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NUMERICAL INDEFINITE INTEGRATION
BY DOUBLE EXPONENTIAL SINC METHOD

KEN’ICHIRO TANAKA, MASAAKI SUGIHARA, AND KAZUO MUROTA

Abstract. We present a numerical method for approximating an indefinite
integral by the double exponential sinc method. The approximation error of
the proposed method with N integrand function evaluations is

O(exp(−c1N/ log(c2N)))

for a reasonably wide class of integrands, including those with endpoint singu-
larities. The proposed method compares favorably with the existing formulas
based on the ordinary sinc method. Computational results show the accor-
dance of the actual convergence rates with the theoretical estimate.

1. Introduction

A variety of numerical methods based on sinc approximations has been studied
during the last three decades [6, 7, 8, 9]. The methods cover function approxima-
tion, approximation of derivatives, approximate definite and indefinite integration,
approximate solution of initial and boundary value ODE problems, and so on. In
particular, the sinc interpolation formula is given by

f(x) ≈
N∑

k=−N

f(kh)S(k, h)(x),(1.1)

where

S(k, h)(x) =
sin [π(x− kh)/h]
π(x− kh)/h

.(1.2)

The methods are collectively referred to as sinc numerical methods.
In this paper, we present a method and experimental results for approximating an

indefinite integral F (x) =
∫ x

−1 f(t)dt. In the literature [2, 3, 6], formulas for numeri-
cal indefinite integration based on the sinc approximation have been proposed, often
based on a single exponential (“SE”) transformation1 such as ψ1(ζ) = tanh(ζ/2).
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To be specific, Stenger’s formula [6] with this transformation is∫ x

−1

f(t)dt(1.3)

=
exp(Aψ−1

1 (x))
2 cosh(Aψ−1

1 (x))
h

N∑
k=−N

f(ψ1(kh))ψ′
1(kh)

+ h

N∑
k=−N

[
N∑

l=−N

σk−l

(
f(ψ1(lh))ψ′

1(lh)

− A

2 cosh2(Alh)
h

N∑
k=−N

f(ψ1(kh))ψ′
1(kh)

)]
S(k, h)(ψ−1

1 (x))

+ O
(√

N exp
(
−√cfN)) ,

where σk−l is defined in (2.14) and cf is a constant that depends on the integrand f .
The constant A is determined appropriately according to the property of f . Such
a formula has also been considered by Haber [2].

In place of the single exponential transformation, we employ in this paper a
double exponential (“DE”) transformation. Double exponential transformations
are proposed by H. Takahasi and M. Mori [10] in designing a definite integration
formula. Recently, it is known that the double exponential transformations are
useful for various kinds of sinc numerical methods [4]. We employ one of the double
exponential transformations such as ψ2(ζ) = tanh((π/2) sinh ζ) to propose a more
efficient formula:∫ x

−1

f(t)dt(1.4)

=
1
2
[
tanh

(
B sinh(Cψ−1

2 (x))
)

+ 1
]
h

N∑
k=−N

f(ψ2(kh))ψ′
2(kh)

+ h

N∑
k=−N

[
N∑

l=−N

σk−l

(
f(ψ2(lh))ψ′

2(lh)

− BC cosh(Clh)
2 cosh2(B sinh(Clh))

h

N∑
k=−N

f(ψ2(kh))ψ′
2(kh)

)]
S(k, h)(ψ−1

2 (x))

+ O

(
exp

[
−c′fN

log(c′′fN)

])
,

where c′f and c′′f are constants that depend on the integrand f . The constants B
and C are determined appropriately according to the property of f . The error term

O

(
exp

[
−c′fN

log(c′′fN)

])

in this formula is smaller in order of magnitude than the error term

O
(√

N exp
(
−√cfN))
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in the formula (1.3). Thus the proposed formula (1.4) is often more efficient than
the formula (1.3), although there exist some functions (see Example 6 in Section 4)
for which this is not the case.

The organization of this paper is as follows. In Section 2, we present our nu-
merical indefinite integration formula on the entire real line R together with the
main error estimate theorem. With the use of a double exponential transformation,
the formula is adapted to the numerical indefinite integration formula on a finite
interval in Section 3. In Section 4, we present some numerical results to confirm our
theoretical error estimates. In Section 5, the proofs of the theorems and lemmas
are provided. Concluding remarks are made in Section 6.

2. Indefinite integration on the entire real line

In this section, we consider an indefinite integration on the entire real line R as
the fundamental case of theoretical treatments. This case is essential in that the
general case in Section 3 is a direct consequence of the results of this section in
combination with the double exponential transformation.

Proofs of theorems are given in Section 5, unless otherwise indicated.

2.1. Notation. We introduce a function space as follows.

Definition 2.1. For a positive number d, a strip region Dd in C is defined as:

Dd = {z ∈ C | |Imz| < d} .(2.1)

Then, a function space H1(Dd) is defined as:

H1(Dd) = {g | g is analytic in Dd, N1(g,Dd) <∞} ,(2.2)

where

N1(g,Dd) = lim
ε→0

∫
∂Dd(ε)

|f(z)||dz|,(2.3)

Dd(ε) = {z ∈ C | |Rez| < 1/ε, |Imz| < d(1 − ε)}.(2.4)

In addition, we use operators J , CN,h, and Ch for an indefinite integration and
the sinc interpolation.

Definition 2.2. For a function f defined on a complex region containing the real
line R, we define operators J , CN,h, and Ch by

(J f)(z) =
∫ z

−∞
f(t)dt,(2.5)

(CN,hf)(z) =
N∑

k=−N

f(kh)S(k, h)(z),(2.6)

(Chf)(z) = lim
N→∞

(CN,hf)(z),(2.7)

where N is a positive integer and h is a positive real number.
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2.2. Sinc interpolation. The sinc interpolation is a basic tool in the derivation
of our formula. The interpolation error for a function of double exponential decay
type is estimated as follows.

