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p-CLASS GROUPS OF CERTAIN EXTENSIONS OF DEGREE p

CHRISTIAN WITTMANN

ABSTRACT. Let p be an odd prime number. In this article we study the dis-
tribution of p-class groups of cyclic number fields of degree p, and of cyclic
extensions of degree p of an imaginary quadratic field whose class number is
coprime to p. We formulate a heuristic principle predicting the distribution of
the p-class groups as Galois modules, which is analogous to the Cohen-Lenstra
heuristics concerning the prime-to-p-part of the class group, although in our
case we have to fix the number of primes that ramify in the extensions con-
sidered. Using results of Gerth we are able to prove part of this conjecture.
Furthermore, we present some numerical evidence for the conjecture.

1. INTRODUCTION

Let p be an odd prime number throughout this paper. If K/Q is a cyclic number
field of degree p, the Galois group Gal(K/Q) = (o) acts on the class group C/(K).
Since the norm element ¢ = 1+ ¢ + --- + o”~! annihilates the class group and
Z[o]/(¢) = Z|w], we see that C{(K) is a Z]w]-module, where w is a primitive pth
root of unity. Furthermore, the class group decomposes in a natural way into
U(K) =C(K)p @ CUK)4p, where CU(K), is the p-Sylow subgroup, and C/(K), is
the prime-to-p-part of the class group.

The goal of this paper is to describe the distribution of the p-class group C/(K),
as K varies over all cyclic number fields of degree p. The corresponding problem for
Cl(K)xp was investigated by Cohen and Lenstra and led to their famous heuristic
principle (cf. [B]). According to this conjecture, for a given Z|w]-module M the ratio
of number fields K satisfying C/(K')x, =z(,) M among all cyclic number fields of
degree p is proportional to |Autgy,(M)|~![M|~!. This conjecture is still unproved,
but supported by numerical verifications. However, the p-part had to be excluded
in their heuristics, the reason being that it is determined by genus theory to some
extent. More precisely, the cardinality of C/(K), increases as the number of primes
that ramify in K increases.

The main idea in formulating an analogous conjecture for the p-part is to fix
the number of primes that ramify in the extension K/Q. Note that C/(K), can be
regarded as a Zj,|w]-module, where Z, is the ring of p-adic integers. Now (a special
case of) our conjecture can be stated as follows: Let ¢ > 1 be an integer and M
be an arbitrary finite Z,[w]-module with |Mq/(1 — w)Mp| = p'~!. Then the ratio
of number fields K such that C/(K), =z ) Mo among all cyclic number fields of
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938 CHRISTIAN WITTMANN
degree p with exactly ¢ ramified primes is proportional to [Auty, j(Mo)|~!|[Mo|~".
Using genus theory we are able to prove part of this conjecture. In addition, we
will relate our conjecture to a conjecture of Gerth, and we will present results
of numerical verifications that are in good accordance with the predictions. We
remark that the above results and the conjecture carry over to the case of cyclic
extensions K/F of degree p of a fixed imaginary quadratic base field F' whose class
number is coprime to p and such that F' does not contain the pth roots of unity.

In addition to the notation introduced so far, we always let ¢ = p~ !, and (¢),, =
[T, (1—¢") for m € NU{oo} (note that the product converges for m = oo because
of 0 < g <1).

This paper grew out of my doctoral thesis, and I am grateful to my advisor Prof.
C. Greither for various hints and fruitful discussions.

2. COHEN-LENSTRA SUMS

In this section we will compute some infinite sums, similar to those occurring in
Cohen-Lenstra heuristics. We fix a discrete valuation ring S. Let J be its maximal
ideal, and suppose that the residue class field of S is Fj,. In what follows we will
investigate sums of the form

> [Auts(M) M|
M
|M/JM|=ph

where h,u € N and M runs through all finite S-modules, of course up to isomor-
phism. Furthermore, we will also deal with refinements of these sums (i.e., with
additional restrictions imposed on the modules M).

