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ERROR ESTIMATES ON ANISOTROPIC 9Q; ELEMENTS
FOR FUNCTIONS IN WEIGHTED SOBOLEV SPACES

RICARDO G. DURAN AND ARIEL L. LOMBARDI

ABSTRACT. In this paper we prove error estimates for a piecewise Q1 average
interpolation on anisotropic rectangular elements, i.e., rectangles with sides of
different orders, in two and three dimensions.

Our error estimates are valid under the condition that neighboring elements
have comparable size. This is a very mild assumption that includes more
general meshes than those allowed in previous papers. In particular, strong
anisotropic meshes arising naturally in the approximation of problems with
boundary layers fall under our hypotheses.

Moreover, we generalize the error estimates allowing on the right-hand
side some weighted Sobolev norms. This extension is of interest in singularly
perturbed problems.

Finally, we consider the approximation of functions vanishing on the bound-
ary by finite element functions with the same property, a point that was not
considered in previous papers on average interpolations for anisotropic ele-
ments.

As an application we consider the approximation of a singularly perturbed
reaction-diffusion equation and show that, as a consequence of our results,
almost optimal order error estimates in the energy norm, valid uniformly in
the perturbation parameter, can be obtained.

1. INTRODUCTION

In the finite element approximation of functions which have singularities or
boundary layers it is necessary to use highly nonuniform meshes such that the
mesh size is much smaller near the singularities than far from them. In the case of
boundary layers these meshes contain very narrow or anisotropic elements.

The goal of this paper is to obtain new error estimates for Q; (piecewise bi-
linear in 2D or trilinear in 3D) approximations on meshes containing anisotropic
rectangular elements, i.e., rectangles with sides of different orders. The classic er-
ror analysis is based on the so-called regularity assumption which excludes these
kinds of elements (see for example [§, [9]). However, it is now well known that this
assumption is not needed. Indeed, many papers have been written to prove error
estimates under more general conditions. In particular, for rectangular elements
we refer to [I, 12, 18] and their references.
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We will prove the error estimates for a mean average interpolation. There are
two reasons to work with this kind of approximation instead of the Lagrange in-
terpolation. The first one is to approximate nonsmooth functions for which the
Lagrange interpolation is not even defined; in fact this motivated the introduction
of average interpolations (see [I0]). On the other hand, it has already been observed
that, in the three dimensional case, average interpolations have better approxima-
tion properties than the Lagrange interpolation even for smooth functions when
narrow elements are used (see [II, [12]).

Our estimates extend previously known results in several aspects:

First, our assumptions include more general meshes than those allowed in the
previous papers. Indeed, in [12] it was required that the meshes be quasiuniform
in each direction. This requirement was relaxed in [I] but not enough to include
the meshes that arise naturally in the approximation of boundary layers, which will
be included under our assumptions. To prove our error estimates, we require only
that neighboring elements be of comparable size and so our results are valid for a
rather general family of anisotropic meshes.

Second, we generalize the error estimates allowing weaker norms on the right-
hand side. These norms are weighted Sobolev norms where the weights are related
to the distance to the boundary. The interest of working with these norms arises in
the approximation of boundary layers. Indeed, for many singular perturbed prob-
lems it is possible to prove that the solution has first and second derivatives which
are bounded, uniformly in the perturbation parameter, in appropriate weighted
Sobolev norms.

The use of weighted norms to design appropriate meshes in finite element ap-
proximations of singular problems is a well-known procedure. In particular, error
estimates for functions in weighted Sobolev spaces have been obtained in several
works (see for example [2 B [6] 14]). In those works, the weights considered are
related to the distance to a point or an edge (in the 3D case); instead here we
consider weights related to the distance to the boundary.

Finally, we consider the approximation of functions vanishing on the boundary
by finite element functions with the same property. This is a nontrivial point that
was not considered in the above-mentioned references.

Our mean average interpolation is similar to that introduced in [12] but the
difference is that we define it directly on the given mesh instead of using reference
elements. This is important in order to relax the regularity assumptions on the
elements.

