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DATA-SPARSE APPROXIMATION TO A CLASS
OF OPERATOR-VALUED FUNCTIONS

IVAN P. GAVRILYUK, WOLFGANG HACKBUSCH, AND BORIS N. KHOROMSKIJ

Abstract. In earlier papers we developed a method for the data-sparse ap-
proximation of the solution operators for elliptic, parabolic, and hyperbolic
PDEs based on the Dunford-Cauchy representation to the operator-valued
functions of interest combined with the hierarchical matrix approximation of
the operator resolvents. In the present paper, we discuss how these techniques
can be applied to approximate a hierarchy of the operator-valued functions
generated by an elliptic operator L.

1. Introduction

In the papers [12]–[15] and [10], a class of hierarchical matrices (H-matrices) has
been analysed which are data-sparse and allow an approximate matrix arithmetic
with almost linear complexity.

In the present paper, we apply the H-matrix technique to approximate differ-
ent classes of mappings generated by integrals of functions of an elliptic operator
L. These mappings are of the form function-to-operator, operator-to-operator or
sequence of operator-to-operator.

As examples of function-to-operator mappings we consider the solution operators
to parabolic PDEs (the operator exponential), to elliptic PDEs (the normalised
hyperbolic sine function) and to hyperbolic PDEs (the operator cosine function),
where these operators are represented by the Dunford-Cauchy integral (cf. [5]–[8]).
Approximating this integral by a proper quadrature formula (Sinc quadrature or
Gauss-Lobatto quadrature) and applying the H-matrix arithmetics to the discrete
resolvents lead to a data-sparse representation to the solution operator of interest.

As an example of an operator-to-operator mapping we consider the solution oper-
ator to the Lyapunov equation. We use two integral representations of the solution
operator, namely (i) by a double Dunford-Cauchy integral and (ii) by an improper
integral with the operator exponential. In both cases, the appropriate exponentially
convergent quadrature formulae and the H-matrix approximations to the elliptic
resolvents or to the operator exponential lead to data-sparse approximations with
the linear-logarithmic cost.

As an example of a sequence of operators-to-operator mapping we discuss the so-
lution operator to the Riccati equation by an iterative scheme involving the solution
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of Lyapunov-Sylvester equations in each step. Together with data-sparse approxi-
mations to these solutions, we arrive at algorithms of almost linear complexity.

Note that the data-sparse H-matrix approximation of almost optimal complexity
to the operator-valued functions

F1(L) :=e−tL,

F2(L) :=L−α, α > 1,

F3,k(L) := cos(t
√
L)L−k, k ∈ N,

F4(L) :=
∫ ∞

0

etL
∗
GetLdt,(1.1)

of an elliptic operator L was addressed in [7] (see §3 for more details). In this paper
we derive a new quadrature rule for the operator F4(L) which is more efficient
than the previous one from [5, 7]. The method is now based on a double integral
representation to the solution operator for equations with the general family of
so-called elementary operators (cf. [27]).

In §§3.1–3.2 we are looking for a data-sparse approximation of the solution X to
the operator equation

M∑
j=1

UjXVj = Y

for certain operators Uj , Vj and Y .
Finally (see §4), we construct an explicit approximation by resolvents to the

operator sign-function which can be applied, for example, to represent the solu-
tion operator of the algebraic Riccati equation. A short version of this paper was
published in [8].

2. Goals and overview

2.1. Hierarchy of the operator-valued functions. In this section we define a
hierarchy of operator-valued functions which can be represented by various map-
pings generated by an elliptic operator L in a Banach space X . In the following, we
will develop various discretisations to these mappings. The hierarchy of operator-
valued functions consists of function-to-operator mappings, operator-to-operator
and sequence of operators-to-operator mappings which arise in applications related
to partial differential equations, control theory and linear algebra.

One basic function of an elliptic operator L is the inverse L−1. A fast implemen-
tation of L �→ L−1 is of interest in finite-element methods for elliptic and parabolic
problems. On the other hand, the data-sparse approximation of L−1 plays a cen-
tral role in our further constructions. However, this topic is already addressed in
[12, 13, 14, 10], where the modern H-matrix approximation technique has been
presented.

2.1.1. Functions of the first level. Let ΓS ⊂ C denote a path enveloping the spec-
trum of L and let ΓI be a path which envelopes but does not intersect ΓS , for a given
function which is analytic inside of ΓI (the subscript I abbreviates “integration”).
Below, we write Γ instead of ΓI . We can define a bounded operator

F (L) =
1

2πi

∫
Γ

F (z)(zI − L)−1dz
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provided that this Dunford-Cauchy integral converges. The above integral defines
a function-to-operator mapping F (·) → F (L) generated by a fixed elliptic operator
L.

As a first example of such a mapping we consider the solution operator

T (t) = e−Lt =
∫

Γ

e−zt(zI − L)−1dz

to the initial-value problem

(2.1) u′(t) + Lu(t) = 0, u(0) = u0,

where L is a strongly P -positive operator in a Banach space X and u(t) is a vector-
valued function u : R+ → X (see [5] for more details). Given the solution operator
and the initial vector u0, the solution of the initial-value problem can be represented
by u(t) = T (t)u0. As a simple example of a partial differential equation which can
be described by (2.1), one can consider the classical heat equation

∂u

∂t
− ∂2u

∂x2
= 0

with corresponding boundary and initial conditions, where the operator L is defined
by

D(L) = {v ∈ H2(0, 1) : v(0) = 0, v(1) = 0},

Lv = −d
2v

dx2
for all v ∈ D(L).

Our second example deals with the boundary-value problem

(2.2)
d2u

dx2
− Lu = 0, u(0) = 0, u(1) = u1,

in a Banach space X (see [6]). The solution operator is the normalised hyperbolic
operator sine family

E(x) ≡ E(x;L) =
(
sinh(

√
L)

)−1

sinh(x
√
L),

so that u(x) = E(x)u1. This function E(x) is the result of the function-to-operator
mapping (

sinh(
√·))−1

sinh(x
√·) → E(x;L)

generated by the operator L. The simplest PDE from the class (2.2) is the Laplace
equation in a cylindric domain:

d2u

dx2
+
d2u

dy2
= 0, x ∈ [0, 1], y ∈ [c, d],

u(0, y) = 0, u(1, y) = u1(y).

In the third example we consider the following initial-value problem for the second
order differential equation with an operator coefficient:

u′′(t) + Lu(t) = 0, u(0) = u0, u′(0) = 0,

with the solution operator (the operator cosine family)

C(t;L) = cos(t
√
L) =

∫
Γ

cos(t
√
z)(zI − L)−1dz,
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which represents the function-to-operator mapping cos
(
t
√·) → C(t;L) (see [7] for

more details). The simplest example of PDEs from this class is the classical wave
equation

∂2u

∂t2
− ∂2u

∂x2
= 0

subject to the corresponding boundary and initial conditions.

2.1.2. Functions of the second level. The next hierarchy level is formed by the
operators-to-operator mappings. Let {G0(t) : t ∈ [t0, t1]} be an operator family in
X and let the integral

F =
∫ t1

t0

G0(t)dt

exist. Then this integral represents an operators-to-operator mapping G0 �→ F . As
an example we consider the Sylvester equation

AX +XB = G, (A,B,G given)

with the solution X given by the integral over G0(t) := e−tAGe−tB,

F(G;A,B) =
∫ ∞

0

e−tAGe−tBdt,

where we suppose that A,B are such that this integral exists. A particular case is
the Lyapunov equation

LX +XL∗ = G

with the solution

F(G;L) =
∫ ∞

0

e−tL
∗
Ge−tLdt

generated by an (elliptic) operator L.

2.1.3. Functions of the third level. On the next hierarchy level, one can consider a
sequence of operators-to-operator mappings which arises for example in the case of
the (nonlinear) Riccati equation

(2.3) AX +XA� +XFX = G,

where A,F,G ∈ Rn×n are given and X ∈ Rn×n is the unknown matrix. This equa-
tion is of fundamental importance in many applications in control theory. There
are numerous methods to solve (2.3) (see, e.g., [11] and the literature therein) and
one of the best is based on the matrix function sign(H). An alternative method is
based on Newton’s iteration. At each iteration step the Lyapunov equation

(A− FXn)Xn+1 +Xn+1(A− FXn)� = −XnFXn +G := Gn

has to be solved. Assuming the convergence Xn → X , we have the sequence of
operators-to-operator mapping

Xn → Xn+1 → · · · → X := F(F,G,A)

of the kind

X = lim
n→∞Xn, Xn+1 :=

∫ ∞

0

e−t(A−FXn)Gne
−t(A−FXn)�dt.

