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REAL ZEROS OF DEDEKIND ZETA FUNCTIONS
OF REAL QUADRATIC FIELDS

KOK SENG CHUA

Abstract. Let χ be a primitive, real and even Dirichlet character with con-
ductor q, and let s be a positive real number. An old result of H. Daven-

port is that the cycle sums Sν(s, χ) =
∑(ν+1)q−1

n=νq+1
χ(n)
ns , ν = 0, 1, 2, . . . , are

all positive at s = 1, and this has the immediate important consequence of
the positivity of L(1, χ). We extend Davenport’s idea to show that in fact
for ν ≥ 1, Sν(s, χ) > 0 for all s with 1/2 ≤ s ≤ 1 so that one can deduce

the positivity of L(s, χ) by the nonnegativity of a finite sum
∑t

ν=0 Sν(s, χ)
for any t ≥ 0. A simple algorithm then allows us to prove numerically that
L(s, χ) has no positive real zero for a conductor q up to 200,000, extending
the previous record of 986 due to Rosser more than 50 years ago. We also
derive various estimates explicit in q of the Sν(s, χ) as well as the shifted cycle

sums Tν(s, χ) :=
∑(ν+1)q+�q/2�

n=νq+�q/2�+1
χ(n)
ns considered previously by Leu and Li for

s = 1. These explicit estimates are all rather tight and may have independent
interests.

1. Introduction

Let χ be a primitive real Dirichlet character. It is a fundamentally difficult and
profound problem to show that the Dirichlet L-function L(s, χ) :=

∑∞
n=1

χ(n)
ns is

nonvanishing for real s > 0. In the case of odd character χ(−1) = −1, which corre-
sponds to the imaginary quadratic field, the L series can be related to Epstein zeta
functions of positive definite binary quadratic forms which have rapidly converging
expansions (see [1] and [10]) and in 1968 M. Low [6] devised a method which allowed
him to show that L(s, χ) > 0 for s > 0 for a negative conductor up to -593,000. Re-
cently this has been corrected and extended by M. Watkins [13] to −300, 000, 000.
Apparently, only recently in [2] has the positivity of L(s, χ) throughout s ∈ [1/2, 1]
been proven for an infinite number of primitive Dirichlet L functions by Conrey
and Soundararajan. They proved that this holds for at least 20% of the primitive
odd characters of conductor −8d for positive odd square-free d.

On the other hand, little seems to have been done in the case of even character
χ(−1) = 1. Apparently the best published method is that of Rosser, who showed,
more than 50 years ago in [7] and in an unpublished work that L(s, χ) has no real
positive zero for a positive conductor up to 986.

In this note we extend an old idea of H. Davenport [3] and give a simple com-
putational method for showing the nonvanishing of L(s, χ) for real positive s for
even real primitive characters. Our key observation is that the partial cycle sums
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Sν(s, χ) =
∑(ν+1)q−1

n=νq+1
χ(n)
ns are positive for 1/2 ≤ s ≤ 1 and ν = 1, 2, 3, . . . . This

extends Davenport’s observation from s = 1. It implies that if we can show that an
exact finite sum

∑t
ν=0 Sν(s, χ) is nonnegative for some t ≥ 0, then we can deduce

L(s, χ) > 0 for the fixed s. A simple idea using the mean value theorem allows us to
extend this to an algorithm for verifying the nonvanishing of L(s, χ) for 1/2 ≤ s ≤ 1
(see ALGO 1 in subsection 2.2). By the functional equation [4] and the easy fact
that L(s, χ) �= 0 for Re(s) > 1, we are able to verify numerically the following
result:

Theorem 1.1. Let χ be a real and even primitive Dirichlet character with conduc-
tor q. Then L(s, χ) has no real positive zero for q ≤ 200, 000.

Since ζQ(
√

q)(s) = ζ(s)L(s, χ), this implies that the corresponding Dedekind zeta
functions have no positive real zero. The reader with more computing power should
be able to extend the range of q in Theorem 1.1 using our method. In subsection 2.1,
we give the key result: Theorem 2.1, which is the extension of Davenport’s result
but we also give estimates for the partial cycle sum explicit in q. The algorithm
used for verifying positivity and a discussion of some possible extensions is given
in subsection 2.2. Proofs of our results and the estimates are given in Section 3
while Section 4 contains further estimates extending results of Leu and Li [5] who
generalized Davenport’s idea to shifted cycle sums. Theorem 4.1 is an analogue of
Theorem 2.1. Finally in Section 5 we give the results of our numerical computations.