Theorem 2.1 ([9]). Assume that f satisfies

f ∈ H1(Dd),(2.8)

∀x ∈ R, |f(x)| ≤ α exp(−β exp(γ|x|))(2.9)

for some positive numbers α, β, γ, and d. Then, there exists a positive number c,
independent of N , such that

sup
−∞<x<∞

|f(x) − (CN,hf)(x)| ≤ c exp
[ −πdγN
log(πdγN/β)

]
,(2.10)

where

h =
log(πdγN/β)

γN
.(2.11)

2.3. Derivation of the indefinite integration formula on R. We describe the
derivation of the proposed formula on R and explain the basic idea behind it.

First, we apply the sinc interpolation to (J f)(x) =
∫ x

−∞ f(t)dt to obtain

(J f)(x) ≈ (CN,hJ f)(x)(2.12)

=
N∑

k=−N

(J f)(kh)S(k, h)(x)

=
N∑

k=−N

(∫ kh

−∞
f(t)dt

)
S(k, h)(x).

Next, we apply the sinc interpolation to f in the above expression to obtain

(J f)(x) ≈ (CN,hJCN,hf)(x)(2.13)

=
N∑

k=−N

[∫ kh

−∞

N∑
l=−N

f(lh)S(l, h)(t)dt

]
S(k, h)(x)

= h

N∑
k=−N

[
N∑

l=−N

σk−lf(lh)

]
S(k, h)(x),

where

σk−l =
1
2

+
∫ k−l

0

sinπt
πt

dt.(2.14)

If f and J f satisfy the assumptions of Theorem 2.1, then the approximations
in (2.12) and (2.13), denoted “≈”, should work. We can apply Theorem 2.1 to
obtain the following theorem. Its proof is omitted.

Theorem 2.2. Assume that f and J f satisfy

f ∈ H1(Dd),(2.15)

J f ∈ H1(Dd),(2.16)

∀x ∈ R, |f(x)| ≤ α exp(−β exp(γ|x|)),(2.17)

∀x ∈ R, |(J f)(x)| ≤ α exp(−β exp(γ|x|))(2.18)
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for some positive numbers α, β, γ, and d. Then, there exists a positive number c,
independent of N , such that

sup
−∞<x<∞

|(J f)(x) − (CN,hJCN,hf)(x)| ≤ c exp
[ −πdγN
log(πdγN/β)

]
,(2.19)

where

h =
log(πdγN/β)

γN
.(2.20)

The assumptions in the above theorem are stated in terms of both f and J f .
It is, however, more natural to state the assumptions in terms of the given inte-
grand f . We present the following theorem which imposes an additional condi-
tion limx→∞(J f)(x) = 0. The general case, free from this additional condition, is
presented in Theorem 2.4.

Theorem 2.3. Assume that f satisfies

f ∈ H1(Dd),(2.21)

∀x ∈ R, |f(x)| ≤ α exp(−β exp(γ|x|)),(2.22) ∫ ∞

−∞
f(t)dt = 0(2.23)

for some positive numbers α, β, γ, and d. Then, for any ε with 0 < ε < d, there
exists a positive number cε, independent of N , such that

sup
−∞<x<∞

|(J f)(x) − (CN,hJCN,hf)(x)| ≤ cε exp
[ −π(d− ε)γN
log(π(d − ε)γN/β)

]
,(2.24)

where

h =
log(π(d − ε)γN/β)

γN
.(2.25)

We next treat the general case in which (2.23) is not assumed. We consider

g(z) = f(z) − κ(z)
∫ ∞

−∞
f(t)dt(2.26)

with a function κ such that
∫∞
−∞ κ(t)dt = 1. Then we have∫ ∞

−∞
g(t)dt = 0.(2.27)

To apply Theorem 2.3 to g we must choose κ so that (2.21) and (2.22) are satisfied
for some α, β, γ, and d. We consider

κ(z) =
BC cosh(Cz)

2 cosh2(B sinh(Cz))

(
=

d
dz

[
1
2

tanh (B sinh(Cz)) +
1
2

])
,(2.28)

parameterized by B and C. We also introduce notation

r(z) = κ(z)
∫ ∞

−∞
f(t)dt.(2.29)

The following proposition provides the decay rate of κ and the function space
that contains κ. The proof is straightforward and omitted.
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Proposition 2.1. Let βκ, γκ, and dκ be determined as

{
βκ = B − εβ , γκ = C, dκ = π

2C − εd, if 0 < B < π
2 ,

βκ = B − εβ , γκ = C, dκ = 1
C arcsin

(
π

2B

)− εd, if π
2 ≤ B,

(2.30)

where εβ and εd are any positive numbers such that βκ > 0 and dκ > 0. Then we
have

κ ∈ H1(Ddκ),(2.31)

∀x ∈ R, |κ(x)| ≤ ακ exp(−βκ exp(γκ|x|)).(2.32)

To apply Theorem 2.3 to g, we need to determine the decay rate of g and the
function space to which g belongs. The following lemma provides them. Its proof
is easy and omitted.

Lemma 2.1. Let βf , γf , and df be constants such that

f ∈ H1(Ddf
),(2.33)

∀x ∈ R, |f(x)| ≤ αf exp(−βf exp(γf |x|)),(2.34)

and let βκ, γκ, and dκ be constants in (2.30). Then, for

βg =



βf , if γf < γκ,

βκ, if γf > γκ,

min{βf , βκ}, if γf = γκ,

(2.35)

γg = min{γf , γκ},(2.36)

dg = min{df , dκ},(2.37)

we have

g ∈ H1(Ddg ),(2.38)

∀x ∈ R, |g(x)| ≤ αg exp(−βg exp(γg|x|)).(2.39)

Applying Theorem 2.3 to g, we immediately obtain the following theorem only
with the assumptions (2.21) and (2.22) for f .

Theorem 2.4. Assume that f satisfies

f ∈ H1(Ddf
),(2.40)

∀x ∈ R, |f(x)| ≤ αf exp(−βf exp(γf |x|))(2.41)
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for some positive numbers αf , βf , γf , and df . Then, for any ε with 0 < ε < dg

there exists a positive number cε, independent of N , such that

sup
−∞<x<∞

∣∣∣∣
∫ x

−∞
f(t)dt

−
[
1
2

[tanh (B sinh(Cx)) + 1]
∫ ∞

−∞
f(t)dt

+ h

N∑
k=−N

[ N∑
l=−N

σk−l

(
f(lh)

− BC cosh(Clh)
2 cosh2(B sinh(Clh))

∫ ∞

−∞
f(t)dt

)]
S(k, h)(x)

]∣∣∣∣
= sup

−∞<x<∞
|(J f)(x) − [(J r)(x) + (CN,hJCN,hg)(x)]|

≤ cε exp
[ −π(dg − ε)γgN

log(π(dg − ε)γgN/βg)

]
,

(2.42)

where

h =
log(π(dg − ε)γgN/βg)

γgN
,(2.43)

and βg, γg, and dg are taken as in (2.35)–(2.37).