Under usual assumptions on the data, the Newton method converges quadratically.
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We discuss in more details an algorithm based on the application of the matrix
sign-function, which can be defined by

(2.4) sign(H) =
1
πi

∫
ΓI

(zI −H)−1dz − I

with ΓI being any simply closed curve in the complex plane whose interior contains
all eigenvalues of H with positive real part. We require that H have no eigenval-
ues on the imaginary axis. Rather general integral representations to the matrix
sign(H) were introduced in [16].

An equivalent definition uses the canonical Jordan decomposition H = Y JY −1

of H . Let the diagonal part of J be given by the matrix D = diag(d1, . . . , dn). Set
S = diag(s1, . . . , sn) with

si =
{

+1 if �e(di) > 0
−1 if �e(di) < 0

}
.

Then we define sign(H) = Y SY −1.
The following algorithm gives the solution to the Riccati equation by means of

the sign function:

1. For H =
(
A M
R −A�

)
determine

(
W11 W12

W21 W22

)
:= sign(H).

2. Find X as the solution of the minimisation problem (say, by the least squares
method)

min
∥∥∥∥
(

W12

W22 + I

)
X −

(
I +W11

W21

)∥∥∥∥ .
In §4 we propose some exponentially convergent quadrature formulae for the

Dunford-Cauchy integral in (2.4) which is built by a sum of resolvents (zkI−H)−1.
In this way, the data-sparse solution to the Riccati equation can be based on the
H-matrix approximation of the inversion operator.

2.2. Toward approximations of optimal complexity. For the numerical treat-
ment, the operator F of interest has to be approximated by n×n matrices. In our
approach, we are looking for a family of data-sparse matrices (more specifically,
H-matrices) Mi ∈ Rn×n, such that (with a proper projection Pn : X → Rn) the
error satisfies the estimate

φ(N) := ‖PnFP∗
n −

N∑
i=1

M−1
i ‖ ≤ ε

in the corresponding operator norm. The parameter n ∈ N can be viewed as
n = dim(Vh), where Vh is used for the Galerkin approximation of the related elliptic
PDE with a given tolerance.

We require that the class of matrices approximating the operator-valued func-
tion allows an almost linear cost estimate by O(n logq n) for the approximate matrix
arithmetic and the memory. Clearly, the inversion of a general n × n-matrix has
a complexity of at least O(n2). Here, however, we consider the class of matrices
arising from FEM and BEM applications. Then the new concept of data-sparse ap-
proximations can be applied based on so-called hierarchical matrices (H-matrices)
[12, 13, 14, 10]. The almost linear complexity of the H-matrix arithmetic yields a
cost of

∑
M−1
i bounded by O(Nn logq n) arithmetic operations.
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Due to n-width arguments for analytic functions (see, e.g., [1] and references
therein), we need O(log 1/ε) parameters for their ε-approximation (say, by polyno-
mials or Sinc functions). In order to get a polynomial operation count with respect
to log 1/ε, we would like to ensure that N = O(logq 1/ε), i.e., φ(N) must be ex-
ponential in N (e.g., φ(N) ≤ c exp (−γNα) , α, γ > 0). In our applications we
approximate the analytic function F = F(L) for an elliptic operator L by a sum∑N
i=1 ci(ziI − L)−1 of N elliptic resolvents, such that the sum converges exponen-

tially, i.e., N = O(logq 1/ε). Furthermore, in conventional FEM, the operator L
itself can be approximated by a sparse n×n stiffness matrix Lh with O(n) nonzero
entries, which leads to the H-matrix inverse (ziI − Lh)−1 with arithmetical costs
of O(n logp n). Therefore, our final complexity bound for the approximation ansatz∑
M−1
i leads to O(n logq (1/ε) logp n) arithmetical operations.

In the present paper, our goals are
• representation of the mentioned operator-valued functions by an exponen-

tially converging sum of elliptic resolvents,
• construction of well-parallelisable algorithms with almost linear complexity,
• discussion of some applications (PDEs, control problems).

2.3. Integral representation to operators of (fS , fR)-type. Let A : X → X
be a linear densely defined closed operator in X with the spectral set sp(A). In this
paper, we restrict ourselves to a class of operators of (fS , fR)-type to be defined
below. Let ΓS be a curve in the complex plane z = ξ + iη defined by the equations
ξ = φS(s), η = ψS(s), s ∈ (−∞,∞) in the coordinates ξ, η. We denote by

(2.5) ΩΓS := {z = ξ + iη : ξ > fS(η)}
the domain inside of ΓS . In what follows, we suppose that this curve lies in the
right half-plane of the complex plane and that it contains sp(A), i.e., sp(A) ⊂ ΩΓS .

The form of the curve enveloping the spectrum of A and the behaviour of the
resolvent as a function of z contain important information about the operator A
and allow us to develop a calculus of functions of A (cf. [4, 5, 6, 7, 9]).

Definition 2.1. Given an operator A : X → X , let fS(·) and fR(·) be functions
such that

(2.6) ‖(zI −A)−1‖X→X ≤ fR(z) for all z ∈ C\ΩΓS .

Note that ΓS is defined by means of fS (cf. (2.5)). Then we say that the operator
A : X → X is of (fS , fR)-type.

Note that a strongly P -positive operator (defined in [4]) is also an operator of
(fS , fR)-type with the special choice

(2.7) fS(η) = aη2 + γ0, fR(z) = M/(1 +
√
|z|), a > 0, γ0 > 0, M > 0.

In particular, strongly elliptic partial differential operators are strongly P -positive.
Let L be a linear, densely defined, closed operator of (fS , fR)-type in a Banach

space X . We choose an integration curve ΓI := {z = ξ+ iη : ξ = φI(s), η = ψI(s)}
enveloping the so-called “spectral curve” ξ = fS(η) (see Figure 1). Let F (z) be a
complex-valued function that is analytic inside of the integration curve ΓI . The next
simple theorem offers conditions under which one can define a bounded operator
F (L).
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Figure 1. The spectral curve ΓS and the integration curve ΓI .

Theorem 2.2. Let ξ = fI(η) be a function defined parametrically by ξ = φI(s), η =
ψI(s) and assume that the improper integral∫ ∞

−∞
|Φ1(s)fR(φI(s)+iψI(s))|ds with Φ1(s) = F (φI(s)+iψI(s)) [φ′I(s) + iψ′

I(s)] ,

converges for any path ξ = φI(s), η = ψI(s) that envelopes ΩΓS . Then the Dunford-
Cauchy integral

F (L) =
1

2πi

∫
ΓI

F (z)(zI − L)−1dz = − 1
2πi

∫ ∞

−∞
Φ1(s)[(φI(s) + iψI(s))I − L]−1ds

defines a bounded operator F (L).

Proof. Estimate (2.6) for the resolvent and the assumptions above imply the bound

‖F (L)‖ ≤
∫ ∞

−∞
|Φ1(s)fR(φI(s) + iψI(s))|ds <∞. �

We further consider examples of quadrature rules applied to the integrals in
Theorem 2.2. Our particular application is concerned with the operator exponential
F1(L) and with the solution operator F4(L) (see (1.1)) to the Lyapunov equation
arising in control theory.

