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ALGORITHMS WITHOUT ACCURACY SATURATION
FOR EVOLUTION EQUATIONS

IN HILBERT AND BANACH SPACES

IVAN P. GAVRILYUK AND VOLODYMYR L. MAKAROV

Abstract. We consider the Cauchy problem for the first and the second order
differential equations in Banach and Hilbert spaces with an operator coeffi-
cient A(t) depending on the parameter t. We develop discretization methods
with high parallelism level and without accuracy saturation; i.e., the accuracy
adapts automatically to the smoothness of the solution. For analytical solu-
tions the rate of convergence is exponential. These results can be viewed as
a development of parallel approximations of the operator exponential e−tA

and of the operator cosine family cos
√

At with a constant operator A possess-
ing exponential accuracy and based on the Sinc-quadrature approximations of
the corresponding Dunford-Cauchy integral representations of solutions or the
solution operators.

1. Introduction

We consider the evolution problems
du
dt +A(t)u = f(t), t ∈ (0, T ]; u(0) = u0,(1.1)

and
d2u
dt2 +A(t)u = f(t), t ∈ (0, T ]; u(0) = u0, u′(0) = u01(1.2)

where A(t) is a densely defined closed (unbounded) operator with the domain D(A)
independent of t in a Banach space X , u0, u01 are given vectors and f(t) is a given
vector-valued function. We suppose the operator A(t) to be strongly positive; i.e.,
there exists a positive constant MR independent of t such that on the rays and
outside a sector Σθ = {z ∈ C : 0 ≤ arg(z) ≤ θ, θ ∈ (0, π/2)} the following resolvent
estimate holds:

(1.3) ‖(zI −A(t))−1‖ ≤ MR

1 + |z| .

This assumption implies that there exists a positive constant cκ such that (see [7],
p. 103)

(1.4) ‖Aκ(t)e−sA(t)‖ ≤ cκs
−κ, s > 0, κ ≥ 0.

Our further assumption is that there exists a real positive ω such that

(1.5) ‖e−sA(t)‖ ≤ e−ωs ∀s, t ∈ [0, T ]

Received by the editor January 21, 2003 and, in revised form, February 26, 2004.
2000 Mathematics Subject Classification. Primary 65J10, 65M70; Secondary 35K90, 35L90.
Key words and phrases. Evolution equation, parameter dependent operator, algorithms with-

out accuracy saturation, exponentially convergent algorithms, Sinc-methods.

c©2004 American Mathematical Society
555



556 I. P. GAVRILYUK AND V. L. MAKAROV

(see [23], Corollary 3.8, p. 12, for corresponding assumptions on A(t)). Let us also
assume that the conditions

‖[A(t) −A(s)]A−γ(t)‖ ≤ L̃1,γ |t− s| ∀t, s, 0 ≤ γ ≤ 1,(1.6)

‖Aβ(t)A−β(s) − I‖ ≤ L̃β|t− s| ∀t, s ∈ [0, T ](1.7)

hold. Note that efficient approximations without accuracy saturation or with the
exponential accuracy for the solution operators of equations (1.1), (1.2) with an
unbounded operator A independent of t were proposed in [8, 9, 13, 14]. Using the
Cayley transform, one can represent the exact solution (or the solution operator)
by a series. The truncated sum of N series terms represents a numerical algorithm
without accuracy saturation, i.e., with the convergence rate automatically adapting
to the smoothness of the input data [8, 14]. Other approximations [9, 13] use
representations of the exact solution or the solution operators through the resolvent
of the spatial operator by the Dunford-Cauchy integral along a path in the complex
plane enveloping the spectrum of the spatial operator. After parametrization this
integral can be translated into an improper integral over the real axis and the
last one is then approximated by a suitable Sinc-quadrature [26] possessing an
exponential convergence rate. In this way we get an approximation to the solution
operator as a short sum of resolvents of the spatial operator.

Sinc approximations can also be used to get exponentially convergent approxima-
tions to the solutions of various partial differential equations (PDE) with a known
Green function or a fundamental solution which allow one to represent the solution
by an integral [27]. Note that, in general, it is not the case for arbitrary equations
of the type (1.1), (1.2) considered in the present paper.

The aim of this paper is to get algorithms without accuracy saturation and
exponentially convergent algorithms for the solution of equations (1.1), (1.2). We
use a piecewise constant approximation of the operator A(t) and an exact integral
corollary of these equations on the Chebyshev grid which is then approximated
by the collocation method. The operator exponential (for equation (1.1)) and the
operator cosine function (for equation (1.2)) with stationary operators involved in
the algorithms can be computed by the Sinc approximations from [9, 13].

We begin with an example which shows the practical relevance for the assump-
tions above.

Example 1.1. Let q(t) ≥ q0 > 0, t ∈ [0, T ], be a given function from the Hölder
class with the exponent α ∈ (0, 1]. We consider the operator A(t) defined by

D(A(t)) = {u(x) ∈ H4(0, 1) : u(0) = u′′(0) = u(1) = u′′(1) = 0},

A(t)u =
[
d2

dx2
− q(t)

]2

u =
d4u

dx4
− 2q(t)

d2u

dx2
+ q2(t)u ∀u ∈ D

(
A(t)

)(1.8)

with the domain independent of t. It is easy to show that

D(A1/2(t)) = {u(x) ∈ H2(0, 1): u(0) = u(1) = 0},

A1/2(t) = −d
2u

dx2
+ q(t)u ∀u ∈ D

(
A1/2(t)

)
,

A−1/2(t) =
∫ 1

0

G(x, ξ; t)v(ξ) dξ,

(1.9)
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where the Green function is given by
(1.10)

G(x, ξ; t) =
1√

q(t) sinh
√
q(t)

{
sinh (

√
q(t)x) sinh (

√
q(t)(1 − ξ)), if x ≤ ξ,

sinh (
√
q(t)ξ) sinh (

√
q(t)(1 − x)), if ξ ≤ x.

Then we have the relation

[A(t) −A(s)]A−1/2(t)v = [q(t) − q(s)]
{
−2

d2

dx2
+ [q(t) + q(s)]

}∫ 1

0

G(x, ξ; t)v(ξ) dξ

= [q(t) − q(s)]
{

2v(x) − [q(t) − q(s)]
∫ 1

0

G(x, ξ; t)v(ξ) dξ
}
,

(1.11)

which leads to the estimate

‖[A(t) −A(s)]A−1/2(t)v(·)‖C[0,1]→C[0,1]

≤ L|t− s|α
{

2‖v‖C[0,1] + L|t− s|α 1
2
√
q(t)

tanh
(√

q(t)/2
)‖v‖C[0,1]

}
,

(1.12)

where L is the Hölder constant. This inequality yields∥∥[A(t) −A(s)]A−1/2(t)
∥∥
C[0,1]→C[0,1]

≤ L
{
2 + LTα tanh (

√
q(t)/2)/(2

√
q(t))

}
|t− s|α;

(1.13)

i.e., condition (1.6) is fulfilled with γ = 1/2 provided that α = 1. Let us prove
condition (1.7). We have

[
A1/2(t)A−1/2(s) − I

]
v =

[
− d2

dx2
+ q(t)

] ∫ 1

0

G(x, ξ; s)v(ξ) dξ − v(x)

= [q(t) − q(s)]
∫ 1

0

G(x, ξ; s)v(ξ) dξ,

(1.14)

from which it follows that

(1.15)
∥∥A1/2(t)A−1/2(s) − I

∥∥
C[0,1]→C[0,1]

≤ L
tanh (

√
q(t)/2)

2
√
q(t)

|t− s|α;

i.e., condition (1.7) is fulfilled with β = 1/2, δ = α = 1.

Remark 1.2. It is clear that, in general, for elliptic operators inequalities (1.6) and
(1.7) hold true with γ = 1, β = 1.

Remark 1.3. Assumption (4.1) is not restrictive due to stability results from [15].
The two initial value problems

(1.16)
du

dt
+A(t)u = f(t), u(0) = u0

and

(1.17)
dv

dt
+B(t)v = g(t), v(0) = v0

with densely defined, closed operators A(t), B(t) having a common domainD
(
A(t)

)
= D

(
B(t)

)
independent of t were considered. The following assumptions were

made.
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(1) There exist bounded inverse operators A−1(t), B−1(t) and for the resol-
vents RA(t)(z) = (z −A(t))−1, RB(t)(z) = (z −B(t))−1 we have

(1.18) ‖RA(t)(z)‖ ≤ 1
1 + |z| , ‖RB(t)(z)‖ ≤ 1

1 + |z| (θ + ε ≤ | arg z| ≤ π)

for all θ ∈ (0, π/2), ε > 0 uniformly in t ∈ [0, T ].
(2) The operators A(t), B(t) are strongly differentiable on D

(
A(t)

)
= D

(
B(t)

)
.