We will prove our estimates for the domain © = [0,1]¢, d = 2,3. It will be clear
that the interior estimates derived in Section 2 are valid for any domain which can
be decomposed in d-rectangles. However, the extension of our results of Section 3
for interpolations satisfying Dirichlet boundary conditions to other domains is not
straightforward and would require further analysis.

To prove the weighted estimates, we will use a result of Boas and Straube [7]
which, as we show, can be derived from the classic Hardy inequality in higher
dimensions.

In Section 2 we construct the mean average interpolation and prove the error
estimates for interior elements. Section 3 deals with the approximation on boundary
elements. Since the proofs of this section are rather technical, we give them in the
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two dimensional case. However, it is not difficult (although it is very tedious!) to
see that our arguments apply also in three dimensions.

Finally in Section 4, as an application of our results, we consider the finite
element approximation of the reaction diffusion equation

—2Au+tu=f in Q,
u=0 in 09.

Using that appropriate weighted norms of the solution are bounded uniformly in
the perturbation parameter ¢, we show that it is possible to design graded meshes
independent of € such that almost optimal (in terms of the degrees of freedom)
error estimates in the energy norm, valid uniformly in €, hold.

2. ERROR ESTIMATES FOR INTERIOR ELEMENTS

In this section we prove error estimates for a piecewise Q1 mean average interpo-
lation for functions in weighted Sobolev spaces. The weights considered are powers
of the distance to the boundary. These kinds of weights arise naturally in problems
with boundary layers.

The approximation introduced here is a variant of that considered in [12]. The
difference is that we define it directly in the given mesh instead of using a reference
mesh. Working in this way, we are able to remove the restrictions used in [I},[12]. In
particular, our results apply for the anisotropic meshes arising in the approximation
of boundary layers.

Let 7 be a partition into rectangular elements of Q = [0,1]%, d = 2,3. We call
N the set of nodes of 7 and N;, the set of interior nodes.

Given an element R € 7, let hr; be the length of the side of R in the direction
ZTi.

We assume that there exists a constant o such that, for R, S € 7 neighboring
elements,

hR,i .
(2.1) Bl 1<i<d
hsi
For each v € N we define
hy,; =min{hg; : v is a vertex of R}, 1<i<d,

and hy = (hy1,hy2) if d = 2 or hy = (hy1,hy2,hy3) if d = 3. If p,q € R?, we
denote by p : ¢ the vector (p1q1,p292) if d = 2 or (p1¢1,p292,p3q3) if d = 3. Take
Y € O (R?) with support in a ball centered at the origin and radius » < 1/¢ and
such that [¢ =1, and for v € Ny, let

QZJV(LB): 1 w(lel,V2$2>

hv,lhv,2 hv71 hv72
ifd=2 or
o 1 Vi — 21 Vg — T2 V3 — I3
¢V(x) B hv,lhv,Zhv,3¢ ( hv,l ’ hv,2 ’ hv,3 >

if d = 3. Given a function u, we call P(z,y) its Taylor polynomial of degree 1 at
the point x, namely,

P(z,y) = u(z) + Vu(z) - (y — x).
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Then, for v € N}, we introduce the regularized average
(22) w(o) = [ Play)n(e)ds,

Now, given u € H}(Q), we define ITu as the unique piecewise (with respect to 7)
Q; function such that, for v € N, Hu(v) = uy(v) while ITu(v) = 0 for boundary
nodes v.

Introducing the standard basis functions A, associated with the nodes v, we can

write
u(z) = > uy(v)A(@).
vENin
For R € T and v € N we define (see Figure [Tl for the 2D case)

R= U{S €7 : S is a neighboring element of R}

and
R, = U{S €7 :v is a vertex of S}.

In our analysis we will also make use of the regularized average of u, namely,

Qv (u) = /u(x)wv(x)dx

for v € N;,.

We remark that, since r < 1/0, it follows from our assumption (2I) that the
support of 1, (x) is contained in R,.

