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REFINABLE BIVARIATE QUARTIC C2-SPLINES
FOR MULTI-LEVEL DATA REPRESENTATION

AND SURFACE DISPLAY

CHARLES K. CHUI AND QINGTANG JIANG

Abstract. In this paper, a second-order Hermite basis of the space of C2-
quartic splines on the six-directional mesh is constructed and the refinable
mask of the basis functions is derived. In addition, the extra parameters of this
basis are modified to extend the Hermite interpolating property at the integer

lattices by including Lagrange interpolation at the half integers as well. We also
formulate a compactly supported super function in terms of the basis functions
to facilitate the construction of quasi-interpolants to achieve the highest (i.e.,
fifth) order of approximation in an efficient way. Due to the small (minimum)
support of the basis functions, the refinable mask immediately yields (up to)
four-point matrix-valued coefficient stencils of a vector subdivision scheme for
efficient display of C2-quartic spline surfaces. Finally, this vector subdivision
approach is further modified to reduce the size of the coefficient stencils to
two-point templates while maintaining the second-order Hermite interpolating
property.

1. Introduction

Let �1 denote the triangulation of the x-y plane R
2 by using the grid lines

x = i, y = j, and x − y = k, i, j, k ∈ Z, and let �3 be its refinement by drawing
in the addditional grid lines x + y = �, x − 2y = m, and 2x − y = n, �, m, n ∈ Z.
Hence, �3, which may be considered as a Powell-Sabin split for each triangle of
the triangulation �1, is called a six-directional mesh. A truncated portion of the
triangulation �3 is shown in Figure 1. For integers d and r, with 0 ≤ r < d, let
Sr

d(�3) be the collection of all (real-valued) functions in Cr(R2) whose restrictions
on each triangle of the triangulation �3 are bivariate polynomials of total degree
≤ d. Each function φ in Sr

d(�3) is called a bivariate Cr-spline of degree d on �3.
In addition, if the support of φ (denoted by supp φ) contains at most one point
of the lattice Z

2 in its interior, then φ is called a vertex spline (or more precisely,
generalized vertex spline in [2, Chap. 6]). Also, if φ1, . . . , φn are compactly sup-
ported functions in Sr

d(�3) such that the column vector Φ := [φ1, . . . , φn]T satisfies
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Figure 1. Six-directional mesh �3

a 2-dilated refinement equation

(1.1) Φ(x) =
∑
k

PkΦ(2x − k), x ∈ R
2,

for some n × n matrices Pk with constant entries, Φ is called a refinable function
vector with (refinement) mask {Pk}.

Refinable function vectors of vertex splines φ1, . . . , φn with finite masks {Pk}
have important applications to computer-aided surface design as well as to various
problem areas in data interpolation/approximation and visualization, particularly
if φ1, . . . , φn satisfy additional desirable properties such as polynomial reproduction
(for high order of L2-approximation) and Lagrange/Hermite interpolating condi-
tions. For applications to computer-aided surface design and interactive manipu-
lation, the small support and interpolating property give rise to interpolating vec-
tor subdivision schemes, with matrix-valued coefficient stencils given by the mask
{Pk}, assuring the Cr-smoothness of the subdivided surfaces. For discrete data
representations, vertex splines φ1, . . . , φn with interpolating properties are readily
implementable and the “super function” (of highest approximation order), formu-
lated in terms of integer translates of φ1, . . . , φn, facilitates construction of quasi-
interpolants, which are again readily decomposable in terms of the vertex splines,
so that the refinement masks {Pk} can be applied to such schemes as multi-level
approximations.

The C1 problem is relatively simple. In fact, the vertex spline function vector
Φa := [φa

1 , φa
2 , φa

3 ]T , with φa
j ∈ S1

2(�3), j = 1, 2, 3, formulated explicitly in terms of
the Bézier coefficients (or Bézier nets) of quadratic polynomial pieces in [4] (see also
[3] for further elaboration) with Bézier coefficients shown in Figure 2 (with other
obviously zero coefficients not shown), already satisfies the (first-order) Hermite
interpolating condition

(1.2)
[
Φa,

∂

∂x
Φa,

∂

∂y
Φa

]
(k) = δk,0I3, k ∈ Z

2,
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Figure 2. Support and Bézier coefficients of φa
1 , φa

2 , with
φa

3(x, y) := φa
2(y, x)

and generates a Hermite (and hence, Riesz) basis of S1
2(�3). Furthermore, it was

shown in our earlier work [4] that the two-scale symbol of Φa with the refinement
mask {Pk}, where

P0,0 = diag(1, 1
2 , 1

2 ), P1,1 =
1
8

 4 −4 −4
1 0 −2
1 −2 0

 , P1,0 =
1
8

 4 −8 4
1 −2 2
0 0 2

 ,

P−1,0 =
1
8

 4 8 −4
−1 −2 2
0 0 2

 , P−1,−1 =
1
8

 4 4 4
−1 0 −2
−1 −2 0

 ,(1.3)

P0,1 =
1
8

 4 4 −8
0 2 0
1 2 −2

 , P0,−1 =
1
8

 4 −4 8
0 2 0
−1 2 −2

 ,

also satisfies the sum rules of order 3 (so that Φa locally reproduces all bivariate
quadratic polynomials and has the third order of approximation). When a spline
series s(x) =

∑
k v0

kΦa(x − k), where v0
k = [v0

1,k,v0
2,k,v0

3,k], v0
1,k,v0

2,k,v0
3,k ∈ R

3,
is considered, the (interpolating) vector subdivision scheme provides an efficient
algorithm for displaying the surface s(x). The matrix-valued coefficient stencils of
this particular subdivision scheme are shown in Figure 3. Observe that these are
2-point coefficient templates.