(3) There exists a constant M such that

(1.19)
∥∥Aβ(s)B−β(s)

∥∥ ≤M.

(4) For the evolution operators UA(t, s), UB(t, s) we have

(1.20) ‖A(t)UA(t, s)‖ ≤ C

t− s
, ‖B(t)UB(t, s)‖ ≤ C

t− s
.

(5) There exist positive constants C, Cβ such that

(1.21)
∥∥Aρ(t)A−ρ(s) − I

∥∥ ≤ C|t− s|α

and

(1.22) ‖Aβ(t)UA(t, s)‖ ≤ Cβ
|t− s|β , ‖B

β(t)UB(t, s)‖ ≤ Cβ
|t− s|β

for 0 ≤ β < α+ β.

The following stability result for Banach spaces was proved in [15] under these
assumptions:

‖Aβ(t)z(t)‖ = ‖Aβ(t)(u(t) − v(t))‖
≤M‖Aβ(0)z(0)‖ + cβM max

0≤s≤T
∥∥[B(s) −A(s)]A−β(s)

∥∥
× t1−β

1 − β

{
‖Bβ(0)v(0)‖ +

∫ t

0

‖Bβ(s)g(s)‖ ds
}

+M

∫ t

0

‖Bβ(s)g(s)‖ ds.

(1.23)

It is possible to avoid the restriction β < 1 if we consider equations (1.16),
(1.17) in a Hilbert space. In this case we assume that there exists an operator
C = C∗ ≥ c0I such that

(1)

(1.24)
∥∥[A(s) − B(s)]C−1

∥∥ ≤ δ,

(2) (
A(s)y, Cy

) ≥ c0‖Cy‖2,(
B(s)y, Cy

) ≥ c0‖Cy‖2 ∀s ∈ [0, T ], c0 > 0.
(1.25)
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Then the following stability estimate is fulfilled [15]:

1
2
(Cz(t), z(t)) + (c0 − ε− ε1)

∫ t

0

‖Cz(s)‖2ds

≤ max
0≤s≤T

‖[A(s) −B(s)]C−1‖2 (c0 − ε2)−1

2ε

×
[

1
4ε2

∫ t

0

‖g(s)‖2ds+
1
2
(Cv0, v0)

]

+
1

2ε1

∫ t

0

‖f(s) − g(s)‖2ds+
1
2
(
C(u0 − v0), u0 − v0

)
,

(1.26)

with arbitrary positive numbers ε, ε1, ε2 such that ε+ ε1 < c0, ε2 < c0 which stand
for the stability with respect to the right-hand side, the initial condition and the
coefficient stability. Note that an analogous estimate in the case of a finite dimen-
sional Hilbert spaces and of a constant operator A was proved in [25, p. 62].

Example 1.4. Let Ω ⊂ R2 be a polygon and let

(1.27) L(x, t,D) = −
2∑

i,j=1

∂

∂xi
ai,j(x, t)

∂

∂xj
+

2∑
j=1

bj(x, t)
∂

∂xj
+ c(x, t)

be a second order elliptic operator with time-dependent real smooth coefficients
satisfying the uniform ellipticity condition

(1.28)
2∑

i,j=1

aij(x, t)ξiξj ≥ δ1|ξ|2 (ξ = (ξ1, ξ2) ∈ R)

with a positive constant δ1. Taking X = L2(Ω) and V = H1
0 (Ω) or V = H1(Ω)

accordingly to the boundary condition

(1.29) u = 0 on ∂Ω × (0, T )

or

(1.30)
∂u

∂νL
+ σu = 0 on ∂Ω × (0, T ),

we set

At(u, v) =
2∑

i,j=1

∫
Ω

ai,j(x, t)
∂u

∂xi

∂v

∂xj
dx

+
2∑
j=1

∫
Ω

bj(x, t)
∂u

∂xj
v dx+

∫
Ω

c(x, t)uv dx +
∫
∂Ω

σ(x, t)uv dS

(1.31)

for u, v ∈ V . An m-sectorial operator A(t) in X can be defined through the relation

(1.32) At(u, v) =
(
A(t)u, v

)
,

where u ∈ D(A(t)) ⊂ V and v ∈ V . The relation

(1.33) D(A(t)) = H2(Ω) ∩H1
0 (Ω)

follows for V = H1
0 (Ω) and

(1.34) D
(
A(t)

)
=
{
v ∈ H2(Ω) | ∂v

∂νL
on ∂Ω

}
for V = H1(Ω), if ∂Ω is smooth for instance.
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It was proven in [7, pp. 95–101] that all the assumptions above hold for such an
operator A(t).

As we will see below, the parameter γ from (1.6) plays an essential role for
the construction and the analysis of discrete approximations and algorithms for
problems (1.1), (1.2).

2. Discrete first order problem in the case γ < 1

For the sake of simplicity we consider problem (1.1) on the interval [−1, 1] (if
it is not the case, one can reduce problem (1.1) to this interval by the variable
transform t = 2t′/T − 1, t ∈ [−1, 1], t′ ∈ [0, T ]). We choose a mesh ωn of n various
points ωn = {tk = cos (2k−1)π

2n , k = 1, . . . , n} on [−1, 1] and set τk = tk − tk−1,

(2.1) A(t) = Ak = A(tk), t ∈ (tk−1, tk],

where tk are zeros of Chebyshev orthogonal polynomial of the first kind Tn(t) =
cos (n arccos t). Let tν = cos θν , 0 < θν < π, ν = 1, 2, . . . , n, be zeros of the Cheby-
shev orthogonal polynomial Tn(t) taken in decreasing order. Then it is well known
that (see [28], Ch.6, Th.6.11.12, [29], p. 123)

(2.2)
tν+1 − tν <

π

n
, ν = 1, . . . , n,

τmax = max
1≤k≤n

τk <
π

n
.

Let us rewrite problem (1.1) in the form

(2.3)
du

dt
+A(t)u = [A(t) −A(t)]u(t) + f(t),

u(0) = u0

from which we deduce

u(t) = e−Ak(t−tk−1)u(tk−1)

+
∫ t

tk−1

e−Ak(t−η){[Ak −A(η)]u(η) + f(η)}dη, t ∈ [tk−1, tk].
(2.4)

Since Ak−1 and e−Ak−1τk commute, assumption (1.7) yields

(2.5) ‖AβkA−β
p ‖ ≤ 1 + ‖AβkA−β

p − I‖ ≤ 1 + L̃β|tk − tp| ≤ 1 + L̃βT.

Let

(2.6) Pn−1(t;u) = Pn−1u =
n∑
p=1

u(tp)Lp,n−1(t)

be the interpolation polynomial for the function u(t) on the mesh ωn, let y =
(y1, . . . , yn), yi ∈ X be a given vector, and let

(2.7) Pn−1(t; y) = Pn−1y =
n∑
p=1

ypLp,n−1(t)

be the polynomial that interpolates y, where Lp,n−1 = Tn(t)
T ′

n(tp)(t−tp) , p = 1, . . . , n,
are the Lagrange fundamental polynomials.
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Substituting Pn(η; y) for u(η) and yk for u(tk) in (2.4), we arrive at the following
system of linear equations with respect to the unknowns yk:

(2.8) yk = e−Akτkyk−1 +
n∑
p=0

αkpyp + φk, k = 1, . . . , n,

where

(2.9)

αkp =
∫ tk

tk−1

e−Ak(tk−η)[Ak −A(η)]Lp,n−1(η)dη,

φk =
∫ tk

tk−1

e−Ak(tk−η)f(η)dη.

Remark 2.1. In order to compute αkp and φk efficiently, we replace A(t), f(t) by
their interpolation polynomials (it is possible due to stability results (1.23), (1.26);
see also [15]) and then calculate the integrals analytically. We have

(2.10)

A(t) =
n∑
l=1

Al
t− tl

Tn(t)
T ′
n(tl)

,

f(t) =
n∑
l=1

fl
t− tl

Tn(t)
T ′
n(tl)

, fl = f(tl),

so that

(2.11)

αkp =
1

T ′
n(tp)

n∑
l=1

1
T ′
n(tl)

∫ tk

tk−1

e−Ak(tk−η) T 2
n(η)

(η − tl)(η − tp)
dη[Ak − Al],

φk =
n∑
l=1

fk
T ′
n(tl)

∫ tk

tk−1

e−Ak(tk−η)Tn(η)
η − tl

dη.