Now we prove some weighted estimates which will be useful for our error analysis.
For any set D we call dp(z) the distance of  to the boundary of D. For a d-rectangle
R =T%_,(a;,b;) we have dp(x) = min{z; — a;,b; — z; : 1 <1i < d}. For such R we
will also consider the function

Sp(x) := min { ””h;a bihRji 11<i< d} .
&
/

FIGURE 1.
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We will make use of the following inequality which is known as “Hardy’s inequal-
ity”:
v(z) ‘

(2.3) H oD

< Cl
Lon = 10"l 22 (0,1)

for v € H}(0,1). We will also need the following generalization to higher dimen-
sions: If D is a convex domain and u € H} (D), then

(2.4)

< 2[|Vul[2(p)

P
dpllz2(p) —

(see for example [17]).

The following lemma gives an “anisotropic” version of (Z4]). It can be proved
by standard scaling arguments.

Lemma 2.1. Let R = H‘le(ai, b;) be a d-rectangle and h; = b; —a;,1 <i < d. For
all u € H}(R)

ou
8.%1'

u

Or

(2.5)

L2

d
<2 Z h;
(R) i=1

Another consequence of ([24) is the inequality that we prove in the following
lemma. This inequality was proved for Lipschitz domains by Boas and Straube in
[7]. We give a different proof here because we are interested in the dependence of
the constant on the domain, which is not stated in [7] because the proof given there
is based on compactness arguments.

L*(R) .

Lemma 2.2. Let R be a d-rectangle with sides of lengths h;, 1 < i < d, such that
% < h; <6, and let iy € Co(R) be a function such that [+ = 1. Then, there
exists a constant C' depending only on & and v, such that, for all u € H'(R) with
fR 7“[) =0,

(2.6) [ullz2(ry < ClldrVullr2(r)-

Proof. Since v := u — ([, u) has vanishing mean value, there exists F' € Hj(R)*
such that

(2.7) —divF =wv
and
(2.8) 1F| 53Ry < ClivliLa(r)-

Moreover, from the explicit bound for the constant given in [13] it follows that C
can be taken depending only on 4.
Now, since [, ut) =0, we have from (2.7)

Hu||2L2(R) =/ uvz—/ udiv F
R R

and therefore, integrating by parts and using (24) for each component of F, we
obtain

F
2
= [ Vu-F < |dgV || . <2ldev VF|| 12 (n),
iy = [ Vo P < JdnSulszn| 3= < 216020 IV Pl
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but

[0l Z2(ry < (14 [RIIWNZ2 ) ullZ2(my
and so, the proof concludes by using (2.8]) and the fact that the constant in that
estimate depends only on 6. O

As a consequence of the previous lemma we obtain the following weighted esti-
mates.

Lemma 2.3. For v € N, there exists a constant C depending only on o and
such that, for all u € H*(R,),

d
ou
(29) o= Qulw) 2y < O b o, o
i=1 v1IL2(Ry)
and, for all u € H*(R,),
O(u — uy) 0%u
(210) Hi < C hvz 5RV
Ox; L2(R,) Z Ox;0x; L2(R, )

Proof. Let K, be the image of R, by the map x — T with

1<e<d,
and, for Z € Ky, define @ by @(Z) = u(x). Then, Qy(u) = Q(&) where
Q= [ @@

Now, in view of our assumption (Z1]), the d-rectangle K, satisfies the hypothesis
of Lemma [2.2] with § = 20. Moreover, since r < %, the support of ¢ is contained
in K,. Therefore, since [(a — Q(u))y = 0, it follows from Lemma that there
exists a constant C depending only on ¢ and v such that

12— Q@) L2(x,) < Clldx, Vill z2(x,)

and (2.9) follows by going back to the variable x.
To prove (2I0)), observe that wu,(y) = @p(g) where

w0(@) = [ (@) + V(@)(@) - (5 - 2)(o)ds

o(u— o) ,
[0

we obtain from Lemma 22 that there exists a constant C' depending only on ¢ and
1) such that

and so, since

o(u —1u ou
‘M < 0llaxv
0z L2(K,) 0z, L2(Ky)
and the proof concludes going back to the variable x. ([