2. Main ideas and results

2.1. An extension of a result of Davenport. Let χ be a primitive Dirichlet
character mod q. We define for any real s > 0,

(2.1) Sν(s, χ) :=
(ν+1)q∑

n=νq+1

χ(n)
ns

, ν = 0, 1, 2, . . . .

In 1949, in response to a question of Erdös, H. Davenport proved, “with little
difficulty” [3] that if χ is real and even, Sν(1, χ) > 0 for all ν ≥ 0. By continuity,
one expects that this should extend to a small neighborhood (depending on q) to
the left of s = 1 but one does not expect to be able to prove this easily because
of obvious implications to the question of Siegel’s zero [9], [11]. However one can
easily extends Davenport’s arguments to prove the following.

Theorem 2.1. If χ is real, primitive and even, and 1/2 ≤ s ≤ 1, then we have

(2.2) Sν(s, χ) > 0, for ν = 1, 2, 3, . . . .

More precisely, we have the following explicit lower bounds for 1/2 ≤ s ≤ 1:

S1(s, χ) >
s

40qs−1/2

(
1 − 5

2s+3

)
,(2.3)

Sν(s, χ) >
s

40qs−1/2

(
1

ν1+s
− 1

(ν + 1)1+s

)
, for ν = 2, 3, . . . .(2.4)

In view of (2.2), we define for t = 0, 1, 2, 3, . . . ,

(2.5) Lt(s, χ) :=
t∑

ν=0

Sν(s, χ),
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which increases monotonically and converges to L(s, χ). By (2.2) it suffices for us
to show that Lt(s, χ) ≥ 0 for any t ≥ 0 to conclude that L(s, χ) > 0. By the
Extended Riemann Hypothesis, such a finite t must exist. Indeed in most cases,
it suffices to choose t = 0. In fact Lt(s, χ) converges rapidly to L(s, χ) for any
primitive characters (not necessarily real or even). Let us set

L(s, χ) = Lt(s, χ) + Et+1(s, χ).

Then we have the following explicit bound for the error:

Theorem 2.2. Let χ be any primitive character mod q and s > 0. Then we have

|Et+1(s, χ)| ≤ 1
qs−1/2

(
s

12(t + 1)s+1
+

s(s + 1)(s + 2)
720(t + 1)s+3

)
if χ is even,(2.6)

|Et+1(s, χ)| ≤ 1
qs−1/2

( |L(1, χ)|
π(t + 1)s

+
s(s + 1)ζ(3)
4π3(t + 1)s+2

)
, if χ is odd.(2.7)

Let us say that a primitive modulus q for a real even character is exceptional
for s, s ∈ [0, 1] if S0(s, χ) < 0. Davenport’s result is that there is no exceptional
q for s = 1 and we expect this to remain true for s near 1. Numerically, we have
found that up to 1,000,000, there is no exceptional q for s = 0.555 or 0.56 and there
are only two at 14,693 and 788,933 at s = 0.55. Indeed it may be the case that
exceptional q does not exist for s > 0.555. Indeed for all the q values up to 200, 000
that we consider which are exceptional for s = 1/2, we have verified numerically
that S0(s, χ) is increasing on [1/2, 1] and the unique value 1/2 < α(q) < 1 where
S0(α(q), χ) = 0 is given to 5 decimal places in the last column of Table 1 below. For
fixed s > 1/2, we expect that all sufficiently large q should be nonexceptional in view
of the factor 1

q1/2−s in (2.6). Even for the worst case s = 1/2, the first exceptional q

occurs at q = 13340 and there are only 218 exceptional q ≤ 1, 000, 000 and among
these L1(1/2, χ) > 0 for 174 of them. Up to one million, the largest least t required
for Lt(s, χ) to become positive is 8 for q = 925, 097. Table 1 in Section 5 below
contains a list of all exceptional q ≤ 200, 000 at 0.5 and the smallest t value in each
case.

2.2. A method for verifying L(s, χ) > 0 for 0 < s < 1. Theorem 2.1 gives
us a way to prove that L(s, χ) > 0 at a particular point s by evaluating an exact
finite sum. However the following simple observation allows us to extend it to a
numerical method for verifying that L(s, χ) > 0 in an interval. By the functional
equation [4], it suffices for us to check this for 1/2 ≤ s ≤ 1 for us to deduce that it
has no real zero.

Lemma 2.3. Let f(s) ∈ C1[a, b] and assume that |f ′(s)| ≤ g(s) for s ∈ [a, b] and
a function g(s) which is positive and decreasing on [a, b]. Then from f(s0) > 0 for
some s0 ∈ (a, b), we can deduce f(s) > 0 for s ∈ [s0, s0 + f(s0)

g(s0) ).