Using the relation 2T 2
n(η) = 1 + 2T2n(η), the polynomial p(l,p)

2n−2 = T 2
n(η)

(η−tl)(η−tp) can
be represented as (see [2])

p
(l,p)
2n−2 =

2T2n(η) + 1
2(η − tl)(η − tp)

=
1

2(η − tl)(η − tp)

[
2n

n∑
m=0

(−1)m(2n−m− 1)!
m!(2n− 2m)!

(2η)2n−2m + 1

]

=
2n−2∑
i=0

qi(l, p)η2n−2−i,

(2.12)

where the coefficients qi(l, p) can be calculated, for example, by the Horner scheme.
Given qi(l, p), we furthermore find that

(2.13) αkp =
1

T ′
n(tp)

n∑
l=1

1
T ′
n(tl)

2n−2∑
i=0

qi(l, p)Ik,i[Ak −Al],
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where

Ik,i =
∫ tk

tk−1

e−Ak(tk−η)η2n−2−idη

=
2n−2−i∑
s=0

(−1)s(2n− 2 − i)(2n− 3 − i)

· · · (2n− 2 − i− s+ 1)A−s−1
k t2n−2−i−s

k

−
2n−2−i∑
s=0

(−1)s(2n− 2 − i)(2n− 3 − i)

· · · (2n− 2 − i− s+ 1)A−s−1
k t2n−2−i−s

k−1 e−Akτk .

(2.14)

Analogously one can also calculate φk.

For the error z = (z0, z1, . . . , zn), zk = u(tk) − yk we have the relations

(2.15) zk = e−Akτkzk−1 +
n∑
p=0

αkpzp + ψk, k = 1, . . . , n,

where

(2.16) ψk =
∫ tk

tk−1

e−Ak(tk−η)[Ak −A(η)][u(η) − Pn(η;u)]dη.

We introduce the matrix

(2.17) S = {si,k}ni,k=1 =




I 0 0 · · · 0 0
−e−A1τ1 I 0 · · · 0 0

0 −e−A2τ2 I · · · 0 0
· · · · · · · ·
0 0 0 · · · −e−An−1τn−1 I


 ,

the matrix C = {α̃k,p}nk,p=1 with α̃k,p = Aγkαk,pA
−γ
p and the vectors

(2.18) y =



Aγ1y1
·
·
·

Aγnyn


 , f =



Aγ1φ1

·
·
·

aγnφn


 , f̃ =




Aγ1e
−A1τ1u0

0
·
·
·
0



ψ =



Aγ1ψ1

·
·
·

Aγnψn


 .

It is easy to see that for

S−1 = {s−1
i,k}ni,k=1

=




I 0 · · · 0 0
e−A1τ1 I · · · 0 0

e−A2τ2e−A1τ1 e−A2τ2 · · · 0 0
· · · · · · ·

e−An−1τn−1 · · · e−A1τ1 e−An−1τn−1 · · · e−A2τ2 · · · e−An−1τn−1 I




(2.19)

we have

(2.20) S−1S =



I 0 · · · 0
0 I · · · 0
· · · · · ·
0 0 · · · I


 .
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Remark 2.2. Using results of [9, 13], one can get a parallel and sparse approximation
with an exponential convergence rate of operator exponentials in S−1 and as a
consequence a parallel and sparse approximation of S−1.

We get from (2.8), (2.15)

(2.21)

Aγkyk = e−AkτkAγkyk−1 +
n∑
p=0

α̃kpA
γ
pyp +Aγkφk,

Aγkzk = e−AkτkAγkzk−1 +
n∑
p=0

α̃kpA
γ
pzp +Aγkψk, k = 1, . . . , n,

or in matrix form

(2.22)
Sy = Cy + f − f̃ ,

Sz = Cz + ψ

with

(2.23) z =



Aγ1z1
·
·
·

Aγnzn


 .

Next, for a vector v = (v1, v2, . . . , vn)T and a block operator matrix A =
{aij}ni,j=1 we introduce the vector norm

(2.24) |‖v‖| ≡ |‖v‖|∞ = max
1≤k≤n

‖vk‖

and the consistent matrix norm

(2.25) |‖A‖| ≡ |‖A‖|∞ = max
1≤i≤n

n∑
j=1

‖ai,j‖.

Due to (1.5) we get

|‖S−1‖| ≤ n.(2.26)

For further analysis we need the following auxiliary result.

Lemma 2.3. The estimates

|‖C‖| ≤ c(1 + L̃γT )nγ−2 lnn,(2.27)

|‖S−1C‖| ≤ c(1 + L̃γT )nγ−1 lnn(2.28)

with a positive constant c independent of n hold true.

Proof. Assumption (1.6) together with (2.5) implies

‖α̃kp‖ = ‖AγkαkpA−γ
p ‖

= ‖
∫ tk

tk−1

Aγke
−Ak(tk−η)[Ak −A(η)]A−γ

p Lp,n−1(η)dη‖

≤
(
1 + L̃γT

)
τ1−γ
max

∫ tk

tk−1

|Lp,n−1(η)|dη, T = 2.

(2.29)
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Using the well-known estimate for the Lebesgue constant Λn related to the Cheby-
shev interpolation nodes (see, e.g., [28, 29])

(2.30) Λn = max
η∈[−1,1]

n∑
p=1

|Lp,n−1(η)| ≤ c lnn

and (2.29), we have

|‖C‖| ≤ max
1≤k≤n

n∑
p=1

‖α̃kp‖

≤ (1 + L̃γT )τ2−γ
max max

η∈[−1,1]

n∑
p=1

|Lp,n−1(η)|

≤ (1 + L̃γT )τ2−γ
max Λn ≤ c(1 + L̃γT )τ2−γ

max lnn

≤ c(1 + L̃γT )nγ−2 lnn

(2.31)

with some positive constant c independent of n. This estimate together with (2.26)
implies

(2.32) |‖S−1C‖| ≤ c(1 + L̃γT )nγ−1 lnn→ 0

as n→ ∞ provided that γ < 1. �

Remark 2.4. We have reduced the interval length to T = 2 but we write T explicitly
in order to underline the dependence of constants involved on T in the general case.

Let Πn−1 be the set of all polynomials in t with vector coefficients of degree less
than or equal to n− 1. Then the Lebesgue inequality

‖u(η) − Pn−1(η;u)‖C[−1,1]

≡ max
η∈[−1,1]

‖u(η) − Pn−1(η;u)‖ ≤ (1 + Λn)En(u)(2.33)

can be proved for vector-valued functions in complete analogy with [1, 28, 29] and
with the error of the best approximation of u by polynomials of degree not greater
than n− 1

(2.34) En(u) = inf
p∈Πn−1

max
η∈[−1,1]

‖u(η) − p(η)‖.

Now, we can go over to the main result of this section.

Theorem 2.5. Let assumptions (1.3)–(1.7) with γ < 1 hold. Then there exists a
positive constant c such that the following hold.

(1) For n large enough it holds that

(2.35) |‖z‖| ≡ |‖y − u‖| ≤ cnγ−1 lnnEn(Aγ0u),

where u is the solution of (1.1).
(2) The system of linear algebraic equations

Sy = Cy + f(2.36)

with respect to the approximate solution y can be solved by the fixed-point
iteration

y(k+1) = S−1Cy(k) + S−1(f − f̃), k = 0, 1, . . . ; y(0) arbitrary(2.37)
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with the convergence rate of a geometrical progression with the denominator
q ≤ cnγ−1 lnn < 1 for n large enough.

Proof. From the second equation in (2.22) we get

z = S−1Cz + S−1ψ(2.38)

from which due to Lemma 2.3 and (2.26) we get

|‖z‖| ≤ cn|‖ψ‖|(2.39)

for n large enough. The last norm can be estimated in the following way:

|‖ψ‖| = max
1≤k≤n

‖
∫ tk

tk−1

[
Aγke

−Ak(tk−η) [Ak −A(η)]

×A−γ
k (AγkA

−γ
0 )(Aγ0u(η) − Pn(η;A

γ
0u))

]
dη‖

≤ (1 + L̃γT ) max
1≤k≤n

∫ tk

tk−1

|tk − η|−γ |tk − η|

× ‖Aγ0u(η) − Pn(η;A
γ
0u)‖dη

≤ (1 + L̃γT )τ2−γ
max ‖Aγ0u(·) − Pn−1(·;Aγ0u)‖C[−1,1]

≤ (1 + L̃γT )τ2−γ
max (1 + Λn)En(Aγ0u) ≤ cnγ−2 lnnEn(A

γ
0u),

(2.40)

and taking into account (2.39), we get the statement of the theorem. �

3. Discrete first order problem in the case γ ≤ 1

In this section we construct a new discrete approximation of problem (1.1) which
is a little more complicated than approximation (2.8) of the previous section but
possesses a higher convergence order and allows the case γ = 1.