We start with a lemma (for a proof see [3, Prop. 3.1]). By s (M) we denote the
number of surjective S-homomorphisms S™ — M. Recall that ¢ = p~'.

Lemma 2.1. Let M be a finite S-module. Then
{U C S™ | U submodule with S"/U = M}| = s> (M)|Auts(M)| ™

and

SS — n (q)n
son) =

where v = dimg, (M /JM) is the minimal number of generators of M.

Theorem 2.2. Let h,u € N. Then

h(h+u)
Z |AutS(M)|—1|M|—u: q (q)u
M (D@ ntu
|M/JM|=ph
Proof. This follows from [3] Th. 6.1(ii)]. O

Theorem 2.3. Let My be a finite S-module, and let hg € N with |Mo/J M| = pho.
Let h,u € N with h > hg. Then

h(h+u) X
(At (Mo) |~ M| .

S JAuts(M)| M| = 2
— (Dh—ho
|M/JM|=ph

JMaMg



p-CLASS GROUPS OF CERTAIN EXTENSIONS OF DEGREE p 939

Proof. 1f M is a finite S-module, then |M/JM| = p" if and only if M = S /U for
a submodule U C J" of finite index. Therefore,

TN |Auts(S"/U)| " |S" /U]
Z [Auts (M) M| = Z {U"C Jm | ShJU" = Sh U}

Mo vch
|M/JM|=ph Jh /UM

7 B [Sh. U]~
-2 sy (S"/U)

vcgh
Jh jU Mg

by Lemma 2] and consequently,

1
> lAute(M)[ Mt = Y [shup
mi @n S
M{J/zilfgz‘\/i)p ' Jh jU Mg
qh(h+u) N b N
- M|~ U € TP | U = M)
(@)n
" ) g -
= | Mo| sy, (Mo)|Auts (Mo)|
(@)n
qh(h+u)
- [ At (Mo)| = | Mo| .
(q)h—ho
O
Corollary 2.4. Let h,u,r € N with r < h. Then
h(h4u) r(r+u)
Z |Aut5(M)|71|M|7“: q q (Q)u
M (q)h—T(Q)T(Q)T—i-u
|2/ M| =ph
|JM/J2M|=p"
Proof. This follows from the above theorems:
S s M =Y A
M J]\J\//Ilf h e =p" |M J]Z\gff h
‘}M//J%V\;‘ipr [Mg/JMg|=p" | J/ZWEZ‘\/TOP
h(h+u)
q —1 —u
= - |Auts (Mo)[ ™| Mol
(Q)hfr ;
[Mg/JMq|=p"
qh(h+u) qr(r+u)(q)u
(Q)hfr (q)r(q)rJru
O

3. GALOIS MODULE STRUCTURE OF p-CLASS GROUPS

Let K/Q be a cyclic number field of degree p, put A = Gal(K/Q) and let o
be a generator of A. We will present some results describing the structure of the
p-part C{(K), of the class group as a Galois module over A, i.e., as a module over
the discrete valuation ring Z,[w]. We note that we will always use the letter o to
denote the action of w on C¢/(K), since o corresponds to w under the isomorphism

Z[A]/(¢) = Z|w).
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The isomorphism type of C/(K), is determined by the cardinalities of the quo-
tients ‘
o—1)"1 o—1)*
CUE) D" (K Y
for ¢ > 1. These quotients are Fp-vector spaces, since Zy[w]/(w — 1) = F,. By
Chevalley’s Theorem (cf. [I0l Sec. 13, Lemma 4.1]) the cardinality of the first
quotient is
ICE(K ), /CUE)] Y = UK = 9",
where ¢ > 1 is the number of rational primes that ramify in K.
The cardinalities of C/(K) ™" /C(K) ™" for i > 2 are investigated in [6],
although their calculation becomes rather complicated. We will only deal with the
case 1 = 2 here; that is, we compute the F,-dimension of

CUK)Z e (E) Y7,

the so-called (o — 1)2-rank of (/(K),. The idea, which goes back to Rédei (cf. [12])
in a related situation, is to connect the above dimension to the rank of a certain
matrix over F,. See also [7], [g].