On the other hand, the C2 problem is more complicated. In [5], we have shown
that the space S2

3(�3) has only one vertex spline φb
1 with the normalization condi-

tion φb
1(0) = 1 and nonzero Bézier coefficients shown in Figure 4 and that the other

spline function φb
2 := φb

1 ◦ A−1 in S2
3(�3), where

(1.4) A :=
[

2 −1
1 −2

]
,
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Figure 3. Coefficient stencils for the C1 local averaging rule
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Figure 4. Support and Bézier coefficients of φb
1

with supp φb
2 containing seven lattice points of Z

2 in its interior, provides a second
basis function in S2

3(�3) with “minimum support.” By this, we mean that the
space S2

3(�3) is the L2-closure of the sum of the two linear algebraic spans V1 and
V2, where

(1.5) Vj := 〈φb
j(· − k) : k ∈ Z

2〉, j = 1, 2,

and that any φ ∈ S2
3(�3) such that supp φ has a “reasonable” shape and contains

less than seven lattice points of Z
2 in its interior is necessarily a spline function

in V1. Furthermore, it was also shown in [4] that V1 ∩ V2 �= {0}, and in fact the
integer-translates of φb

1 and φb
2 are governed precisely by two linear dependency

identities.
The linear dependency of the basis functions of S2

3(�3) is an undesirable fea-
ture for various problems in approximation theory. Furthermore, in applications
to surface subdivisions, the refinement mask of the refinable function vector Φb :=
[φb

1, φ
b
2]T cannot be modified to derive suitable coefficient stencils for a certain Her-

mite interpolatory vector subdivision scheme, mainly because the support of φb
2

is too large. What is more serious is that there is need of sufficient degrees of
freedom for adjusting the basis functions, and hence the corresponding mask, near
extraordinary points with valences different from six, to extend the subdivision
scheme for the computer-aided design of surfaces with arbitrary topologies. For
these and other reasons, we are willing to sacrifice the elegance of the space S2

3(�3)
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of cubic C2-splines in order to acquire the important properties of linear indepen-
dency, second-order Hermite interpolating condition, vertex spline basis functions,
matrix-valued coefficient stencils for interpolating subdivisions, etc., by using quar-
tic C2-splines. Hermite quadratic C1-splines were investigated in [15], [16], and
splines of arbitrary smoothness on Powell-Sabin triangulations including the quar-
tic C2-splines were studied by using the macro-element method in [1]. However,
since such basis functions as those discussed in [1], [15], [16] do not necessarily span
the corresponding spline spaces, they are, in general, not refinable. The reader
is also referred to the survey paper [14] on (nonrefinable) interpolating bivariate
splines.

The objective of this paper is to construct a refinable function vector Φ =
[φ1, . . . , φn]T of vertex splines φ1, . . . , φn ∈ S2

4(�3), such that its refinement mask
{Pk} provides the coefficient stencils for an interpolating vector subdivision scheme,
that its approximation order is maximum (meaning 5), that {φ1, . . . , φn} is linearly
independent, meaning that

∑n
�=1

∑
k c�

kφ�(x − k) = 0,x ∈ R
2, for any c�

k ∈ R

implies c�
k = 0 (from which we will see that n = 11), and that Φ satisfies the

second-order Hermite interpolating property:

(1.6)
[
Φ

∂

∂x
Φ

∂

∂y
Φ

∂2

∂x2
Φ

∂2

∂x∂y
Φ

∂2

∂y2
Φ

]
(k) = δk,0

[
I6

0

]
, k ∈ Z

2.

The organization of this paper is as follows. The refinable function vector Φ of
vertex splines in S2

4(�3) will be constructed in the next section, where the main
result is stated and the matrix-valued coefficient stencils for the 1-to-4 subdivision
scheme are also displayed. The proof of the main result will be given in Section 3.
The fourth section is divided into two subsections, with subsection 4.1 devoted to
the construction of some super functions ϕa, ϕb, and ϕ (in terms) of Φa, Φb, and Φ,
respectively. Here, taking Φ as an example, we say that

(1.7) ϕ :=
∑
k

tkΦ(· − k)

is a super function of Φ, if a finite sequence {tk} of row-vectors exists, such that
the scalar-valued function ϕ satisfies the modified Strang-Fix condition:

(1.8) Dαϕ̂(2πk) = δα,0δk,0, |α| < m, k ∈ Z
s,

with m = 5 (since Φ will be shown to have maximum approximation order, which
is order 4 + 1). In subsection 4.2, the refinable function vector Φ is modified to
satisfy certain combined canonical Hermite and Lagrange interpolating conditions,
with second-order Hermite interpolating property at Z

2 and Lagrange interpolating
property at

(
Z

2 +
(

1
2 , 0

)) ∪ (
Z

2 +
(
0, 1

2

)) ∪ (
Z

2 +
(

1
2 , 1

2

))
. For surface subdivision,

the dilation matrix 2I2 in (1.1) corresponds to the so-called 1-to-4 split topolog-
ical rule for triangular mesh refinement. In Section 5, the matrix A defined in
(1.4) is used to modify the mathematical theory to adapt to the

√
3-split topolog-

ical rule introduced recently in [11], [12]. This is possible since the six-directional
mesh �3 satisfies the refinability property �3 ⊂ A−1�3. In the final section, the
symmetry/anti-symmetry property of basis functions φ� ∈ S2

4(�3), 1 ≤ � ≤ 6, are
followed to construct second order Hermite interpolating subdivisions with 2-point
matrix coefficient stencils for the local averaging rule.
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Figure 5. Support and Bézier coefficients of φ1 (left), support
and Bézier coefficients of 8φ2 (right), with φ3(x, y) := φ2(y, x)

2. Second-order Hermite interpolating basis

Let M, N be arbitrary positive integers and let S2
4(�3

MN ) denote the restriction
of S2

4(�3) on [0, M + 1] × [0, N + 1]. Then by applying the dimension formula in
[2, Theorem 4.3], we have

(2.1) dimS2
4(�3

MN ) = 11MN + 20(M + N) + 35.

Since the coefficient of MN is 11, it is natural to investigate the existence of 11
compactly supported basis functions whose integer translates span all of S2

4(�3).
In search of these functions, we first extend the first-order Hermite basis function
vector Φa = [φa

1 , φ
a
2 , φa

3 ]
T in S1

2(�3) to a second-order Hermite basis function vector
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Φc = [φ1, . . . , φ6]T in S2
4(�3), namely:

(2.2)
[
Φc ∂

∂x
Φc ∂

∂y
Φc ∂2

∂x2
Φc ∂2

∂x∂y
Φc ∂2

∂y2
Φc

]
(k) = δk,0I6, k ∈ Z

2,

such that supp φj = supp φa
1 , j = 1, . . . , 6. Of course, there are quite a few free pa-

rameters, which unfortunately cannot be adjusted to yield a refinable function vec-
tor Φc. So, instead, we temporarily shift our attention to acquire as much symmetry
and/or anti-symmetry as possible. The Bézier coefficients of the six components
φ1, . . . , φ6 of Φc are shown in Figures 5 and 6, where those that are obviously equal
to zero are not displayed. There are remaining 6 free parameters, and we are able to
construct φ7, φ8, φ9 with supports and Bézier coefficients shown in Figure 7 (left and
middle). Observe that all of the supports of φ7, φ7(· + (1, 0)), φ8, φ8(· + (1, 1)), φ9,
and φ9(· + (0, 1)) are subsets of supp φ1. Hence, all of the 6 free parameters have
been taken care of, but we still need two more compactly supported basis functions,
whose supports do not lie in supp φ1. In Figure 7 (right), we show the support of φ10

and display its nonzero Bézier coefficients; we define φ11 by φ11(x, y) := φ10(y, x).
Observe that the supports of φ7, . . . , φ11 do not contain any lattice point of Z