Proof. Clearly we may assume f(s) ≤ f(s0). We then have

f(s0) − f(s) ≤
∫ s

s0

|f ′(t)|dt ≤
∫ s

s0

g(t)dt ≤ g(s0)(s − s0).

So we have f(s) ≥ f(s0) − g(s0)(s − s0) > 0 for s0 ≤ s < s0 + f(s0)
g(s0) . �
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Figure 1. q=1085.

We may apply Lemma 2.3 to f(s) = Lt(s, χ) since

|L′
t(s, χ)| ≤

(t+1)q−1∑
(n,q)=1,n=2

log n

ns
:= g(s)

is clearly decreasing. We start with s0 = 1/2 and pick a t (for example the least
t) such that Lt(1/2, χ) > 0. Such a t must exist if L(1/2, χ) > 0 which in turn is
widely believed to be true and K. Soundararajan [12] has shown that at least 7/8
of the quadratic fields have L(1/2, χ) �= 0. Computationally, M. Rubinstein [8] has
computed L(1/2, χ) for q up to 100,000,000 to 15 decimal places, and they are all
positive.

We then iteratively define the new point si+1 := si + Lt(si, χ)/g(si) and check
the positivity of Lt(si+1, χ). When si+1 ≥ 1, we have verified the nonexistence of a
real zero. In practice, we allow a small positive tolerance ε > 0 and the algorithm
pseudocode is given below.

ALGO 1
Find a t such that Lt(1/2, χ) > ε and set s = 1/2;
while (s < 1 and Lt(s, χ) > ε) do

s = s + Lt(s, χ)/
(t+1)q−1∑

(n,q)=1,n=2

log n

ns
;

if s > 1 then NO POSITIVE REAL ZERO
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Figure 2. q=19032.

In this way we obtain Theorem 1.1. The progress of the algorithms is best
illustrated in the plots of L0(s, χ) for q = 1085 requiring 106 iterations in Figure 1
and L1(s, χ) for q = 19032 in Figure 2 requiring 4373 iterations for ε = 10−5.
The t values used are the least with Lt(1/2, χ) > 0. These are the simplest cases.
More iterations are needed usually (see Table 1). More details of the numerical
computations will be given in Section 5.

ALGO 1 has the defect that the program will fail if we encounter an s with
1/2 < s < 1 and Lt(s, χ) < ε though Lt(s, χ) may be positive throughout (this does
not occur in the range of q that we computed above). One way to get around this is
to note that the condition “Lt(s, χ) ≥ 0 ⇒ L(s, χ) > 0” is pointwise so that we may
choose different t at different s. The obvious thing to do is to pick the least t such
that Lt(s, χ) > ε for each s, which incurs no additional computational cost at each
point evaluation since Lt(s, χ) is computed as Lt(s, χ) = Lt−1(s, χ) + St(s, χ) but
we found experimentally that the pointwise computational saving is far outweighed
by the larger number of iterations needed for using smaller t. The program will now
work whenever L(s, χ) > ε throughout [1/2, 1] but it may still be necessary to pick
a sufficiently small ε. However if we set αt(s) to be the right-hand side of (2.6) and
pick for each s the least t such that Lt(s, χ) > αt(s), the program is guaranteed
to succeed as long as L(s, χ) > 0 in [1/2, 1]. Note that such a t must exist if
L(s, χ) > 0 since αt(s) → 0 in t and Lt(s, χ) is eventually positive. It also has the
advantage of ensuring that Lt(s, χ) > L(s, χ)/2 so that it is more efficient because
the number of iterations is much less than picking the least t making Lt(s, χ) > 0.
However the value of t chosen will be 0 most of the time, and we find experimentally
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that the naive ALGO 1 with a fixed t greater than the minimum necessary actually
performed better.

3. Proof of main results

3.1. A Fourier expansion. In this section, we will prove our main estimates in
Theorems 2.1 and 2.2 essentially following Davenport’s argument extended to s < 1.
We consider for any real s > 0 and ν = 1, 2, 3, . . . the expansion of

f(x) =
1

(ν + x)s
∼ a0

2
+

∞∑
m=1

(am cos 2πmx + bm sin 2πmx) , 0 < x < 1,

in a Fourier series of period 1.
The coefficients are

(3.1) am = 2
∫ 1

0

cos 2πmx

(ν + x)s
dx, bm = 2

∫ 1

0

sin 2πmx

(ν + x)s
dx.