We can now estimate the approximation error for interior elements in terms of
weighted norms. We start with the L? norm. From now on C will be a generic
constant which depends only on ¢ and . In view of our hypothesis (1), hy; and
hr, are equivalent up to a constant depending on o whenever v is a vertex of R.
We will use this fact repeatedly without making it explicitly.
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Theorem 2.4. There exists a constant C depending only on o and ¢ such that

(i) For all R T andu € H'(R) we have

(2.11) IMul| 2y < Cllull 2 g) -
(ii) For all R € T such that R is not a boundary element and v € H'(R) we
have
(2.12) Ju — Tl 2y < CZth Raxl .

Proof. To prove (i), we write
nR
(Mu)| g =D uv, (V) Ay,
j=1
where {v;}]" are the interior nodes of R. Then,

ZnR

d
.13 Ml < € (H’Hw) 3 s i
=1

and we have to estimate ||uy, |1~y for each j. To simplify notation, we write
v =v; (and so the subindexes denote now the components of v). We have

<C (Hth> lullr2(g)

i=1

(2.14) ‘ / @)y (z)dz

On the other hand, since 1, = 0 on &R, integration by parts gives

[ @~ (o)

(2.15) = ’/U(x)wv(x)dx — /u(x)(yi ‘xi>%<x>dx

d
c (H hRﬂ‘) ||U||L2(é)
i=1

where we have used that |y; — z;| < Chy ;. Thus, 211)) follows from 2.13)), (214,
[2I38) and the definition of u, given in (Z2).

To prove (ii), choose a node of R, say vi. Since Qy, (u) is a constant function
and R is not a boundary element, we have IIQy, (u) = Qy, (1) on R and so

lu = Tul[L2(r) < llu = Qv, (W)l L2(r) + TH(Qv, (v) — W)l L2(r)
< Cllu— Qv (U)||L2(R)

where we have used (ZI1]). Now, estimate (Z12)) follows from (Z.I€]) and an estimate
analogous to (2.9) for R. O

N|=

IN

(2.16)
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FIGURE 2.

In what follows, we estimate the approximation error for the first derivatives for
interior elements. We will use the notation of Figure [2

Theorem 2.5. There exists a constant C depending only on o and ¢ such that, if
R € T is not a boundary element, then for all u € H*(R) we have

0%u
Ror,0r,; O0x;0x;

<CZhRZ

L2(R)
Proof. We will consider the case d = 3,j = 1. Clearly, the other cases are analogous.
We have

1<j<d.

(2.17) H a‘ij(u — )

LZ(R)

u—Tu = (u—uy,) + (ty, — u)

B(u “"1)

and from (Z.I0) we know that || | z2(R) is bounded by the right-hand side of

(2IT). Therefore, we have to estlmate H(Tlnu) |l L2(R)- Since w := uy, —Ilu € Qy,
we have (see for example [I8])

g_;ul = Z (w(vi) — w(vita)) (?3‘)::1 .

Then,

(2.18)

v,
Z B VZ+4 | 8]31

=1

‘%h

L2(R) L2(r)

But, it is easy to see that

(2.19) H v,

3331

1
S Cf (hvi,Zhvi,fS) 2
L2(R) hvi,l
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So, we have to estimate |w(v;) — w(v;yq)| for 1 <i < 4. We have
w(v1) — w(vs) = Uy (V5) — Uy, (V5)
= /P(:C,V5)1/)V5(x)dx—/P(x,V5)¢V1 (z)dz.

So, changing variables, we obtain

(2.21) w(vy) —w(vs) = / [P(vs — hyy : y,vs) — P(v1 — hy, 1 y,v5)] ¥(y)dy.