2 in
their interiors, and, hence, they are called vertex splines also. Therefore, we have
a total of 11 vertex splines that constitute the function vector Φ := [φ1, . . . , φ11]T .
It turns out that {φ�(· − k) : k ∈ Z

2, 1 ≤ � ≤ 11} is indeed a basis of S2
4(�3), as

will be seen in Theorem 2.1 below.
Before stating our main result, we need to recall the concepts of sum rules and

polynomial reproduction by Φ. If Φ is indeed refinable with the refinement mask
{Pk} as described by the refinement (or two-scale) equation (1.1), then the two-scale
symbol

P (z) :=
1
4

∑
k

Pk zk
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of Φ is said to satisfy the sum rules of order m, if there exist constant vectors
yα, |α| < m, with y0 �= 0, such that

(2.3)
∑
β≤α

(−1)|β|
(

α

β

)
yα−β Jβ,γ = 2−αyα,

for all |α| < m and γ = (0, 0), (1, 0), (0, 1), (1, 1), with

Jβ,γ :=
∑
k

(k + 2−1γ)βP2k+γ .

It is well known (see, for example [8]) that if P (z) satisfies the sum rules of order
m, then Φ has the polynomial reproduction property of order m (or degree m− 1),
and, in fact, the vectors yα can be used to give the following explicit polynomial
reproduction formula:

(2.4) xj =
∑
k

{∑
α≤j

(
j
α

)
kj−α yα

}
Φ(x − k), x ∈ R

2, |j| < m.

It is also known that under the assumption that the matrix
∑

k∈Z2 Φ̂(2kπ)Φ̂(2kπ)T

is positive definite, the function vector Φ has polynomial reproduction order m if
and only if Φ has L2-approximation order m (see [7]).

We are now ready to state the following main result of the paper.

Theorem 2.1. For φ� ∈ S2
4(�3), 1 ≤ � ≤ 11, with Bézier coefficients shown in

Figures 5–7, the following statements hold.

(i) Φ = [φ1, . . . , φ11]T satisfies the second-order Hermite interpolating condi-
tion (1.6);

(ii) {φ1, . . . , φ11} is linearly independent;
(iii) S2

4(�3) = closL2〈φ�(· − k) : k ∈ Z
2, 1 ≤ � ≤ 11〉;

(iv) the two-scale symbol of Φ satisfies the sum rules of order 5, and, hence, Φ
locally reproduces all bivariate quartic polynomials;

(v) Φ has L2-approximation order 5;
(vi) Φ satisfies the refinement equation (1.1) with mask {Pk} given by

