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GLOBAL CONVERGENCE OF SSM
FOR MINIMIZING A QUADRATIC OVER A SPHERE

WILLIAM W. HAGER AND SOONCHUL PARK

Abstract. In an earlier paper [Minimizing a quadratic over a sphere, SIAM
J. Optim., 12 (2001), 188–208], we presented the sequential subspace method

(SSM) for minimizing a quadratic over a sphere. This method generates ap-
proximations to a minimizer by carrying out the minimization over a sequence
of subspaces that are adjusted after each iterate is computed. We showed in
this earlier paper that when the subspace contains a vector obtained by apply-
ing one step of Newton’s method to the first-order optimality system, SSM is
locally, quadratically convergent, even when the original problem is degenerate
with multiple solutions and with a singular Jacobian in the optimality system.
In this paper, we prove (nonlocal) convergence of SSM to a global minimizer
whenever each SSM subspace contains the following three vectors: (i) the cur-
rent iterate, (ii) the gradient of the cost function evaluated at the current
iterate, and (iii) an eigenvector associated with the smallest eigenvalue of the
cost function Hessian. For nondegenerate problems, the convergence rate is at
least linear when vectors (i)–(iii) are included in the SSM subspace.

1. Introduction

We consider the problem of minimizing a quadratic over a sphere:

(1) minimize
1
2
xTAx − bTx subject to x ∈ R

n, ‖x‖ = 1.

Here A is a symmetric n by n matrix, b ∈ R
n, and ‖ · ‖ is the Euclidean norm;

the problem has been scaled so that the sphere has unit radius. When n is small,
the solution to (1) can be computed from a diagonalization of A. But when n
is large, it is not practical to compute a diagonalization. The sequential subpace
method (SSM), introduced in [8], is an iterative method for solving (1); at step k,
the associated iterate xk is chosen to solve the problem

(2) minimize
1
2
xTAx − bTx subject to x ∈ Sk, ‖x‖ = 1,

where Sk is a subspace of R
n.

In [8] we show that if Sk includes a point obtained by applying Newton’s method
to the first-order optimality system at the current iterate, then SSM is locally,
quadratically convergent (cubically convergent when b = 0) to a solution of (1),
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even when the original problem is degenerate with multiple solutions and with
a singular Jacobian in the optimality system. The iterate obtained by applying
Newton’s method to the first-order optimality system is known as the SQP (se-
quential quadratic programming) iterate. In [8] we gave numerical comparisons to
algorithms appearing in [6, 16, 19] for a specific implementation of SSM where Sk

includes not only the SQP iterate, but also
(i) an estimate of an eigenvector of A for the smallest eigenvalue,
(ii) the current iterate xk,
(iii) Axk − b, the gradient of the cost function at xk.

If the SQP iterate is approximated by a Lanczos process, an estimate for an eigen-
vector associated with the smallest eigenvalue of A is obtained by computing an
eigenpair of the tridiagonal system associated with the Lanczos process (see [5, 14]).

In [8] we proved local quadratic convergence when Sk contains the SQP iterate.
Numerically, in a series of test problems, convergence to the global minimum was
always obtained when the vectors (i)–(iii) were included in Sk. In this paper, we
prove global convergence of the SSM when Sk contains the vectors (ii) and (iii),
along with an eigenvector associated with the smallest eigenvalue of A. Moreover,
the convergence rate is at least linear for nondegenerate problems.

The SSM is loosely related to the finite element for solving variational problems.
In the finite element method, an approximate solution is computed by carrying out
the minimization over a finite dimensional subspace. Convergence to the continuous
solution is obtained by increasing the dimension of the subspace. In the SSM
we obtain an approximate solution to the optimization problem by restricting the
minimization to a low dimensional subspace. On the other hand, convergence is not
achieved by increasing the dimension of the subspace; instead, we use the solution
of the subpace problem to generate an even better low dimensional subspace in
which to restrict the minimization.

Other approaches to (1) include the scheme of Golub and von Matt [4] based
on a partial tridiagonalization of A using the Lanczos process, and the related
implementation of Gould et al. [6], as well as the parametric eigenvalue approaches
of Sorensen [19] (further developed by Rojas in [17]), and the related scheme of
Rendl and Wolkowicz [16]. Numerical comparisons between these approaches are
given in [8]. The quadratic minimization problem (1) is often called the trust
region subproblem since it must be solved in each step of a trust region algorithm
[1, 2, 3, 12, 15] in mathematical programming. Problems of this form arise in many
other applications including regularization methods for ill-posed problems [11, 20]
and graph partitioning problems [9, 10].