In Theorem 2.4, the formula (2.42) contains the constant
∫∞
−∞ f(t)dt, which

should be replaced by h
∑N

k=−N f(kh) in an actual computation.

Theorem 2.5. Under the same assumptions as in Theorem 2.4, the following
estimate holds for some c′ε :

sup
−∞<x<∞

∣∣∣∣
∫ x

−∞
f(t)dt

−
[
1
2

[tanh (B sinh(Cx)) + 1] h
N∑

k=−N

f(kh)

+ h

N∑
k=−N

[ N∑
l=−N

σk−l

(
f(lh)

− BC cosh(Clh)
2 cosh2(B sinh(Clh))

h
N∑

k=−N

f(kh)
)]
S(k, h)(x)

]∣∣∣∣
≤ c′ε exp

[ −π(dg − ε)γgN

log(π(dg − ε)γgN/βg)

]
.

(2.44)

2.4. Optimal parameters. Given an integrand f , we are free to choose the pa-
rameters B and C in (2.30). We want to minimize the error (2.44) with respect to
the parameters B and C for a given integrand f satisfying (2.40) and (2.41). Hence,
we are to determine the set of the parameter values (B,C) that gives the maximum
value of γgdg, and then to choose a (B,C), from among these maximizers, that
makes βg as large as possible. Recall that βg, γg, and dg are determined from B
and C by Proposition 2.1 and Lemma 2.1. Here we note the following key fact.
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Proposition 2.2 ([8]). Assume that f satisfies

f ∈ H1(Ddf
),(2.45)

∀x ∈ R, |f(x)| ≤ αf exp(−βf exp(γf |x|))(2.46)

for some positive numbers αf , βf , γf , and df . If f �≡ 0, then γfdf ≤ π/2.

Thus we may focus on the case γfdf ≤ π/2. Then we determine B and C as
follows. When γfdf < π/2,

B =
π

2 sin(γfdf )
− εB,(2.47)

C = γf(2.48)

are the desired parameters, where εB is any positive number such that π/2 < B.
Then we have

βg = min
{
βf ,

π

2 sin(γfdf )
− εB − εβ

}
,(2.49)

γg = γf ,(2.50)

dg = df ,(2.51)

where εβ is any positive number such that βg > 0.
When γfdf = π/2,

B = π/2,(2.52)

C = γf(2.53)

are the desired parameters. Then we have

βg = min
{
βf ,

π

2
− εβ

}
,(2.54)

γg = γf ,(2.55)

dg =
π

2γf
− εd,(2.56)

where εβ and εd are any positive numbers such that βg > 0 and dg > 0.
The explanation of the above argument is shown in subsection 5.3.

2.5. Discussion. We discuss a technical difference between our setting and
Stenger’s [6]. Recall (2.40) and (2.41), our assumptions about the integrand f ,
in which the double exponential decay of f is assumed only on the real line R. On
the other hand, the assumption in [6] is that

f ∈ Lα(Dd)(2.57)

for some positive numbers α and d, where Lα(Dd) is a function space of analytic
functions f on Dd satisfying

∀z ∈ Dd, |f(z)| ≤ c
|eαz|

(1 + |ez|)2α
(2.58)

for some positive number c. Thus the single exponential decay is assumed not only
on the real line but also on the strip region Dd.
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In parallel with Lα(Dd), we could have imposed the double exponential decay
in a strip region and considered a function space Kβ,γ(Dd) of analytic functions f
on Dd satisfying

(2.59) ∀z ∈ Dd, |f(z)| ≤ c exp(−β exp(γ|z|))

for some positive number c. This function space, however, is less appropriate for the
following reason. Consider κ in (2.28) as a typical function with double exponential
decay. We compare the tuple (βκ, γκ, dκ) in (2.30) and a possible tuple (β′

κ, γ
′
κ, d

′
κ)

such that Kβ′
κ,γ′

κ
(Dd′

κ
) contains κ in (2.28). First, since d′κ depends only on the

strip region where κ is analytic, we have

(2.60) d′κ =




π

2C
− εd, if 0 < B <

π

2
,

1
C

arcsin
( π

2B

)
− εd, if

π

2
≤ B

for some positive number εd. On the other hand, we can show

β′
κ < B sin(εdC),(2.61)

γ′κ = C.(2.62)

Thus we cannot take β′
κ and d′κ as large as βκ and dκ simultaneously. This implies

that the alternative setting using Kβ′
κ,γ′

κ
(Dd′

κ
) would lead to a poorer theoretical

error bound than the present setting. In addition, the present setting, imposing a
decay rate only on the real line, seems to be more natural, although this is certainly
a matter of taste.

3. Indefinite integration on a finite interval

Without loss of generality, we may use [−1, 1] as a finite interval. For the ap-
proximation of F (x) =

∫ x

−1
f(t)dt, we take a double exponential transformation

z = ψ2(ζ), where

ψ2(ζ) = tanh
[π
2

sinh ζ
]
,(3.1)

which maps (−∞,∞) to (−1, 1). The following theorem gives an error estimate
in the case of an indefinite integration on [−1, 1]. Its proof is immediate from
Theorem 2.5.