2.4. Representation of the operator exponential by resolvents.

2.4.1. Dunford-Cauchy integral. In this section, we briefly recall (and slightly mod-
ify) the results from [7]. In order to get exponentially convergent discretisations,
we are interested in operators of (fS , fR)-type with an exponentially decreasing
function |Φ1(s)fR(φI(s) + iψI(s))|. The rate of decay obviously depends on the
functions φI(s), ψI(s), φS(s), ψS(s). Let L be a linear, densely defined, closed
operator of (fS , fR)-type in a Banach space X, where

ξ = φS(s) = aps
2 + bp,

η = ψS(s) = s.
(2.8)

The function fS (η) defines the so-called spectral curve

(2.9) ΓS = {z = ξ + iη : ξ = apη
2 + bp},
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containing the spectrum sp(L) of the operator L. We choose the integration curve
ΓI as the hyperbola

ξ = φI(s) = ae cosh s, ae < bp,

η = ψI(s) = be sinh s.
(2.10)

The equation of this hyperbola in the coordinates ξ, η is

(2.11)
ξ2

a2
e

− η2

b2e
= 1.

This hyperbola belongs to the family of hyperbolas given by

ξ = φF (s, ν) = aF (ν) cosh s,

η = ψF (s, ν) = bF (ν) sinh s,
(2.12)

where

aF (ν) =
√
a2
e + b2e cos (ν + ϕ), bF (ν) =

√
a2
e + b2e sin (ν + ϕ),

cosϕ =
ae√
a2
e + b2e

, sinϕ =
be√
a2
e + b2e

.
(2.13)

Setting ν = 0 here, we obtain the integration hyperbola (2.10). We choose the
parameter ν = −d so that the hyperbola ΓIS defined by ξ = φF (s,−d), η =
ψF (s,−d) with some d > 0, envelopes the spectral parabola.

In order to estimate the distance dIS between the spectral and the integration
curves, we note that for a fixed s the line

(2.14)
(
ξ
η

)
=

(
aps

2 + bp
s

)
+ λ

( −1
2aps

)
, λ ∈ (−∞,∞),

in the coordinate plane ξ, η is orthogonal to the spectral curve at the point defined
by this s. The system of equations

(2.15)
(
ae cosh s
be sinh s

)
=

(
aps

2 + bp
s

)
+ λ

( −1
2aps

)
, λ ∈ (−∞,∞),

defines s, λ for which the normal line to the spectral curve intersects the integration
curve. These equations imply

(2.16) |λ|
√

1 + 4a2
ps

2 =
√

(ae cosh s− aps2 − bp)2 + (be sinh s− s)2

from where λ � |s|−1e|s| for |s| large enough. Now, it follows from (2.15) that
the distance dIS possesses the asymptotical behaviour dIS � e|s|; therefore the
resolvent can be estimated on the integration curve by

(2.17) ‖(zI − L)−1‖ ≤Me−|s|

with some positive constant M for |s| large enough.
In the following, we use the infinite strip

(2.18) Dd := {z ∈ C : −∞ < �e z <∞, |�mz| < d}
as well as the finite rectangles Dd(ε) defined for 0 < ε < 1 by

Dd(ε) = {z ∈ C : |�e z| < 1/ε, |�mz| < d(1 − ε)}.
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For 1 ≤ p ≤ ∞, introduce the space Hp(Dd) of all operator-valued functions which
are analytic in Dd, such that for each F ∈ Hp(Dd) it holds that ‖F‖Hp(Dd) < ∞
with

(2.19) ‖F‖Hp(Dd) :=




limε→0

(∫
∂Dd(ε)

‖F(z)‖p|dz|
)1/p

if 1 ≤ p <∞,

limε→0 supz∈Dd(ε) ‖F(z)‖ if p = ∞.

The next lemma justifies an integral representation for e−tL generated by an
(fS , fR)-type operator L.

Lemma 2.3. Let L be an (fS , fR)-type operator with the spectral curve ΓS defined
by (2.9). Choose the (integration) curve ΓI = {z = ξ + iη : ξ = ae cosh (s) , η =
be sinh s} with ae, be such that ΓI envelops ΓS . Then the operator exponential
I(t;L) = e−tL can be represented by the Dunford-Cauchy integral

(2.20) I(t;L) =
1

2πi

∫
ΓI

e−zt(zI − L)−1dz = − 1
2πi

∫ ∞

−∞
F1(s, t)ds,

where the integrand

F1(s, t) = e−ztz′(s)(zI − L)−1,

z = ae cosh (s) + ibe sinh (s) , z′(s) = ae sinh (s) + ibe cosh (s) , s ∈ R,
(2.21)

can be estimated on the real axis by

(2.22) ‖F1(η, t)‖ ≤M1e
−t
√
a2

e+b2e| sinh s| for s ∈ R

with some positive constant M1. Moreover, F1(·, t) can be analytically extended into
the strip Dd of the width d > 0 and belongs to the class Hp(Dd) for all p ∈ [1,∞].

Proof. The estimate (2.22) follows immediately from (2.17). In order to show that
the integrand can be extended analytically into a strip, we substitute s = µ + iν
into (2.21). The analyticity can obviously be violated only if the set {z = ξ + iη :
ξ = ae cosh (µ+ iν) , η = be sinh (µ+ iν) , µ ∈ (−∞,∞), |ν| < d} intersects the
spectral curve in the plane ξ, η (in this case the resolvent becomes unbounded). For
each ν we consider this set as a curve in the variable µ. We have

z = ae cosh (µ+ iν) + ibe sinh (µ+ iν)

= ae coshµ cos ν + iae sinhµ sin ν + ibe(sinhµ cos ν + i coshµ sin ν)

= coshµ(ae cos ν − be sin ν) + i sinhµ(ae sin ν + be cos ν)

=
√
a2
e + b2e[cos (ν + ϕ) coshµ+ i sin (ν + ϕ) sinhµ]

=
√
a2
e + b2e cosh [µ+ i(ν + ϕ)],

(2.23)

where φ is such that

(2.24) cosϕ =
ae√
a2
e + b2e

, sinϕ =
be√
a2
e + b2e

.

For each ν, the set (2.23) is the following hyperbola (parametrised by µ):

ξ =
√
a2
e + b2e cos (ν + ϕ) coshµ,

η =
√
a2
e + b2e sin (ν + ϕ) sinhµ.

(2.25)

Since the function cos (ν + ϕ) decreases and the function sin (ν + ϕ) increases mono-
tonically for ν ∈ (−ϕ, π/2 − ϕ), we see that for |ν| < d with d = min{ϕ, π/2 − ϕ}
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Figure 2. Calculation of the width of the analyticity strip.

and for all µ ∈ (−∞,∞) the set of hyperbolas still lies in the right half-plane and
envelopes the hyperbola ΓIS and spectral parabola without intersecting them; i.e.,
we can analytically extend the integrand into the strip of the width 2d (see also
Figure 2). The proof is complete �

We denote the parametric set of hyperbolas (2.25) with |ν| < d by HI . The class
of the (fS , fR)-type operators with the spectral parabola which can be enveloped
by HI is called EH .

2.4.2. Sinc quadrature applied to the exponential. Following [29, 9, 7], we construct
a quadrature rule for the integral in (2.20) by using the Sinc approximation. Let

S(k, h)(x) =
sin [π(x − kh)/h]
π(x − kh)/h

(k ∈ Z, h > 0, x ∈ R)

be the k-th Sinc function with step size h, evaluated at x. Given f ∈ Hp(Dd), h > 0,
and N ∈ N, we use the notation

I(f) =
∫

R

f(ξ)dξ,(2.26)

T (f, h) = h
∞∑

k=−∞
f(kh), TN (f, h) = h

N∑
k=−N

f(kh),(2.27)

C(f, h) =
∞∑

k=−∞
f(kh)S(k, h), E(f, h) = f − C(f, h),(2.28)

η(f, h) = I(f) − T (f, h), ηN (f, h) = I(f) − TN(f, h)

(I: integral; T : trapezoidal rule, η, ηN : quadrature errors). Further, we need the
notation of one-sided limits:

f(ξ ± id−) = lim
δ→d;δ<d

f(ξ ± iδ) for ξ, d ∈ R.

The following approximation results for functions from H1(Dd) describe the
accuracy of TN(f, h) (cf. [7], also for the proof of Lemma 2.4 below).
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Lemma 2.4. For any operator-valued function f ∈ H1(Dd) satisfying on R the
condition

(2.29) ‖f(ξ)‖ < c exp(−b| sinh ξ|), b, c > 0,

it holds that

(2.30) ‖ηN(f, h)‖ ≤ C

[
e−2πd/h

1 − e−2πd/h
‖f‖H1(Dd) +

1
b

exp(−b sinh (hN))
]

with the constant d from H1(Dd).