2. Convergence

Let B denote the unit ball in R
n:

B = {x ∈ R
n : ‖x‖ = 1},

let f : R
n �→ R be the cost function in (1):

f(x) =
1
2
xTAx − bTx,

and let L : R
n × R �→ R be the Lagrangian associated with (1):

(3) L(x, µ) = f(x) +
µ

2
(xTx − 1).
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(We square the constraint, when forming the Lagrangian, to remove the square root
from the constraint.) Recall that x̄ is a stationary point (maximizer, minimizer, or
saddle point) of (1) if x̄ ∈ B and there exists µ̄ ∈ R such that the gradient of the
Lagrangian vanishes; that is,

(4) (A + µ̄I)x̄ = b.

Lemma 1. The vector x̄ ∈ R
n is a stationary point of (1) if and only if the

projection of the cost gradient onto the tangent plane of the constraint is zero and
x̄ ∈ B.

Proof. This connection between stationary points and projections is well known; we
include the proof since we reference it later. Since x̄ is a unit vector perpendicular
to the tangent plane of B at x̄, the projection p of the cost gradient at x̄ onto the
tangent plane can be expressed as

(5) p =
(
I − x̄x̄T

)
(Ax̄ − b) = Ax̄ − b + x̄

(
x̄Tb− x̄TAx̄

)
.

If x̄ is a stationary point and µ̄ satisfies (4), then Ax̄ − b = −µ̄x̄, and by (5) we
have

p = −µ̄x̄ + x̄
(
x̄Tb− x̄TAx̄

)
= x̄x̄T (b − Ax̄ − µ̄x̄) = 0.

Conversely, if p = 0, we have from (5) that[
A + x̄T(b − Ax̄)I

]
x̄ = b.

Hence, for µ̄ = x̄T(b − Ax̄), (4) holds. �
Lemma 2. If x̄ ∈ B and x̄ is not a stationary point, then for

S = span {x̄,Ax̄ − b},
we have

min
x∈S∩B

f(x) < f(x̄).

Proof. By Lemma 1, the projected gradient p in (5) does not vanish since x̄ is not
a stationary point. Observe that p ∈ S since it is a linear combination of x̄ and
b− Ax̄. Defining

x(α) =
x̄ − αp

‖x̄ − αp‖ ,

we have x(α) ∈ B. Moreover, x(α) ∈ S since p and x̄ ∈ S. Since p is perpendicular
to x̄, it follows that

d

dα
f(x(α))

∣∣∣∣
α=0

= (Ax̄ − b)T dx(α)
dα

∣∣∣∣
α=0

= (Ax̄ − b)T (
x̄(pTx̄) − p

)
= − (Ax̄ − b)T p.

Moreover, since (Ax̄−b)−p is parallel to x̄, which is perpendicular to p, we have

(6)
d

dα
f(x(α))

∣∣∣∣
α=0

= −‖p‖2 �= 0.

Hence, for positive α near 0,

f(x(α)) < f(x(0)) = f(x̄). �
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Lemma 3. If x̄ is a stationary point of (1) and x̄ is not a global minimizer, then
for

S = span {φ1, x̄},
where φ1 is an eigenvector of A corresponding to the smallest eigenvalue, we have

min
x∈S∩B

f(x) < f(x̄).

Proof. Since x̄ is a stationary point, there exists µ̄ satisfying (4). Expanding in a
Taylor series around x̄,

(7) f(x) = L(x, µ̄) = f(x̄) +
1
2
(x − x̄)T(A + µ̄I)(x − x̄)

for any x ∈ B. We expand x̄ in terms of orthonormal eigenvectors φ1, φ2, . . ., φn

of A:

(8) x̄ =
n∑

i=1

ζiφi.

Since x̄ is a unit vector,

(9)
n∑

i=1

ζ2
i = 1.

If ζ1 �= 0, we consider the point

x = x̄ − 2ζ1φ1 = −ζ1φ1 +
n∑

i=2

ζiφi,

which is a unit vector by (9). By (7), we have

(10) f(x) = f(x̄) + 2ζ2
1 (λ1 + µ̄),

where λ1 is the smallest eigenvalue of A. By [18, Lemmas 2.4 and 2.8], a stationary
point x̄ is the global minimizer of (1) if and only if A + µ̄I is positive semidefinite.
Since x̄ is not a global minimizer, it follows that A + µ̄I is not positive definite or,
equivalently, the smallest eigenvalue of A + µ̄I is negative:

(11) λ1 + µ̄ < 0.

