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COMPUTATION OF THE EIGENVALUES
OF STURM-LIOUVILLE PROBLEMS

WITH PARAMETER DEPENDENT BOUNDARY CONDITIONS
USING THE REGULARIZED SAMPLING METHOD

BILAL CHANANE

Abstract. The purpose in this paper is to compute the eigenvalues of Sturm-

Liouville problems with quite general separated boundary conditions nonlin-
ear in the eigenvalue parameter using the regularized sampling method, an
improvement on the method based on Shannon sampling theory, which does
not involve any multiple integration and provides higher order estimates of the
eigenvalues at a very low cost. A few examples shall be presented to illustrate
the power of the method and a comparison made with the the exact eigenvalues
obtained as squares of the zeros of the exact characteristic functions.

1. Introduction

In 1996, we introduced a method for computing the eigenvalues of regular Sturm-
Liouville (SL) problems with Dirichlet boundary conditions [4]. The simple obser-
vation that the boundary (characteristic) function associated with the SL problem
happens to be in a Paley-Wiener space led to the conclusion that it can be recovered
from its samples at a countable number of points, using the well known Whitaker-
Shannon-Kotel′nikov theorem. We generalized this idea to some classes of singular
problems [5], [6]. Subsequently, we extended the scope of the method to include
regular SL problems with general separated boundary conditions [7], SL problems
with coupled self-adjoint boundary conditions [10], random SL problems [11] and
regular fourth order SL problems [12]. In fact, we obtained much higher order
estimates at the expense of having to subtract terms involving multiple integrals
[8].

The purpose of this paper is twofold. First we shall consider a regularization
avoiding any (multiple) integration and show that we can get higher order esti-
mates of the eigenvalues at a very low cost. This will constitute a substantial
improvement on the original method, and we will take this opportunity to call this
method the regularized sampling method. Second, we tackle the computation of
the eigenvalues of Sturm-Liouville problems with quite general separated param-
eter dependent boundary conditions although the known theory is for boundary
conditions which are affine in the parameter [1], [2], [3], [13], [18].
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2. Main results

We are interested in finding the eigenvalues of the following SL problem with
separated parameter dependent boundary conditions:

(2.1)

⎧⎨
⎩

−y′′ + qy = µ2y, x ∈ [0, γ],
a11(µ)y(0) − a12(µ)y′(0) = 0,
a21(µ)y(γ) + a22(µ)y′(γ) = 0,

where aij are entire functions satisfying the growth conditions

|aij(µ)| ≤ cij(1 + |µ|)m0 exp(Lij |Imµ|) , 1 ≤ i, j ≤ 2,

a2
11(µ) + a2

12(µ) �= 0, a2
22(µ) + a2

21(µ) �= 0, m0 is a nonnegative integer, and q ∈
L1([0, γ]). Let c0 = max cij , L = maxLij .

We shall assume further that the definiteness conditions{
a11µ

da12
dµ − a12µ

da11
dµ ≥ 0,

a21µ
da22
dµ − a22µ

da21
dµ ≤ 0

or {
a11µ

da12
dµ − a12µ

da11
dµ ≤ 0,

a21µ
da22
dµ − a22µ

da21
dµ ≥ 0

be satisfied (at least one inequality must be strict in any one of these conditions
to make the miss distance function strictly monotone [16]). This is to ensure a
monotone Prufer miss distance which guarantees at most one eigenvalue λk = µ2

k

of any index k having an eigenfunction with just k zeros in (0, γ).
Consider the two base problems

(2.2)
{

−y′′ + qy = µ2y, x ∈ [0, γ],
y(0, µ) = 1, y′(0, µ) = 0

and

(2.3)
{

−y′′ + qy = µ2y, x ∈ [0, γ],
y(0, µ) = 0, y′(0, µ) = 1,

whose solutions are denoted y1 and y2, respectively. The solution to the initial
value problem

(2.4)
{

−y′′ + qy = µ2y, x ∈ [0, γ],
y(0, µ) = a12(µ), y′(0, µ) = a11(µ)

and its derivative are, therefore,{
y(x, µ) = a12(µ)y1(x, µ) + a11(µ)y2(x, µ),
y′(x, µ) = a12(µ)y′

1(x, µ) + a11(µ)y′
2(x, µ).