Proof. Let E(f, h) be the error from (2.28). Analogously to [29, Thm. 3.1.2],
E(f, h)(z) equals

sin (πz/h)
2πi

∫
R

{
f(ξ − id)

(ξ − z − id) sin[π(ξ − id)/h]
− f(ξ + id)

(ξ − z + id) sin[π(ξ + id)/h]

}
dξ,

and after replacing z by x, we have

η(f, h) =
∫

R

E(f, h)(x)dx

because of
∫

R
S(k, h)(x)dx = h. After interchanging the order of integration and

using
1

2πi

∫
R

sin(πx/h)
±(ξ − x) − id

dx =
i

2
e−π(d±iξ)/h,

we obtain

(2.31) η(f, h) =
i

2

∫
R

{
f(ξ − id−)e−π(d+iξ)/h

sin[π(ξ − id)/h]
− f(ξ + id−)e−π(d−iξ)/h

sin [π(ξ + d)/h]

}
dξ.

Using the estimate sinh (πd/h) ≤ | sin[π(ξ± id)/h]| ≤ cosh(πd/h) (see [29, p. 133]),
the assumption f ∈ H1(Dd) and identity (2.31), we obtain the bound

(2.32) ‖η(f, h)‖ ≤ e−πd/h

2 sinh(πd/h)
‖f‖H1(Dd).

The assumption (2.29) now implies

‖ηN (f, h)‖ ≤ ‖η(f, h)‖ + h
∑

|k|>N
‖f(kh)‖

≤ exp(−πd/h)
2 sinh(πd/h)

‖f‖H1(Dd) + c h
∑

k: |k|>N
exp(−b| sinh (kh)|).(2.33)

For the last sum we use the simple estimate

∑
k: |k|>N

exp(−b| sinh (kh)|) = 2
∞∑

k=N+1

exp(−b| sinh (kh)|)

≤ 2
∫ ∞

N

exp(−b| sinh (xh)|)dx(2.34)

≤ 2
∫ ∞

N

cosh (xh) exp(−b| sinh (xh)|)dx =
2
bh

exp(−b sinh (hN)),(2.35)

which together with (2.33) and (2.35) implies (2.30). �
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The operator exponential I(t;L) = e−tL is represented as integral according
to Lemma 2.3. Applying the quadrature rule TN to the operator-valued function
f(η) := − 1

2πiF1(η, t), where F1(η, t) is given by (2.21), we obtain for the operator
family {I(t) ≡ I(t;L) : t > 0} (cf. (2.26)) that

(2.36) I(t) ≈ TN(t) ≡ TN (f, h) = − h

2πi

N∑
k=−N

F1(kh, t).

The error analysis is given by the following theorem.

Theorem 2.5. Given the spectral curve ΓS from (2.9) associated with fS(η) =
apη

2 + bp, choose the integration curve {z = ξ+ iη : ξ = ae cosh s, η = be sinh s, s ∈
R} and set h = logN

N . Then

(2.37) ‖I(t) − TN(t)‖ � 1
t
√
a2
e + b2e

(e−2πdN/ logN + e−t
√
a2

e+b2eN ).

Proof. Substituting in (2.30) F1 for f , t
√
a2
e + b2e for b and specifying h = logN

N , we
conclude (2.37) from the bound ‖f‖H1(Dd) ≤ Cb−1. �

The exponential convergence of our quadrature rule allows us to introduce the
following algorithm for the approximation of the operator exponential with a given
tolerance ε > 0. Note that the time-variable t ∈ (0,∞) enters only the coefficients
of our quadrature rule, while all resolvents appear to be independent on t.

Proposition 2.6. (a) Let ε > 0 be given. In order to obtain ‖I(t) − TN(t)‖ � ε
t

uniformly with respect to t > 0, choose

N = O(| log ε|), h =
logN
N

,

zk = z(kh) = ae cosh (kh) + ibe sinh (kh), z′(kh) = ae sinh (kh) + ibe cosh (kh),

γk(t) = e−z(kh)t h

2πi
z′(kh), (k = −N, . . . , N).

Then TN (t) is a linear combination of 2N + 1 resolvents with scalar weights de-
pending on t :

(2.38) TN (t) =
N∑

k=−N
γk(t)(zkI − L)−1,

so that the computation of TN(t) requires 2N + 1 = O(| log ε|) evaluations of the
resolvents (zkI − L)−1, k = −N, . . . , N.

(b) The evaluations (or approximations) of the resolvents can be performed in
parallel. Note that the shifts zk are independent of t.

(c) Having evaluated the resolvents, TN (t) can be determined in parallel for dif-
ferent t-values t1, t2, . . . .

Proof. Use (2.37) for the error estimate. �

2.4.3. Exponentially convergent algorithm for the operator exponential with t ≥ 0.
The algorithm (2.36) does not provide the exponential accuracy for t → 0. In
this section we show that a slightly modified algorithm for the weighted operator
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exponential Tσ(t) = L−σe−tL, t ≥ 0, σ > 1, guarantees the exponential convergence
rate for all t ≥ 0. Applied to the initial-value parabolic problem

(2.39)
du

dt
+Au = 0, u(0) = u0,

we can get u(t) = Tσ(t)u0,σ with u0,σ = Lσu0 provided that u0 ∈ D(Lσ); i.e., in
this case we need sufficient regularity of initial data. Choose a curve (integration
curve) ΓI = {z = ξ + iη : ξ = ae cosh s, η = sinh s} as before. Then the weighted
operator exponential Tσ(t) = L−σe−tL can be represented by the Dunford-Cauchy
integral

(2.40) Tσ(t) =
1

2πi

∫
ΓI

z−σe−zt(zI − L)−1dz = − 1
2πi

∫ ∞

−∞
F1,σ(η, t)ds,

where the integrand

(2.41) F1,σ(s, t) = z−σe−ztz′(s)(zI − L)−1

with z(s) = ae cosh s+ ibe sinh s, s ∈ R. Contrary to the result of Lemma 2.3, the
function F1,σ(s, t) can be estimated on the real axis by

‖F1,σ(η, t)‖ � e−t
√
a2

e cosh2 s+b2e sinh2 s(a2
e cosh2 s+ b2e sinh2 s)−σ/2

� e−σ|s|−t
√
a2

e+b2e| sinh s| � e−σ|s| for s ∈ R,
(2.42)

for all t ≥ 0. Moreover, F1(·, t) can be analytically extended into the strip Dd of the
width d > 0 constructed above and belongs to the class Hp(Dd) for all p ∈ [1,∞].
Applying the quadrature rule (2.27)

(2.43) Tσ(t) ≈ Tσ,N(t) = h

N∑
k=−N

F1,σ(kh, t)

to the function f(t) = F1,σ(s, t), we can bound the error ηN (f, h) (see [29, 5]) by

(2.44) ‖ηN‖ = ‖Tσ(t) − Tσ,N(t)‖ ≤ c

[
e−πd/h

2 sinhπd/h
+ (σ)−1e−σNh

]
‖F1,σ‖H1(Dd).

Equalising the exponents by setting h =
√
πd/(σN), we get the error estimate

(2.45) ‖ηN‖ ≤ ce−
√
πdσN‖F1,σ‖H1(Dd) ∀t ≥ 0.

Thus, we can prove the following

Proposition 2.7. (a) Let ε > 0 be given. In order to obtain ‖Tσ(t)−Tσ,N(t)‖ � ε
uniformly with respect to t ≥ 0, choose

N = O(| log ε|), h =
√
πd/[σN ],

zk = z(kh) = ξ(kh) + iψ(kh) (k = −N, . . . , N),

ξ(s) = ae cosh s, ψ(s) = be sinh s,

γσ,k(t) = z−σk e−zkt
h

2πi
z′(kh).

Then Tσ,N(t) is a linear combination of 2N + 1 resolvents with scalar weights de-
pending on t :

(2.46) Tσ,N(t) =
N∑

k=−N
γσ,k(t)(zkI − L)−1,
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so that the computation of Tσ,N(t) requires 2N + 1 = O(| log ε|2) evaluations of the
resolvents (zkI − L)−1, k = −N, . . . , N.