Hence, (10) implies that f(x) < f(x̄).
On the other hand, if ζ1 = x̄Tφ1 = 0, then we achieve a decrease in the cost

function by taking

(12) x = k1φ1 + k2x̄

for an appropriate choice of k1 and k2. If x ∈ B, k1 and k2 must satisfy the condition

‖x‖2 = ‖k1φ1 + k2x̄‖2 = k2
1 + k2

2 = 1,

since x̄Tx̄ = φT
1 φ1 = 1, and the cross product φT

1 x̄ vanishes. Hence,

(13) k1
2 = 1 − k2

2.

By (8), (12), and the condition ζ1 = 0, we have

(14) x − x̄ = k1φ1 + (k2 − 1)x̄ = k1φ1 + (k2 − 1)
n∑

i=2

ζiφi.
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Combining (7), (13), and (14) gives

f(x) − f(x̄) =
(1 − k2

2)
2

(λ1 + µ̄) +
(k2 − 1)2

2

n∑
i=2

ζ2
i (λi + µ̄)

= (λ1 + µ̄)R(k2),(15)

where λi is the eigenvalue of A associated with φi, and

R(k) =
(1 − k2)

2
+

(k − 1)2
∑n

i=2 ζ2
i (λi + µ̄)

2(λ1 + µ̄)
.

Since R(1) = 0 and R′(1) = −1, it follows from (11) that f(x) < f(x̄) when k2 < 1
and k2 is near 1. This completes the proof. �

Theorem 1. If in each step of SSM Sk contains the vectors b−Axk, xk, and φ1,
an eigenvector associated with the smallest eigenvalue of A, then SSM converges to
a solution of (1).

Proof. Let {xk} be the sequence of SSM iterates. Since B is compact, there exists a
subsequence of {xk}, denoted {yj}, converging to y∗. Since f is continuous, f(yj)
converges to f(y∗). Let Tj denote the Sk subspace associated with the yj . Since
xk ∈ Sk for each k and xk+1 minimizes f over Sk∩B, it follows that f(xk+1) ≤ f(xk)
for each k. Furthermore, since {yj} is a subsequence of {xk}, f(yj+1) ≤ f(yj) for
each j.

Now, suppose that y∗ is not a stationary point of (1). We introduce the projec-
tions into the tangent plane appearing in Lemma 1:

p∗ =
(
I − y∗y∗T

)
(Ay∗ − b),

pj =
(
I− yjyj

T
)
(Ayj − b),

and we let T ∗ be the space of dimension at most 3 given by

T ∗ = span {y∗,Ay∗ − b, φ1}.

As in the proof of Lemma 2, we form points y∗(α) ∈ T ∗ ∩ B and yj(α) ∈ Tj ∩ B:

y∗(α) =
y∗ − αp∗

‖y∗ − αp∗‖ ,

yj(α) =
yj − αpj

‖yj − αpj‖
.

Since yj converges to y∗, we have limj→∞ pj = p∗. Since y∗ is not a stationary
point of (1), p∗ �= 0 by Lemma 1. Hence, there exists a positive constant c such
that ‖pj‖ ≥ c for all j sufficiently large. By (6) in the proof of Lemma 2, it follows
that

d

dα
f(yj(α))

∣∣∣∣
α=0

= −‖pj‖2 ≤ −c2.

Henceforth, we use primes to denote derivatives of f(yj(α)) with respect to α. Since
f is a quadratic, f ′′(yj(α)) is a polynomial in α and in 1/‖yj − αpj‖ of degree at
most 6. Since ‖yj‖ = 1 and yT

j pj = 0, we have ‖yj−αpj‖2 = ‖yj‖2+α2‖pj‖2 ≥ 1.
Hence, there exist M and ε > 0 such that

|f ′′(yj(α))| ≤ M
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whenever |α| ≤ ε. Expanding in a Taylor series around α = 0,

f(yj(α)) = f(yj) + f ′(yj)α +
1
2
f ′′(yj(ξ))α2

where 0 ≤ ξ ≤ α. Consequently, when 0 ≤ α ≤ ε,

f(yj(α)) ≤ f(yj) − c2α +
1
2
Mα2.

Taking α = min{ε, c2/M}, we have

f(yj+1) ≤ f(yj(α)) ≤ f(yj) +
(

1
2
Mα − c2

)
α

≤ f(yj) −
1
2
c2α ≤ f(yj) −

1
2
c2 min{ε, c2/M}.(16)

The relation (16) contradicts the fact that f(yj) converges to f(y∗). Hence, our
initial supposition, that y∗ is not a stationary point, cannot be valid, and we
conclude that y∗ is a stationary point of (1).