From now on let p1,...,p: be the prime numbers that ramify in K, and suppose
that p ¢ {p1,...,p:} (in other words, K/Q is tamely ramified). This implies that
p; =1mod pforalli =1,... ¢t The extension K(w)/Q(w) is a Kummer extension;

hence there exists an element o € Q(w) such that
K(w) = Q(w, ¥a).

Let p; be an arbitrary prime ideal C Z[w] over p; (note that p; splits completely in
Q(w)), and let v; := vy, (o) # 0 mod p for ¢ = 1,...,t. Since we can replace a by
a?,a3,...,aP~! without changing our field, we will assume v; = 1.

We remark that there is a bijection between the cyclic number fields K of degree
p such that pi,...,p; are the primes that ramify in K, and the (¢ — 1)-tuples
(va,...,1p) of integers 1 < v; < p— 1. This means that there are exactly (p—1)~!
cyclic number fields K of degree p with discriminant disc(K) = (p1 -+ - p;)P~ L.

The following theorem states a formula for the (o — 1)?-rank of C/(K),. This
requires some basic knowledge of Hilbert symbols, as in [I1, Ch. V, §3].

Theorem 3.1. Let K be as above, and define the matriz A = (a;;) € FL*" via the
Hilbert symbols
<pj,04) — waij.
pi

Then the following formula holds:
dimg, (CL(K)5 1 /CU(K)T D7) =t — 1 — rk(A).

Note that the product formula for Hilbert symbols implies that the sum of the
entries in each column is zero. Furthermore, there is an explicit formula for the
Hilbert symbols (cf. [1T, Ch. V, Prop. 3.4]) which reads

(M) = (p;v*’i(a))(prl)/p mod p;
pi
if i # 4.

Now fix p1,...,p: as above, and consider the following problem. As K varies
over all (p—1)~! cyclic number fields of degree p such that exactly p1, ..., p; ramify
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2
in K, which values do occur as dim(C@(K)g_l/C@(K)gjfl) )? To this end we will
construct a matrix M = M,, . ,, € F;,Xt such that with (vy,..., 1) € Fix .- xF,

t—1- rk(MVQ,---ﬂ/t)

runs through the values dim(C@(K)gfl/C@(K)g’_l)Q) for all fields K under consid-
eration.

Fix ¢ € {1,...,t} for a moment, and let {& # 1 mod p; be a solution of the
congruence

(1) X? =1 mod p;.
Then {1,&,...,E" "} is the set of all solutions. Define mj; € F,, for j # i by

mod p;.

mi; i—1
E’L i = p§P )/p
Now we put
Mmij = V; - m;j if j #14,

where we still set vy = 1. If we had chosen a different nontrivial solution 7; of the
congruence (), we would have 7; = £¥ for some 1 < k < p — 1. Therefore, the row
vector (M1, ..., Mii—1, Miit1, ..., M4) is uniquely determined up to multiplication
by an element of F. Finally, we define the diagonal entries of the matrix M by

mij; = — E mij.

1#£]
Thus we get a matrix M = (m;;) € My(F,) whose entries depend on vy, . . ., 14, such
that for each choice of v, ..., 14, the rank of M,,, . ,, corresponds to the (o — 1)%-

rank of the p-class group of a number field K as above, according to Theorem

B

Corollary 3.2. Let p1,...,p: be distinct prime numbers satisfying p; = 1 mod p.
Let K be the set of all cyclic number fields of degree p such that exactly p1,...,p;
ramify in K. Then there is a bijection between the set KC and the set of (t—1)-tuples
(va,...,v) € Fy x - x Ty such that if K € K and (v, ...,v) correspond to each
other, the relation

dimg, (CL(K)Z /UKD ) =t — 1 — 1tk(M,,....0,)
holds.