Theorem 3.1. Assume that, for a variable transformation z = ψ2(ζ), the trans-
formed function f̂(ζ) = f(ψ2(ζ))ψ′

2(ζ) satisfies

f̂ ∈ H1(Ddf̂
),(3.2)

∀x ∈ R, |f̂(x)| ≤ αf̂ exp(−βf̂ exp(γf̂ |x|))(3.3)
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for some positive numbers αf̂ , βf̂ , γf̂ , and df̂ . Then, for any ε with 0 < ε < dĝ

there exists a positive number cε, independent of N , such that

sup
−1<x<1

∣∣∣∣∣
∫ x

−1

f(t)dt

(3.4)

−
[

1
2
[
tanh

(
B sinh(Cψ−1

2 (x))
)

+ 1
]
h

N∑
k=−N

f(ψ2(kh))ψ′
2(kh)

+ h

N∑
k=−N

[
N∑

l=−N

σk−l

(
f(ψ2(lh))ψ′

2(lh)

− BC cosh(Clh)
2 cosh2(B sinh(Clh))

h

N∑
k=−N

f(ψ2(kh))ψ′
2(kh)

)]
S(k, h)(ψ−1

2 (x))

]∣∣∣∣∣
≤ c′′ε exp

[ −π(dĝ − ε)γĝN

log(π(dĝ − ε)γĝN/βĝ)

]
,

where

ĝ = f̂ − r,(3.5)

h =
log(π(dĝ − ε)γĝN/βĝ)

γĝN
,(3.6)

and B, C, βĝ, γĝ, and dĝ are taken as in (2.47)–(2.51), or (2.52)–(2.56), with f

and g replaced by f̂ and ĝ, respectively.

The formula (3.4) has been presented in the Introduction as (1.4).
For the comparison between the “SE” formula (1.3) and the “DE” formula (1.4)

in Section 4, we describe here the error estimate of (1.3) based on Stenger [6].
Recall the definition of Lα(Dd) in subsection 2.5.

Theorem 3.2. Assume that, for a variable transformation z = ψ1(ζ), the trans-
formed function f̆(ζ) = f(ψ1(ζ))ψ′

1(ζ) satisfies f̆ ∈ Lαf̆
(Ddf̆

) for some positive
numbers αf̆ and df̆ . Then, there exists a positive number c, independent of N ,
such that

sup
−1<x<1

∣∣∣∣∣
∫ x

−1

f(t)dt(3.7)

−
[

exp(Aψ−1
1 (x))

2 cosh(Aψ−1
1 (x))

h

N∑
k=−N

f(ψ1(kh))ψ′
1(kh)

+ h

N∑
k=−N

[
N∑

l=−N

σk−l

(
f(ψ1(lh))ψ′

1(lh)

− A

2 cosh2(Alh)
h

N∑
k=−N

f(ψ1(kh))ψ′
1(kh)

)]
S(k, h)(ψ−1

1 (x))

]∣∣∣∣∣
≤ cN1/2 exp

(
−
√
πα′

f̆
d′

f̆
N

)
,
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where

α′
f̆

= min
(
αf̆ , 2A

)
, d′

f̆
= min

(
df̆ ,

π

2A
− εd

)
, h =

√√√√ πd′
f̆

α′
f̆
N
,(3.8)

and εd is any positive number such that d′
f̆
> 0.

Since

α′
f̆
d′

f̆
≤ min

(
αf̆df̆ , π − 2Aεd

)
(3.9)

by (3.8), the parameter A given by

A =
αf̆

2
(3.10)

maximizes α′
f̆
d′

f̆
, i.e., minimizes the error estimate in (3.7). Thus, setting A as

in (3.10), we obtain the best “SE” formula.

4. Numerical results

In this section, we show numerical results of the formulas (1.3) and (1.4) to com-
pare the actual errors of the two. We adopt the single exponential transformation

ψ1(ζ) = tanh(ζ/2)(4.1)

in the formula (1.3). The integrands used for numerical experiments are as follows:

Example 1.

f1(x) =
1

π
√

1 − x2
,

∫ x

−1

f1(t)dt =
1
π

(
arcsinx+

π

2

)
,

Example 2.

f2(x) =
1

4 log 2
log
(

1 + x

1 − x

)
,∫ x

−1

f2(t)dt =
1

4 log 2
[log(1 + x)1+x + log(1 − x)1−x − 2 log 2],

Example 3.

f3(x) =
1
2
,

∫ x

−1

f3(t)dt =
1
2
(x+ 1),

Example 4.

f4(x) =
2
π

√
1 − x2,

∫ x

−1

f4(t)dt =
1
π

(
arcsinx+ x

√
1 − x2

)
+

1
2
,

Example 5.

f5(x) =
2

π (1 + x2)
,

∫ x

−1

f5(t)dt =
1
2

+
2
π

arctanx,

Example 6.

f6(x) = −2[x cn(2 tanh−1 x,
√

0.5)

+ dn(2 tanh−1 x,
√

0.5) sn(2 tanh−1 x,
√

0.5)],∫ x

−1

f6(t)dt = (1 − x2) cn(2 tanh−1 x,
√

0.5).
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Table 1. Parameter values (ε = 0.01)

“SE” formula (1.3) “DE” formula (1.4)
A h B C h

Example 1 1/2
√

2π(π−ε)
N π/2 − ε 1 log(2(π−4ε)N)

N

Example 2 1
√

π(π−ε)
(1−ε)N π/2 − ε 1 log[π(π/2−2ε)N/(π/2−(π/2)ε)]

N

Example 3 1
√

π(π−ε)
N π/2 − ε 1 log((π−4ε)N)

N

Example 4 3/2
√

2π(2π/3−ε)
3N π/2 − ε 1 log((π−2ε)N)

N

Example 5 1
√

π(π/2−ε)
N π − ε 1 log((π/3−2ε)N)

N

Example 6 1
√

π(K−ε)
N π/2 − ε 1 log((π/2)N)

N

The functions f1, . . . , f4 are taken from [2]. We take N = 1, 4, 9, 16, . . . , 100 and
take the necessary parameters according to Table 1, where

K =
∫ π/2

0

dθ√
1 − 0.5 sin2 θ

= 1.85407 · · · .(4.2)

Let us explain how the parameter values for the “DE” formula (1.4) are deter-
mined with reference to the result of subsection 2.4. For f1 in Example 1, we have

f1(x) = O(|1 − x2|−1/2) (x→ ±1)