(b) The evaluations (or approximations) of the resolvents can be performed in
parallel. Note that the shifts zk are independent of t.

(c) Having evaluated the resolvents, Tσ,N(t) can be determined in parallel for
different t-values t1, t2, . . . .

In practice one prefers integers σ, so that σ = 2 is the first choice. To conclude
this section, we note that the condition u0 ∈ D(Lσ) is no longer an essential
restriction if L is a finite-dimensional operator (say, the discrete elliptic operator).
We refer to Remark 4.3 for further results concerning the matrix exponential.

2.5. Operator-valued functions in control theory. In this section we recall
the results in [7]. Let us consider the linear dynamical system of equations

dX(t)
dt

= AX(t) +X(t)B +G, X(0) = X0,

where X(t), A,B,G ∈ Rn×n (A,B,G given constant matrices). The solution X(t)
is given by

X(t) = etAX0e
tB +

t∫
0

e(t−s)AGe(t−s)Bds.

If all eigenvalues of A, B have negative real parts, then the limit

(2.47) X(t) → X∞ =

∞∫
0

etAGetBdt (t→ ∞)

exists and the X∞ satisfies the matrix Lyapunov-Sylvester equation

(2.48) AX∞ +X∞B +G = 0.

We refer to [3] concerning the proof of (2.47) in the case of a matrix equation. The
operator case considered below can be treated similarly.

2.5.1. Integral operator-to-operator mapping. We set A = L∗, B = L in (2.48),
where L : V → V ′ is an elliptic second order differential operator, and we con-
sider the solution of the operator Lyapunov equation: Find a selfadjoint continuous
operator Z : L2(Ω) → V such that

(2.49) L∗Z + ZL +G = 0.

The solution Z of the operator Lyapunov equation is given by

(2.50) Z(L) :=
∫ ∞

0

G0(t,L, G)dt,

where G0(z,L, G) := ezL
∗
GezL is a continuous operator-valued function of z ∈

[0,∞), of an elliptic second order operator L and of a selfadjoint operator G :
L2(Ω) → L2(Ω) (see [3] for the matrix case).

In this section we consider a class of operator-valued functions defined by an
integral representation (2.50) on Γ := [0,∞). The operator-valued function Z(L)
defines the solution operator to the Lyapunov equation (2.49) arising in control
theory. As usual in control theory, we further assume �e sp(−L) ⊂ (λ0,∞), with
λ0 > 0.
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Figure 3. The region Dd

To simplify the discussion, we assume that −L is the elliptic operator of the
(fS , fR)-type with fS, fR given by (2.7) such that

(2.51) sp(−L) ⊂ Sµ := {z ∈ C : |�m z| ≤ µ, �e z > λ0}, λ0, µ > 0.

In particular, the latter condition implies that the elliptic operator L generates a
strongly continuous semi-group etL such that
(2.52)

||etL|| ≤ C
1 + µ2

λ0

√
t
e−cλ0t for all t ∈ [0,∞) (|| · || : spectral operator norm),

where C, c > 0 do not depend on λ0 and t.
In the following we discuss exponentially convergent quadrature rules for the

integral (2.50). The construction consists of two steps: First, we approximate the
integral by a sum of operators G0(tk,L, G) computed in a few quadrature points tk ∈
[0,∞), and then we approximate each operator exponential involved in G0(tk,L, G)
as in §2.4. The resultant quadrature rule is similar to that in [11, Thm. 5] for the
case of a matrix Lyapunov equation. Contrary to [11], here we consider the integral
of an operator-valued function; moreover, we apply the more efficient approximation
scheme of §2.4.

Applying the substitution t = uα in the integral of (2.50) for some α ≥ 0, we
obtain the equivalent representation

Z(L) =
∫ ∞

0

Gα(t,L, G)dt with Gα(t,L, G) := gα(t,L∗)Ggα(t,L)dt,

where

(2.53) gα(z, λ) :=
√

1 + 2αzαez
1+2αλ, α ≥ 0,

so that (2.50) corresponds to the case α = 0.
First, we recall some auxiliary approximation results for holomorphic functions

based on the Sinc approximation. Let the region1 Dd (see Figure 3) for a given

1This is the domain called D3
d in [29]. Note that it is different from the strip Dd in (2.18).
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d ∈ (0, π/2] be defined by

(2.54) Dd := {z ∈ C : | arg(sinh z)| < d}.
We denote by H1(Dd) the family of functions that are analytic in Dd and satisfy

(2.55) N1(f,Dd) :=
∫
∂Dd

|f(z)||dz| <∞.

Now, for α, β ∈ (0, 1], introduce the space

Lα,β(Dd) :=
{
f ∈ H1(Dd) : |f(z)| ≤ C

( |z|
1 + |z|

)α
e−β�e z for all z ∈ Dd

}

(cf. [29]). We set

φ(z) := log{sinh(z)},
hence

φ′(z) =
1

tanh(z)
, z = φ−1(w) = log

(
ew +

√
1 + e2w

)
,

where φ(z) is the conformal map of Dd onto the infinite strip Dd defined by (2.18).
It is easy to check that

(2.56) gα(·, λ) ∈ Lα,β, β ≥ min{1, a0} for λ ∈ ΓL,

where, with given a, b0 > 0, ΓL := {z = ξ + iη : ξ = −b0 − aη2, η ∈ (−∞,∞)} is
the integration parabola to be used for technical needs.

2.5.2. Quadrature Rule I applied to Z(L). In the sequel, the value of d involved
in Dd (cf. (2.54)) will be chosen from the interval 0 < d < π

2(1+2α) , where we
further fix the parameter α = 1/2. Without loss of generality we can assume
β = min{1, λ0/2} ≤ α = 1/2 and then choose the parameter b0 defining the
integrating parabola ΓL, by b0 = λ0/2. For ease of notation we further omit the
subscript α in gα and set g = g1/2.

Lemma 2.8. Let the spectrum of L lie in the strip Sµ defined by (2.51). Given
N ∈ N and β = min{1, λ0/2}, with the proper choice of h > 0, tk ∈ [0,∞), and M
given by

(2.57) h = 3

√
πd

2λ0N2
, tk = log

(
ekh +

√
1 + e2kh

)
, M = �2βN� ,

the integral Z(L) =
∫ ∞
0

G0(t,L, G)dt allows an exponentially convergent quadrature
rule

(2.58) ZN (L) := h

N∑
k=−M

tanh(tk)G1/2(tk,L, G),

providing the error estimate

(2.59) ‖Z(L) −ZN (L)‖ ≤ C(1 + µ2)e−(2πλ0dN)2/3

with constants C independent of N and with µ being half the width of the strip Sµ
in (2.51).

Proof. See [7]. �
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Lemma 2.8 already provides a low rank approximation to the solution of the
Lyapunov equation in the case when a right-hand side G has this property. In fact,
let us assume that G has a separable representation consisting of kG terms, i.e.,

G :=
kG∑
j=1

aj ∗ fj,

where fj : L2(Ω) → R are linear continuous functionals, while aj ∈ L2(Ω) are
functions on Ω. Substitution of the above representation into G1/2(tk,L, G) shows
that G1/2(tk,L, G) is also separable with kG terms. Due to (2.58), ZN (L) is sep-
arable with k = kG(N + M + 1) terms (in the matrix case, this is equivalent to
rankZN (L) ≤ k).

We proceed with the approximation of the individual terms G1/2(tk,L, G) in
(2.58). For this purpose, we apply the basic construction from §2.4 modified by a
proper translation transform explained below. We use the symbol A for both L and
L�. We recall that with a given elliptic operator A and for the described choice of
the parameters zp, h, cp, the quadrature

(2.60) expL(A) =
L∑

p=−L
cpe

−zp(zpI −A)−1 (see (2.38))

provides exponential convergence (cf. (2.37)). To adapt the above approximation
to our particular situation, we include the parameter tk into the operator by setting
Ak := t2kL, which then leads to the bound λmin(Ak) = O(t2k). Due to the factor 1

t in
(2.37), the error estimate deteriorates when tk → 0. To obtain uniform convergence
with respect to tk → 0, we use a simple shift of the spectrum,

eAk = e · eBk for Bk := Ak − I,

ensuring that λmin(−Bk) = O(1) > 0. Now, we apply the quadrature (2.60) to the
operator Bk, which leads to the uniform error estimate

‖ exp(Bk) − expL(Bk)‖ ≤ Ce−sL/ logL for all k = −M, . . . , N,

where the constants C, s > 0 do not depend on L and k. With this procedure, we
arrive at the following product quadrature.