4. HEURISTIC PRINCIPLE FOR p-CLASS GROUPS

In this section we will present our heuristic principle for the p-part of the class
group, considered as a Z,[w]-module.

Let ¢t > 1, and denote by £; the set of all cyclic number fields K of degree p (up
to isomorphism), such that ¢ rational primes ramify in K. Let €; denote a set of
representatives of the isomorphism classes of all finite Z,[w]-modules. If we set

¢ Y(g)
(Q)t(Q)t—1 ’

the map M +— [Auty, (M)~ M| C; ! defines a probability measure on €2,
according to Theorem

Ct:
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Conjecture 4.1. Let f : Qy — Ry be an arbitrary function. Then the following
formula holds:

lim ZKeﬁ,,, disc(K)<z F(CUK)p) _ > weq, f(M)|Autz, ) (M) M|~

z—oo {K € & | disc(K) < x}| Cy ’
which means that the limit on the left-hand side exists if and only if the sum on the
right-hand side converges, and in that case both values coincide. In particular, if f is
the characteristic function of some element My € Qy, we write Prob(C/(K), = M)
for the limit on the left-hand side, and the formula reads

_ |Autg, o (Mo)| ™Mo~
- c :

In what follows we will support this conjecture. First we will prove a direct
consequence concerning the (o — 1)2-rank of the p-class group, using the results of
section [3} cf. Theorem [£3] In addition, we will relate our conjecture to results of
Gerth that deal with the case t — oo, loosely speaking. Finally, we will also present
some numerical evidence.

We remark that it suffices to consider a smaller family of number fields without
affecting the statement of the conjecture. More precisely, we may suppose that the
prime p is unramified in K, since it is clear that

{K € R | disc(K) <z, p|disc(K)}| =o([{K € R | disc(K) < x}|)

as & — 00.
Now we will prove part of the conjecture. Let 0 <r <t —1 and put

Proby (|C(K)g ™ /C(K) | = ") =

(2) Prob (CL(K), = Mp)

o—1)2 r
I € A | dise(K) <, e CU)T Y| = 07|
z—00 {K € £ | disc(K) < z}] '
This is the ratio of fields K € & whose (¢ — 1)2-rank equals r. Define
: {1 w=D)M/(w-1)>M|=p",
Frf =Ry, J(M):= { 0, otherwise.
Then it follows from Conjecture Bl and the sum formula in Corollary 24 that
2
Proby (|C(K)g ™! /e(K) | = ")

= Z Prob (CU(K), = M)

MyEQy
[(w=1)Mq /(w—1)2Mq|=p"

L e C) I C) H )T
(@1 (@Dr (@1 @D (gh
_ qT(Hl)(Q)t(Q)t—l
B (Q)T(Q)tflfr(Q)rJrl.
We will prove in the next theorem that this is indeed the case.

Lemma 4.2. Let k,m,n € N with k < min{m,n}. Then

p(n+m—k)k (Dn(@m
(@n—k(@m—r(@)x
equals the number of matrices in F'*™ of rank k.
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See [5, Th. 2] for a proof.

Theorem 4.3. Let 0 <r <t—1. Then we have
qr(T—H)(Q)t(Q)t—l
(Q)T(Q)tflfr(q)rJrl

Proof. We assume that p { disc(K) for all fields K. By Theorem Bl those fields
satisfy

Proby (|CL(K)g ™ /(K)( V| = p") =

(CuE ) () = pr ek

where A = A(K) € F,*" is defined via Hilbert symbols. Furthermore, this matrix
has the property that the entries in each column add up to zero. In [8] the following
asymptotic formula as z — oo is derived:

1

using the fact that the Hilbert symbols are equidistributed (cf. [7]). Here M € F.**

is any (fixed) matrix such that the sum of the entries in each column is zero. Thus

we get

{AeFy V" |tk(4) =t —1 -1}
pt(t=1)