Suppose that y∗ is not a global minimizer of (1). Expand y∗ in terms of the
eigenvectors of A:

y∗ =
n∑

i=1

ζiφi,

where φ1, φ2, . . ., φn are orthonormal eigenvectors of A. Since y∗ is not a global
minimizer of (1), f can be decreased by choosing y as in the proof of Lemma 3:

(17) y =
{

y∗ − 2ζ1φ1 if ζ1 �= 0,
k1φ1 + k2y∗ if ζ1 = 0.

Recall that for this choice of y, for k2 < 1 near 1 and for k1 =
√

1 − k2
2 , we have

(18) f(y) − f(y∗) = −δ, δ > 0,

where

−δ =
{

2ζ2
1 (λ1 + µ̄) if ζ1 �= 0 (see (10)),

(λ1 + µ̄)R(k2) if ζ1 = 0 (see (15)).
With the same ζ1, k1, and k2 associated with y in (17), define

(19) zj =




yj−2ζ1φ1
‖yj−2ζ1φ1‖ if ζ1 �= 0,

k1φ1+k2yj

‖k1φ1+k2yj‖ if ζ1 = 0.

Since yj converges to y∗ and ‖y∗−2ζ1φ1‖ = ‖k1y∗ +k2φ1‖ = 1, it follows that the
denominators in (19) converge to 1 and zj converges to y. Since f is continuous,
f(zj) converges to f(y). Choose K large enough that

f(zj) − f(y) <
δ

2
for all j ≥ K.

This bound combined with (18) gives

f(zj) − f(yj) = f(zj) − f(y) + f(y) − f(y∗) + f(y∗) − f(yj)

≤ − δ

2
+ f(y∗) − f(yj).(20)

Since the yj decrease monotonically to y∗, we have f(y∗) ≤ f(yj) and by (20),

(21) f(zj) − f(yj) ≤ −δ/2.
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Since zj ∈ Tj ∩ B and
f(yj+1) ≤ min

x∈Tj∩B
f(x),

we have f(yj+1) ≤ f(zj). By (21),

f(yj+1) − f(yj) ≤ f(zj) − f(yj) ≤ −δ/2 < 0,

which contradicts the fact that f(yj) converges to f(y∗). Hence, y∗ is a global
minimizer of (1). �

Theorem 1 combined with the results of [8] imply that if each SSM subspace
contains φ1, xk, Axk − b, and an SQP iterate associated with xk, then SSM is
quadratically convergent to a global minimizer of (1) from any starting guess x0.

3. Linear convergence

We now establish linear convergence for nondegenerate problems, under the hy-
potheses of Theorem 1. Given any x ∈ B, let µ(x) be the solution of the problem:

min
µ

‖b− (A − µI)x‖.

The solution of this least squares problem is

µ(x) = xT(b − Ax).

Define µk = µ(xk) and
pk = (A + µkI)xk − b.

Referring to (5), we see that pk is the projection of the gradient Axk − b at the
current iterate onto the tangent plane of the constraint.

Lemma 4. If in each step of SSM Sk contains the vectors Axk − b and xk, then
there exist τ > 0, independent of k, such that

(22) f(xk+1) ≤ f(xk) − τ‖pk‖2.

Proof. Consider the vector

x(α) =
xk − αqk

‖xk − αqk‖
, qk = pk/‖pk‖.

Similarly to (6), we have

d

dα
f(xk(α))

∣∣∣∣
α=0

= −‖pk‖.

Choose M large enough that ∣∣∣∣ d2

dα2
f(x(α))

∣∣∣∣ ≤ M

for all possible choices of xk ∈ B and for all α ∈ [0, 1/2]. By a Taylor expansion
around α = 0,

(23) f(x(α)) ≤ f(xk) − ‖pk‖α +
1
2
Mα2,

whenever 0 ≤ α ≤ 1/2. The quadratic in (23) is minimized by taking α = ‖pk‖/M .
Since ‖pk‖ is uniformly bounded over all choices of xk ∈ B, it follows that M can be
chosen large enough to ensure that ‖pk‖/M ≤ 1/2. With the choice α = ‖pk‖/M
in (23), we have

f(x(α)) ≤ f(xk) − ‖pk‖2/(2M),
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which corresponds to (22) and τ = 1/(2M). �

Recall that the stationary points of (1) consist of pairs (µ,x) ∈ R×B satisfying
the equation

(24) (A + µI)x = b.

