)+‖v−vh‖a,1,Ω).
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On combining (3.25), (3.30) and (3.32), we obtain the estimate for I1:

I1 ≤ Chrd1−r
j (‖∇(q −Qhq)‖L1(Ω) + h‖∇ · (v − Πhv)‖L1(Ω))(3.33)

+Chrd1−r
j (|q − qh|c,1,Ω + ‖v − vh‖a,1,Ω).

It remains to estimate terms of I2. Like I1, we shall first estimate the first and the
last terms of I2 and then the second and third terms of I2. In fact, for the first and
last terms of I2, using the inequality (2.14) and the approximation property of Qh

to get
|w −Qhw|

c,Ω
(2)
j

≤ Ch‖w‖
H2(Ω

(3)
j )

and applying the Cauchy-Schwarz inequality, we have

|a
Ω

(2)
j

(Φ − ΠhΦ,v − vh)| + |c
Ω

(2)
j

(w −Qhw, q − qh)|(3.34)

≤ Ch‖w‖
H2(Ω

(3)
j )

(‖v − vh‖L2(Ω
(2)
j )

+ |q − qh|c,Ω(2)
j

)

≤ Ch‖ϕ‖
L2(Ω

(1)
j )

(‖v − vh‖L2(Ω
(2)
j )

+ |q − qh|c,Ω(2)
j

)

≤ Chd
N/2
j (‖v − vh‖L2(Ω

(2)
j )

+ |q − qh|c,Ω(2)
j

).

In the last two steps in (3.34), we have used the H2 a priori regularity ‖w‖H2(Ω) ≤
C‖ϕ‖

L2(Ω
(1)
j )

and the inequality

(3.35) ‖ϕ‖
L2(Ω

(1)
j )

≤ Cd
N/2
j ‖ϕ‖L∞(Ω) ≤ Cd

N/2
j .

Using the formula (2.7) of the bilinear form b and similar to (3.26), we have

b
Ω

(2)
j

(Φ − ΠhΦ, q − qh)(3.36)

= −
∑
K∈Jh

∫
K∩Ω

(2)
j

(Φ− ΠhΦ)∇(q −Qhq)dx

+
∑
e∈Γh

∫
e∩Ω

(2)
j

{Φ− ΠhΦ}[q − qh]ds

−
∑
e∈Γ0

h

∫
e∩Ω

(2)
j

λ2[q − qh][Φ− ΠhΦ]ds.

By the Cauchy-Schwarz inequality, the H2 a priori regularity and the inequality
(3.35), we have the following estimate for the first term in (3.36):∑

K∈Jh

∫
K∩Ω

(2)
j

(Φ − ΠhΦ)∇(q −Qhq)dx(3.37)

≤ Ch1+r‖w‖
H2(Ω

(3)
j )

‖q‖
H1+r(Ω

(3)
j )

≤ Ch1+r‖ϕ‖
L2(Ω

(1)
j )

‖q‖
H1+r(Ω

(3)
j )

≤ Ch1+rd
N/2
j ‖q‖

H1+r(Ω
(3)
j )

and, by (2.14),∑
e∈Γh

∫
e∩Ω

(2)
j

{Φ− ΠhΦ}[q − qh]ds ≤ C‖|Φ− ΠhΦ|‖
L2(Ω

(3)
j )

|q − qh|c,Ω(2)
j

(3.38)

≤ Ch‖ϕ‖
L2(Ω

(1)
j )

|q − qh|c,Ω(2)
j

≤ Chd
N/2
j |q − qh|c,Ω(2)

j
,
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(3.39)
∑
e∈Γ0

h

∫
e∩Ω

(2)
j

λ2[q − qh][Φ − ΠhΦ]ds ≤ Chd
N/2
j |q − qh|c,Ω(2)

j
.

Substituting (3.37), (3.38) and (3.39) in (3.36), we arrive at the following estimate
for the second term of I2:

(3.40) b
Ω

(2)
j

(Φ − ΠhΦ, q − qh) ≤ Ch1+rd
N/2
j ‖q‖

H1+r(Ω
(3)
j )

+ Chd
N/2
j |q − qh|c,Ω(2)

j
.

Likewise for the third term of I2, we have

(3.41) b
Ω

(2)
j

(v − vh, w −Qhw) ≤ Ch1+rd
N/2
j ‖v‖

Hr(Ω
(3)
j )

+ Chd
N/2
j ‖v − vh‖a,Ω(2)

j
.