¢""(9)1(q)i-1

(@r(@t-1-r(@Q)rt1’

by Lemma 2] and the proof is complete. O

Proby (CH(K )5~ /C(K)7 | = ")

It is crucial to fix the number ¢ of ramified primes in Conjecture [£1] since
by Chevalley’s Theorem we have |C/(K),/C/(K)5 ™| = p'~'; thus the set of cyclic
number fields of degree p, having a prescribed p-class group, has density zero among
all cyclic number fields of degree p. However, using ideas of Gerth it is possible to
formulate an analogous conjecture closer to the original Cohen-Lenstra heuristics.
One has to study the distribution of the submodules C/(K)3~! instead of the full
p-class group.

We put R = [J;~, Re. Let My be a finite Zy[w]-module. We want to deduce the
value of

HK € & | disc(K) <z, C{(K)S ! = My}
Prob(CU(K)T ! = M) := i P
rob(CH(K)p o) = Jlim {K € & | disc(K) < a]
from Conjecture [4.1], under an additional assumption (stated in the next lemma).

We define Prob,(C/(K)5~" = M) in the obvious way, by restricting ourselves to
the fields in &;.
Lemma 4.4. Put
o) o Dt I € R | dise(k) < @, CUK) = Mo}
’ Yot HE € 8¢ | dise(K) < o} 7

and assume that the limits lim lim r(z,t') and lim lim r(z,t') ezist and are
T—00 t' — 00 t' — o0 T—00

equal. Then

Prob(CL(K)5 ! = M) = JimProby (CUK)y ! = My).
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Proof. The assertion follows easily from the fact that
{K € R | disc(K) <z} =o({K € & | disc(K) <z}|) (z— o0)
for all t < t'. O

Applying Conjecture [4.1] with
1, (w—=1)M = M,
Fi— Ry, f(M) = { w — LM = Mo

0, otherwise
yields:
Proby (C/(K)5 ™' = My) = Z Proby (CU(K), = M)

|M/(w—1)M|=pt

w—1)M =M,
0

(@)e (@)r—1 1 1
- Z ' (q); |Autz, o) (M) | M]|

|M/(w—1)M|=pt’
(w—1) MM

q)oo _ _
%mw}(w AR

as t’ — oo, using Theorem 231 Now Conjecture LTl together with the assumption
made in the preceding lemma, yields the following conjecture (independent of )
which is already in [§] (though between the lines).

Conjecture 4.5. Let My be a finite Zy|w]-module. Then

Aut o (M =1 M1
Prob(@(K)g* ~ M) = |Au Zp[(]q() ((()]))|_1 | Mo
1 0o

Note that

Aty 1 (Mo)| "M~ = DL
%O:I 2, 1w) (Mo)| ™[ Mo o

cf. [3 Sec. 6].
5. NUMERICAL VERIFICATIONS

The goal of this section is to support Conjecture [£.I] by numerical results. To
this end, we let B > 0 be a (sufficiently large) bound, and we generate the Galois
module structure of the p-class group of all cyclic number fields K such that ¢ prime
numbers p; < --- < p; < B satisfying p; = 1 mod p ramify in K. This permits us to
approximate the value Prob,(C/(K), = M) for a fixed module My, and to compare
it with the predictions made by the conjecture. We will see that the agreement is
rather satisfactory.

If p1 < --- < p; are prime numbers as above, we have to find, first of all, defining
polynomials for the set K of cyclic number fields of degree p, ramified exactly in
P1,...,pt. For p > 5 this can be done as in [2, Sec. 5.3] (by adjoining a primitive
pth root of unity w to the base field Q and using Kummer theory); see, in particular,
Alg. 5.3.17. For p = 3 there is a well-known result yielding defining equations for
the 2!=1 cyclic cubic fields in K; see, for example, [T} Th. 4.6.4].