=⇒ |f1(ψ2(x))ψ′
2(x)| = O(exp(−(π/4) exp |x|)) (x→ ±∞ in R),

(4.3)

which implies βf̂1
= π/4 and γf̂1

= 1. Moreover, by (4.10) we have df̂1
= π/2− εd,

where 0 < εd < π/2. Then, by (2.47)–(2.51), we have

B =
π

2 sin(π/2 − εd)
− εB, C = 1, βĝ =

π

4
, γĝ = 1, dĝ =

π

2
− εd,(4.4)

where εB is any positive number such that B > 0. Since B in (4.4) may be
arbitrarily close to π/2, we can set B = π/2 − ε for any ε with 0 < ε < π/2.
Finally, we have

h =
log(π(dĝ − ε)γĝN/βĝ)

γĝN
=

log(2(π − 4ε)N)
N

(4.5)

when εd = ε.
The parameters for the other integrands are determined similarly. We note that

Theorem 3.1 cannot be applied to the integrand f6. More precisely, there exists no d
such that f̂6 ∈ H1(Dd) for the transformed integrand f̂6 with double exponential
decay. Thus the parameter values for f6 have no theoretical justification.
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The parameter values for the “SE” formula (1.3) are based on Stenger [6]. To
be more precise, for f1 in Example 1, we have

|f1(ψ1(z))ψ′
1(z)| = O(exp(−(1/2)|z|))

(
|z| → ±∞ in Ddf̆1

)
(4.6)

by (4.9), which implies that αf̆1
= 1/2. Moreover, by (4.9) we have df̆1

= π − εd,
where 0 < εd < π. Then, by (3.8) and (3.10) we have

α′
f̆1

=
1
2
, d′

f̆1
= π − εd,(4.7)

and

h =

√√√√ πd′
f̆

α′
f̆
N

=

√
2π(π − ε)

N
,(4.8)

where εd = ε. The parameters for the other integrands are determined in a similar
manner.

The values of the functions are evaluated at 379 points from [−1, 1] chosen as
follows:

x = 0.00, ±0.01k (k = 1, 2, . . . , 90), ±(1 − 0.001k) (k = 1, 2, . . . , 99).

The points are denser near the endpoints of the interval. We perform double pre-
cision floating-point computation. We compute the absolute errors at the above
points and show the maximum values of them in Figures 1–6. “SE” and “DE”
indicate the results of the examples by (1.3) and (1.4), respectively.

The integrands f1 and f2 tend to infinity near the endpoints of [−1, 1]. To
avoid cancellation of significant digits near x = ±1, we change the expressions
of fi(ψ1(z))ψ′

1(z) and fi(ψ2(z))ψ′
2(z). For example,

f1(ψ1(z))ψ′
1(z) =

1

π
√

1 − tanh2(z/2)

1
2 cosh2(z/2)

(4.9)

=
1

2π cosh(z/2)
,

f1(ψ2(z))ψ′
2(z) =

1

π
√

1 − tanh2((π/2) sinh z)

π cosh z
2 cosh2((π/2) sinh z)

(4.10)

=
cosh z

2 cosh((π/2) sinh z)
.

The integrand f2 tends to infinity more mildly than f1, and the approximation of f2
is better than the one of f1. It is natural that the integrand f3 is approximated very
well because it has no singularities. Although the integrand f4 has singularities
at x = ±1, it is also approximated very well. It is well known that the double
exponential formula is also effective for such an integrand.

From Examples 1–4, we can observe that the approximation errors hardly depend
on the nonanalyticity of the integrands at the endpoints of the interval.
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SE

DE

Figure 1. Example 1

DE

SE

Figure 2. Example 2

DE

SE

Figure 3. Example 3

DE

SE

Figure 4. Example 4

SE

DE

Figure 5. Example 5

SE

DE

Figure 6. Example 6

Here, we note that γf̂i
df̂i

is arbitrarily near π/2 for i = 1, . . . , 4, whereas γf̂5
df̂5

is properly less than π/2 as a consequence of the singularities of f5 at z = ±i. We
can observe that the location of singularities in C affects the approximation error
of the formula in R.

From Examples 1–5, we can observe that our formula provides the results ex-
pected from the estimation (3.4) and is more accurate than the single exponential
formula.

Finally, we emphasize that the estimate (1.4) is not applicable to f6, but the
estimate (1.3) is valid for f6.
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5. Proofs

In this section, we prove the theorems stated in Sections 2 and 3.

5.1. Proof of Theorem 2.3.

Lemma 5.1 ([6]). For the operator norm of CN,h defined as

‖CN,h‖∞ = sup
sup−∞<x<∞ |f(x)|≤1

∣∣∣∣∣
N∑

k=−N

f(kh)S(k, h)(x)

∣∣∣∣∣ ,(5.1)

we have

‖CN,h‖∞ ≤ sup
−∞<x<∞

N∑
k=−N

|S(k, h)(x)| ≤ 2
π
{3 + logN}.(5.2)

Lemma 5.2 ([6]). Let f satisfy that f ∈ H1(Dd). Then,

|(J f)(x) − (JChf)(x)| ≤ hN1(f,Dd)
4d sinh(πd/h)

.(5.3)

Lemma 5.3 ([6]). For

J(k, h)(x) =
∫ x

−∞
S(k, h)(t)dt(5.4)

we have

|J(k, h)(x)| ≤ 1.1h.(5.5)

Let ε be an arbitrary positive number and put d′ = d− ε/2.

Lemma 5.4. Under the conditions (2.21) and (2.22), there exists a positive number
M(d′), depending on d′, such that

∀z ∈ Dd′ , |f(z)| ≤M(d′).(5.6)

Proof. For a fixed z ∈ Dd′ , by Cauchy’s integral formula we obtain the inequality

|f(z)| ≤ 2
π(d(1 − δ) − |Imz|)

∫
∂Dd(δ)

|f(ζ)||dζ|,

where δ is a sufficiently small positive number and Dd(δ) is defined in (2.4). Then
we have

|f(z)| ≤ lim
δ→0

2
π(d(1 − δ) − |Imz|)

∫
∂Dd(δ)

|f(ζ)||dζ|

=
2

π(d− |Imz|)N1(f,Dd)

≤ 4
π(d− d′)

N1(f,Dd),

which proves (5.6). �
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Lemma 5.5. Assume that f is analytic in Dd′ . Moreover, assume (2.22) and (5.6),
and set

B(γ, d′, y) = [cos(γ|y|) − cot(γd′) sin(γ|y|)]β.(5.7)

Then we have

|f(x+ yi)| ≤M ′ exp(−B(γ, d′, y) exp(γ|x|))(5.8)

for all y such that |y| ≤ d′.