On combining (3.34), (3.40) and (3.41), we have

I2 ≤ Ch1+rd
N/2
j (‖q‖

H1+r(Ω
(3)
j )

+ ‖v‖
Hr(Ω

(3)
j )

)(3.42)

+ChdN/2j (‖v − vh‖a,Ω(2)
j

+ |q − qh|c,Ω(2)
j

).

Finally, the estimates (3.33) and (3.42) imply the desired result of the lemma. The
proof is complete. �

Lemma 3.4. Let gz ∈ H1
0 (Ω) be the solution of (3.2), Gz = ∇gz, and (gz,h,Gz,h) ∈

Wh × Vh satisfy (3.3). Then for 0 ≤ s ≤ r − 1, we have

(3.43) |gz − gz,h|c,1,Ω,z,−s + ‖Gz − Gz,h‖a,1,Ω,z,−s ≤ Ch| lnh|s̄,
where s̄ = 0 if 0 ≤ s < r − 1 and s̄ = 1 if s = r − 1.

Proof. Let M > 1 be a real number to be determined later in this proof and let J be
an integer such that Mh ≤ 2−J . Then J ≤ C ln(1/h). For notational convenience,
set Eg = gz − gz,h and EG = Gz − Gz,h. In view of Ω = BMh(z) ∪ (

⋃J
j=0 Ωj) and

the triangle inequality, we have

|Eg|c,1,Ω,z,−s ≤ |Eg|c,1,BMh(z),z,−s +
J∑
j=0

|Eg|c,1,Ωj,z,−s,(3.44)

‖EG‖a,1,Ω,z,−s ≤ ‖EG‖a,1,BMh(z),z,−s +
J∑
j=0

‖EG‖a,1,Ωj ,z,−s.(3.45)

By the definitions of the norms | · |c,1,Ωj ,z,−s and | · |a,1,Ωj ,z,−s and the Cauchy-
Schwarz inequality, we have for 0 ≤ j ≤ J

|Eg|c,1,Ωj ,z,−s + ‖EG‖a,1,Ωj ,z,−s(3.46)

=
∑
e∈Γh

∫
e∩Ωj

σ−s
z,h|[Eg]|ds+

∑
e∈Γ0

h

∫
e∩Ωj

heσ
−s
z,h|[EG]|ds+

∫
Ωj

σ−s
z,h|EG|dx

≤ Cd
N/2+s
j h−s(|Eg|c,Ωj + ‖EG‖a,Ωj )

and

|Eg|c,1,BMh(z),z,−s + ‖EG‖a,1,BMh(z),z,−s(3.47)

≤ C(Mh)N/2+sh−s(|Eg|c,BMh(z) + ‖EG‖a,BMh(z))

≤ CMN/2+shN/2+1‖gz‖H2(Ω) ≤ CMN/2+sh.
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In (3.47), we have used the result in Lemma 2.2 and the a priori regularity ‖gz‖H2(Ω)

≤ C‖δz‖L2(Kz) ≤ Ch−N/2. Next, applying the local error estimates in Lemma 2.3
for the two norms |Eg|c,Ωj and ‖EG‖a,Ωj on the right-hand side of (3.46) and then
using Lemma 3.2, we get

|Eg|c,1,Ωj ,z,−s + ‖EG‖a,1,Ωj,z,−s(3.48)

≤ Cd
N/2+s
j hr−s‖gz‖H1+r(Ω

(1)
j )

+Cds−1+ε
j h−s−ε(|Eg|L1(Ωj) + ‖EG‖W−1,1(Ωj))

≤ Cd1−r+s
j hr−s + Cds−1+ε

j h−s−ε(|Eg |L1(Ωj) + ‖EG‖W−1,1(Ωj)).

From (3.44), (3.45), (3.47) and (3.48), we deduce that

(3.49) |Eg|c,1,Ω,z,−s + ‖EG‖a,1,Ω,z,−s ≤ CMN/2+sh+ ChΘ(r − 1 − s) + L1 + L2,

where Θ is defined in (3.21) and

L1 = Ch−1‖Eg‖L1(Ω),z,1−s−ε,

L2 = C

J∑
j=0

ds−1+ε
j h−s−ε‖EG‖W−1,1(Ωj).