Theorem 2.9. Under the conditions of Lemma 2.8, the expression

ZN,L(L) := 2h
N∑

k=−M
tk tanh(tk)S∗

L,kGSL,k with SL,k :=
L∑

p=−L
cpe

1−zp(zpI−Bk)−1

converges exponentially as N,L→ ∞,

‖Z(L) −ZN,L(L)‖ ≤ C
[
(1 + µ2)e−(2πλ0dN)2/3

+ e−sL/ logL
]
.

Proof. The combination of the result of Lemma 2.8 with the modified quadrature
(2.60) leads to the desired bound. �
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3. New quadrature for the Lyapunov solution operator

Quadrature Rule I presented in the previous section contains a triple sum of
elliptic resolvents (one sum from ZN,L and two sums due to SL,k and S∗

L,k). In this
section we propose a new scheme which contains only a double sum of resolvents.

3.1. Equations with elementary operators. Let A be a complex Banach alge-
bra with identity e and let B be a Banach algebra of operators on A considered as
a Banach space. Given {Uj}, {Vj} ⊂ A, let S ∈ B be defined by

(3.1) SX :=
M∑
j=1

UjXVj ,

where {Uj} and {Vj} are commutative subsets of A but {Uj} need not commute
with {Vj}. The operator S (such operators are usually called elementary operators)
was studied in [27] where it was shown that if Σ(X,A) denotes the spectrum of
X ∈ A, then

Σ(S,B) ⊂
M∑
j=1

{λµ : λ ∈ Σ(Uj ,A), µ ∈ Σ(Vj ,A)} =: ΣUV .

Furthermore, if f(λ) is holomorphic in a domain that contains ΣUV , then there
exist Cauchy domains DV

i ⊃ Σ(Vi,A), DU
i ⊃ Σ(Ui,A), 1 ≤ i ≤ M , such that for

any X ∈ A

f(S)X =
1

(2πi)M

∫
∂DV

1

· · ·
∫
∂DV

M

f


 M∑
j=1

λjUj


X

M∏
j=1

(λjI − Vj)−1dλj(3.2)

=
(−1)M

(2π)2M

∫
∂DV

1

· · ·
∫
∂DV

M

∫
∂DU

1

· · ·
∫
∂DU

M

f


 M∑
j=1

λjµj




×
M∏
j=1

(µjI − Uj)−1dµjX

M∏
j=1

(λjI − Vj)−1dλj

where ∂DV
i , ∂D

U
i denote the boundaries of DV

i and DU
i , respectively, and I the

unit operator. There are a number of papers dealing with invertibility and spectral
properties of elementary operators (see, for example, [20, 21]).

Let us consider the operator equation

(3.3) SX = G

and suppose that S−1 exists. Then using formula (3.2) applied to the function

(3.4) f


 M∑
j=1

λjµj


 ≡


 M∑
j=1

λjµj




−1

,

we get
(3.5)

X =
(−1)M

(2π)2M

∫
∂DV

1

· · ·
∫
∂DU

M


 M∑
j=1

µjλj




−1
M∏
j=1

(µjI −Uj)−1dµjG

M∏
j=1

(λjI − Vj)−1dλj .
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The following special case of equation (3.3) with bounded operators was considered
in [2]:

(3.6)
n∑

j,k=0

cjkA
jXBk = Y,

where cjk ∈ R, B ∈ L(B1), A ∈ L(B2), Y ∈ L(B1, B2) are given bounded
operators, X ∈ L(B1, B2) is the operator we are looking for, B1, B2 are Banach
spaces, and L(Bi) and L(B1, B2) denote the sets of linear bounded operators acting
in Bi and from B1 into B2, respectively. It was shown that the unique solution is
given by

(3.7) X = − 1
4π2

∮
ΓA

∮
ΓB

(A− λI)−1Y (B − µI)−1

P (λ, µ)
dλdµ

provided that P (λ, µ) =
∑n

j,k=0 cjkλ
jµk �= 0 for (λ, µ) ∈ Σ(A) × Σ(B), where

Σ(A), Σ(B) are the spectral sets of A and B, respectively, and ΓA and ΓB denote
paths in the resolvent sets ρ(A), ρ(B) of A,B surrounding Σ(A) and Σ(B). The
representations (3.5), (3.7) are useful in many applications (see, for example, [2, 18])
and can be justified also for unbounded operators provided the resolvents possess
appropriate properties (see Lemma 3.1 below).

Particular cases of the equations (3.3), (3.6) are the Sylvester equation

(3.8) AX +XB = G

and the Lyapunov equation

(3.9) AX +XA� = G.

The Lyapunov (Sylvester) equation is involved, for example, while using Newton’s
method for solving Riccati matrix equations arising in optimal control problems
[21, 25]. One has to solve the Riccati equation

AX +XA� +XBB�X = −C�C

for constructing a near-optimal reduced-order model for a dynamical system

ẋ = Ax+Bu, x(0) = x0,(3.10)
y = Cx

with state x ∈ Rn, input u ∈ Rp and output y ∈ Rq and with A ∈ Rn×n, B ∈ Rn×p,
C ∈ Rn×q. Here the optimal control u can be realised as u(t) = −B�Xx(t), t ∈
(0,∞).

Consider a control problem where the state is governed by partial differential
equations. The spatial discretisation of the partial differential operator by a finite-
element or finite-difference method (yielding a system matrix A) leads to a system
of ordinary differential equations of the type (3.10) with large and sparse matrices
and finally to a Riccati equation which can be reduced to a sequence of Lyapunov
equations. There are direct and iterative methods to solve the Lyapunov equation
(cf. [2, 21, 22, 24, 26, 32]). The direct ones are preferred when solving equations
with matrices of moderate size. Direct methods are often based on various de-
compositions of the matrix (e.g., the Schur decomposition) with complexity O(n3),
which restricts their use to problems with relatively small n. Iterative methods
(SOR, ADI, multigrid and others) are applied to the Lyapunov equation when the
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matrix A is large. In order to ensure computational stability and to decrease the
number of iteration steps, various preconditioning techniques are used (cf. [23]).

The aim of this section is to find exponentially convergent approximations to
the solutions of (3.3), (3.6). One can use these approximations to solve quadratic
equations like the Riccati equation efficiently.

3.2. Exponentially convergent Quadrature Rule II. Below we consider a
method for solving the Sylvester equation based on a Sinc quadrature.

We consider a strongly P -positive operators C with spectral parabolae PS,C
defined by

ξ = φS,C(s) = ap,Cs
2 + bp,C ,

η = ψS,C(s) = s,
(3.11)

lying in the right half-plane of the complex plane and enveloped by the hyperbolic
set HIC defined by

z = aIC cosh (µ+ iν) + ibIC sinh (µ+ iν)

= aIC coshµ cos ν + iae sinhµ sin ν + ibIC(sinhµ cos ν + i coshµ sin ν)

= coshµ(aIC cos ν − bIC sin ν) + i sinhµ(aIC sin ν + bIC cos ν)

=
√
a2
IC + b2IC [cos (ν + ϕ) coshµ+ i sin (ν + ϕ) sinhµ]

=
√
a2
IC + b2IC cosh [µ+ i(ν + ϕ)],

(3.12)

lying also in the right half-plane. We suppose that the set HIC envelopes the
spectral parabola PS,C for all |ν| < dC . The class of such operators C will be called
by EHC .