P0,0 =



1 0 0 0 0 0 21
64

21
64

21
64

7
24

7
24

0 1
2 0 0 0 0 9

128
9

128 0 1
12

1
24

0 0 1
2 0 0 0 0 9

128
9

128
1
24

1
12

0 0 0 1
4 0 0 11

2304
11

2304 − 1
2304

7
864

1
864

0 0 0 0 1
4 0 − 1

2304
23

2304 − 1
2304

7
864

7
864

0 0 0 0 0 1
4 − 1

2304
11

2304
11

2304
1

864
7

864

0 0 0 0 0 0 1
8 0 0 0 0

0 0 0 0 0 0 0 1
8 0 0 0

0 0 0 0 0 0 0 0 1
8 0 0

0 0 0 0 0 0 0 0 0 1
8 0

0 0 0 0 0 0 0 0 0 0 1
8



,
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P−1,−1 =



1
4

1
2

1
2

3
4

3
4

3
4

3
16

21
64

3
16

7
24

7
24

− 1
16

− 1
16

− 3
16

0 − 3
16

− 3
8

− 1
32

− 9
128

− 1
16

− 1
24

− 1
12

− 1
16

− 3
16

− 1
16

− 3
8

− 3
16

0 − 1
16

− 9
128

− 1
32

− 1
12

− 1
24

1
192

0 1
48

0 0 1
16

1
576

11
2304

1
144

1
864

7
864

1
96

1
48

1
48

0 1
16

0 1
144

23
2304

1
144

7
864

7
864

1
192

1
48

0 1
16

0 0 1
144

11
2304

1
576

7
864

1
864

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



,

P−1,0 =



1
4 1 − 1

2 3 − 3
2

3
4

21
64

3
16 0 7

24 0

− 1
16 − 1

4
3
16 − 3

4
9
16 − 3

8 − 9
128 − 1

32 0 − 1
24 0

0 0 1
8 0 3

8 − 3
8 0 1

32 0 1
24 0

1
192

1
48 − 1

48
1
16 − 1

16
1
16

11
2304

1
576 0 1

864 0

0 0 − 1
48 0 − 1

16
1
8 − 1

2304 − 1
288 0 − 5

864 0

0 0 0 0 0 1
16 − 1

2304
1

576 0 1
864 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

16
1
16 0 1

6

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



,

P0,−1 =



1
4 − 1

2 1 3
4 − 3

2 3 0 3
16

21
64 0 7

24

0 1
8 0 − 3

8
3
8 0 0 1

32 0 0 1
24

− 1
16

3
16 − 1

4 − 3
8

9
16 − 3

4 0 − 1
32 − 9

128 0 − 1
24

0 0 0 1
16 0 0 0 1

576 − 1
2304 0 1

864

0 − 1
48 0 1

8 − 1
16 0 0 − 1

288 − 1
2304 0 − 5

864

1
192 − 1

48
1
48

1
16 − 1

16
1
16 0 1

576
11

2304 0 1
864

0 0 0 0 0 0 1
16

1
16 0 1

6 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



,
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P0,1 =



1
4

1
2 −1 3

4 − 3
2 3 3

16 0 0 0 0
0 1

8 0 3
8 − 3

8 0 1
32 0 0 0 0

1
16

3
16 − 1

4
3
8 − 9

16
3
4

1
16 0 0 0 0

0 0 0 1
16 0 0 1

576 0 0 0 0
0 1

48 0 1
8 − 1

16 0 1
144 0 0 0 0

1
192

1
48 − 1

48
1
16 − 1

16
1
16

1
144 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

16
1
16 0 1

6 0
1 0 0 −12 6 −12 1

16
1
16

1
8

1
6 0

0 0 0 0 0 0 0 0 0 0 0
3
16

9
8 0 9

2
9
8 − 9

4
45
128

45
128 0 7

16
1
8



,

P1,0 =



1
4 −1 1

2 3 − 3
2

3
4 0 0 3

16 0 0
1
16 − 1

4
3
16

3
4 − 9

16
3
8 0 0 1

16 0 0
0 0 1

8 0 − 3
8

3
8 0 0 1

32 0 0
1

192 − 1
48

1
48

1
16 − 1

16
1
16 0 0 1

144 0 0
0 0 1

48 0 − 1
16

1
8 0 0 1

144 0 0
0 0 0 0 0 1

16 0 0 1
576 0 0

1 0 0 −12 6 −12 1
8

1
16

1
16 0 1

6

0 0 0 0 0 0 0 1
16

1
16 0 1

6

0 0 0 0 0 0 0 0 0 0 0
3
16 0 9

8 − 9
4

9
8

9
2 0 45

128
45
128

1
8

7
16

0 0 0 0 0 0 0 0 0 0 0



,

P1,1 =



1
4 − 1

2 − 1
2

3
4

3
4

3
4 0 0 0 0 0

1
16 − 1

16 − 3
16 0 3

16
3
8 0 0 0 0 0

1
16 − 3

16 − 1
16

3
8

3
16 0 0 0 0 0 0

1
192 0 − 1

48 0 0 1
16 0 0 0 0 0

1
96 − 1

48 − 1
48 0 1

16 0 0 0 0 0 0
1

192 − 1
48 0 1

16 0 0 0 0 0 0 0
0 0 0 0 0 0 1

16 0 0 0 0
1 0 0 −12 6 −12 1

16
1
8

1
16 0 0

0 0 0 0 0 0 0 0 1
16 0 0

3
16

9
8 − 9

8
9
2 − 45

8
9
2

45
128 0 0 1

8 0
3
16 − 9

8
9
8

9
2 − 45

8
9
2 0 0 45

128 0 1
8



,

P−1,1 =
1
16

[δi,9δj,7], P1,−1 = PT
−1,1, P1,2 =

[
010×11

u1

]
, P2,1 =

 09×11

u2

01×11

 ,
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where

u1 = [
3
16

, 0, −9
8
, −9

4
,

9
8
,

9
2
, 0, . . . , 0], u2 = [

3
16

, −9
8
, 0,

9
2
,

9
8
, −9

4
, 0, . . . , 0].

The refinement equation (1.1) with refinement mask {Pk} given in (vi) above
translates into the local averaging rule for the vector subdivision scheme as follows:

(2.5) vm+1
j =

∑
k

vm
k Pj−2k, m = 0, 1, . . . ,

where vm
k := [vm

1,k, . . . ,vm
11,k] is a “row-vector” whose �th component vm

�,k is a
“point” in the 3-D space, for � = 1, . . . , 11. In particular, the first components vm

1,k

are position vectors, meaning that they are the vertices of the triangular planes
resulting from the mth iterative step, with {v0

1,k} denoting the set of vertices of the
initial triangular planes. Observe that this is an interpolating subdivision scheme,
in that the old vertices vm

1,k are not changed in position (in the 3-D space), while
the new vertices among {vm+1

1,j } are considered as “midpoints” of the triangular
planes with vertices vm

1,k (though these so-called midpoints do not lie on the same
triangular planes in the 3-D space). More precisely, we have
(2.6)

vm+1
j =

[
vm

1, 1
2 j,

1
2
vm

2, 1
2 j,

1
2
vm

3, 1
2 j,

1
4
vm

4, 1
2 j,

1
4
vm

5, 1
2 j,

1
4
vm

6, 1
2 j, ∗, ∗, ∗, ∗, ∗], j ∈ 2Z

2.

The three “midpoints” of each triangular plane are joined by three new edges,
changing the triangular plane to four new triangular planes; hence, it is called a 1-to-
4 vector subdivision scheme. The matrix-valued coefficient stencils for determining
vm+1
j from vm

k are given in Figure 8, where the solid circles denote the “old vertices”
(meaning vm

k , with the first components representing the actual positions of the
vertices in the 3-D space), and the hollow circles, squares, and triangles denote the
“new vertices,” depending on their orientations as described in the 2-D parametric
domain. Observe that while the first components of vm

k are unchanged, the second
through the sixth components are simply scaled by 1

2 or 1
4 in (2.6).

P 0,0
P

P2,1 0,1P

P0,−1

1,0

P1,−1 P−1,−1

P1,1 P−1,1

P−1,0

P1,2

Figure 8. Coefficient stencils for the C2 local averaging rule

−1,0P0,0P P1,0

PP−1,−1

P1,1

−2,−10,−1

P2,1 0,1P

P

Figure 9. Coefficient stencils for the C2 local averaging rule



1380 C. K. CHUI AND QINGTANG JIANG

Here we mention that if the basis functions in Theorem 2.1 (see Figures 5–7) are
replaced by φ̃j , with

φ̃j = φj , j = 1, . . . , 6, 10, φ̃7 = φ7(· + (1, 0)), φ̃j = φj(· + (1, 1)), j = 8, 9, 11,

then Φ̃ := [φ̃1, . . . , φ̃11] remains refinable with refinement mask {P̃k}, say. The
importance of this transformation is that two of the four coefficient stencils in
Figure 8 are reduced to 2-point coefficient stencils, as shown in Figure 9. In the
final section of this paper, we will show that all coefficient stencils can be further
reduced to 2-point templates when spline representation is less important.

3. Proof of Theorem 2.1

The statement (i), which says that Φ satisfies the second-order Hermite interpo-
lating condition (1.6), can be easily verified by noting that the Bézier coefficients at
the vertices are function values and by applying the formulas of partial derivatives
in terms of Bézier coefficients in [2, p. 94], using the Bézier coefficients shown in
Figures 5–7.

To prove (ii), assume that there exist some real constants c�
k, 1 ≤ � ≤ 6, dj

k,
1 ≤ j ≤ 3, es

k, s = 1, 2, k ∈ Z
2, such that for x ∈ R

2,

(3.1) f(x) :=
∑
n

{
6∑

�=1

c�
nφ�(x−n) +

3∑
j=1

dj
nφ6+j(x−n) +

2∑
s=1

es
nφs+9(x−n)} = 0.