Integrating (3.1) by parts gives for each k ≥ 2,

am =
k∑

j=1

(−1)j−1 F2j

m2j
+ (−1)k 2s(s + 1) · · · (s + 2k − 1)

(2πm)2k

∫ 1

0

cos 2πmx

(ν + x)s+2k
dx,(3.2)

bm =
k∑

j=1

(−1)j−1 F2j−1

m2j−1
+ (−1)k 2s(s + 1) · · · (s + 2k − 2)

(2πm)2k−1

∫ 1

0

sin 2πmx

(ν + x)s+2k−1
dx,

(3.3)

where

F1 =
1
π

{
1
νs

− 1
(ν + 1)s

}
,(3.4)

Fj =
2s(s + 1) · · · (s + j − 2)

(2π)j

{
1

νs+j−1
− 1

(ν + 1)s+j−1

}
, j ≥ 2.(3.5)

Lemma 3.1. For k ≥ 2, we have

am =
k−1∑
j=1

(−1)j−1 F2j

m2j
+ (−1)k−1θm,k

F2k

m2k
,(3.6)

bm =
k−1∑
j=1

(−1)j−1 F2j−1

m2j−1
+ (−1)k−1φm,k

F2k−1

m2k−1
,(3.7)

where 0 < θm,k < 1, 0 < φm,k < 1.

Proof. Since clearly we have

0 < Im,2k :=
∫ 1

0

cos 2πmx

(ν + x)s+2k

<

∫ 1

0

dx

(ν + x)s+2k
=

1
s + 2k − 1

{
1

νs+2k−1
− 1

(ν + 1)s+2k−1

}
,

we may write Im,2k = 1−θm,k

s+2k−1

{
1

νs+2k−1 − 1
(ν+1)s+2k−1

}
for some θm,k ∈ (0, 1). Equa-

tion (3.6) follows from (3.2). �
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3.2. Proof of Theorem 2.2 for arbitrary primitive character. We first derive
general estimates which hold for any primitive character χ (not necessary real or
even) which may be of some independent interest. First we have (see [4, p. 68])

(3.8) τm(χ) =
q−1∑
n=1

χ(n)e2πimn/q = χ(m)τ(χ),

where the Gauss sum τ(χ) := τ1(χ) satisfies τ(χ)τ(χ̄) = χ(−1)q. It follows that

(3.9)
q−1∑
n=1

χ(n) cos 2πmn/q = χ(m)τ(χ),
q−1∑
n=1

χ(n) sin 2πmn/q = 0

if χ is even, and

(3.10)
q−1∑
n=1

χ(n) cos 2πmn/q = 0,

q−1∑
n=1

χ(n) sin 2πmn/q = −iχ(m)τ(χ)

if χ is odd, and we have

Lemma 3.2. For k ≥ 2, s > 0, and any primitive Dirichlet character,

qsSν(s, χ)
τ(χ)

=
k−1∑
j=1

(−1)j−1F2jL(2j, χ) + θkF2kζ(2k), χ even,(3.11)

qsSν(s, χ)
−iτ(χ)

=
k−1∑
j=1

(−1)j−1F2j−1L(2j − 1, χ) + φkF2k−1ζ(2k − 1), χ odd,(3.12)

where |θk| < 1 and |φk| < 1.

Proof. For χ even, we have by the Fourier expansion of f and (3.9),

Sν(s, χ) =
q−1∑
n=1

χ(n)
(qν + n)s

=
1
qs

q−1∑
n=1

χ(n)f
(n

q

)
=

τ(χ)
qs

∞∑
m=1

amχ(m),

and (3.11) follows from summing (3.6) with θk =
∑ (−1)k−1θm,kχ(m)

m2k /ζ(2k) which
has the obvious bound. The odd case is similar. �

Proof of Theorem 2.2. Choosing k = 2 and summing over (3.11) for ν = t+1 to ∞
using (3.5) gives

(3.13) Et+1(s, χ) =
τ(χ)
qs

(
s

2π2

L(2, χ)
(t + 1)s+1

+ θ2
s(s + 1)(s + 2)

8π4

ζ(4)
(t + 1)s+3

)
.

We now use the trivial bound |L(2, χ)| ≤ ζ(2) = π2

6 , ζ(4) = π4

90 and the fact that
|τ(χ)| =

√
q in (3.13) to obtain (2.6). A similar estimate gives (2.7) in the odd

case. �

We also need the following

Lemma 3.3. For ν > 5/4 and s ≥ 3/2, it holds that

(3.14)
1
νs

− 1
(ν + 1)s

>
1

νs+2
− 1

(ν + 1)s+2
.
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Proof. Since ν > 1, by multiplying both sides of (3.14) by νs+2(ν + 1)s+2, we see
that it holds if and only if (ν + 1)s+3(ν − 1) > νs+3(ν + 2) and clearly this will be
true for all s ≥ 3/2 if it is true at s = 3/2. We need to prove that(