Put d′′ = d′ − ε/2.

Lemma 5.6. Assume that f is analytic in Dd′ . Under the conditions (2.23)
and (5.8), there exists a positive number α′ such that

J f ∈ H1(Dd′′),(5.9)

∀x ∈ R, |(J f)(x)| ≤ α′ exp(−β exp(γ|x|)).(5.10)

For the proof of Lemmas 5.5 and 5.6, we need Propositions 5.1 and 5.2 below.
Let a be a real number such that 0 < a < π/2 and define the fan-shaped domain
Fa as

Fa =
{
z ∈ C

∣∣∣ π
2
− a < arg z <

π

2

}
.

Proposition 5.1 (Phragmén-Lindelöf [1]). Assume that f is analytic in Fa and
continuous in Fa. In addition, assume

∀z ∈ Fa, |f(z)| ≤M,(5.11)

∃c < 0, f(r exp(iφa)) = O(exp(cr)) (r → ∞),(5.12)

where φa =
π

2
− a. Then,

∃M ′ > 0, ∀z ∈ Fa, |f(z)| ≤M ′ exp
(

cos(arg z)
cosφa

c|z|
)
.

Proposition 5.2 (Montel [1]). Assume that f is analytic and bounded in {z ∈
C | Rez > x0, y0 ≤ Imz ≤ y1}. If

lim
Rez→∞
Imz=y2

f(z) = c

for a fixed y2 such that y0 < y2 < y1, then f(z) converges to c as Rez → ∞
uniformly with respect to Imz such that y0 < Imz < y1.

Proof of Lemma 5.5. We consider the case where (x, y) is in the first quadrant of
Dd′ . The proofs of the other cases are similar.
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d′i

O O

z ζ

arg ζ =
π

2
− γd′

Fγd′

ζ = ω(z)

Figure 7. Correspondence of the domains by ω

We define the conformal mapping ω as

ζ = ω(z) = exp
(
γz + i

(π
2
− γd′

))
,

and we set f̌(ζ) = f(ω−1(ζ)). Let z = x+ yi and Fγd′ be the domain shown in the
right of Figure 7. We will apply Proposition 5.1 to f̌ .

First, it is obvious that f̌ is analytic in Fγd′ and continuous in Fγd′ − {0}.
Furthermore, the fact that f(x) tends to zero as x→ ±∞, the boundedness of f in
Dd′ (that is, (5.6)) and Proposition 5.2 guarantee the continuity of f̌ at the origin.
Thus the analyticity of f̌ in Fγd′ and the continuity of f̌ in Fγd′ are established.

Secondly, by (5.6) and the continuity of f̌ in Fγd′ we have

∀ζ ∈ Fγd′ |f̌(ζ)| = |f(z)| ≤M(d′).(5.13)

Lastly, it follows from

|ζ| ≥ 1 ⇒ |ζ| = exp(γx) = exp(γ|x|)
and (2.22) that

f̌(ζ) = O(exp(−β exp(γ|x|))) = O(exp(−β|ζ|)) (|ζ| → ∞)(5.14)

holds for ζ with arg ζ =
π

2
− γd′.

Now all the assumptions of Proposition 5.1 for f̌ are established. Hence we have

∀ζ ∈ Fγd′, |f̌(ζ)| ≤M ′ exp

(
− cos(arg ζ)

cos
(

π
2 − γd′

)β|ζ|
)
.(5.15)

Transforming this result to the z-plane, we finally have that

|f(z)| ≤M ′ exp

(
−cos

(
π
2 − γ(d′ − y)

)
cos
(

π
2 − γd′

) β exp(γ|x|)
)

= M ′ exp
(
− sin (γ(d′ − y))

sin (γd′)
β exp(γ|x|)

)
= M ′ exp (−B(γ, d′, y) exp(γ|x|))

for all z in Dd′ ∩ {x+ yi ∈ C | x ≥ 0, y ≥ 0}, which is the desired inequality. �
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O
R

iR
x+ yi

x

Figure 8. Integration path for computing
∫ z

−∞ f(ζ)dζ

Proof of Lemma 5.6. Step 1. We estimate the value of∫ z

−∞
f(ζ)dζ

when z = x+ yi ∈ Dd′′ .
First, we consider the case where x < 0 and y ≥ 0. We have∣∣∣∣

∫ z

−∞
f(ζ)dζ

∣∣∣∣ =
∣∣∣∣
∫ x

−∞
f(s)ds+

∫ y

0

f(x+ ti) idt
∣∣∣∣

≤
∫ x

−∞
|f(s)|ds

+
∫ y

0

|f(x+ ti)|dt

≤M ′
[∫ x

−∞
exp(−β exp(−γs))ds

+
∫ y

0

exp
{
−β exp(−γx)

sin(γd′)
sin(γ(d′ − t))

}
dt
]

(see Figure 8). The first term of [ ] on the extreme right-hand side is estimated as
follows:

(first term) ≤
∫ x

−∞
exp(−γs) exp(−β exp(−γs))ds(5.16)

=
1
βγ

∫ x

−∞
βγ exp(−γs) exp(−β exp(−γs))ds

=
1
βγ

exp(−β exp(−γx))

=
1
βγ

exp(−β exp(γ|x|)).

For the second term, we note that

γ ≤ π

2d
, 0 ≤ t ≤ d′′ < d′ < d

⇒ sin(γ(d′ − t)) ≥ 2
π

(γ(d′ − t)),
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and obtain

(second term)(5.17)

≤
∫ y

0

exp
{
−β exp(−γx)

sin(γd′)
2
π

(γ(d′ − t))
}

dt

≤
∫ d′−ε/2

0

exp
{
−β exp(−γx)

sin(γd′)
2
π

(γ(d′ − t))
}

dt

=
π sin(γd′)

2βγ
exp(γx)

·
[
exp
{
− βγε

π sin(γd′)
exp(−γx)

}
− exp

{
− 2βγd′

π sin(γd′)
exp(−γx)

}]

=
π sin(γd′)

2βγ
exp(−γ|x|)

·
[
exp
{
− βγε

π sin(γd′)
exp(γ|x|)

}
− exp

{
− 2βγd′

π sin(γd′)
exp(γ|x|)

}]
.