Applying transform (2.4) once more (i.e., substituting u(t) recursively), we get

u(t) =

{
e−Ak(t−tk−1) +

∫ t

tk−1

e−Ak(t−η) [Ak −A(η)] e−Ak(η−tk−1)dη

}
u(tk−1)

+
∫ t

tk−1

e−Ak(t−η)[Ak −A(η)]
∫ η

tk−1

e−Ak(η−s)[Ak −A(s)]u(s)dsdη

+
∫ t

tk−1

e−Ak(t−η)
{

[Ak −A(η)]
∫ η

tk−1

e−Ak(η−s)f(s)ds+ f(η)

}
dη.

(3.1)

Setting t = tk, we arrive at the relation

u(tk) = Sk,k−1u(tk−1)

+
∫ tk

tk−1

e−Ak(tk−η)[Ak −A(η)]
∫ η

tk−1

e−Ak(η−s)[Ak −A(s)]u(s)dsdη + φk,

(3.2)
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where

Sk,k−1 = e−Akτk +
∫ tk

tk−1

e−Ak(tk−η)[Ak −A(η)]e−Ak(η−tk−1)dη,

φk =
∫ tk

tk−1

e−Ak(tk−η)f(η)dη

+
∫ tk

tk−1

e−Ak(tk−η)[Ak −A(η)]
∫ η

tk−1

e−Ak(η−s)f(s)dsdη.

(3.3)

Substituting the interpolation polynomial Pn−1(η; y) from the previous section
for u(η) and yk for u(tk) in (3.2), we arrive at the following system of linear equa-
tions with respect to the unknowns yk:

(3.4) yk = Sk,k−1yk−1 +
n∑
p=1

αkpyp + φk, k = 1, . . . , n,

where

αkp =
∫ tk

tk−1

e−Ak(tk−η)[Ak −A(η)]

×
∫ η

tk−1

e−Ak(η−s)[Ak −A(s)]Lp,n−1(s)dsdη.
(3.5)

Remark 3.1. Due to stability results (1.23), (1.26) (see also [15]) one can approxi-
mate the initial problems by problems with polynomials Ã(t), f̃(t), for example, as
interpolation polynomials for A(t), f(t).

With the aim of getting a computational algorithm for αkp, we write down
formula (3.5) in the form

αkp =
∫ tk

tk−1

∫ η

tk−1

e−Ak(tk−η)

× [Ak −A(η)]e−Ak(η−s)dη[Ak −A(s)]Lp,n−1(s)ds.

(3.6)

In order to calculate the inner integral, we represent

(3.7) A(η) = Ak + (tk − η)B1,k + · · · + (tk − η)n−1Bn−1,k.

Then we have to calculate integrals of the type

(3.8) α̃kp =
∫ η

tk−1

e−Ak(tk−η)(tk − η)pBp,ke−Ak(η−s)dη.

Analogously to [15], using the representation by the Dunford-Cauchy integrals and
the residue theorem under assumption of the strong P-positiveness [8, 13, 9] of the
operator A(t), one can get

(3.9) α̃kp =
p!

2πi

∫
ΓI

e−z(tk−η)(Ak − zI)−p−1Bp,k(zI −Ak)−1dz,

where ΓI is an integration parabola enveloping the spectral parabola of the strongly
P-positive operator A(t). Now, using (3.7), (3.9), formula (3.6) can be written down
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as

αkp = − 1
2πi

∫
ΓI

n−1∑
p=1

p!(Ak − zI)−p−1Bp,k(zI −Ak)−1

×
∫ tk

tk−1

e−z(tk−s)[Ak −A(s)]Lp,n−1(s)dsdz.

(3.10)

The inner integral in this formula can be calculated analogously to (2.13), and the
integral along ΓI can be calculated explicitly using the residue theorem.

For the error z = (z1, . . . , zn), zk = u(tk) − yk we have the relations

(3.11) zk = Sk,k−1zk−1 +
n∑
p=0

αkpzp + ψk, k = 1, . . . , n,

where

(3.12) ψk =
∫ tk

tk−1

e−Ak(tk−η)
∫ η

tk−1

e−Ak(η−s)[Ak −A(s)][u(s) − Pn−1(s;u)]dsdη.

We introduce the matrix

(3.13) S̃ = {s̃i,k}ni,k=1 =




I 0 0 · · · 0 0
−S̃21 I 0 · · · 0 0

0 −S̃32 I · · · 0 0
· · · · · · · ·
0 0 0 · · · −S̃n,n−1 I


 ,

with S̃k,k−1 = AγkSk,k−1A
−γ
k−1, the matrix C = {α̃k,p}nk,p=1 with α̃k,p = Aγkαk,pA

−γ
p

and the vectors

(3.14) y =



Aγ1y1
·
·
·

Aγnyn


, f =



Aγ1φ1

·
·
·

aγnφn


, ψ =



Aγ1ψ1

·
·
·

Aγnψn


, f̃ =




Aγ1S21u0

0
·
·
·
0



.

It is easy to check that for

S̃−1 = {s̃−1
i,k}ni,k=1

=




I 0 0 · · · 0 0
S̃21 I 0 · · · 0 0

S̃32S̃21 S̃32 I · · · 0 0
· · · · · · · ·

S̃n,n−1 · · · S̃21 S̃n,n−1 · · · S̃32 S̃n,n−1 · · · S̃43 · · · S̃n,n−1 I




(3.15)

we have that

(3.16) S̃−1S̃ =



I 0 · · · 0
0 I · · · 0
· · · · · ·
0 0 · · · I


 .
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Remark 3.2. Using results of [9], one can get a parallel and sparse approxima-
tion of operator exponentials in S̃−1 and as a consequence a parallel and sparse
approximation of S̃−1.

We get from (3.4), (3.11)

(3.17)

Aγkyk = S̃k,k−1A
γ
k−1yk−1 +

n∑
p=0

α̃kpA
γ
pyp +Aγkφk,

Aγkzk = S̃k,k−1A
γ
k−1zk−1 +

n∑
p=0

α̃kpA
γ
pzp +Aγkψk,

or in matrix form

(3.18)
S̃y = Cy + f + f̃ ,

S̃z = Cz + ψ

with

(3.19) z =



Aγ1z1
·
·
·

Aγnzn


 .

In the next lemma we estimate the norms of C and S̃−1C.

Lemma 3.3. The estimates

|‖C‖| ≤ c(γ, T )n2γ−4 lnn,(3.20)

|‖S̃−1C‖| ≤ c(γ, T )n2γ−3 lnn(3.21)

with a positive constant c = c(T, γ) depending on γ and the interval length T but
independent of n and such that c = c(T, γ) → ∞ as γ → 1 hold true.

Proof. Assumption (1.6) together with (1.4), (2.5), (2.2), (2.30) imply

‖α̃kp‖ = ‖AγkαkpA−γ
p ‖

= ‖
∫ tk

tk−1

Aγke
−Ak(tk−η)[Ak −A(η)]

×A−γ
k

∫ η

tk−1

Aγke
−Ak(η−s)[Ak −A(s)]A−γ

p Lp,n−1(η)dη‖

≤
(
1+L̃γT

)(
cγL̃1,γ

)2
∫ tk

tk−1

|tk−η|1−γ
∫ η

tk−1

|η−s|−γ |tk−s||Lp,n−1(s)|dsdη.

(3.22)
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Due to (3.22) we have

|‖C‖| = max
1≤k≤n

n∑
p=1

‖α̃kp‖

≤
(
1 + L̃γT

)(
cγL̃1,γ

)2

Λn max
1≤k≤n

×
∫ tk

tk−1

|tk − η|1−γ
∫ η

tk−1

|η − s|−γ |tk − s|dsdη

≤
(
1 + L̃γT

)(
cγL̃1,γ

)2

Λn max
1≤k≤n

τk
1 − γ

×
∫ tk

tk−1

|tk − η|1−γ |η − tk−1|1−γdη

≤
(
1 + L̃γT

)(
cγL̃1,γ

)2

Λn max
1≤k≤n

τ2−γ
k

1 − γ

∫ tk

tk−1

|tk − η|1−γdη

≤ c(γ, T )Λnτ4−2γ
max

≤ c(γ, T )n2γ−4 lnn,

(3.23)

where c(γ, T ) = c
(1+L̃γT)(cγL̃1,γ)2

(1−γ)(2−γ) , c is a constant independent of n, γ and (3.20) is
proved.