ν + 1
ν

)9/2

>
ν + 2
ν − 1

or equivalently f(x) = (2 − x)x9/2 − (2x − 1) > 0, for x = (ν + 1)/ν ∈ (1, 9/5), or
that the polynomial h(y) = f(y2) = −y11 + 2y9 − 2y2 + 1 is positive for y =

√
x ∈

(1, 3/
√

5) and this is true since it is easily shown that h(1) = 0, h′(1) = 3 > 0 and
the only positive roots of h greater than 1 is around 1.35 > 3/

√
5. �

Lemma 3.4. For any real nonprincipal character χ, L(2, χ) > π2

15 .

Proof.

(3.15) L(2, χ) =
∏
p≥2

(1 − χ(p)/p2)−1 >
∏
p≥2

(1 + 1/p2)−1 = ζ(4)/ζ(2) = π2/15.

�

3.3. Proof of Theorem 2.1 for even real primitive characters. We now
assume χ is real primitive and even. In this case Gauss determined the sign of the
Gauss sum so that τ(χ) =

√
q. For 1/2 ≤ s ≤ 1, we pick k = 2 in (3.11) and use

ζ(4) = π4/90 and (3.15) to obtain

Sν(s, q)qs

√
qs

>
1
30

(
1

νs+1
− 1

(ν + 1)s+1

)
− 1

120

(
1

νs+3
− 1

(ν + 1)s+3

)
,

and this gives (2.3) by setting ν = 1. Inequality (2.4) follows from Lemma 3.3. �

4. Estimates for shifted cycle sums

4.1. Extension of a result of Leu and Li. In 1996, Leu and Li [5] generalized
Davenport’s result on Sv(1, χ) to shifted cycle sums. We shall now extend this to
1/2 ≤ s ≤ 1. The main ideas are essentially those of Davenport but the details are
more involved. Throughout this section, we assume χ is real, primitive and even.
We define for s > 0 and ν = 0, 1, 2, 3, . . .

Aν(s, χ) :=
νq+�q/2�∑
n=νq+1

χ(n)
ns

, Bν(s, χ) :=
(ν+1)q−1∑

n=νq+�q/2�+1

χ(n)
ns

,(4.1)

Tν(s, χ) := Bν(s, χ) + Aν+1(s, χ) =
(ν+1)q+�q/2�∑

n=νq+�q/2�+1

χ(n)
ns

.(4.2)

Note that Sν(s, χ) = Aν(s, χ) + Bν(s, χ). The main estimate is the following
generalization of Leu and Li’s extension of Davenport’s result to shifted sum:

Theorem 4.1. If χ is real, even and primitive, ν = 0, 1, 2, . . . , 1/2 ≤ s ≤ 1, then

(4.3) Tν(s, χ) < 0.

Furthermore, for ν ≥ 1 we have more explicitly

(4.4) Tν(s, χ) <
s

qs−1/2
c(s)

{
1

(ν + 1/2)s+1
− 1

(ν + 3/2)s+1

}
,
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where

c(s) =
(s + 1)(s + 2)

720
− 1

32
< − 11

480
.

The following corollary generalizing that in [5] is immediate.

Corollary 4.2. We have for any t1, t2 ≥ 0, and 1/2 ≤ s ≤ 1,

t1∑
ν=0

Sν(s, χ) < L(s, χ) < A0(s, χ) +
t2∑

ν=0

Tν(s, χ),(4.5)

Aν(s, χ) > 0 for ν ≥ 1, A0(s, χ) > L(s, χ), Bν(s, χ) < 0, for ν ≥ 0.(4.6)

We will need the following

Lemma 4.3. For any real nonprincipal character χ, we have

(4.7) H(χ) :=
∑
m≥1

(−1)mχ(m)
m2

<

{
−π2

12 if χ(2) ∈ {0,−1},
−π2

16 if χ(2) = 1.

Proof. We have

H(χ) =
(
−1 +

χ(2)
22

) ∑
m odd

χ(m)
m2

= −
(

1 − χ(2)
22

) ∏
p≥3

(
1 − χ(p)

p2

)−1

,

and the result follows from

∏
p≥3

(
1 − χ(p)

p2

)−1

≥
∏
p≥3

(
1 +

1
p2

)−1

=
(

1 +
1
22

)
ζ(4)
ζ(2)

=
π2

12
.