It is well known that y1(x, µ) − cos µx, y′
1(x, µ) + µ sin µx, y2(x, µ) and y′

2(x, µ) −
cos µx are entire functions of µ for each x ∈ (0, γ] and satisfy the same growth
condition

|y1(x, µ) − cos µx| , |y′
1(x, µ) + µ sin µx| , |y2(x, µ)| ,

|y′
2(x, µ) − cos µx| ≤ c1 exp (x |Imµ|)
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for some constant c1. In [8], we have shown that y1(x, µ) − cos µx, y′
1(x, µ) +

µ sin µx −
∫ x

0
q(t) cosµ(x − t) cos µtdt, y2(x, µ) − sin µx

µx and y′
2(x, µ) − cos µx −∫ x

0
q(t) cosµ(x − t) sin µt

µt dt are entire functions of µ for each x ∈ (0, γ] and satisfy
the same growth condition

|y1(x, µ) − cos µx| ,
∣∣∣∣y′

1(x, µ) + µ sin µx −
∫ x

0

q(t) cosµ(x − t) cos µtdt

∣∣∣∣ ,∣∣∣∣y2(x, µ) − sin µx

µx

∣∣∣∣ ,
∣∣∣∣y′

2(x, µ) − cos µx −
∫ x

0

q(t) cosµ(x − t)
sin µt

µt
dt

∣∣∣∣
≤ c2

1 + γ|µ| exp (x |Imµ|) ,

which means that they belong to the Paley-Wiener space PWx defined by

PWx =
{

h(z) entire / |h(z)| ≤ C exp {x |z|} ,
∫ ∞

−∞
|h(z)|2 dz < ∞

}
.

In fact we have obtained much higher order estimates at the expense of having to
subtract from yi and y′

i terms involving multiple integrals. In this paper, we shall
stick with the first estimate given, hence avoiding any (multiple) integration and
show by the same token that we can get a higher order estimate at a very low cost.
Let

B(x, µ) = a21(µ)y(x, µ) + a22(µ)y′(x, µ).

The eigenvalues of the problem are seen as the square of the zeros of the boundary
(characteristic) function B(γ, µ).

Replacing y(x, µ) and y′(x, µ) by their expressions, we obtain

B(x, µ) = a21(µ) {a12(µ)y1(x, µ) + a11(µ)y2(x, µ)}
+ a22(µ) {a12(µ)y′

1(x, µ) + a11(µ)y′
2(x, µ)}

from which we get
B(x, µ) = B0(x, µ) + B1(x, µ),

where⎧⎨
⎩

B0(x, µ) = a21(µ){a12(µ) [y1(x, µ) − cos µx] + a11(µ)y2(x, µ)}
+a22(µ){a12(µ) [y′

1(x, µ) + µ sin µx] + a11(µ) [ y′
2(x, µ) − cos µx]},

B1(x, µ) = a21(µ)a12(µ) cosµx + a22(µ)a12(µ)µ sinµx + a22(µ)a11(µ) cosµx.

Theorem 2.1. B0 is an entire function of µ for each x ∈ (0, γ] and satisfies the
growth condition

|B0(x, µ)| ≤ c2(1 + |µ|)2m0 exp ((2L + x) |Im µ|) .

Proof. B0 is an entire function of µ for each x ∈ (0, γ] as a sum of products of
entire functions. As for the estimate, we have

|B0(x, µ)| ≤ |a21(µ)| {|a12(µ)| |y1(x, µ) − cos µx| + |a11(µ)| y2(x, µ)}
+ |a22(µ)| {|a12(µ)| |y′

1(x, µ) + µ sin µx| + |a11(µ)| | y′
2(x, µ) − cos µx|}

≤ c2(1 + |µ|)2m0 exp ((2L + x) |Imµ|)

with c2 = 4c2
0c1. �
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Corollary 2.2.
(

sin θµ
θµ

)m

B0(γ, µ) is an entire function of µ and satisfies the esti-
mate ∣∣∣∣

(
sin θµ

θµ

)m

B0(γ, µ)
∣∣∣∣ ≤ c3

(1 + θ|µ|)m−2m0
exp ((2L + γ + mθ) |Imµ|)

for a positive integer m ≥ 2m0 + 2 and positive constants c3 and ϑ.