Furthermore, the inequalities (1.4), (1.6), (1.7) imply

‖S̃k,k−1‖ ≤ e−ωτk + cγL̃1,γ(1 + L̃γτk)

×
∫ tk

tk−1

|tk − η|−γ |tk − η|e−ω(η−tk−1)dη

≤ e−ωτk

[
1 +

cγL̃1,γ(1 + L̃γτk)
2 − γ

τ2−γ
k

](3.24)

which yields

(3.25) ‖S̃−1‖ ≤
n−1∑
p=0

qp =
qn − 1
q − 1

with

q =

{
e−ωτmax

[
1 +

cγL̃1,γ(1 + L̃γτmax)
2 − γ

τ2−γ
max

]}
→ 1

as τmax → 0. This means that there exists a constant C = C(γ, cγ , L̃γ , L̃1,γ) such
that

(3.26) ‖S̃−1‖ ≤ Cn

(it is easy to see that C ≤ 1 provided that −ω + cγ L̃1,γ(1+L̃γτmax)
2−γ τ1−γ

max ≤ 0). This
estimate together with (3.23) implies (3.21). The proof is complete. �

Now, we can go to the first main result of this section.

Theorem 3.4. Let assumptions (1.3)–(1.7) with γ < 1 hold. Then there exists a
positive constant c such that the following hold.
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(1) For n large enough it holds that

(3.27) |‖z‖| ≡ |‖y − u‖| ≤ cn2γ−3 lnnEn(Aγ0u), γ ∈ [0, 1),

where u is the solution of (1.1) and En(A
γ
0u) is the best approximation of

Aγ0u by polynomials of degree not greater then n− 1.
(2) The system of linear algebraic equations

Sy = Cy + f(3.28)

from (3.18) with respect to the approximate solution y can be solved by the
fixed-point iteration

y(k+1) = S−1Cy(k) + S−1(f − f̃), k = 0, 1, . . . ; y(0) arbitrary(3.29)

converging at least as a geometrical progression with the denominator q =
c(γ, T )n2γ−3 lnn < 1, γ ∈ [0, 1) for n large enough.

Proof. From the second equation in (3.18) we get

z = S−1Cz + S−1ψ(3.30)

from which due to Lemma 2.3 and (3.25) we get

|‖z‖| ≤ cn|‖ψ‖|.(3.31)

Let Πn−1 be the set of all polynomials in t with vector coefficients of degree less
than or equal to n− 1. Using the Lebesgue inequality (2.33), the last norm can be
estimated as

|‖ψ‖| = max
1≤k≤n

‖
∫ tk

tk−1

Aγke
−Ak(tk−η) [Ak −A(η)]

×
∫ η

tk−1

e−Ak(η−s) [Ak −A(s)]A−γ
0 (Aγ0u(s) − Pn−1(s;A

γ
0u))dsdη‖

≤ (1 + L̃γT )(cγL1,γ)2 max
1≤k≤n

∫ tk

tk−1

|tk − η|−γ |tk − η|

×
∫ η

tk−1

|η − s|−γ |tk − s|‖Aγ0u(η) − Pn−1(s;A
γ
0u)‖dsdη

≤ (1 + L̃γT )(cγL1,γ)2(1 + Λn)En(Aγ0u)

× max
1≤k≤n

{∫ tk

tk−1

|tk − η|−γ |tk − η|
∫ η

tk−1

|η − s|−γ |tk − s|dsdη
}

≤ cc(γ, T )En(A
γ
0u)n2γ−4 lnn,

(3.32)

and taking into account (3.31), we get the first assertion of the theorem.
The second assertion is a simple consequence of (3.28) and (3.21), which com-

pletes the proof of the theorem. �

Under somewhat stronger assumptions on the operator A(t) one can improve the
error estimate for our method in the case 0 ≤ γ ≤ 1. In order to do it we need the
following lemma.
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Lemma 3.5. Let Lν,n−1(t) be the Lagrange fundamental polynomials related to the
Chebyshev interpolation nodes (zeros of the Chebyshev polynomial of the first kind
Tn(t)). Then

(3.33)
n∑
ν=1

|L′
ν,n−1(t)| ≤

1√
1 − x2

√
2/3n3/2.

Proof. Let x ∈ [−1, 1] be an arbitrary point and let εν = sign(L′
ν,n−1(x)). We

consider the polynomial of t

(3.34) ρ(t;x) =
n∑
ν=1

εν(x)Lν,n−1(t) =
n−1∑
ν=1

cν(x)Tν(t).

Since ρ2(t;x) is the polynomial of degree 2n − 2, then using the Gauß-Chebyshev
quadrature rule and the property Lk,n−1(tν) = δk,ν of the fundamental Lagrange
polynomials (δk,ν is the Kronecker symbol), we get∫ 1

−1

ρ2(t;x)√
1 − t2

dt =
n−1∑
ν=0

c2ν(x)
π

2
=

n∑
ν=1

λνρ
2(tν ;x)

=
n∑
ν=1

λνε
2
ν =

n∑
ν=1

λν =
∫ 1

−1

1√
1 − t2

dt = π

(3.35)

with the quadrature coefficients λν which yields

(3.36)
n−1∑
ν=0

c2ν(x) = 2.

The next estimate

ρ′(x) =
n∑
ν=1

|L′
ν,n−1(x)| ≤

n−1∑
ν=0

|cν ||T ′
ν(x)|

=
n−1∑
ν=0

|cν | ν√
1 − x2

≤ 1√
1 − x2

(
n−1∑
ν=0

c2ν

)1/2(n−1∑
ν=1

ν2

)1/2

≤ 1√
1 − x2

(
n−1∑
ν=0

(cν)2
)1/2√

n3/3

(3.37)

together with (3.36) proves the lemma. �

Now we are in the position to prove the following important result of this section.

Lemma 3.6. Let the operator A(t) be strongly continuous differentiable on [0, T ]
(see [18], Ch. 2, §1, p. 218, [19]), satisfy condition (1.6), and let A′(s)A−γ(0) be
bounded for all s ∈ [0, T ] and γ ∈ [0, 1] by a constant c′. Then for n large enough
the following estimates hold true:

|‖C‖| ≤ cnγ−5/2, γ ∈ [0, 1],(3.38)

|‖S̃−1C‖| ≤ cnγ−3/2, γ ∈ [0, 1](3.39)

with some positive constant c independent of n, γ.
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Proof. Opposite to the proof of Lemma 2.3 (see (3.22)), we estimate α̃kp as

‖α̃kp‖ = ‖AγkαkpA−γ
p ‖

= ‖
∫ tk

tk−1

Aγke
−Ak(tk−η)[Ak −A(η)]

×A−1
k

∫ η

tk−1

de−Ak(η−s)

ds
[Ak −A(s)]A−γ

p Lp,n−1(η)dη‖

= ‖
∫ tk

tk−1

Aγke
−Ak(tk−η)[Ak −A(η)]A−1

k

{
[Ak −A(η)]A−γ

p Lp,n−1(η)

− e−Ak(η−tk−1)[Ak −Ak−1]A−γ
p Lp,n−1(tk−1)

+
∫ η

tk−1

e−Ak(η−s)A′(s)A−γ
p Lp,n−1(s)ds

−
∫ η

tk−1

e−Ak(η−s)[Ak −A(s)]A−γ
p L′

p,n−1(s)ds
}
dη‖

≤
∫ tk

tk−1

cγL̃1,1(tk − η)−γ(tk − η)
{
L̃1,γ(tk − η)(1 + L̃γT )|Lp,n−1(η)|

+ L̃1,γτk(1 + L̃γT )δp,k−1 + c′(1 + L̃γT )
∫ η

tk−1

|Lp,n−1(s)|ds

+
∫ η

tk−1

L̃1,γ(tk − s)(1 + L̃γT )|L′
p,n−1(s)|ds

}
dη

≤
∫ tk

tk−1

cγL̃1,1

{
L̃1,γ(tk − η)2−γ |Lp,n−1(η)|

+ L̃1,γτk(1 + L̃γT )(tk − η)1−γδp,k−1

+ c′(1 + L̃γT )(tk − η)1−γ
∫ η

tk−1

|Lp,n−1(s)|ds

+ L̃1,γτk(1 + L̃γT )(tk − η)1−γ
∫ η

tk−1

|L′
p,n−1(s)|ds

}
dη.