�

4.2. Proof of Theorem 4.1. We consider now the Fourier expansion of

(4.8) f(x) =
1

(ν + x)s
∼ a′

0

2
+

∞∑
m=1

(a′
m cos 2πmx + b′m sin 2πmx) , 1/2 < x < 3/2,

Since a′
m = 2

∫ 3/2

1/2
cos 2πmx
(ν+x)s dx, we have as in (3.6) with k = 2,

a′
m = (−1)m 2s

(2πm)2

{
1

(ν + 1/2)s+1
− 1

(ν + 3/2)s+1

}
(4.9)

+ (−1)m+1 2s(s + 1)(s + 2)
(2πm)4

{
1

(ν + 1/2)s+3
− 1

(ν + 3/2)s+3

}

+
2s(s + 1)(s + 2)(s + 3)

(2πm)4

∫ 3/2

1/2

cos 2πmx

(ν + x)s+4
dx.

Since the amplitude in the last integral is decreasing, its sign must be that of
cos 2m(1/2)π = (−1)m. The mean value theorem gives

(4.10)
∫ 3/2

1/2

cos 2πmx

(ν + x)s+4
dx = (−1)mθ′m

∫ 3/2

1/2

1
(ν + x)s+4

dx,
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where 0 < θ′m < 1. It follows that we have

a′
m = (−1)m 2s

(2πm)2

{
1

(ν + 1/2)s+1
− 1

(ν + 3/2)s+1

}
(4.11)

+ (−1)m+1 2s(s + 1)(s + 2)
(2πm)4

{
1

(ν + 1/2)s+3
− 1

(ν + 3/2)s+3

}
θ′m,2,

where 0 < θ′m,2 = 1 − θ′m < 1 depends on both ν and s.
By the Gauss sum (3.9), we get

(4.12)
qsTν(s, χ)√

q
=

s

2π2

{
1

(ν + 1/2)s+1
− 1

(ν + 3/2)s+1

} ∞∑
m=1

(−1)mχ(m)
m2

+
s(s + 1)(s + 2)

8π4

{
1

(ν + 1/2)s+3
− 1

(ν + 3/2)s+3

} ∞∑
m=1

(−1)m+1χ(m)
m4

θ′m,2(s).

If ν ≥ 1, the right-hand side can be bounded above using Lemma 4.3,

|
∞∑

m=1

(−1)m+1χ(m)
m4

θ′m,2(s)| ≤ ζ(4) = π4/90,

and Lemma 3.3 which yields (4.4).
For ν = 0, we note that

(4.13)
qs−1/2T0(s, χ)

s
=

1
2π2

(
2s+1 − 2s+1

3s+1

) ∞∑
m=1

(−1)mχ(m)(m2 − λ(s)θ′m,2(s))
m4

,

where

(4.14) λ(s) =
(s + 1)(s + 2)

9π2

(
3s+3 − 1
3s+1 − 1

)
.

It thus suffices for us to show that

(4.15) Y (s) :=
∞∑

m=1

(−1)mχ(m)(m2 − λ(s)θ′m,2(s))
m4

< 0.

We need two more lemmas.

Lemma 4.4. For 1/2 ≤ s ≤ 1, we have
(4.16)

0.46044 · · · = 5(27
√

3 − 1)
12π2(3

√
3 − 1)

= λ(1/2) ≤ λ(s) ≤ λ(1) =
20
3π2

= 0.67547 · · · .

Proof. We set s = S − 1 and µ(S) = S(S + 1)(9 · 3S − 1)/(3S − 1) = 9π2λ(s), and
we observe that µ′(S) has the same sign as

f(S) = (2S + 1)(9 · 3S − 1)(3S − 1) − 8S(S + 1)3S log 3.

Since 3S − 1 = eS log 3 − 1 ≥ S log 3, we have

f(S) ≥ (S log 3)((10S + 1)3S − (2S + 1))

≥ (S log 3)((10S + 1) − (2S + 1)) ≥ 8S2 log 3 ≥ 0

for S ≥ 0. Hence λ(s) increases with s ≥ −1 and the results follow. �
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As in [5] we will need to estimate θ′1,2. From (4.10) with ν = 0, m = 1, we have

θ′1,2(s) = 1 +
s + 3(

2s+3 − 2s+3

3s+3

) ∫ 3/2

1/2

cos 2πx

xs+4
dx

so that integrating by parts three times gives

(4.17) λ(s)θ′1,2(s) = 1 − π3s+1

2s(3s+1 + 1)
I(s),

where

(4.18) I(s) =
∫ 3/2

1/2

− sin 2πx

xs+1
dx.

Lemma 4.5. For 1/2 ≤ s ≤ 1, we have

(4.19) λ(s)θ′1,2(s) ≤ 1 − 9π

16

∫ 3/2

1/2

− sin 2πx

x3/2
dx = 0.50590 · · · .