By (i) with x = k ∈ Z
2, we then have

(3.2) [c1
k, . . . , c6

k] =
[
f

∂

∂x
f

∂

∂y
f

∂2

∂x2
f

∂2

∂x∂y
f

∂2

∂y2
f

]
(k) = 0,

so that f(x) in (3.1) reduces to

(3.3) f(x) =
∑
n

{
3∑

j=1

dj
nφ6+j(x − n) +

2∑
s=1

es
nφs+9(x − n)}, x ∈ R

2.

The Bézier coefficients of f restricted to the triangle with vertices k,k+ (1, 0),k+
(1, 1), for any (fixed) k ∈ Z

2, is displayed in Figure 10 with

u := d1
k +

3
16

(e1
k + e2

k−(0,1)), v := d1
k +

3
8
e1
k, w :=

2
3
d1
k +

3
4
e1
k,

x := e1
k +

4
9
(d1

k + d2
k), y := e1

k +
4
9
d1
k +

2
9
(d2

k + d3
k+(1,0)),(3.4)

z := e1
k +

4
9
(d1

k + d3
k+(1,0)).

From the assumption that f ≡ 0 in (3.1), we have

u = v = w = x = y = z = 0,

and it follows from (3.4) that

(3.5) d1
k = 0, d2

k = 0, d3
k+(1,0) = 0, e1

k = 0, e2
k−(0,1) = 0.

Since (3.2) and (3.5) hold for an arbitrary k ∈ Z
2, we may conclude that c�

k, dj
k, es

k

in (3.1) are all equal to 0. That is, {φ1, . . . , φ11} is linearly independent.
To prove (iii), again let M, N be arbitrary positive integers and let S2

4(�3
MN )

denote the restriction of S3
4(�3) on [0, M + 1] × [0, N + 1]. Then the dimension
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+

+ (1, 1)

(1, 0)
k

k

k

v

w

x y z

u

Figure 10. Bézier coefficients of bivariate spline f in (3.3) with
u, v, w, x, y, z in (3.4).

of S2
4(�3

MN ) is given by (2.1). One can easily verify that for each 1 ≤ � ≤ 6, the
number of φ�(· − k) whose support overlaps with [0, M + 1]× [0, N + 1] is equal to
(M + 2)(N + 2), the numbers of φ7(· − k), φ8(· − k) and φ9(· − k) whose supports
overlap with [0, M + 1] × [0, N + 1] are equal to (M + 1)(N + 2), (M + 1)(N + 1)
and (M +2)(N +1), respectively, while the numbers of φ10(·−k), φ11(·−k) whose
supports overlap with [0, M + 1]× [0, N + 1] are both equal to (M + 2)(N + 2)− 1.
Hence, the total number of φ�(· − k), 1 ≤ � ≤ 11, whose supports overlap with
[0, M + 1] × [0, N + 1] is given by

6(M + 2)(N + 2) + (M + 1)(N + 2) + (M + 1)(N + 1)
+(M + 2)(N + 1) + 2(M + 2)(N + 2) − 2

= 11MN + 20M + 20N + 35,

which is exactly the same as dimS2
4(�3

MN ). This fact, along with the linear inde-
pendency property (ii) and the assumption that M and N are arbitrary, assures
the validity of the statement (iii).

Next, let us verify the correctness of (vi), before tackling the proof of (iv)–
(v). To do so, we first observe that since �3 ⊂ 1

2�3, the spline space S2
4(�3)

is a subspace of S2
4(1

2�3). Hence, in view of (iii), Φ is indeed refinable. To find
the refinement mask {Pk} of Φ, we need to compute the Bézier representation of
φ�( ·

2 ), 1 ≤ � ≤ 11, by applying the C4-smoothing formula in [2, Theorem 5.1],
and then write down the linear equations of φ�( ·

2 ), formulated as (finite) linear
combinations of φm(· − k), k ∈ Z

2, at the Bézier points for 1 ≤ �, m ≤ 11. The
(unique) solution, arranged in 11 × 11 matrix formulation, gives the mask {Pk} in
(vi).

To prove (iv), it is not difficult to show that the two-scale symbol of Φ with the
refinement mask {Pk} satisfies the sum rules of order 5, by solving equations (2.3)
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to find the following vectors yα, |α| < 5:

y0,0 =
1
24

[24, 0, 0, 0, 0, 0, 9, 9, 9, 8, 8],

y1,0 =
1

144
[0, 18, 0, 0, 0 , 0, 27, 27, 0, 32, 16],

y0,1 =
1

144
[0, 0, 18, 0, 0, 0, 0, 27, 27, 16, 32],

y2,0 =
1

432
[0, 0, 0, 18, 0, 0, 33, 33, −3, 56, 8],

y1,1 =
1

864
[0, 0, 0, 0, 18, 0, −3, 69, −3, 56, 56],

y0,2 =
1

432
[0, 0, 0, 0, 0, 18, −3, 33, 33, 8, 56],(3.6)

y3,0 =
1

144
[0, 0, 0, 0, 0, 0, 3, 3, 0, 8, 0],

y2,1 =
1

864
[0, 0, 0, 0, 0, 0, −3, 21, −3, 24, 8],

y1,2 =
1

864
[0, 0, 0, 0, 0, 0, −3, 21, −3, 8, 24],

y0,3 =
1

144
[0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 8],

y4,0 = y3,1 = y2,2 = y1,3 = y0,4 = [0, . . . , 0].

This gives the polynomial reproduction formula (2.4) with m = 5.
To prove (v), we first note that the linear independence of {φ1, . . . , φ11} in (ii)

implies that ∑
k∈Z2

Φ̂(2kπ)Φ̂(2kπ)T

is positive definite (see [10]). Recall that under this condition the order of local
polynomial reproduction is equivalent to the L2-approximation order. Therefore,
(v) follows from (iv). This completes the proof of the theorem.

4. Applications to data representation

In this section, we will give two applications of the Hermite basis functions
φ1, . . . , φ11 of S2

4(�3) to discrete data representation. In subsection 4.1, one single
function ϕ, called a super function, is formulated as a finite linear combination of
integer translates of φ1, . . . , φ11 to achieve the full approximation order of S2

4(�3).
In subsection 4.2, we modify Φ to extend the second-order Hermite interpolating
condition at Z

2 to include Lagrange interpolation at the half integers as well.