(2.20)

We introduce the notation v; = (v}, v?,v?). Define now

79

6= (6‘1,0,0) = (V% — V% + (hv1,1 — hV5,1)y1,0,0)

and
F,(t) == P(v1 — hy, 1 y+1t0,v5).
Then, since hy, 2 = hy, 2, by, 3 = hy, 3 and vi = v2, v = v3, we have
P(vs — hy, 1 y,vs5) — P(vi — hy, 1 y,v5) = Fy(1) — Fy(0)

and replacing in ([221]), we obtain

w(wn) - w(v) = | / ' E ) (y)dtdy = / { / E;(t)w(y)dy}dt

and therefore it is enough to estimate

I(t) = / F () (y)dy

for 0 <t < 1. But, from the definition of F, and P, we have

X v — i + hy, 1y1 — t01]

0%u
ol < [{|550-h )
1

azu 2 2
0x10x2 (V1 = hoy 1y +80)) X [v5 — Vi + huy 2072
0%u 5 5
D00, 1 T e sy 10)) X Vs = vy v, sy 161](y)dy.
Now, for |y| <1 and 0 <t <1, we have
0] = [01] < Chy, 1, |vi —vi + P, iyi — 01t] < Chy, i,

and therefore, since supp(¢)) C B(0,1), we have

62
|I(t)‘ < O/{ a—;;(vl — hv1 . y+9t) (th71)2
1
82
6azlgx2 (Vl N hvl Tyt ot)‘ th,lhv1,2
0%u
O0x10x3 (v =Py + Ht)‘ thalhmB} ¥(y)dy.

Now, making the change of variables z = v — hy, : y + 0t and setting

¢(Z) :w <_Z1 — [(1_t)V%+tv£]’_22_vi_23_v:f> )
(]. — t)hvl,l + thV5,1 hv1,2 hv1,3
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we obtain
3
8%u

1
< (e . -
uan_chwﬁMBEmeu/émﬁ%<

=1
where we have used that hy, 1 > C((1 — ¢)hy, 1 + thy,1). But, since supp ¢ C
B (O, %), it follows that supp ¢ C R. Then, using the Schwarz inequality, we
obtain

”V@“

1 0%u 10)
It <C—-—— hy, i —
| ()| - hv172hv17 ; b R(‘?xlaxl ’6131
and from Lemma 2.l we know that
‘ PN < Clhershe, o s)?
OrllL2(h)
Finally, using (2.19]), we obtain
) > 02
2.22 w(vy) — w(v hE <C h, i [|0p=——— .
e2) e el 2| <o hfongn]

Now, to estimate |w(va) — w(vg)|, we write
(2.23)
w(va) — w(ve) = (uy, (v2) = v, (V2)) = (t, (V6) — tvg (V6))

= (v, (va) = uv, (V6)) = (U, (v2) = Uy, (V6)) = (v, (V6) — iy, (v6))

= J1-II—-1III.
Now we estimate I — II. We have
ou ou
I= | —=(@)(vz —ve)tw, (2)dz  and  II= [ ——(x)(vy — vg)thy, (z)dx
or1 01

where we have used that vo — vg = (vi — v$,0,0). After a change of variables in
both integrals we obtain

0 0
I—1]= / {a—u(vl — hy, 1Y) — 3_;1(7)2 — hy, - y)} (vy — vg)y(y)dy

T1

and so, defining 8 = (0,62, 0) := (0,v3 — v} — (hy, 2 — hy, 2)y2,0) and

F,(t) = (vi — hy, 1y +61)

oz,

and taking into account that hy, 1 = hy, 1 and hy, 3 = hy, 3, we have

//F’ vl — vi)p(y)dtdy
/ {/F L vl )dy}d
:;/O I(t)dt.

0%u
81}16$2

Since

Fy(t) =

Y ( - hv1 Y+ 9t)92
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and for y € supp ¢, |y| < 1, we have