By a similar procedure, it follows that

‖Eg‖L1(Ω),z,1−s−ε ≤ ‖Eg‖L1(BMh(z)),z,1−s−ε +
J∑
j=0

‖Eg‖L1(Ωj),z,1−s−ε

≤ CMN/2+shN/2‖Eg‖L2(Ω) + C

J∑
j=0

ds−1+ε
j h1−s−ε‖Eg‖L1(Ωj)

≤ Ch2MN/2+s + C

J∑
j=0

ds−1+ε
j h1−s−ε‖Eg‖L1(Ωj),

which implies

(3.50) L1 +L2 ≤ CMN/2+sh+C
J∑
j=0

ds−1+ε
j h−s−ε(‖Eg‖L1(Ωj) + ‖EG‖W−1,1(Ωj)).

We are now in a position to estimate ‖Eg‖L1(Ω
(1)
j )

and ‖EG‖
W−1,1(Ω

(1)
j )

. Recall the
following formulas:

‖Eg‖L1(Ω
(1)
j )

= sup
ϕ∈C∞

0 (Ω
(1)
j )

‖ϕ‖
L∞(Ω(1)

j )
=1

(Eg, ϕ),(3.51)

‖EG‖
W−1,1(Ω

(1)
j )

= sup
ψ∈C∞

0 (Ω
(1)
j )N

‖ψ‖
W1,∞(Ω(1)

j )
=1

(EG, ψ).(3.52)

For any ϕ ∈ C∞
0 (Ω(1)

j ) satisfying ‖ϕ‖
L∞(Ω

(1)
j )

= 1, let w ∈ H1
0 (Ω) ∩H2(Ω) be the

solution of
−∆w = ϕ in Ω.
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Then letting Φ = ∇w, we have for any q ∈ Wh, v ∈ Vh

(3.53) a(Φ,v) + b(v, w) = 0,
−b(Φ, q) + c(w, q) = (ϕ, q).

By a straightforward manipulation, we obtain

(Eg, ϕ) = −b(Φ− ΠhΦ, Eg) + c(w −Qhw,Eg)(3.54)

+a(EG,ΠhΦ − Φ) + b(EG, Q
hw − w).

By applying Lemma 3.3 and 3.2, it follows that

(Eg , ϕ) ≤ Ch1+r| lnh|r̄d1−r
j + Chrd1−r

j (|Eg |c,1,Ω + ‖EG‖a,1,Ω)(3.55)

+ChdN/2j (‖EG‖
a,Ω

(2)
j

+ |Eg|c,Ω(2)
j

),

where r̄ = 0 if r > 1 and r̄ = 1 if r = 1. On the other hand, for any ψ ∈ C∞
0 (Ω(1)

j )N

satisfying ‖ψ‖
W 1,∞(Ω

(1)
j )

= 1, if w ∈ H1
0 (Ω) ∩H2(Ω) is the solution of

−∆w = ∇ · ψ in Ω,

then letting Φ = ∇w + ψ, similar to the derivation of (2.8) we have

a(Φ,v) + b(v, w) = (ψ,v), ∀ v ∈ H2
h(Ω)N ,

−b(Φ, q) + c(w, q) = 0, ∀ q ∈ H2
h(Ω).

With a straightforward manipulation, we obtain

(EG, ψ) = b(Φ− ΠhΦ, Eg) − c(w −Qhw,Eg)(3.56)

−a(EG,ΠhΦ− Φ) − b(EG, Q
hw − w).

Using Lemma 3.3 and 3.2 again, we get

(EG, ψ) ≤ Ch1+r| lnh|r̄d1−r
j + Chrd1−r

j (|Eg|c,1,Ω + ‖EG‖a,1,Ω)(3.57)

+ChdN/2j (‖EG‖
a,Ω

(2)
j

+ |Eg|c,Ω(2)
j

).