Now that one has defining equations for the fields K € K, one could of course
compute all class groups C/(K) using [l Alg. 6.5.9] and, in addition, derive the
Galois module structure of their p-parts, i.e. C/(K), as Zp[w]-module, by investi-
gating how o acts on C/(K),. However, there is a much more efficient way. The
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crucial point is the following. By Corollary B2 it is easy to a priori calculate the
number of fields in K with (¢ — 1)?-rank equal to zero: we only have to construct
the matrix M = M,, ... ,,, and we have to count the number of choices (vq, ..., 14)
such that this matrix has rank ¢ — 1. As soon as we have found all K € K with
nontrivial (o — 1)2-rank, we know that

CUK)p 2= (Zplw] /(1 = w))* ™

for the remaining fields in K. According to Theorem 3] the ratio of fields with
trivial (o — 1)%rank among all cyclic number fields of degree p with ¢ ramified
primes equals

(9)

_t (q)oo
@1~ (@)

that is, “most” fields have trivial (¢ — 1)%-rank.

The algorithm described above can be used to check how the p-class groups are
distributed among the finite Z, [w]-modules My with |My/(1—w)Mo| = p'~*. These
statistics can be compared with the ratios

753();_11)?31 | Autz, ) (Mo)| [ Mo| !
predicted by Conjecture @1l For this purpose we need a formula for the number
of Z,[w]-automorphisms of My. Write My = @?:1 (Zp[w]/ (1 — w))¥ with d € N,
1<wu;<---<ugand ki +---+kqg=t—1. Then

| Atz ) (Mo)| = (@) -+~ (@), - p7 2 bty Reby g =),

which can be seen from Lemma 1] together with [4] Th. 2.11].

We will now present some results of the numerical verifications in the cases p = 3
and t = 2,3,4. We have restricted ourselves to the case of cubic number fields,
since many class groups have to be computed in order to get significant amounts of
data. These class group computations are very time-consuming, in particular, if the
degree of the number field increases. For all computations the PARI/GP packageﬁ
has been used.

o0
> H(1 — (1)) ~ 0.84018912;
1=2

Notations. We use the following abbreviations (here w is a third root of unity):
n
(CUE)3)zy10) = la1, ... an] = CUK)s Sz, @D Zslw]/(1 - w)™,
i=1
and if we are interested in the group structure:

(Ce(K)S)Z3 = [b1, co ,bm] = Cg(K)?) ng @ Z/3b"’Z.

In the following tables, the first column contains the distinct Zs[w]-structures
of the 3-class groups that occurred, and the second column contains the corre-
sponding group structures. The third column indicates the observed ratio, while
the last column indicates the ratio predicted by Conjecture EET1 The entries in
columns 3 and 4 are rounded to 8 decimals. Note that in each of the following
tables, the ratio of number fields in the first row must (according to Theorem F3)
converge to the predicted value, as the number of fields considered is increased. For

1http ://pari.math.u-bordeaux.fr
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all the relevant data concerning the number fields and the class groups used, see
http://wuwl.informatik.unibw-muenchen.de./Wittmann/tables.html .
Casep=3,t=2.

Number of fields considered: 2510640.

Discriminant (p1p2)? with prime numbers 7 < p; < pe < 29389.

(CL(K)3)z4[w] | (CL(K)3)z4 | ratio | pred. ratio
0 0 0.88080101 | 0.83333339
2] [1,1] 0.09746041 | 0.09876543
(3] 2, 1] 0.01132221 | 0.01097394
[4] [2,2] 0.00124470 | 0.00121933
[5] [3,2] 0.00015255 0.00013548
[6] 3, 3] 0.00001593 | 0.00001505
7] 4, 3] 0.00000279 | 0.00000167
18] [4,4] 0.00000040 0.00000019

Casep=3,t=3.
Number of fields considered: 1013840.
Discriminant (p1p2p3)? with prime numbers 7 < p; < p2 < p3 < 1531.