4.1. Super functions. In this subsection, we compute a super function for S2
4(�3).

For completeness, we also formulate certain super functions for S1
2(�3) and S2

3(�3)
based on the refinable splines constructed in [4] and [5], respectively.

Suppose that the two-scale symbol P (z) of a refinable function vector Φ satis-
fies the sum rules of order m, namely (2.3), for some vectors yα, |α| < m, with
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y0Φ̂(0) = 1. Let {tk} be a finite sequence of row-vectors so chosen that the vector-
valued trigonometric polynomial

t(ω) :=
∑
k

tke−ikω

satisfies

(4.1) (−iD)αt(0) = yα, |α| < m.

Then the function ϕ defined by (1.7) in terms of this sequence {tk} is a super
function, meaning that ϕ satisfies the modified Strang-Fix condition (1.8).

We first demonstrate the procedure by considering the simple example Φa =
[φa

1 , φ
a
2 , φa

3 ] in Figure 2 for S1
2(�3), where the two-scale symbol satisfies the sum

rules of order 3, with vectors yα given in [5] by

y0,0 = [1, 0, 0], y1,0 = [0, 1, 0], y0,1 = [0, 0, 1],

y2,0 = y1,1 = y0,2 = [0, 0, 0].
(4.2)

Let t(ω) =
∑

k tke−ikω be a vector-valued trigonometric polynomial satisfying (4.1)
with m = 3. For the yα in (4.2), one can easily choose (among many other choices)
nonzero tk, as follows:

t0,0 = [1, 0, 0], t1,0 = −1
2
[0, 1, 0], t0,1 = −1

2
[0, 0, 1],

t−1,0 =
1
2
[0, 1, 0], t0,−1 =

1
2
[0, 0, 1].

Then the super function ϕa defined by

ϕa :=
∑

k∈{(0,0),(1,0),(0,1),(−1,0),(0,−1)}
tkΦa(· − k)

satisfies
Dαϕ̂a(2πk) = δα,0δk,0, |α| < 3, k ∈ Z

2.

Here and in the following, we obtain tk by solving the equations (4.1) for the vector
coefficients tk.

For the basis functions φb
1, φ

b
2 constructed in [5], one can verify (see [5]) that the

two-scale symbol satisfies the sum rules of order 4, with vectors yα given by

y0,0 =
1
6
[1, 3], y1,0 = y0,1 = [0, 0], y2,0 = y0,2 =

1
18

[1, −3],

y1,1 =
1
36

[1, −3], y3,0 = y2,1 = y1,2 = y0,3 = [0, 0],

and, hence, Φb = [φb
1, φb

2] reproduces all cubic monomials 1, x, y, x2, xy, y2, x3, x2y,
xy2, y3. Let t(ω) =

∑
k tke−ikω be a vector-valued trigonometric polynomial satis-

fying (4.1) with |α| < 4. For the yα given above, one can choose t(ω) with nonzero
coefficients

t0,0 =
1
36

[1, 33], t1,0 = t0,1 = t−1,0 = t0,−1 =
1
24

[1, −3],

t−1,1 = t1,−1 =
1
72

[−1, 3].

The super function ϕb defined by

ϕb :=
∑

k∈{(0,0),(1,0),(0,1),(−1,0),(0,−1),(1,−1),(−1,1)}
tkΦb(· − k)
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satisfies

Dαϕ̂b(2πk) = δα,0δk,0, |α| < 4, k ∈ Z
2.

Now let us return to the basis functions φ�, 1 ≤ � ≤ 11, of S2
4(�3) constructed

in this paper. As shown in the above section, the two-scale symbol corresponding
to Φ = [φ1, . . . , φ11]T satisfies the sum rules of order 5, with vectors yα, |α| < 5,
given by (3.6). For these vectors, we can find t(ω) by solving (4.1). In particular,
we may choose t(ω) with (nonzero) coefficients given by

t−1,−1 = − 1
3456

[0, 36, 36, 6, 6, 6, 63, 99, 63, 88, 88],

t−1,0 =
1

1728
[0, 72, 72, 36, 12, 24, 177, 369, 111, 392, 264],

t−1,1 =
1

3456
[0, 0, −216, 0, −36, −54, 15, −561, −345, −392, −552],

t−1,2 =
1

1728
[0, 0, 72, 0, 12, 6, −3, 141, 117, 88, 152],

t−1,3 =
1

10368
[0, 0, −108, 0, −18, 0, 3, −177, −177, −104, −200],

t0,−1 =
1

1728
[0, 72, 72, 12, 36, 24, 111, 369, 177, 264, 392],

t0,0 =
1

864
[864, 54, 54, −36, −36, −18, 339, 267, 339, 224, 224],

t0,1 =
1

864
[0, 0, −108, 0, 18, 9, −6, −75, −123, −48, −80],

t0,2 =
1

5184
[0, 0, 108, 0, 0, −18, 3, 75, 147, 40, 88],

t1,−1 =
1

3456
[0, −216, 0, −36, 0, −54, −345, −561, 15, −552, −392],

t1,0 =
1

864
[0, −108, 0, 18, 0, 9, −123, −75, −6, −80, −48],

t1,1 =
1

1152
[0, 0, 0, 0, 0, 6, 1, 9, 1, 8, 8],

t2,−1 =
1

1728
[0, 72, 0, 12, 0, 6, 117, 141, −3, 152, 88],

t2,0 =
1

5184
[0, 108, 0, 0, 0, −18, 147, 75, 3, 88, 40],

t3,−1 =
1

10368
[0, −108, 0, −18, 0, 0, −177, −177, 3, −200, −104].

Again the super function ϕc defined by (1.7) with the above tk satisfies

Dαϕ̂c(2πk) = δα,0δk,0, |α| < 5, k ∈ Z
2.