Inserting the two estimates (3.55) and (3.57) in (3.51) and (3.52), respectively,
yields

‖Eg‖L1(Ωj) + ‖EG‖W−1,1(Ωj)(3.58)

≤ Ch1+r| lnh|r̄d1−r
j + Chrd1−r

j (|Eg|c,1,Ω + ‖EG‖a,1,Ω)

+ChdN/2j (‖EG‖
a,Ω

(2)
j

+ |Eg|c,Ω(2)
j

),

which, when the local error estimate in Lemma 2.3 is applied to the last term

‖EG‖
a,Ω

(2)
j

+ |Eg|c,Ω(2)
j

≤ Chrd
1−r−N/2
j(3.59)

+Cd−N/2−1
j

(
h

dj

)−ε
(‖Eg‖L1(Ω

(3)
j )

+ dj‖EG‖
L1(Ω

(3)
j )

),

results in

‖Eg‖L1(Ωj) + ‖EG‖W−1,1(Ωj)(3.60)

≤ Ch1+r| lnh|r̄d1−r
j + Chrd1−r

j (|Eg|c,1,Ω + ‖EG‖a,1,Ω)

+
(
h

dj

)1−ε
(‖Eg‖L1(Ω

(3)
j )

+ dj‖EG‖
L1(Ω

(3)
j )

).
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We are now about to insert (3.60) into (3.50). Before we write the result of this
insertion, we note that the contribution of the last term of (3.60) to (3.50) is

J∑
j=0

ds−1+ε
j h−s−ε

(
h

dj

)1−ε
(‖Eg‖L1(Ω

(3)
j )

+ dj‖EG‖
L1(Ω

(3)
j )

)(3.61)

≤ Ch−1
J∑
j=0

(
h

dj

)1−ε
‖Eg‖L1(Ω

(3)
j ),z,1−s−ε

+C
J∑
j=0

(
h

dj

)1−2ε

‖EG‖
L1(Ω

(3)
j ),z,−s

≤ Ch−1Θ(1 − ε)‖Eg‖L1(Ω),z,1−s−ε + CΘ(1 − 2ε)‖EG‖a,1,Ω,z,−s.
Hence, inserting (3.60) into (3.50) and using (3.61), we obtain

L1 + L2 ≤ CMN/2+sh+ Θ(r − s− ε)h| lnh|r̄(3.62)
+Θ(r − s− ε)(|Eg |c,1,Ω + ‖EG‖a,1,Ω)
+CΘ(1 − ε)L1 + CΘ(1 − 2ε)‖EG‖a,1,Ω,z,−s.

Since 1 − ε > 0, using (3.21), we can choose M sufficiently large so that Θ(1 − ε)
is small enough for the term CΘ(1 − ε)L1 on the right-hand side of (3.62) to be
absorbed into the left-hand side. Then we insert (3.62) into (3.49) to get

‖Eg‖c,1,Ω,z,−s + |EG|a,1,Ω,z,−s
≤ CMN/2+sh+ ChΘ(r − 1 − s) + Θ(r − s− ε)h| lnh|r̄

+Θ(r − s− ε)(|Eg|c,1,Ω + ‖EG‖a,1,Ω)
+CΘ(1 − 2ε)‖EG‖a,1,Ω,z,−s,

which, when the last term is eliminated by means of taking M sufficiently large,
leads to the following estimate:

‖Eg‖c,1,Ω,z,−s + |EG|a,1,Ω,z,−s(3.63)

≤ CMN/2+sh+ ChΘ(r − 1 − s) + Θ(r − s− ε)h| lnh|r̄
+CΘ(r − s− ε)(|Eg|c,1,Ω + ‖EG‖a,1,Ω).

In particular, (3.63) holds true for s = 0, which gives us

‖Eg‖c,1,Ω + |EG|a,1,Ω(3.64)

≤ CMN/2h+ ChΘ(r − 1) + Θ(r − ε)h| lnh|r̄
+Θ(r − ε)(|Eg|c,1,Ω + ‖EG‖a,1,Ω).

Eliminating the last term in (3.64) with a sufficiently large M , one can see that

‖Eg‖c,1,Ω + |EG|a,1,Ω ≤ CMN/2h+ ChΘ(r − 1) + Θ(r − ε)h| lnh|r̄(3.65)
≤ Ch| lnh|r̄.

On substituting (3.65) into (3.63), we have

‖Eg‖c,1,Ω,z,−s + |EG|a,1,Ω,z,−s(3.66)

≤ CMN/2+sh+ ChΘ(r − 1 − s) + CΘ(r − s− ε)h| lnh|r̄
+ChΘ(r − s− ε)| lnh|r̄.
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If 0 ≤ s < r − 1, then r̄ = 0 and r − s− ε > 0. Thus, from (3.66) we conclude the
desired (3.43). The proof is complete. �

4. Pointwise error estimate for the vector approximation

The main result of this section is the pointwise error estimate for the vector
approximation in Theorem 4.1.