Proof. We split the integral into two parts and set x = 2 − x in
∫ 3/2

1 to obtain

I(s) =
∫ 1

1/2

− sin(2πx)f(s, x)dx with f(s, x) =
1

xs+1
− 1

(2 − x)s+1
.

Since x ≤ 2 − x for x ≤ 1 and the function g(x) = log x
xs+1 is increasing for s ≥

−1, x ≤ 1, the integrand in I ′(s) is nonnegative and hence I(s) is increasing. Since
π3s+1

2s(3s+1−1) decreases for s > −1, the result follows.
�

We are now ready to prove (4.15). Assume first (the easy case) where χ(2) ∈
{0,−1}. From the definition of Y (s) in (4.15), (4.7) and Lemma 4.4 we have

Y (s) < −π2

12
+ λ(s)ζ(4) ≤ −π2

12
+

20
3π2

π4

90
=

−π2

108
< 0.

If χ(2) = 1, we consider the first three terms in (4.15)

(4.20) Y (s) = H(χ) + λ(s)θ′1,2(s) − λ(s)
θ′2,2(s)

16
− λ(s)

∑
m≥3

(−1)mχ(m)θ′m,2(s)
m4

,

and using (4.7), the fact that χ(2) > 0, λ(s) > 0, 0 < θ′i,2(s) < 1 and a trivial
bound in the last term give

Y (s) < −π2

16
+ λ(s)θ′1,2(s) + λ(s)

∑
m≥3

1
m4

(4.21)

≤ −π2

16
+ 1 − 9π

16

∫ 3/2

1/2

sin 2πx

x3/2
dx +

20
3π2

(
π4

90
− 17

16

)
≈ −0.0975579 · · · < 0,

where we used Lemma 4.5 in the last inequality. This completes the proof of
Theorem 4.1.
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5. Numerical results

We applied ALGO 1 to primitive even real characters of conductor q up to
200,000 choosing the smallest t for which Lt(1/2, χ) > 0 and using ε = 0.00001. It
is found that the program always terminates with s > 1 after finitely many steps
and this proves Theorem 1.1. The computations for two simple cases q = 1085
and 19032 are given in Figure 1 and Figure 2 where each plotted point corresponds
to one iteration (one function and one derivative evaluation). The computations
usually require a large number of iterations and take a long time to run. Statistics
for the computations for the 46 exceptional primitive conductors q up to 200,000 for
which S0(s, χ) < 0 is summarised in Table 1. Each row gives the conductor q, the
class number h(q) of Q(

√
q), its regulator R, the negative values of S0(1/2, χ), the

smallest t for which Lt(1/2, χ) > 0, the value of Lt(s, χ), the number of iterations,
the clock time needed in seconds and finally the unique value 1/2 < α(q) < 1
where S0(s, χ) crosses the zero line. The reader should be able to verify these
computations independently by checking the number of iterations used. The timing
of course depends on too many factors and is only meant as a guide of the relative
amount of time needed. We have also proved numerically that S′

0(s, χ) > 0 for the
exceptional q values at 1/2 in Table 1 using Lemma 2.3 with f(s) = S′

0(s, χ) and
g(s) =

∑(t+1)q−1
(n,q)=1,n=2

(log n)2

ns and a similar algorithm to ALGO 1. The computations
can be done relatively fast as compared to the positivity of L(s, χ) because S′

0(s, χ)
is bounded further from zero because of the additional log n term. The value of
α(q) is then determined by simple bisection.

We note that S0(1/2, χ) < 0 tends to occur only for small class numbers though
we have yet to formalise an exact relationship. The most time consuming case
occurs for q = 142, 637 which requires 776,099 iterations over more than 5 days
(469,354 seconds) to run on our system. This is because Lt(1/2, χ) = 0.00001
is exceptionally small. We note that we can usually improve the performance by
choosing a bigger t than the least one which makes Lt(1/2, χ) > 0. For q = 142, 637,
choosing t = 3 in ALGO 1 requires only 121, 254 iterations and runs more than 5
times faster (90175 seconds). Note that in this case, L3(0.5, χ) ≈ 0.00378 is much
closer to L(0.5, χ) ≈ 0.00591. It is clear we can always do better by choosing t so
that Lt(0.5, χ) > αL(0.5, χ) for some α > 0.5. Note that this can be done without
computing L(s, χ) using (2.6).