(3.40)

Using this inequality together with (3.33), (3.25) and the relations arcsin t = π/2−
arccos t, tk = cos 2k−1

2n π, k = 1, . . . , n, we arrive at the estimates

(3.41)

|‖C‖| = max
1≤k≤n

n∑
p=1

‖Aγkαk,pA−γ
p ‖

≤M

{
nγ−3 lnn+ nγ−3 + nγ−3/2 max

1≤k≤n

∫ tk

tk−1

1√
1 − s2

ds

}

≤M

{
nγ−3 lnn+ nγ−3 + nγ−3/2 max

1≤k≤n
(arcsin tk − arcsin tk−1)

}
≤Mnγ−5/2,

|‖S̃−1C‖| ≤Mnγ−3/2

with a constant M independent of n. The proof is complete. �
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Remark 3.7. If an operatorA(t) is strongly continuous differentiable, then condition
(1.6) holds true with γ = 1 and the operator A(t)A−1(0) is uniformly bounded (see
[18], Ch. 2, §1, p. 219, [19]).

Now, we can go to the second main result of this section.

Theorem 3.8. Let the assumptions of Lemma 3.6 and conditions (1.3)–(1.7) hold.
Then there exists a positive constant c such that the following hold.

(1) For γ ∈ [0, 1) and n large enough it holds that

(3.42) |‖z‖| ≡ |‖y − u‖| ≤ cn2γ−3 lnnEn(A
γ
0u),

where u is the solution of (1.1) and En(A
γ
0u) is the best approximation of

Aγ0u by polynomials of degree not greater then n− 1.
(2) The system of linear algebraic equations (3.28) with respect to the approxi-

mate solution y can be solved by the fixed-point iteration

y(k+1) = S−1Cy(k) + S−1f, k = 0, 1, . . . ; y(0)arbitrary(3.43)

converging at least as a geometrical progression with the denominator q =
c(γ, T )nγ−3/2 < 1 for n large enough.

Proof. Proceeding analogously as in the proof of Theorem 3.4 and using Lemma
3.6 and (3.25), we get

|‖z‖| ≤ cn|‖ψ‖|.(3.44)

For the norm |‖ψ‖| we have (see (3.32))

(3.45) |‖ψ‖| ≤ c(1 + L̃γT )En(A
γ
0u)n2γ−4 lnn, γ ∈ [0, 1)

which together with (3.44) leads to the estimate (3.42) and to the first assertion of
the theorem.

The second assertion is a consequence of (3.41). The proof is complete. �

Remark 3.9. A simple generalization of Bernstein’s theorem (see [20, 22, 21]) to
vector-valued functions gives the estimate

(3.46) En(A
γ
0u) ≤ ρ−n0

for the value of the best polynomial approximation provided that Aγ0u can be an-
alytically extended from [−1, 1] into an ellipse with the focus at the points +1,−1
and with the sum of semi-axes ρ0 > 1.

If Aγ0u is p times continuously differentiable, then a generalization of Jackson’s
theorem (see [20, 22, 21]) gives

(3.47) En(Aγ0u) ≤ cpn
−pω(

dpAγ0u

dtp
;n−1)

with the continuity modulus ω.
Further generalizations for Sobolev spaces of vector-valued functions can be

proven analogously [3], Ch. 9. Let us define the weighted Banach space of vector-
valued functions Lpw(−1, 1), 1 ≤ p ≤ +∞, with the norm

(3.48) ‖u‖Lp
w(−1,1) =

(∫ 1

−1

‖u(t)‖pw(t)dt
)1/p
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for 1 ≤ p <∞ and

(3.49) ‖u‖L∞(−1,1) = sup
t∈(−1,1)

‖u(t)‖

for p = ∞. The weighted Sobolev space is defined by

Hm
w (−1, 1) =

{
v ∈ L2

w(−1, 1) : for 0 ≤ k ≤ m,

the derivative
dkv

dtk
belongs to L2

w(−1, 1)
}

with the norm

(3.50) ‖u‖Hm
w (−1,1) =

(
m∑
k=0

∥∥∥∥dkvdtk
∥∥∥∥

2

L2
w(−1,1)

)1/2

.

Then one gets for the Chebyshev weight w(t) = 1√
1−t2 (see [3], pp. 295–298), for the

polynomial of the best approximation Bn(t) and for the interpolation polynomial
Pn(t) with the Gauss (roots of the Chebyshev polynomial Tn+1(t)), Gauss-Radau
(roots of the polynomial Tn+1(t)− Tn+1(−1)

Tn(1) Tn(t)) or the Gauss-Lobatto (roots of the
polynomial p(t) = Tn+1(t)+aTn(t)+bTn−1(t) with a, b such that p(−1) = p(1) = 0)
nodes

(3.51)

En(u) ≡ ‖u−Bnu‖L∞(−1,1) ≤ cn1/2−m‖u‖Hm
w (−1,1),

‖u−Bnu‖L2
w(−1,1) ≤ cn−m‖u‖Hm

w (−1,1),

‖u− Pnu‖L2
w(−1,1) ≤ cn−m‖u‖Hm

w (−1,1),

‖u′ − (Pnu)′‖L2
w(−1,1) ≤ cn2−m‖u‖Hm

w (−1,1).

When the function u is analytic in [−1, 1] and has a regularity ellipse whose sum
of semi-axes equals eη0 , then

(3.52) ‖u′ − (Pnu)′‖L2
w(−1,1) ≤ c(η)n2e−nη ∀η ∈ (0, η0).

For the Legendre weight w(t) = 1 one has (see [3], pp. 289–294)

(3.53)

‖u−Bnu‖Lp(−1,1) ≤ cn−m‖u‖Hm(−1,1), 2 < p ≤ ∞,

‖u− Bnu‖Hl(−1,1) ≤ cn2l−m+1/2‖u‖Hm(−1,1), 1 ≤ l ≤ m,

‖u− Pnu‖Hl(−1,1) ≤ cn2l−m+1/2‖u‖Hm(−1,1), 1 ≤ l ≤ m,

‖u′ − (Pnu)′‖L2(−1,1) ≤ cn5/2−m‖u‖Hm
w (−1,1),

where the interpolation polynomial Pn(t) can be taken with the Gauss (roots of the
Legendre polynomial Ln+1(t)), Gauss-Radau (roots of the polynomial Ln+1(t) −
Ln+1(−1)
Ln(1) Ln(t)) or the Gauss-Lobatto (roots of the polynomial p(t) = Ln+1(t) +

aLn(t) + bLn−1(t) with a, b such that p(−1) = p(1) = 0) nodes.

Note that the restriction γ �= 1 in Theorem 3.8 is only due to the estimate (3.32).
Below we show how this restriction can be removed.
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Using (2.30), (3.51), we estimate the norm |‖ψ‖|2 for γ = 1 as

|‖ψ‖| = max
1≤k≤n

‖
∫ tk

tk−1

Aγ
ke

−Ak(tk−η) (Ak − A(η))

×
∫ η

tk−1

e−Ak(η−s) (Ak − A(s))A−γ
k (Aγ

kA
−γ
0 )(Aγ

0u(s) − Pn−1(s;A
γ
0u))dsdη‖

= max
1≤k≤n

‖
∫ tk

tk−1

Ake
−Ak(tk−η) (Ak −A(η))A−1

k

×
∫ η

tk−1

de−Ak(η−s)

ds
(Ak − A(s))A−1

k (AkA
−1
0 )(A0u(s) − Pn−1(s;A0u))dsdη‖

= max
1≤k≤n

‖
∫ tk

tk−1

Ake
−Ak(tk−η) (Ak −A(η))A−1

k

×
[

(Ak − A(η))A−1
k (AkA

−1
0 )(A0u(η) − Pn−1(η;A0u))

+

∫ η

tk−1

e−Ak(η−s)A′(s)A−1
k (AkA

−1
0 )(A0u(s) − Pn−1(s;A0u))ds

−
∫ η

tk−1

e−Ak(η−s)(Ak − A(s))

× A−1
k (AkA

−1
0 )(A0u

′(s) − (Pn−1(s;A0u))
′)ds

]
dη‖

≤ c1L̃1,1 max
1≤k≤n

∫ tk

tk−1

|tk − η|−1|tk − η|

×
[
|tk − η|(1 + L̃1T ) max

η∈[−1,1]
‖(A0u(η) − Pn−1(η;A0u))‖

+ c′(1 + L̃1T )