Theorem 4.1. Let (p,u) and (ph,uh) satisfy (2.10) and 0 ≤ s ≤ r−1. Then there
is a constant C > 0 such that for any z ∈ Ω̄, we have

|(u − uh)(z)| ≤ C| lnh|s̄ (h−1‖p−Qhp‖L∞(Ω),z,s + ‖u− Πhu‖L∞(Ω),z,s

)
,

where s̄ = 0 if 0 ≤ s < r − 1 and s̄ = 1 if s = r − 1.

Proof. Let Kz ∈ Jh be such that z ∈ K̄z. Let δz ∈ C1
0 (Kz)N be the vector function

whose components are δz defined in the proof of Theorem 3.1. Then it follows that

‖∇ · (δz)‖Lt(Ω) ≤ Ch−1−N/t′ , 1 ≤ t ≤ ∞,
1
t

+
1
t′

= 1.

Similar to (3.1), we have

|(u − uh)(z)| ≤ C‖u− Πhu‖L∞(Ω),z,s + |(δz,u− uh)|.(4.1)

Let g̃z ∈ H1
0 (Ω) be the solution of

(4.2) −∆g̃z = ∇ · (δz).
Further let G̃z = ∇g̃z + δz. Then ∇ · G̃z = 0. Also let (g̃z,h, G̃z,h) ∈ Wh × Vh be
the finite element approximation of (g̃z, G̃z) satisfying

(4.3)
a(G̃z − G̃z,h,v) + b(v, g̃z − g̃z,h) = 0,

−b(G̃z − G̃z,h, q) + c(g̃z − g̃z,h, q) = 0

for any (q,v) ∈Wh × Vh. Then

(δz ,u− uh) = a(G̃z ,u− uh) + b(u− uh, g̃z)(4.4)

= a(G̃z − G̃z,h,u− Πhu) + b(u − Πhu, g̃z − g̃z,h)

+b(G̃z − G̃z,h, Q
hp− p) + c(g̃z,−g̃z,h, p−Qhp).

By the same arguments as those used in the proof of Theorem 3.1, we have

(δz,u − uh)(4.5)

≤ (
h−1‖p−Qhp‖L∞(Ω),z,s + ‖u− Πhu‖L∞(Ω),z,s

)
·
(
‖∇(g̃z −Qhg̃z)‖L1(Ω),z,−s + ‖∇ · (G̃z − ΠhG̃z)‖L1(Ω),z,−s

+|g̃z − g̃z,h|c,1,Ω,z,−s + ‖G̃z − G̃z,h‖a,1,Ω,z,−s
)
.

Using the results in Lemma 4.1 and 4.2, we obtain the desired estimate of the
theorem. �

Lemma 4.1. Let g̃z ∈ H1
0 (Ω) be the solution of (4.2). Then we have

(4.6) ‖g̃z‖H1+r(Ω
(3)
j )

≤ Ch−1d
1−r−N/2
j

and

(4.7) ‖∇(g̃z −Qhg̃z)‖L1(Ω),z,−s + h‖∇ · (G̃z − ΠhG̃z)‖L1(Ω),z,−s ≤ C| lnh|s̄,
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where G̃z = ∇g̃z, s̄ = 1 if 0 ≤ s < r − 1 and s̄ = 1 if s = r − 1.

Lemma 4.2. Let g̃z ∈ H1
0 (Ω) be the solution of (4.2), G̃z = ∇g̃z, and (g̃z,h, G̃z,h) ∈

Wh × Vh satisfy (4.3). Then, for 0 ≤ s ≤ r − 1, we have

(4.8) |g̃z − g̃z,h|c,1,Ω,z,−s + ‖G̃z − G̃z,h‖a,1,Ω,z,−s ≤ C| lnh|s̄,
where s̄ = 0 if 0 ≤ s < r − 1 and s̄ = 1 if s = r − 1.

The proofs of these two lemmas are almost the same as those of Lemmas 3.2
and 3.4. The only difference is that the right-hand side function for g̃z is ∇ · (δz)
which gives an extra factor h−1 for all bounds associated with g̃z and G̃z . In the
proof of Lemma 4.2, we use the results of Lemma 4.1. So the corresponding terms
on the right-hand sides of the inequalities derived in the proof of Lemma 3.2 are
multiplied by the factor h−1. We omit the details.
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