The algorithms are programmed in C with independent verification using PARI-
GP. The computations are done on a Linux PC cluster which comprises 8 500-MHz
Pentium III PC with 256M RAM and total disk space of 8 GB, in the Department
of Mathematics at the National University of Singapore. We applied the usual
computational tricks. For example, since ALGO 1 is applied for a fixed q at many
different s, the values of log n are precomputed in double precision in a table and
values of n for which χ(n) is ±1 are remembered as indices. This is done only once
and is then used at all the points where the function is evaluated. Note also that in
most cases (e.g., when Z/q∗ is cyclic), χ(n) = 1 exactly for the quadratic residues
which are found easily by taking squares up to �q/2� and using χ(n) = χ(−n)
without the need for the Euclidean algorithm for the Kronecker symbol.
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Table 1. Exceptional q at 1/2 up to 200,000: Time and iterations needed

q h(q) R S0(0.5, χ) t Lt(0.5, χ) Iterations Time α(q)
(sec)

13340 4 6.1355 −0.01645 3 0.00089 27509 1695 0.54909

14693 1 18.001 −0.01389 4 0.00025 179259 50523 0.55400

16557 1 25.291 −0.00912 1 0.00194 23269 2845 0.53545

19032 4 8.7555 −0.00477 1 0.00881 4373 61 0.51984

37901 1 35.072 −0.01105 2 0.00208 71866 8738 0.53937

42573 6 6.4281 −0.00975 1 0.00101 52572 3185 0.53544

50648 2 24.956 −0.00830 1 0.00398 18831 5057 0.52860

50853 4 11.211 −0.00012 1 0.01072 13639 4266 0.50106

53633 3 27.754 −0.00382 1 0.01260 17585 9411 0.51296

55037 5 7.0673 −0.00861 1 0.00100 103674 60555 0.53643

55733 1 32.339 −0.00442 1 0.00503 46636 5712 0.52492

60357 4 10.807 −0.01284 2 0.00070 97518 11687 0.54249

61333 1 63.313 −0.00537 1 0.00683 31074 4227 0.51987

61817 3 32.109 −0.00507 1 0.01165 16448 5334 0.51494

63416 1 71.246 −0.00921 1 0.00407 2029 3047 0.52620

68317 4 18.350 −0.00168 1 0.01088 23487 5633 0.50844

70949 1 58.183 −0.00635 1 0.00441 46042 8621 0.52398

89448 2 46.142 −0.00257 1 0.01150 8607 1269 0.51049

90461 1 62.809 −0.01184 2 0.00161 105042 35418 0.53535

91352 2 38.874 −0.00351 1 0.00917 15236 8288 0.51441

95717 1 38.805 −0.00164 1 0.00772 50499 65342 0.51218

96413 1 57.394 −0.00035 1 0.00968 36022 35372 0.50288

106917 6 10.481 −0.00756 1 0.00316 48543 44436 0.52789

109133 1 44.016 −0.00482 1 0.00460 71691 15545 0.52577

123653 1 52.612 −0.00120 1 0.00835 50364 12393 0.50866

125877 1 69.864 −0.01420 3 0.00078 180915 264353 0.54003

134357 4 13.180 −0.00774 1 0.00179 121471 168781 0.53316

137805 2 39.716 −0.00966 1 0.00146 137805 66540 0.53007

140460 4 30.441 −0.00670 1 0.00758 10912 6151 0.51879

142637∗ 5 11.667 −0.00960 1 0.00001 776099∗ 469354∗ 0.53604

144905 4 40.588 −0.01391 1 0.00321 46556 71570 0.52510

145517 3 23.139 −0.00751 1 0.00248 100927 163109 0.52807

147453 6 12.188 −0.00605 1 0.00469 44888 38787 0.52391

147773 3 16.689 −0.00418 1 0.00523 79303 84223 0.52329

159437 5 12.646 −0.00297 1 0.00664 64293 77721 0.51627

161192 2 46.526 −0.00065 1 0.01163 19745 23023 0.50402

161229 12 8.7033 −0.01282 2 0.00207 86219 146494 0.53141

170813 1 58.682 −0.00187 1 0.00765 65035 95385 0.51228

174605 6 14.352 −0.00213 1 0.00823 41175 51431 0.51120

176657 4 39.192 −0.00613 1 0.01030 33230 48035 0.51607

178485 4 22.371 −0.00699 1 0.00412 41678 47460 0.52435

179837 4 17.079 −0.00079 1 0.00897 46694 103994 0.50582

180197 1 66.343 −0.00293 1 0.00663 68718 119778 0.51614

192488 2 58.079 −0.01242 1 0.00028 137823 128591 0.53013

193973 4 14.228 −0.00254 1 0.00687 70282 120195 0.51606

199132 1 158.85 −0.01131 1 0.00399 33981 48548 0.52414
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