Proof. It is enough to note that sin θµ
θµ is an entire function of µ and use the standard

estimate
∣∣ sin z

z

∣∣ ≤ c4
1+|z| exp(|Imz|), where c4 = 1.72 (say), c3 = c2c

m
4 , and the above

theorem. �

Thus, h(µ) =
(

sin θµ
θµ

)m

B0(γ, µ) belongs to the Paley-Wiener space PWσ with
σ = 2L + γ + mθ. Hence, h can be recovered from its values at the points µj = j π

σ ,
j ∈ Z, using the following celebrated theorem.

Theorem 2.3 (Whitaker-Shannon-Kotel′nikov). Let h ∈ PWσ, then

h(µ) =
∞∑

j=−∞
h(µj)

sin σ(µ − µj)
σ(µ − µj)

µj = j π
σ . The series converges absolutely and uniformly on compact subsets of C

and in L2
dµ(R).

Now, since µm−2m0−1h(µ) ∈ L2(−∞,∞), Jagerman’s result (see [19], Theorem
3.21, p.90) is applicable and yields the following very sharp estimate.

Lemma 2.4 (Truncation error). Let hN (µ) =
∑N

j=−N h(µj)
sinσ(µ−µj)

σ(µ−µj)
denote the

truncation of h(µ). Then, for |µ| < Nπ/σ,

|h(µ) − hN (µ)|

≤ | sin γµ|c5
π(π/σ)m−2m0−1

√
1 − 4−m+2m0+1

[
1√

(Nπ/σ) − µ
+

1√
(Nπ/σ) + µ

]
1

(N + 1)m−2m0−1
,

where c5 = ||µm−2m0−1h(µ)||2.

Let µ2 be an exact eigenvalue and µ2
N the corresponding approximation obtained

as a square of a zero of
[(

sin θµ
θµ

)−m+2m0

hN (µ) + B1(γ, µ)
]
. Then from

∣∣∣∣∣B(γ, µ) −
[(

sin θµ

θµ

)−m+2m0

hN (µ) + B1(γ, µ)

]∣∣∣∣∣
=

∣∣∣∣∣
(

sin θµ

θµ

)−m+2m0

[h(µ) − hN (µ)]

∣∣∣∣∣
≤

∣∣∣∣ sin θµ

θµ

∣∣∣∣
−m+2m0 | sin γµ|c5

π(π/σ)m−2m51
√

1 − 4−m+2m0+1

×
[

1√
(Nπ/σ) − µ

+
1√

(Nπ/σ) + µ

]
1

(N + 1)m−2m0−1
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we get

|B(γ, µN ) − B(γ, µ)|

=

∣∣∣∣∣B(γ, µN ) −
[(

sin θµN

θµN

)−m+2m0

hN (µN ) + B1(γ, µN )

]∣∣∣∣∣
≤

∣∣∣∣ sin θµN

θµN

∣∣∣∣
−m+2m0 | sin γµN |c5

π(π/σ)m−2m0−1
√

1 − 4−m+2m0+1

×
[

1√
(Nπ/σ) − µN

+
1√

(Nπ/σ) + µN

]
1

(N + 1)m−2m0−1
,

but |B(γ, µN ) − B(γ, µ)| = |Bµ(γ, ξ)| |µN − µ| for some ξ in a small ball centered
at µN with radius |µN − µ| and not containing a multiple of π/θ. Hence,

Theorem 2.5 (Error bounds). For |µN | < Nπ/σ,

|µN − µ| ≤ 1
inf |Bµ(γ, ξ)|

∣∣∣∣ sin θµN

θµN

∣∣∣∣
−m+2m0 | sin γµN |c5

π(π/σ)m−2m0−1
√

1 − 4−m+2m0+1

×
[

1√
(Nπ/σ) − µN

+
1√

(Nπ/σ) + µN

]
1

(N + 1)m−2m0−1
,

where the inf is taken over a ball centered at µN with radius |µN − µ| and does not
contain a multiple of π/θ.