4.2. Combined Hermite-Lagrange interpolation. In this subsection, we mod-
ify Φ to Φn so that in addition to satisfying the second-order Hermite interpolating
condition (1.6), Φn satisfies the Lagrange interpolating condition at

(Z2 + (
1
2
, 0)) ∪ (Z2 + (0,

1
2
)) ∪ (Z2 + (

1
2
,
1
2
))
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as well. The modified basis functions are given by

φn
1 := φ1 − 1

4
(
φ7 + φ8 + φ9 + φ7(· + (1, 0)) + φ8(· + (1, 1)) + φ9(· + (0, 1))

)
,

φn
2 := φ2 − 1

16
(
φ7 + φ8 − φ7(· + (1, 0)) − φ8(· + (1, 1))

)
,

φn
3 := φ3 − 1

16
(
φ8 + φ9 − φ8(· + (1, 1)) − φ9(· + (0, 1))

)
,

φn
4 := φ4 − 1

192
(
φ7 + φ8 + φ7(· + (1, 0)) + φ8(· + (1, 1))

)
,

φn
5 := φ5 − 1

96
(
φ8 + φ8(· + (1, 1))

)
,

φn
6 := φ6 − 1

192
(
φ8 + φ9 + φ8(· + (1, 1)) + φ9(· + (0, 1))

)
,

φn
7 := φ7, φn

8 := φ8, φn
9 := φ9,

φn
10 := φ10 − 3

16
(
φ7 + φ8 + φ9(· − (1, 0))

)
,

φn
11 := φ11 − 3

16
(
φ7(· − (0, 1)) + φ8 + φ9

)
.

It is clear that Φn := [φn
1 , . . . , φn

11]
T satisfies the same second-order Hermite inter-

polating property (1.6) as Φ. One can also easily verify that Φn satisfies

Φn(k + (
1
2
, 0)) = δk,0[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]T ,

Φn(k + (
1
2
,
1
2
)) = δk,0[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]T ,(4.3)

Φn(k + (0,
1
2
)) = δk,0[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]T , k ∈ Z

2.

That is, Φn satisfies the Lagrange interpolating condition at the “half integers” as
well. To relate Φn with Φ in the Fourier domain, we set

M(z) :=

1 0 0 0 0 0 − 1
4 (1 + 1

z1
) − 1

4 (1 + 1
z1z2

) − 1
4 (1 + 1

z2
) 0 0

0 1 0 0 0 0 − 1
16 (1 − 1

z1
) − 1

16 (1 − 1
z1z2

) 0 0 0
0 0 1 0 0 0 0 − 1

16 (1 − 1
z1z2

) − 1
16 (1 − 1

z2
) 0 0

0 0 0 1 0 0 − 1
192 (1 + 1

z1
) − 1

192 (1 + 1
z1z2

) 0 0 0
0 0 0 0 1 0 0 − 1

96 (1 + 1
z1z2

) 0 0 0
0 0 0 0 0 1 0 − 1

192 (1 + 1
z1z2

) − 1
192 (1 + 1

z2
) 0 0

0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 − 3

16 − 3
16 − 3

16z1 1 0
0 0 0 0 0 0 − 3

16z2 − 3
16 − 3

16 0 1



.

Then we have
Φ̂n(ω) = M(e−iω)Φ̂(ω).

Note that the inverse M−1(z) of M(z) is still a matrix-valued Laurent polynomial,
given by

M−1(z) = 2I11 − M(z).
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Hence, Φn is refinable with a finite mask {Pn
k }, and the corresponding two-scale

symbol Pn(z) is given by the matrix-valued Laurent polynomial

M(z2)P (z)M−1(z),

where P (z) is the two-scale symbol for Φ. Of course, Φn is still linearly independent
and has L2-approximation of order equal to 5.

Let f be any C2 function on R
2. Set

Sj
f (x) :=

∑
k

{
6∑

�=1

cj
k,�φ

n
� (2j · −k) +

9∑
�=7

dj
k,�φ

n
� (2j · −k) +

11∑
�=10

ej
k,�φ

n
� (2j · −k)},

with

cj
k,1 = f(2−jk), cj

k,2 = 2−j ∂f

∂x
(2−jk), cj

k,3 = 2−j ∂f

∂y
(2−jk),

cj
k,4 = 2−2j ∂2f

∂x2
(2−jk), cj

k,5 = 2−2j ∂2f

∂x∂y
(2−jk),

cj
k,6 = 2−2j ∂2f

∂y2
(2−jk), dj

k,7 = f(2−j(k + (
1
2
, 0))),

dj
k,8 = f(2−j(k + (

1
2
,
1
2
))), dj

k,9 = f(2−j(k + (0,
1
2
))),

where ej
k,10, e

j
k,11 are free parameters to be determined. Then Sj

f is a second-
order Hermite interpolant of f at 2−j

Z
2, and it is a Lagrange interpolant of f at

2−j−1
Z

2\(2−j
Z

2). The free parameters can be used for shape control or could be
determined by certain best approximation criterion.

5.
√

3-subdivision

The multi-level structure discussed in the previous sections is governed by the
refinement equation (1.1) with the dilation matrix 2I2. The corresponding sub-
division for this matrix dilation employs the so-called 1-to-4 split topological rule
as used in [13, 6], meaning that each triangle is subdivided into four triangles by
joining the midpoint of each edge (see Section 2). More recently, another surface
subdivision scheme, called

√
3-subdivision, was introduced in [11, 12]. To describe

the topological rule of this newer scheme (that governs how new vertices are chosen
and how they are connected to yield a finer triangular subdivided surface in R

3),
we use a two-dimensional regular triangulation � as a guideline. That is, each
triangular plane of the subdivided surface in R

3 is represented by a triangular cell
of �. For the

√
3-subdivision scheme, the new vertices are represented by the mid-

points of the triangular cells of �, while the new edges are obtained by following
the topological rule of joining the midpoint of each triangular cell of � to its three
(old) vertices as well as to the (new) vertices that are midpoints of the three ad-
jacent triangular cells. To complete describing this topological rule, the old edges
are to be removed. Hence, if the regular triangulation is the triangulation �1 of
R

2 generated by the three-directional mesh of grid lines x = i, y = j, x − y = k,
where i, j, k ∈ Z, as shown in Figure 11 (left), then before removing the old edges
as dictated by the topological rule, we have the six-directional mesh �3 as shown
in Figure 11 (right). This topological rule is shown in Figure 12 (left and middle).
Observe that if the topological rule is applied for a second time, then we arrive at
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Figure 11. Three-directional mesh �1(left) and six-directional
mesh �3(right)

Figure 12. Topological rule of
√

3-subdivision scheme

the 3-dilated triangulation shown in Figure 12 (right) of the original triangulation
in Figure 12 (left). That is why it is called

√
3-subdivision.