Lemma 3.1. Let A,B be operators of the classes EHA and EHB . Choose the
integration curves

ΓIA = {λ = ξ + iη : ξ = aIA cosh sA, η = bIA sinh sA, sA ∈ R}
and

ΓIB = {µ = ξ + iη : ξ = aIB cosh sB, η = bIB sinh sB, sB ∈ R}
from the set (3.12) with C = A or C = B and ν = 0. Then the solution of the
operator equation (3.8) can be represented by the Dunford-Cauchy integral

(3.13) X = − 1
4π2

∫
ΓIA

∫
ΓIB

(λ + µ)−1(λI −A)−1G(µI −B)−1dλdµ

or, after parametrisation, by

(3.14) X = − 1
4π2

∫ ∞

−∞

∫ ∞

−∞
F (sA, sB)dsAdsB,

where the integrand

(3.15)

F (sA, sB) =
λ′(sA)µ′(sB)
λ(sA) + µ(sB)

(λI −A)−1G(µI −B)−1,

λ = λ(sA) = aIA cosh sA + ibIA sinh sA,

µ = µ(sB) = aIB cosh sB + ibIB sinh sB,

can be estimated on the real axis by

(3.16) ‖F (η, ζ)‖ � ‖G‖e−√
aIA|sA|/2e−

√
aIB |sB |/2.
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Moreover, the integrand can be analytically extended into the strip Dd of the width
d = min{dA, dB} > 0 from (2.18) with dA, dB defined analogously as in Lemma 2.3
and it belongs to the class Hp(Dd) for all p ∈ [1,∞] with respect to each variable.

Proof. Since the operators A,B are of the class EHA and EHB , due to (2.17) and
due to

|λ+ µ| =
√

(aIA cosh sA + aIB cosh sB)2 + (bIA sinh sA + bIB sinh sB)2

≥ aIA cosh sA + aIB cosh sB

≥
√
aIAaIB cosh sA cosh sB

we get that the integrand F (sA, sB) defined in (3.15) can be estimated on the real
axis by

‖F (sA, sB)‖ � ‖G‖e−√
aIA|sA|/2e−

√
aIB |sB |/2.

The above estimate shows that both the integrals (3.13) and (3.14) converge.
The analyticity of the integrand can be violated only if one of the hyperbolic

sets HIA or HIB intersects the corresponding spectral parabola. The latter is, with
guarantee, not the case for ν < d = min{dA, dB} (see also the proof of Lemma 2.3
and Figure 2). It follows from (3.16) that the integrand belongs to Hp(Dd) for all
p ∈ [0,∞) with respect to each of the two variables. It is also easy to see that
λ+ µ �= 0 in both strips DdA and DdB . The proof is complete. �

3.3. Error analysis for Quadrature Rule II. In this section we use the notation
from §2.4.1. We will need the following lemma which can be proven similarly to
Lemma 2.4 (see [7, 29]).

Lemma 3.2. For any operator-valued function f ∈ H1(Dd), it holds that

(3.17) η(f, h) =
i

2

∫
R

{
f(ξ − id−)e−π(d+iξ)/h

sin [π(ξ − id)/h]
− f(ξ + id−)e−π(d−iξ)/h

sin [π(ξ + d)/h]

}
dξ

providing the estimate

(3.18) ‖η(f, h)‖ ≤ e−πd/h

2 sinh (πd/h)
‖f‖H1(Dd).

If, in addition, f satisfies on R the condition

‖f(ξ)‖ ≤ c exp(−α|ξ|), α, c > 0,

then taking h =
√

2πd/(αN), we obtain

‖ηN (f, h)‖ ≤ c1e
−√

2πdαN

with a constant c1 > 0 independent of N .
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Given integers NA, NB, we set

(3.19)
hA = 2

√
πdA/(

√
aIANA/2) � 1/

√
NA,

hB = 2
√
πdB/(

√
aIBNB/2) � 1/

√
NB

and approximate the integral (3.14) by the double quadrature sum

(3.20) X ≈ XNA,NB = hAhB

NA∑
k=−NA

NB∑
j=−NB

F (khA, jhB).

Due to Lemma 3.1 and Lemma 3.2 we have the following error estimate indicating
exponential convergence of Quadrature Rule II.

Theorem 3.3. It holds that

(3.21) ‖X −XNA,NB‖ ≤ Ce−
√
πdA

√
aIANA−

√
πdB

√
aIBNB

with a constant C > 0 independent of NA and NB.

The exponential convergence of our quadrature rule allows us to introduce the
following parallel algorithm to approximate the solution of the Sylvester (Lyapunov)
equation with operators A,B from the classes EHA and EHB , respectively.

Algorithm 3.4. (a) Given ε > 0, choose integers NA = O(log2 ε), NB = O(log2 ε),
set hA and hB as in (3.19) and determine

zA(khA) = aIA cosh (khA) + ibIA sinh (khA) (k = −NA, . . . , NA),

zB(khB) = aIB cosh (khB) + ibIB sinh (khB) (j = −NB, . . . , NB).
(3.22)

(b) Find the resolvents

(zkI −A)−1, k = −NA, . . . , NA,
(zjI −B)−1, j = −NB, . . . , NB.

(c) Find the approximations XNA,NB for the solution X of the Sylvester equation
in the form (3.20).

Compared with Quadrature Rule I (see Theorem 2.9), the new Algorithm 3.4
includes only the double sum of the elliptic resolvents (it seems that it cannot be
further improved).

To realise the constructive H-matrix approximation, we build the H-matrix rep-
resentation for each individual elliptic resolvent (or its discrete version) involved
into the representation (3.20). The latter sum contains (2NA + 1)(2NB + 1) terms,
where we set NA = O(log2 ε), NB = O(log2 ε). The overall complexity of our
Quadrature Rule II amounts to O(n logq n log4 ε), where n is the problem size cor-
responding to the spacial discretisation to the elliptic operators A and B.
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4. Resolvent approximation to sign(H)

4.1. An exponential convergent quadrature rule. Let tj = jπ/n, n = 0, . . . ,
2n − 1, be an equidistant grid. Then for a given continuous function f(x), the
trigonometric polynomial

u(t) = Pnf =
n∑
j=0

αj cos (jt) +
n−1∑
j=1

βj sin (jt)

with the coefficients

α0 =
1
2n

2n−1∑
k=0

fk, fk = f(tk), αn =
1
2n

2n−1∑
k=0

(−1)kfk,

αj =
1
n

2n−1∑
k=0

fk cos (jtk) , βj =
1
n

2n−1∑
k=0

fk sin (jtk) , j = 1, . . . , n− 1,

is the trigonometric interpolant satisfying u(tj) = fj, j = 0, . . . , 2n − 1. Another
representation of this polynomial is

(Pnf)(t) =
2n−1∑
k=0

f(tk)Lk(t) =
1
2n

sin (nt)
2n−1∑
k=0

(−1)kf(tk) cot
t− tk

2

with the Lagrange basis

Lj(t) =
1
2n

sinn(t− tj) cot
t− tj

2
, t �= tj , j = 0, . . . , 2n− 1.

If f is analytic and 2π-periodic, then there exists a strip D = R × (−s, s) ⊂ C

with s > 0 such that f can be extended to a holomorphic and 2π-periodic bounded
function f : D → C and the remainder in trigonometric interpolation can be
estimated uniformly on [0, 2π] by

‖Pnf − f‖∞ ≤M
coth (s/2)
sinh (ns)

,

where M denotes a bound for the holomorphic function f on D. We can summarise
this result by the estimate ‖Pnf − f‖∞ = O(e−ns). Using the interpolant Pnf
instead of f , one gets the quadrature rule

(4.1)
∫ 2π

0

f(τ)dτ ≈
2n−1∑
m=0

γmfm

with the quadrature coefficients

γm =
∫ 2π

0

Lm(τ)dτ =
2n−1∑
k=0

(π
n
δmk − (−1)k−m

π

4n2

)
= π/n.

Thus, in the case of analytic and 2π-periodic integrands, we arrive at a quadrature
error O(e−ns).
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4.2. Quadratures in the case of uniformly bounded operators. Let H be
a bounded operator, ΓS = {z = z0 + rSe

iφ ∈ C : φ ∈ [0, 2π)}, z0 = x0 ∈ R+, 0 ≤
rS < x0, be the boundary of a disc ΩS which contains the spectral set Σ of H, and
ΓI = {z = z0 + rIe

iφ ∈ C : φ ∈ [0, 2π)}, 0 ≤ rI < x0, be the integration path in
(2.4). After parametrising the integral (2.4), we get

sign(H) =
1
πi

∫
ΓI

(zI −H)−1dz − I =
1
π

∫ 2π

0

F (φ)dφ − I,(4.2)

F (φ) = rIe
iφ((z0 + rIe

iφ)I −H)−1, φ ∈ [0, 2π].