3. Numerical examples

In this section, we shall present a few examples to illustrate our method. We have

taken θ = (2L + γ)/(N − m) in order to avoid the first singularity of
(

sin θµN

θµN

)−1

.
The sampling values were obtained using the Fehlberg 4-5 order Runge-Kutta
method.

Example 3.1 (Taken from Binding and Browne [2]).⎧⎨
⎩

−y′′(x) = λy(x), 0 ≤ x ≤ 1,
−y(0) = (λ + d)y′(0),

y(1) = λy′(1),

where d = −4π2. We took L = 1, m = 2, N = 40, and a precision of 10−10. The
computed eigenvalues together with the “exact” ones are displayed in Table 3.1.
As pointed out in [2], the oscillation counts occur in the sequence 1, 3, 4, 5, . . . , the
minimal count is 1 not 0, and there is count 2 missing. The exact characteristic
function is

Bexact(µ) = (1 + 4π2µ4 − µ6)
sin µ

µ
− (2µ2 − 4π2) cosµ,

where zero is not an eigenvalue.

Table 3.1. The first three eigenvalues in Example 3.1

Index Exact Eigenvalues Approximate Eigenvalues Absolute Error

1 9.730886578213082033 9.730887696302056807 0.00000111808897477

2 88.76331625258976337 88.76323738197181406 0.00007887061794931

3 157.88411043863472059 157.88422274978466468 0.00011231114994409
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Table 3.2a. The first three eigenvalues in Example 3.2

Index Exact Eigenvalues Approximate Eigenvalues Absolute Error

1 9.929679054283188 0.929678898812778 0.155470411 × 10−6

2 9.9387434140 9.9387439016 4.8758708700 × 10−7

3 11.2738742105212 11.2738738490945 −0.3614267 × 10−6

Table 3.2b. Eigenvalues from different ranges for Example 3.2

Exact Eigenvalues Approximate Eigenvalues Relative Error Absolute Error

1.0169749051×106 1.0169749052 ×106 -3.882156763×10−11 0.000136868

1.00119488705×108 1.00119488709×108 3.882156763×10−11 0.00388679

1.000126382927378×1010 1.00012638292493×1010 2.44062879930×10−12 0.024409

Example 3.2. ⎧⎨
⎩

−y′′(x) = λy(x), 0 ≤ x ≤ 1,
y(0) − 2y′(0) = 0,

(1 +
√

λ)y(1) + (1 − λ)y′(1) = 0.

We took L = 0, m0 = 2, N = 40, and a precision of 10−10. The computed
eigenvalues λ = µ2 together with the “exact” ones are displayed in Table 3.2a. The
exact characteristic function is

Bexact(µ) = (2 cos(µ) + sin(µ)/µ) + (1 − µ)(−2µ sin(µ) + cos(µ)).

1 is not an eigenvalue.
It is appropriate to note how perfect the approximation is over different ranges

by checking Table 3.2b, in which we include both the absolute and relative error.

Example 3.3 (Taken from Pryce [16], an “indefinite” case).⎧⎨
⎩

−y′′(x) = λy(x), 0 ≤ x ≤ π/2,
y′(0) = λ( 3

2y(0) + y′(0)),
y′(π/2) = 0.

This example illustrates the case in which the definiteness condition is not sat-
isfied. We have three eigenvalues λ1 = 0, λ2 = 1/4, λ3 = 1 to which correspond
three eigenfunctions y1(x) = 1, y2(x) = sin x

2 + cos x
2 , y3(x) = sin x. We took L = 1,

m = 2, N = 30, and a precision of 10−10. The computed eigenvalues λ = µ2

together with the “exact” ones are displayed in Table 3.3. The exact characteristic
function is

Bexact(µ) = −(1 − µ2)µ sin
(
µ

π

2

)
+

3
2
µ2 cos

(
µ

π

2

)
.