∫ η

tk−1

‖(A0u(s) − Pn−1(s;A0u))‖ds

+ (1 + L̃1T )

∫ η

tk−1

|tk − s|‖(A0u
′(s) − (Pn−1(s;A0u))

′)‖ds
]
dη

≤ c1L̃1,1 max
1≤k≤n

[
τ 2

k (1 + L̃1T )(1 + Λn)En(A0u)

+ c′(1 + L̃1T )τ 2
k (1 + Λn)En(A0u)

+ (1 + L̃1T )τ 2
k

∫ tk

tk−1

‖(A0u
′(s) − (Pn−1(s;A0u))

′)‖ds
]

≤ c1L̃1,1 max
1≤k≤n

[
τ 2

k (1 + L̃1T )(1 + Λn)En(A0u)

+ c′(1 + L̃1T )τ 2
k (1 + Λn)En(A0u)

+ (1 + L̃1T )τ 2
k

(∫ tk

tk−1

1√
1 − s2

ds

)1/2

×
(∫ tk

tk−1

1√
1 − s2

‖(A0u
′(s) − (Pn−1(s;A0u))

′)‖ds
)1/2 ]

≤ c

[
n−2 lnnEn(A0u) + n−5/2‖u′ − (Pn−1u)

′‖L2
w(−1,1)

]
≤ c(n−(m+2) lnn+ n−(m+1/2))‖u‖Hm

w (−1,1) ≤ cn−(m+1/2)‖u‖Hm
w (−1,1)

(3.54)
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provided that the solution u of problem (1.1) belongs to the Sobolev class
Hm
w (−1, 1). If u is analytic in [−1, 1] and has a regularity ellipse with the sum

of the semi-axes equal to eη0 > 1, then using (3.52), we get

(3.55) |‖ψ‖| ≤ c(η0)n2e−nη0 .

Now, Lemma 3.6 together with the last estimates for |‖ψ‖| yields the following
third main result of this section.

Theorem 3.10. Let the assumptions of Lemma 3.6 and conditions (1.3)–(1.7) with
γ = 1 hold. Then there exists a positive constant c such that the following hold.

(1) For γ = 1 and n large enough we have

(3.56) |‖z‖| ≡ |‖y − u‖| ≤ cn−m‖u‖Hm
w (−1,1)

provided that the solution u of problem (1.1) belongs to the class Hm
w (−1, 1)

with w(t) = 1√
1−t2 .

(2) For γ = 1 and n large enough it holds that

(3.57) |‖z‖| ≡ |‖y − u‖| ≤ c(η0)n3/2e−nη0

provided that u is analytic in [−1, 1] and has a regularity ellipse with the
sum of the semi-axes equal to eη0 > 1 .

(3) The system of linear algebraic equations (3.28) with respect to the approxi-
mate solution y can be solved by the fixed-point iteration

y(k+1) = S−1Cy(k) + S−1f, k = 0, 1, . . . ; y(0) arbitrary(3.58)

converging at least as a geometrical progression with the denominator q =
cn−1/2 < 1 for n large enough.

Remark 3.11. Using estimates (3.53), one can analogously construct a discrete
scheme on the Gauss, the Gauss-Radau or the Gauss-Lobatto grids relative to
w(t) = 1 (i.e., connected with the Legendre orthogonal polynomials) and get the
corresponding estimates in the L2(−1, 1)-norm.

4. Discrete second order problem

In this section we consider problem (1.2) in a Hilbert space H with the scalar
product (·, ·) and the corresponding norm ‖ · ‖ =

√
(·, ·). Let assumption (1.7)

related to A(t) holds. In addition we assume in this section that

(4.1) A(t) =
mA∑
k=0

Akt
k, f(t) =

mf∑
k=0

fkt
k

and

(4.2) ‖Aγ−1/2(0)(A(t) −A(s))A−γ(0)‖ ≤ L̃2,γ |t− s|α, γ, α ∈ [0, 1].

Remark 4.1. Condition (4.2) coincides with (1.6) for γ = 1/2, α = 1.

Let A(t) be a piecewise constant operator defined as in the previous sections.
We consider the auxiliary problem

(4.3)
d2u

dt2
+A(t)u = [A(t) −A(t)] + f(t),

u(−1) = u0, u′(1) = u′0,
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from which we get the following relations for the interval [tk−1, tk]:

(4.4)

u(t) = cos [
√
Ak(t− tk−1)]u(ttk−1) +A

−1/2
k sin [

√
Ak(t− tk−1)]u′(ttk−1)

+
∫ tk

tk−1

A
−1/2
k sin [

√
Ak(t− η)]{[A(η) −A(η)]u(η) + f(η)}dη,

u′(t) = −
√
Ak sin [

√
Ak(t− tk−1)]u(ttk−1) + cos [

√
Ak(t− tk−1)]u′(ttk−1)

+
∫ tk

tk−1

cos [
√
Ak(t− η)]{[A(η) −A(η)]u(η) + f(η)}dη.

We chose a grid ωn of n Chebyshev points as above and substitute in (4.4) the
interpolation polynomial (2.7) instead of u. Then by collocation we arrive at the
following system of linear algebraic equations with respect to the unknowns yk, y′k
which approximate u(tk) and u′(tk), respectively:

(4.5)

yk = cos [
√
Akτk]yk−1 +A

−1/2
k sin [

√
Akτk]y′k−1

+
n∑
i=1

αk,iyi + φ
(1)
k ,

y′k = −
√
Ak sin [

√
Akτk]yk−1 + cos [

√
Akτk]y′k−1

+
n∑
i=1

βk,iyi + φ
(2)
k , k = 1, 2, . . . , n,

y0 = u0, y′0 = u′0,

where

(4.6)

αk,i =
∫ tk

tk−1

A
−1/2
k sin [

√
Ak(tk − η)][Ak −A(η)]Li,n−1(η)dη,

βk,i =
∫ tk

tk−1

cos [
√
Ak(tk − η)][Ak −A(η)]Li,n−1(η)dη,

φ
(1)
k =

∫ tk

tk−1

A
−1/2
k sin [

√
Ak(tk − η)]f(η)dη,

φ
(2)
k =

∫ tk

tk−1

cos [
√
Ak(tk − η)]f(η)dη, k = 1, 2, . . . , n.

The errors zk = u(tk) − yk, z
′
k = u′(tk) − y′k satisfy the equations

(4.7)

zk = cos [
√
Akτk]zk−1 +A

−1/2
k sin [

√
Akτk]z′k−1

+
n∑
i=1

αk,izi + ψ
(1)
k ,

z′k = −
√
Ak sin [

√
Akτk]zk−1 + cos [

√
Akτk]z′k−1

+
n∑
i=1

βk,izi + ψ
(2)
k , k = 1, 2, . . . , n,

z0 = 0, z′0 = 0,
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where

(4.8) ψ
(1)
k =

∫ tk

tk−1

A
−1/2
k sin [

√
Ak(tk − η)][Ak −A(η)][u(η) − Pn−1(η;u)]dη,

ψ
(2)
k =

∫ tk

tk−1

cos [
√
Ak(tk − η)][Ak −A(η)][u(η) − Pn−1(η;u)]

dη, k = 1, 2, . . . , n.

Let us denote ỹk = Aγkyk, ỹ
′
k = A

γ−1/2
k y′k, z̃k = Aγkzk, z̃

′
k = A

γ−1/2
k z′k and rewrite

(4.7) in the form
(4.9)
z̃k = cos [

√
Akτk](A

γ
kA

−γ
k−1)z̃k−1

+ sin [
√
Akτk](A

γ−1/2
k A

−(γ−1/2)
k−1 )z̃′k−1 +

n∑
i=1

α̃k,iz̃i + ψ̃
(1)
k ,

z̃′k = − sin [
√
Akτk](A

γ
kA

−γ
k−1)z̃k−1

+ cos [
√
Akτk](A

γ−1/2
k A

−(γ−1/2)
k−1 )z̃′k−1 +

n∑
i=1

β̃k,iz̃i + ψ̃
(2)
k , k = 1, 2, . . . , n,

z0 = 0, z̃′0 = 0,

where

α̃k,i = Aγkαk,iA
−γ
i

=
∫ tk

tk−1

A
γ−1/2
k sin [

√
Ak(tk − η)][Ak −A(η)]A−γ

i Li,n−1(η)dη,

β̃k,i = A
γ−1/2
k βk,iA

−γ
i

=
∫ tk

tk−1

A
γ−1/2
k cos [

√
Ak(tk − η)][Ak −A(η)]A−γ

i Li,n−1(η)dη,

ψ̃
(1)
k = Aγkφ

(1)
k

=
∫ tk

tk−1

A
γ−1/2
k sin [

√
Ak(tk − η)]A−γ

k [Aγk(u(η) − Pn−1(η;u))]dη,

ψ̃
(2)
k = A

γ−1/2
k φ

(2)
k

=
∫ tk

tk−1

A
γ−1/2
k cos [

√
Ak(tk − η)]A−γ

k [Aγk(u(η) − Pn−1(η;u))]dη.