Next, we consider the case where x ≥ 0 and y ≥ 0. It follows from (2.23) that∣∣∣∣
∫ z

−∞
f(ζ)dζ

∣∣∣∣ =
∣∣∣∣
∫ x

−∞
f(s)ds+

∫ y

0

f(x+ ti)idt
∣∣∣∣(5.18)

=
∣∣∣∣−
∫ ∞

x

f(s)ds+
∫ y

0

f(x+ ti)idt
∣∣∣∣

≤
∫ ∞

x

|f(s)|ds+
∫ y

0

|f(x+ ti)|dt.

By applying (5.8) to the terms in the extreme right-hand side, we obtain the same
bounds given in (5.16) and (5.17).

Lastly, we consider the case where y < 0. Since the bound for∣∣∣∣
∫ z

−∞
f(ζ)dζ

∣∣∣∣
should be symmetric with respect to the real axis, we have the same bounds given
in (5.16) and (5.17).

Step 2. First, we prove (5.10). It follows from the results in the case where y = 0
in Step 1 that (J f)(x) = O(exp(−β exp(γ|x|))), i.e., (5.10).

Next, we prove (5.9). We take the contour shown in Figure 9 for computing

N1 (J f,Dd′′) ,

R

iR

O

i(d′′(1 − δ))

−i(d′′(1 − δ))

1/δ−1/δ

Figure 9. Contour for computing N1 (J f,Dd′′)
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where δ is a sufficiently small positive number. The integral considered here is∫ d′′(1−δ)

−d′′(1−δ)

|(J f)(−1/δ + yi)|dy︸ ︷︷ ︸
I1(δ)

+
∫ d′′(1−δ)

−d′′(1−δ)

|(J f)(1/δ + yi)|dy︸ ︷︷ ︸
I2(δ)

(5.19)

+
∫ 1/δ

−1/δ

|(J f)(x− d′′(1 − δ)i)|dx︸ ︷︷ ︸
I3(δ)

+
∫ 1/δ

−1/δ

|(J f)(x+ d′′(1 − δ)i)|dx︸ ︷︷ ︸
I4(δ)

.

We set

M1(x) = (the extreme right-hand side of (5.16)),

M2(x) = (the extreme right-hand side of (5.17)).

Note that |(J f)(z)| ≤ M1(x) + M2(x) holds for all z ∈ Dd′′ as shown in Step 1.
Then we have

I1(δ) + I2(δ) + I3(δ) + I4(δ)(5.20)

≤ 4d′′(M1(1/δ) +M2(1/δ)) + 2
∫ x=1/δ

x=−1/δ

(M1(x) +M2(x)) dx.

Since

M1(x) = O(exp(−β exp(γ|x|))),
M2(x) = o(exp(−γ|x|)),

the right-hand side of (5.20) is bounded as δ approaches zero. Thus we have
J f ∈ H1(Dd′′), i.e., (5.9). �

Proof of Theorem 2.3. Note that d′′ = d− ε. We have

|(J f)(x) − (CN,hJCN,hf)(x)|
≤ |(J f)(x) − (CN,hJ f)(x)| + |(CN,hJ f)(x) − (CN,hJChf)(x)|

+ |(CN,hJChf)(x) − (CN,hJCN,hf)(x)|.
We define ε1, ε2, and ε3 as follows:

ε1(x) = (J f)(x) − (CN,hJ f)(x),

ε2(x) = (CN,hJ f)(x) − (CN,hJChf)(x),

ε3(x) = (CN,hJChf)(x) − (CN,hJCN,hf)(x).

To complete the proof, we estimate ε1, ε2, and ε3 in turn.

Estimation of ε1. By Lemma 5.6, we have

J f ∈ H1(Dd′′),

∀x ∈ R, |(J f)(x)| ≤ α′ exp(−β exp(γ|x|)).
Therefore it follows from Theorem 2.1 that

|ε1(x)| ≤ c1 exp
[ −πd′′γN
log(πd′′γN/β)

]
.(5.21)
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Estimation of ε2. By Lemma 5.2 we have

|(J f)(x) − (JChf)(x)| ≤ hN1(f,Dd)
4d sinh(πd/h)

≤ c2h exp(−πd/h),

where c2 is a constant that is independent of h (assuming, of course, that h is
uniformly bounded). With h in (2.25), it follows from Lemma 5.1 that

|ε2(x)| = |(CN,hJ f)(x) − (CN,hJChf)(x)|(5.22)

≤ ‖CN,h‖∞ sup
−∞<x<∞

|(J f)(x) − (JChf)(x)|

≤ 2
π

(3 + logN) · c2h exp(−πd/h)

=
2
π

(3 + logN) · c2 log(πd′′γN/β)
γN

exp
[ −πdγN
log(πd′′γN/β)

]

≤ c3
(logN)2

N
exp
[ −πdγN
log(πd′′γN/β)

]
,

where c3 is a constant that is independent of N .

Estimation of ε3. By Lemma 5.3, we have

|(JChf)(x) − (JCN,hf)(x)|

=

∣∣∣∣∣∣
∫ x

−∞

∑
|k|>N

f(kh)S(k, h)(t)dt

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

|k|>N

f(kh)J(k, h)(x)

∣∣∣∣∣∣
≤ sup

−∞<x<∞
|J(k, h)(x)|

∑
|k|>N

|f(kh)| ≤ 1.1h
∑

|k|>N

α exp(−β exp(γ|kh|))

= 2.2αh
∞∑

k=N+1

exp(−β exp(γkh)) ≤ 2.2αh
∫ ∞

N

exp(−β exp(γht))dt

≤ 2.2αh
βγh exp(γhN)

∫ ∞

N

βγh exp(γht) exp(−β exp(γht))dt

=
2.2α exp(−β exp(γhN))

βγ exp(γhN)

=
2.2α
πd′′γ2

1
N

exp(−πd′′γN),

where h is taken as (2.25). Then, analogously to (5.22), we have

|ε3(x)| = |(CN,hJChf)(x) − (CN,hJCN,hf)(x)|(5.23)

≤ ‖CN,h‖∞ sup
−∞<x<∞

|(JChf)(x) − (JCN,hf)(x)|

≤ c4
logN
N

exp(−πd′′γN),

where c4 is a constant that is independent of N .
Combining (5.21), (5.22), and (5.23), we get (2.24). Thus the proof of Theo-

rem 2.3 is completed. �
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5.2. Proof of Theorem 2.5. We need the following proposition and lemma. The
proof of the proposition is similar to that of Theorem 3.2 in [8] and hence is omitted.