Table 3.3. The first three eigenvalues in Example 3.3

Index Exact Eigenvalues Approximate Eigenvalues Absolute Error

1 0 1.2857880801746297× 10−10 1.2857880801746297× 10−10

2 1/4 0.24999814884168953010 1.8511583104698968×10−6

3 1 0.9999881573635478785 1.18426364521215 ×10−5
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Example 3.4. ⎧⎨
⎩

−y′′(x) + exy(x) = λy(x), 0 ≤ x ≤ 1,
y(0) = 0,

−
√

λ sin(
√

λ)y(1) + cos(
√

λ)y′(1) = 0.

It is easy to check that the definiteness condition is satisfied. We took L = 1,
m0 = 1, N = 40, and a precision of 10−10. The computed eigenvalues λ = µ2

together with the “exact” ones are displayed in Table 3.4. Here again we are in a
position to derive the exact characteristic function which in fact can be expressed
in terms of the modified Bessel functions of the first kind. Indeed, let λ = µ2 and
consider the change of variables t = 2ex/2 and ν = 2ιµ, where ι =

√
−1. The

differential equation becomes the modified Bessel equation of order ν given by

t2
d2z

dt2
+ t

dz

dt
− (t2 + ν2)z = 0

whose solution is
z(t) = c1Iν(t) + c2I−ν(t),

where Iν and I−ν are the modified Bessel functions of the first kind of order ν.
Returning to the original variables, we obtain

y(x) = c1I2ιµ(2ex/2) + c2I−2ιµ(2ex/2).

Taking into account the boundary conditions, we obtain the homogeneous system
in c1and c2⎧⎨

⎩
c1I2ιµ(2) + c2I−2ιµ(2) = 0

c1

{
−µI2ιµ(2

√
e) sin µ +

√
eI ′

2ιµ(2
√

e) cos µ
}

+ c2

{
−µI−2ιµ(2

√
e) sin µ +

√
eI ′

−2ιµ(2
√

e) cosµ
}

= 0

In order to have a nontrivial solution, a necessary and sufficient condition is to have
Bexact(µ) = 0 where

Bexact(µ)

= ι

∣∣∣∣ I2ιµ(2) I−2ιµ(2)
−µI2ιµ(2

√
e) sin µ+

√
eI′

2ιµ(2
√

e) cosµ −µI−2ιµ(2
√

e) sin µ+
√

eI′
−2ιµ(2

√
e) cos µ

∣∣∣∣
is the characteristic function. The ι in front of the determinant makes Bexact a real
function. Now, using the well known result

d

dx
[xνIν(x)] = xνIν−1(x),

Table 3.4. The first six eigenvalues in Example 3.4

Index Exact Eigenvalues Approximate Eigenvalues Absolute Error

1 0.92906202857 0.9290620353 6.75215627149× 10−9

2 6.7478811782 6.7478811410 3.7173601254 × 10−8

3 16.1245477258 16.1245478044 7.8559790579 × 10−8

4 31.2202765051 31.22027698028 4.7517563634 × 10−7

5 50.73392783919 50.73392843916 5.9996614290 × 10−7

6 75.5814691882 75.5814692597 7.1549766566 × 10−8
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we obtain

Bexact(µ)

= ιI2ιµ(2)
{
−µI−2ιµ(2

√
e) sin µ +

√
e

[
I−2ιµ−1(2

√
e) +

ιµ√
e
I−2ιµ(2

√
e)

]
cos µ

}

− ιI−2ιµ(2)
{
−µI2ιµ(2

√
e) sin µ +

√
e

[
I2ιµ−1(2

√
e) − ιµ√

e
I2ιµ(2

√
e)

]
cos µ

}
.

4. Conclusion

In this paper, we have improved upon the method based on Shannon sampling
theory introduced in [4] by considering a regularization avoiding any multiple in-
tegration and shown that we can get higher order estimates of the eigenvalues at
a very low cost. We shall call this method the regularized sampling method. We
have presented a few examples to illustrate a method and compared the computed
eigenvalues with the exact ones obtained as squares of the zeros of the exact char-
acteristic functions.
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