(4.10)

We introduce the 2 × 2-block matrices

E =
(
I 0
0 I

)
, Bk(tk − η) =

(
cos (

√
Ak)(tk − η) sin (

√
Ak)(tk − η)

− sin (
√
Ak)(tk − η) cos (

√
Ak)(tk − η)

)
,

Dk =

(
AγkA

−γ
k−1 0

0 A
γ−1/2
k A

−(γ−1/2)
k−1

)
, Fi(η) =

(
A
γ−1/2
k [Ai −A(η)]A−γ

i 0
0 0

)
,
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and

S =




E 0 0 · · · 0 0 0
−B2D2 E 0 · · · 0 0 0

0 −B3D3 E · · · 0 0 0
· · · · · · · · ·
0 0 0 · · · −Bn−1Dn−1 E 0
0 0 0 · · · 0 −BnDn E



,

C ≡ {ci,j}ni,j=1 =



α̃11 0 α̃12 0 · · · α̃1n 0
β̃11 0 β̃12 0 · · · β̃1n 0
· · · · · · · · ·
α̃n1 0 α̃n2 0 · · · α̃nn 0
β̃n1 0 β̃n2 0 · · · β̃nn 0


(4.11)

with Bk = Bk(tk − tk−1) = Bk(τk) and the 2 × 2-operator blocks

ci,j =
(
α̃i,j 0
β̃i,j 0

)
.

These blocks can also be represented as

(4.12) ci,j =
∫ ti

ti−1

Lj,n(η)D∗
iB

∗
i (ti − η)Fi(η)dη.

Using the integral representation of functions of self-adjoint operators by the cor-
responding spectral family, one can easily show that

(4.13)
BkB

∗
k = B∗

kBk = E,

Bk(tk − η)Bk(tk − η)∗ = Bk(tk − η)∗Bk(tk − η) = E.

Analogously, as in the previous section we get
(4.14)

S−1 ≡ {s(−1)
i,k }ni,k=1 =




E 0 0 · · · 0
B2D2 E 0 · · · 0

B3D3B2D2 B3D3 E · · · 0
· · · · · · ·

BnDn · · ·B2D2 BnDn · · ·B3D3 BnDn · · ·B4D4 · · · E




with 2 × 2-operator block-elements s(−1)
i,k . We introduce the vectors

(4.15)

z = (w1, w2, . . . , wn) = (z̃1, z′1, . . . , z̃n, z
′
n),

wi = (zi, z′i), zi, z
′
i ∈ H,

ψ = (Ψ1,Ψ2, . . . ,Ψn) = (ψ̃(1)
1 , ψ

(2)
1 , . . . , ψ̃(1)

n , ψ(2)
n ),

Ψi = (ψ̃(i)
i , ψ

(2)
i ), ψ̃(i)

i , ψ
(2)
i ∈ H.

Then equations (4.9) can be written in block matrix form as

(4.16) z = S−1Cz + S−1ψ.

Note that the block vectors Ψi can be written as

(4.17) Ψi =
∫ ti

ti−1

B̃∗
i (ti − η)Dψ(η)dη
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with the block vectors

(4.18) Dψ(η) =
(

0
Aγ−1/2[Ai −A(η)]A−γ

i [Aγi (u(η) − Pn(η;u))]

)
.

The blocks E,Bi act in the space of two-dimensional block vectors v = (v1, v2),
v1, v2 ∈ H . In this space we define the new scalar product by

(4.19) ((u, v)) = (u1, v1) + (u2, v2),

the corresponding block-vector norm by

|‖v‖|b =
√

((v, v)) =
(‖v1‖2 + ‖v2‖2

)1/2(4.20)

and the consistent norm for a block operator matrix G =
(
g11 g12
g21 g22

)
by

(4.21) |‖G‖|b = sup
y �=0

√
((Gv,Gv))
|‖v‖| .

In the space of n-dimensional block vectors we define the block-vector norm by

(4.22) |‖y‖| = max
1≤k≤n

|‖vk‖|b

and the consistent matrix norm

(4.23) |‖C‖| ≡ |‖{ci,j}ni,j=1‖| = sup
y �=0

|‖Cy‖|
|‖y‖| = max

1≤k≤n

n∑
p=1

|‖ckp‖|b.

It is easy to see that

|‖Bi‖|b = |‖B∗
i ‖|b = sup

v �=0

|‖Biv‖|
|‖v‖| = sup

v �=0

√
((Biv,Biv))

|‖v‖|

= sup
v �=0

√
((BiB∗

i v, v))
|‖v‖| = 1

(4.24)

and due to (1.7)

(4.25)

|‖Dk‖|b = sup
v �=0

|‖Dkv‖|
|‖v‖| = sup

v �=0

√
((Dkv,Dkv))

|‖v‖|

= sup
v �=0

√
((DkDik∗v, v))

|‖v‖| ≤ cD,

|‖D∗
k‖|b ≤ cD

with

cD =
√

(1 + L̃γT )2 + (1 + L̃γ−1/2T )2.

Let us estimate |‖S−1‖|. Due to (4.24), (4.25), (4.23) and (4.14) we have

(4.26) |‖S−1‖| ≤ cDn.
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Using assumption (4.2) and (4.13), (4.26), we get

(4.27)

|‖ci,j‖|b ≤
∫ ti

ti−1

|‖D∗
i ‖||‖Bi(ti − η)‖||‖Fi(η)‖||Lj,n(η)|dη

≤ cDL̃2,γτ
α
max

∫ ti

ti−1

|Lj,n−1(η)|2dη,

|‖C‖| ≤ max
1≤k≤n

n∑
p=1

|‖ck,p‖|b

≤ cταmax


∫ tk

tk−1

n∑
j=1

|Lj,n(η)|dη

 ≤ cΛnτ1+α

max ≤ cn−1−α lnn,

|‖S−1C‖| ≤ n−α lnn,

with some positive constant c independent of n.
Now we are in a position to prove the main result of this section.

Theorem 4.2. Let assumptions (1.3)–(4.1), (4.2), (1.7) hold. Then there exists a
positive constant c such that the following hold.

(1) For n large enough it holds that

(4.28) |‖z‖| ≡ |‖y − u‖| ≤ cn−α lnnEn(A
γ
0u),

where u is the solution of (1.2) and En(A
γ
0u) is the best approximation of

Aγ0u by polynomials of degree not greater then n− 1.
(2) The system of linear algebraic equations

Sy = Cy + f(4.29)

with respect to the approximate solution y can be solved by the fixed-point
iteration

y(k+1) = S−1Cy(k) + S−1f, k = 0, 1, . . . ; y(0) arbitrary,(4.30)

which converges as a geometric progression with the denominator q =
cn−α lnn < 1 for n large enough.

Proof. Due to (4.16), (4.26) for τmax small enough (or for n large enough) there
exists a bounded norm |‖(E − S−1S)−1‖| and we get

|‖z‖| ≤ cn|‖ψ‖|.(4.31)

It remains to estimate |‖ψ‖|. Using (4.20), (4.17), (4.18) and (4.13), we have
|‖ψ‖| = max

1≤k≤n
|‖Ψk‖|b

= max
1≤k≤n

|‖
∫ tk

tk−1

B̃∗
k(tk − η)Dψ(η)dη‖|

≤ max
1≤k≤n

∫ tk

tk−1

|tk − η|α‖AγkA−γ
0 ‖‖[Aγ0(u(η) − Pn(η;u))]‖dη

≤ (1 + L̃γT )τ1+α
max (1 + Λn)En(Aγ0u)

≤ c(1 + L̃γT )n−1−α lnnEn(Aγ0u).

(4.32)

This inequality together with (4.31) completes the proof of the first assertion. The
second one can be proved analogously as in Theorem 3.4. �
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Remark 4.3. We arrive at an exponential accuracy for piecewise analytical solutions
if we apply the methods described above successively on each subinterval of the
analyticity.
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