Proposition 5.3. Assume that a function f satisfies (2.40) and (2.41) for some
αf , βf , γf , and df . Then we have∣∣∣∣∣

∫ ∞

−∞
f(t)dt− h

N∑
k=−N

f(kh)

∣∣∣∣∣ ≤ c exp
[ −2πdfγgN

log(π(dg − ε)γgN/βg)

]
(5.24)

for a constant c, independent of N , where we take h as (2.43), i.e.,

h =
log(π(dg − ε)γgN/βg)

γgN
.(5.25)

Lemma 5.7. Let

h =
log(π(dg − ε)γgN/βg)

γgN
.

Then

(J κ)(x) − (CN,hJCN,hκ)(x) = O(logN) (N → ∞) .

Proof. We have

|(J κ)(x) − (CN,hJCN,hκ)(x)|(5.26)

≤ |(J κ)(x) − (CN,hJ κ)(x)| + |(CN,hJ κ)(x) − (CN,hJChκ)(x)|
+ |(CN,hJChκ)(x) − (CN,hJCN,hκ)(x)|.

First, the second and third terms on the right-hand side of (5.26) are bounded.
This is because we can apply estimates similar to (5.22) and (5.23) in the proof
of Theorem 2.3, for the second and third terms, respectively. Next, it follows
from sup−∞<x<∞ |(J κ)(x)| <∞ and the arguments similar to those used in (5.23)
that the first term of the right-hand side of (5.26) is bounded by c logN for some
c. �

Let

r̃N =

(
h

N∑
k=−N

f(kh)

)
κ and g̃N = f − r̃N .

Then the quadrature formula in Theorem 2.5 can be written as

(J r̃N )(x) + (CN,hJCN,hg̃N )(x) ,(5.27)

and the difference between it and the quadrature formula in Theorem 2.4 can be
written as

(J (r̃N − r))(x) + (CN,hJCN,h(g̃N − g))(x) .(5.28)

Hence, to prove (2.44), it suffices to show that

(J (r̃N − r))(x) + (CN,hJCN,h(g̃N − g))(x)

= o
(

exp
[ −π(dg − ε)γgN

log(π(dg − ε)γgN/βg)

])
.
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However, this can easily be derived from Proposition 5.3 and Lemma 5.7 as follows:

|(J (r̃N − r))(x) + (CN,hJCN,h(g̃N − g))(x)|

= |(J κ)(x) − (CN,hJCN,hκ)(x)|
∣∣∣∣∣
∫ ∞

−∞
f(t)dt− h

N∑
k=−N

f(kh)

∣∣∣∣∣
≤ c′ logN exp

[ −2πdfγgN

log(π(dg − ε)γgN/βg)

]

= o
(

exp
[ −π(dg − ε)γgN

log(π(dg − ε)γgN/βg)

])
.

5.3. Explanation of the argument in subsection 2.4. Some details of the
argument in subsection 2.4 are provided here. First note that (2.36) and (2.37)
imply that

γgdg ≤ γfdf ,(5.29)

where γfdf ≤ π/2 by Proposition 2.2. We divide the argument into two cases
according to the value of γfdf .

Case 1 (γfdf < π/2). We take B and C as (2.47) and (2.48), respectively. Then,
we have

γg = min{γf , C} = γf ,

dg = min
{
df ,

1
C

arcsin
[ π
2B

]
− εd

}

= min
{
df ,

1
γf

arcsin
[

sin(γfdf )
1 − (2εB/π) sin(γfdf )

]
− εd

}
= df ,

because εB > 0 and εd is sufficiently small. Hence we have that γgdg attains the
upper bound γfdf in (5.29). Note that this upper bound is attained only when
γg = γf and dg = df , and this, in turn, implies that

0 < B <
π

2
(5.30)

or

π

2
≤ B <

π

2 sin(γfdf )
,(5.31)

where the latter follows from

π/2 ≤ B, γf ≤ C, df < (1/C) arcsin(π/(2B)).

Thus βg = min{βf , B − εβ} is nearly optimal.
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Case 2 (γfdf = π/2). Since

γgdg ≤ γκdκ <
π

2
,

the upper bound γfdf in (5.29) cannot be attained in the case of γfdf = π/2.
However, γgdg can be made arbitrarily close to π/2 with the choice of B = π/2 and
C = γf given in (2.52) and (2.53), for which we have

γgdg = min{γf , C}min
{
df ,

π

2C
− εd

}
= γf min

{
df ,

π

2γf
− εd

}
=
π

2
− εdγf .

To maximize βg = min{βf , B − εβ} we are to choose B as large as possible, while
keeping γgdg invariant. Our choice of B = π/2 is also optimal in this respect, since,
for B > π/2, we have

γfdf − γgdg >
π

2
− arcsin

( π
2B

)
> 0.(5.32)

6. Concluding remarks

Formulas for numerical indefinite integration by sinc approximation with double
exponential transformations are also considered in [5]. These are based on Haber’s
formula (A) in [2], whereas our formula is based on Stenger’s [6], which is similar
to (B) in [2].

The error bound of our formula depends on individual integrands. Theoretically
it is more desirable to have a formula that is valid for functions in a certain function
space and has a uniform error bound that depends only on the function space. A
possible deeper theoretical problem is concerned with the optimality of the formula
in the function space. Here, the optimality means the superiority of the formula in
its accuracy over any other formula applicable to the elements of the function space.
For example, such a problem has been addressed for a trapezoidal formula [8] and
a sinc interpolation [9].
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