In our recent work [5], based on the basis function vectors Φa of S1
2(�3) and Φb of

S2
3(�3), respectively, we introduced the local averaging rules of a C1-interpolating√
3-subdivision scheme and a C2-approximation (but noninterpolating)

√
3-sub-

division scheme, by observing that the matrix A in (1.4) satisfies the “mesh refin-
ability” property

(5.1) �3 ⊂ A−1�3

and computing the corresponding masks {P a
k} and {P b

k}. This is valid since
S1

2(�3) ⊂ S1
2(A−1�3) and S2

3(�3) ⊂ S2
3(A−1�3) due to (5.1) and it is valid that

Φa and Φb generate S1
2(�3) and S2

3(�3), respectively. Since the function vector
Φ constructed in this paper generates a basis of S2

4(�3), it is also refinable with
respect to the dilation matrix A, and hence its mask {P̂k}, say, provides the local
averaging rule of a C2-interpolating

√
3-subdivision scheme, namely,

vm+1
j =

∑
k

vm
k P̂j−Ak.

The details are not given here.

6. Two-point matrix-valued coefficient stencils

While the matrix-valued coefficient stencils in Figure 3 for C1 surface display are
2-point templates, those for C2 surface display introduced in the previous sections
require at least one 4-point coefficient stencil, as shown in Figures 8 and 9. In
the following, we give a second-order Hermite interpolating scheme with 2-point
templates as shown in Figure 13. A necessary condition is that all the refinement
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0,0

P −1,0P

#
#

1,0

##

#

#

P0,−1
P

#

1,10,1P

P−1,−1

P

Figure 13. Coefficient stencils for the C2 local averaging rule

(6× 6 matrix) coefficients, with the exception of P#
0,0, P

#
1,0, P

#
1,1, P

#
0,1, P

#
−1,0, P

#
−1,−1,

P#
0,−1, must be zero matrices. To compute these (possibly nonzero) matrices, we

impose the sum rule (2.3) of order 4 to the two-scale symbol (denote by P#(z) =
1
4

∑
k P#

k zk) along with[
yT

0,0 yT
1,0 yT

0,1

1
2
yT

2,0 yT
1,1

1
2
yT

0,2

]
= I6

(which is a necessary condition for second-order Hermite interpolation), and

y3,0 = y2,1 = y1,2 = y0,3 = [0, . . . , 0].

Hence, by following the symmetry properties of the C2-quartic basis functions
φ�, � = 1, . . . , 6, namely, those of the Bézier coefficients of φ1, φ2 (in Figure 5)
and φ4, φ5 (in Figure 6), as well as the properties of φ3(x, y) = φ2(y, x) and
φ6(x, y) = φ4(y, x), the mask {P#

k } is reduced to a five-parameter family, given
by

P#
0,0 = diag (1, 1

2 , 1
2 , 1

4 , 1
4 , 1

4 ),

P#
1,0 =



1
2 6t1 −3t1 0 0 0

2t3 + 1
8

1
4 + 3t1 − 3

2 t1 2t2 + 4t4 −2t4 − 2t5 2t5

0 0 1
4 0 2t2 − 4t5 4t5 − 2t2

t3
1
16 + 1

2 t1 − 1
4 t1

1
8 + t2 + 2t4 −t4 − t5 t5

0 0 1
16 0 1

8 − 2t5 + t2 2t5 − t2

0 0 0 0 0 1
8


,

P#
1,1 =



1
2 3t1 3t1 0 0 0

2t3 + 1
8

1
4 + 3

2 t1
3
2 t1 2t2 − 2t5 2t4 2t5

2t3 + 1
8

3
2 t1

1
4 + 3

2 t1 2t5 2t4 2t2 − 2t5

t3
1
16 + 1

4 t1
1
4 t1

1
8 − t5 + t2 t4 t5

2t3
1
16 + 1

2 t1
1
16 + 1

2 t1 t2
1
8 + 2t4 t2

t3
1
4 t1

1
16 + 1

4 t1 t5 t4
1
8 − t5 + t2


,

P#
0,1 =



1
2 −3t1 6t1 0 0 0
0 1

4 0 4t5 − 2t2 2t2 − 4t5 0
2t3 + 1

8 − 3
2 t1

1
4 + 3t1 2t5 −2t4 − 2t5 2t2 + 4t4

0 0 0 1
8 0 0

0 1
16 0 2t5 − t2

1
8 − 2t5 + t2 0

t3 − 1
4 t1

1
16 + 1

2 t1 t5 −t4 − t5
1
8 + t2 + 2t4


,
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P#
−1,0 =



1
2

−6t1 3t1 0 0 0
−2t3 − 1

8
1
4

+ 3t1 − 3
2
t1 −2t2 − 4t4 2t4 + 2t5 −2t5

0 0 1
4

0 4t5 − 2t2 2t2 − 4t5

t3 − 1
16

− 1
2
t1

1
4
t1

1
8

+ t2 + 2t4 −t4 − t5 t5

0 0 − 1
16

0 1
8
− 2t5 + t2 2t5 − t2

0 0 0 0 0 1
8

 ,

P#
−1,−1 =



1
2

−3t1 −3t1 0 0 0

−2t3 − 1
8

1
4

+ 3
2
t1

3
2
t1 2t5 − 2t2 −2t4 −2t5

−2t3 − 1
8

3
2
t1

1
4

+ 3
2
t1 −2t5 −2t4 2t5 − 2t2

t3 − 1
16

− 1
4
t1 − 1

4
t1

1
8
− t5 + t2 t4 t5

2t3 − 1
16

− 1
2
t1 − 1

16
− 1

2
t1 t2

1
8

+ 2t4 t2

t3 − 1
4
t1 − 1

16
− 1

4
t1 t5 t4

1
8
− t5 + t2

 ,

P#
0,−1 =



1
2

3t1 −6t1 0 0 0
0 1

4
0 2t2 − 4t5 4t5 − 2t2 0

−2t3 − 1
8

− 3
2
t1

1
4

+ 3t1 −2t5 2t4 + 2t5 −2t2 − 4t4

0 0 0 1
8

0 0

0 − 1
16

0 2t5 − t2
1
8
− 2t5 + t2 0

t3
1
4
t1 − 1

16
− 1

2
t1 t5 −t4 − t5

1
8

+ t2 + 2t4

 .

The free parameters t1, . . . , t5 can be adjusted to achieve certain desirable prop-
erties. For example, one may choose

t1 = −0.199332, t2 = −0.186915, t3 = 0.022376, t4 = −0.041126, t5 = 0.087064,

to assure that the corresponding refinable function vector Φ# is in the Sobolev
space W 2.9092(R2). For fix-point computer implementation, one may choose

t1 = −3/16, t2 = −3/16, t3 = 23/1024, t4 = −21/512, t5 = 11/128,

for which Φ# is in W 2.8588(R2). These smoothness exponents can be calculated by
following the formula in [9].
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