By [18, Lemmas 2.4 and 2.8], the global minimizers of (1) correspond to the unique
multiplier µ = ν1 satisfying (24) for some x ∈ B with λ1 + ν1 ≥ 0. Let S∗ denote
the set of solutions to (24) associated with µ = ν1. By Theorem 1, the SSM iterates
xk converge to S∗. Since µ(x) = ν1 for all x ∈ S∗, it follows that µk converges to
ν1 as k → ∞. We now prove linear convergence of xk when the global minimizer is
unique (more precisely, when λ1 + ν1 > 0).

Theorem 2. Suppose that in each step of SSM Sk contains the vectors Axk−b, xk,
and φ1, an eigenvector associated with the smallest eigenvalue of A. If ν1 + λ1 > 0
and σ and K are chosen so that µk + λ1 ≥ σ > 0 for all k ≥ K, then we have

‖xk+1 − x∗‖A ≤
(

1 − τσ

λn + ν1

)1/2

‖xk − x∗‖A

for each k ≥ K, where x∗ is the unique global minimizer of (1), τ is the param-
eter given in Lemma 4, λ1 and λn are the smallest and largest eigenvalues of A,
respectively, and the norm ‖ · ‖A is defined by

‖x‖2
A = xT(A + ν1I)x.

Proof. Expanding the Lagrangian in a Taylor series around xk, we see that for any
x ∈ B,

f(x) = L(x, µk) = f(xk) + pT
k (x − xk) +

1
2
(x − xk)T(A + µkI)(x − xk).

Since f(xk) ≥ f(x∗), it follows that

(25)
1
2
(x∗ − xk)T(A + µkI)(x∗ − xk) ≤ −pT

k (x∗ − xk).

Using the relation λ1 + µk ≥ σ on the left side of (25), we have
σ

2
‖x∗ − xk‖2 ≤ ‖pk‖‖x∗ − xk‖,

which gives

‖x∗ − xk‖ ≤ 2
σ
‖pk‖.

Inserting this bound for pk in (22) and exploiting the relation

‖x‖2
A ≤ (λn + ν1)‖x‖2

yields

f(xk+1) ≤ f(xk) − τσ

2
‖x∗ − xk‖2

≤ f(xk) − τσ

2(λn + ν1)
‖x∗ − xk‖2

A.(26)

Expanding in a Taylor series around x∗, we obtain

f(x) = L(x, ν1) = f(x∗) +
1
2
(x − x∗)T(A + ν1I)(x − x∗).

Combining this with (26), the proof is complete. �
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Theorem 2 gives a linear convergence estimate for k sufficiently large. For smaller
k, the convergence analysis is more complicated since the iterates may begin to
converge towards a saddle point, before sliding off the saddle and continuing their
progress to the global minimum. Estimates for the decrease in cost when the
iterates are far from the minimum can be obtained using expansions similar to
those in Lemma 3. For example, if ζ1 = xT

kφ1, then it can be shown that

(27) f(xk+1) ≤ f(xk) − 2ζ1pT
kφ1 + 2(λ1 + µk)ζ2

1 .

Lemma 4 gives an estimate for the cost decay when pk is large. When ‖pk‖ is
small, µk must be close to the discrete set of multipliers satisfying (24), and in this
case, (27) can be used to estimate the decay in the cost function.

4. Numerical illustration

To illustrate the convergence results, we consider the first test problem in [19]
in which A = A0 − 5I, where A0 is the standard 2D discrete Laplacian on the unit
square based on a 5-point stencil with equally spaced mesh points. The radius of
the sphere constraint is 100, and b is a vector with elements uniformly distributed
on [0, 1]. Our starting guess is x0 = b(100/‖b‖). The solid curve in Figure 1
corresponds to the choice Sk = span {xk,pk, φ1}. In the dashed curve, we augment
Sk with the SQP vector z obtained by solving the following linear system for the
unknowns z and ν:

(A + µkI)z + xkν = b− (A + µkI)xk,

xT
kz = 0.

log10 ||p  ||k 8

0 5 10 15 20 25 30
−14

−12

−10

−8

−6

−4

−2

0

Iteration Number

Subspace includes SQP direction

No SQP direction

Figure 1. log10 ‖pk‖∞ versus iteration, ‖ · ‖∞ = max absolute component
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As seen in Figure 1, including the SQP vector in the subspace yields much
faster convergence; in [8] we prove quadratic convergence when the SQP vector
is included in the subspace, in contrast to the linear convergence established in
this paper. Note though that the SQP iteration by itself typically converges to a
stationary point. Hence, it is important to include the additional vectors xk, pk,
and φ1 in the subspace to ensure convergence to the global minimum. SSM can be
implemented efficiently using the iterative techniques of [7] to approximately solve
the SQP system (see [8]).
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