(CL(K)3)z24[w] | (CL(K)3)z4 | ratio | pred. ratio
1,1 [1,1] 0.85924998 0.85596708
2.1 [1,1,1] | 0.12351357 | 0.12680994
3,1 [2,1,1] | 0.01451314 | 0.01408999
4.1 [2,2,1] | 0.00162649 | 0.00156555
2.2 [1,1,1,1] | 0.00071905 | 0.00117417
5,1 [3,2,1] 0.00020220 0.00017395
3,2 [2,1,1,1] | 0.00013118 | 0.00017395
6,1 [3,3,1] 0.00002071 0.00001933
4,2 [2,2,1,1] | 0.00001677 | 0.00001933
5.2 [3,2,1,1] | 0.00000395 | 0.00000215
7,1 [4,3,1] 0.00000197 0.00000215
3,3 [2,2,1,1] 0.00000099 0.00000161

Casep=3,t=4.
Number of fields considered: 163800.
Discriminant (p1p2p3p4)? with prime numbers 7 < p; < p2 < p3 < psy < 283.

(CL(K)3)z4[w] | (CL(K)3)z4 | ratio | pred. ratio
1,1 L1 0.86090354 | 0.84539958
2,1,1 [1,1,1,1] | 0.12154457 | 0.13568141
3.1,1 [2,1,1,1] | 0.01440781 | 0.01507571
41,1 [2,2,1,1] | 0.00166667 | 0.00167508
2.2.1 [1,1,1,1,1] | 0.00105617 | 0.00167508
5.1,1 [3,2,1,1] | 0.00017705 | 0.00018612
3,2,1 [2,1,1,1,1] | 0.00015873 | 0.00024816
6,1,1 [3,3,1,1] | 0.00004884 | 0.00002068
4.2.1 [2,2,1,1,1] | 0.00003053 | 0.00002757
3.3.1 [2,2.1,1,1] | 0.00000611 | 0.00000230

6. IMAGINARY QUADRATIC BASE FIELDS

Let F be an imaginary quadratic number field such that p { hp, where hp is the
class number of F'; and such that the pth roots of unity are not contained in F' (in
other words, F # Q(v/=3) if p = 3).

Now all the results of this paper remain valid if we consider cyclic extensions
K/F of degree p (instead of cyclic number fields K of degree p), since again C/(K),
is a Zp|w]-module. In this situation we fix the number of prime ideals p1,...,p;
of F' that ramify in K, and we assume that no p; divides p, which implies that
N(p;) = 1 mod p. The obvious modifications of the results and the conjectures
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in section Ml are left to the reader (compare with [9], and with H] for the usual
Cohen-Lenstra heuristics in this case).

We conclude with some numerical results for cyclic cubic extensions K of F' =
Q(i) such that two prime ideals of F' ramify in K. Note that we can assume that
the prime ideals of F' that ramify in K have inertia degree 1 (the other extensions
do not contribute to the limit of the conjecture).

Case F = Q(i) (base field), p=3,t = 2.

Number of fields considered: 205656.

Relative discriminant of the extension fields K/Q(7):

0k /q() = (P1p2)? with prime ideals p1 # py of F' of degree 1 with

(CL(K)3)z4[w] | (CL(K)3)z4 | ratio | pred. ratio
] i 0.80220835 | 0.83333389
2] [1,1] 0.09194966 | 0.09876543
[3] [2,1] 0.01106216 | 0.01097394
[4] 2, 2] 0.00120590 | 0.00121933
[5] 3, 2] 0.00019450 | 0.00013548
[6] 3, 3] 0.00000972 | 0.00001505
7] 7] 0.00336970 | 0.00000000

Note that here the fields K are of degree 6 over Q. There were some fields (contained
in the last row of the table) for which the computation of the 3-class number or of
a relative defining equation failed. In these cases, the (o — 1)%-rank of the 3-class
group must have been > 0.
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