For a complex argument φc = φ+ iψ, the analyticity of the integrand

F (φc) = irce
iφ

(
(z0 + rRe

iφ)I −H
)−1

, rR = rIe
−ψ,

can be violated only if ψ > 0, since in this case the resolvent circle z = z0 + rRe
iφ

lies inside of the spectral circle so that the resolvent can be unbounded. From
the inequalities rI − ρ < rR < x0 (this inequality guarantees that the resolvent
circle lies outside the spectral one), where ρ is the distance between the integration
and the spectral circles, we get − ln x0

rI
< ψ < ln rI

rI−ρ . Thus, the integrand F (φ)
in (4.2) is a 2π-periodic function which can be holomorphically extended into the
strip S = {w = φ+ iψ : φ ∈ (−∞,∞), |ψ| < s}, where s = min{ln x0

rI
, ln rI

rI−ρ}.
Now, applying the quadrature rule (4.1) to the integral (4.2), we get the following

approximation of the operator sign function:

(4.3) sign(H) ≈ signN (H) :=
1
N

2N−1∑
k=0

F (
kπ

N
) − I,

where the quadrature error is O(e−Ns).

Remark 4.1. In applications, A may be a finite-element or finite-difference approxi-
mation of a second order elliptic differential operator for which rI = O(h−k), k > 0,
where h is the spatial discretisation parameter. In this case we have s = ln rI

rI−ρ =
ln 1

1−chk = O(hk) → 0 as h → 0 so that the error of the algorithm (4.3) is of

the order O(e−ch
kN ) with some positive constant c. This leads to a polynomial

complexity relying on the estimate N = O(h−k
′
) with k′ > k.

Due to Remark 4.1, for many applications we may need a special method that
is robust with respect to cond(H).

4.3. Sinc-based approximation in the general case. Let Ω+ be the set of
eigenvalues of H with positive real part and let Ω− be the corresponding set with
negative real part. Consider the matrix-valued function J = J (H) given by the
integral representation

(4.4) J =
1
πi

∫
Γ

(ζI −H)−1dζ = sign(H) + I,

where Γ is the circle in the complex plane with the diameter [x1, x2] ∈ R, x1, x2 > 0,
which encloses Ω+. The parameter κ := x2/x1 will be used in the following (it can
be regarded as the condition number of H). We are interested in an accurate
approximation of J (H) by the sum of a few resolvents (zkI −H)−1 with different
parameters zk.
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Under the substitution ζ �→ t := c−1
0 (ζ − ζ0) with ζ0 = x1+x2

2 , c0 = x2−x1
2 , the

integral J takes the form

J =
1
πi

∫
Γ0

(tI − B)−1dt, B = c0(H − z0I),

where Γ0 = ∂U is the unit circle, while U is the unit disc centred at t = 0. Next, we
transform the integral over Γ0 to an integral over the reference intervalK := [−1, 1].
To that end we use the Zhukovski mapping

z =
1
2

(
t+

1
t

)
,

which maps z : Γ0 → [−1, 1]. Denote by Ω+
z , Ω−

z ∈ C the respective images of Ω+

and Ω− under the mapping t �→ z. We also set Ωz := Ω+
z ∪ Ω−

z ⊂ C.
It is worth noting that the transforms t1 := z+

√
z2 − 1, t2 := z−√

z2 − 1 mapK
onto the upper and lower halves of Γ0, respectively. Therefore, since dt = 2 t2

t2−1dz,
the target integral over the two-sided slit curve K can be written as

J (H) = J1(B) − J2(B),

where

Jk(B) :=
2
πi

∫
K

(tk(z)I −B)−1 t2k(z)
t2k(z) − 1

dz, k = 1, 2.

One can easily check that both functions tk(z), k = 1, 2, have a regular behaviour
as z2 → 1 with z ∈ K, namely, t1(z) → 1 as z → 1 and t2(z) → −1 as z → −1. On
the other hand, it can be shown by a simple calculation that

(4.5)
∣∣∣∣ t21(z)
t21(z) − 1

− t22(z)
t22(z) − 1

∣∣∣∣ ≤ c√
1 − z2

as z2 → 1, �mz = 0.

Following [29], introduce the eye-shaped region (cf. Figure 4)

D := {z ∈ C :
∣∣∣∣arg

(
z + 1
z − 1

)∣∣∣∣ < d},

−1 1

D
d
2

d

d

Figure 4. The eye-shaped region.
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where d ∈ (0, π) is a given parameter. As in [29, Example 4.2.8], we define the
functions

(4.6)
w = Φ(z) := log

z − a

b− z
,

Φ′(z) =
b− a

(z − a)(b− z)
,

and the corresponding sequence of collocation points

(4.7) zk =
a+ bekδ

1 + ekδ
,

where δ > 0 is the grid parameter. In our particular example, we set a = −1,
b = 1. As a matter of fact, w is a conformal map of D onto the strip Dd defined by
(2.18). If d ∈ (0, π) the class Lα,β(D) is defined as the family of all matrix-valued
functions F which are holomorphic in D and which for some constant C > 0 satisfy
the inequality

‖F (z)‖ ≤ C|z − a|α|b− z|β in D.
We rewrite our integral in the form

J (B) =
∫
K

F (z)dz

with

F (z) =
2
πi

[
(t1(z)I −B)−1 t21(z)

t21(z) − 1
− (t2(z)I −B)−1 t22(z)

t22(z) − 1

]
.

Theorem 4.2. Assume that D ∩ Ωz = ∅ and let N ∈ N be given. Choose the
parameter δ =

(
4πd
N

)1/2
in (4.7). Then there exists a constant C0, independent of

N , such that

(4.8)

∥∥∥∥∥
∫
K

F (z)dz − δ

N∑
k=−N

F (zk)
Φ′(zk)

∥∥∥∥∥ ≤ C0e
−(πdN)1/2

,

where Φ′ and zk are given by (4.6), (4.7) with a = −1, b = 1.

Proof. The assumption that D ∩ Ωz = ∅ combined with (4.5) implies that F ∈
L1/2,1/2(D). Now the results of [29, Example 4.2.8] (see also Theorem 4.2.6 therein)
modified by the usual arguments (see [6] and [7] for more details) to the case of
matrix-valued functions lead to the desired exponential convergence. �

It can be shown that the constant C0 in (4.8) can be estimated by

C0 ≤ C

∫
∂D

‖F (z)‖ |dz|,

where C does not depend on F . If H represents the finite-element stiffness matrix
for the second order elliptic operator, then we can derive C0 = O(κ) = O(h−2),
where h > 0 is the corresponding mesh size. Therefore, a quadrature error of order
ε > 0 can be achieved with N = O(| log h|2 + | log ε|2) (compare with the number
of Newton’s iteration in [11] to compute sign(H) alternatively).
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We conclude the paper with the following remark that describes the uniform
convergence of the quadrature rule for the matrix exponential e−tL with respect to
t ≥ 0.

Remark 4.3. Our analysis of the quadratures in Theorem 2.5 indicates that the
approximation to the integral (2.20) is no longer uniform in t ∈ [a,∞) if a = 0. It
is remarkable that in the limit case t = 0 the target integral is nothing but 1/2J (L)
with J given by (4.4). Therefore, assuming that L ∈ Rn×n, we can apply a similar
quadrature to the integral (2.20) as in (4.8) just by substituting (ζI −H)−1 by the
corresponding ansatz e−ζt(ζI −H)−1. Clearly, all assumptions of Theorem 4.2 are
valid for the new integrand and we arrive at the same approximation result as in
(4.8), now uniformly in t ≥ 0. Again the number of terms can be estimated by
N = O(| log(cond(L))|2 + | log ε|2), where one can expect cond(L) = O(h−2) for
quasi-uniform meshes.
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