101< [ |50
0%u

8x16‘x2
< = — : .
< it [ |52 o= 2+00 | o)y

Change now to the variable z = vi — hy, : y + 6t and define

(01— by g+ et)] 162l — vl () ldy

2

a1 (1 — )2 4+ 2 .3
¢(Z):¢<_Zl Vl’_ZZ [( Jvi+ VZ]’_ZLi V1>.
o 1 (1 =)y, 2 + th, o o, .3
Then, since supp ¢ C R (because supp 1 C B (0,1)), we can use Lemma ] to
obtain 5
1 U
It <C— — d
101 < O3 [ |55 ()| etz
2
<C 1 - 0%u ’@
hv1,3 8x18x2 L2(1~%) (SR L2(R)
1
g C <hV1,1hV1,2> 2 R a2u '
hv1,3 (91‘13332 LQ(R)
Therefore,
1
he, 1hy 2 2
|I—H|<C<M> ‘R& '
hv1,3 (91‘13332 LQ(R)

The term II] in equation (223) can be bounded by the same arguments used to
obtain (Z22]). Therefore we obtain

Mo,
8%1

d

<CY hyl|ls

L2(R) i=1

. &%u
R(’?xlﬁxi

220 o) - uw)|

L)
The estimate of w(vs) — w(vy) follows by the same arguments used to estimate
w(vy) — w(vg). Then, it remains to estimate w(vy) — w(vg). We have
w(vy) — w(vs) = (uy, (v4) = v, (Va)) = (v, (v8) — tvg (vs))
= [(uvl (V4) = Uvy (VS)) - (uvs. (V4) = Uyy (VS))]
+ [ty (Va) =ty (v8)) = (thy, (v4) — Uy, (v8))] 4 [tivg (V8) — v, (v8)]
=T+IT+1II
Now we deal with the term /. One can check that
ou ou
I'= / [8—:“(‘/'1 —hy, 1Y) — 8—991(V3 — huy 1Y) | (vi = ve)¥(y)dy.

Defining now

)
F,(t) == 8—;‘1@3 — hyy Y+ t0)

where § = (0,0, 63) := (0,0,v} — v3 — (hy, 3 — by, 3)y3) we have
1
1= [ [ B =it
1 1
- [ [ - whewddy = [ 10,
0 0
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Since

0%u
8$16$3
and |6s] < Chy, 3, if |y| <1 it follows that

Fy(t) =

v (vg — hyy 1y +10)03

< hv hv hv : to d
101 < hoahos [ [ 5200ty 0 w0y
and so, changing variables and setting

y (_21 —vy 2 -vi oz —[(1-t)v} —i—tv?])
Py 1 ’ Py 2 ’ (1- t)hvfn?) +thy, 3 ’

we obtain

[1(t)] < v12/’axla$3 (2) ‘ o(2)dz.

Now, taking into account that ¢ = 0 on AR, it follows by the Schwarz inequality
and Lemma 2] that

1 0%u 0]
It <C 0p —
| ( )l - hv1,2 8.%181‘3 L2(R 5 )
1
< <h““1h“’3> i H(s;zaz" ,
hv1,2 63018333 LQ(R)
and therefore,
o\ &%u
2.25 I||== <h A .
(2:25) [y BT e

Finally, estimates for the terms II and III can be obtained with the arguments
used for (uy, (v2) — ty, (v6)) = (v, (v2) — Uy, (v6)) in @23) and uy, (vs) — uy, (vs)
in (220), respectively. These estimates together with the inequalities (Z22]), (2:24)
and (Z28]) conclude the proof. O

3. ERROR ESTIMATES FOR BOUNDARY ELEMENTS

In this section we deal with the interpolation error on boundary elements for
functions satisfying a homogeneous Dirichlet condition. For the sake of simplicity
and because the proof is rather technical, we state and prove the main theorem
in the two dimensional case. However, analogous results can be obtained in three
dimensions by using similar arguments.

We will use the notation of the previous section. Furthermore, if R = (a1, 1) %
(a2,b2) is a rectangle in 7, we set Ry; = a; and lg; = (a;,b;). Also we define the

function 0_ r by
. T1—ap T2 —az
o_ r(x) = mm{ } .
&(2) hr1i = hgro

We have 6g(x) < 6_ r(z) for all z € R.
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(@) (b)

3 4 3 4
R R
v, v, v, v,
RCQ1 RCQZ
(c) (d)
1A v,
vy v,
¢ o
R R
v, v, [ 4
v, v,
RCQ3 RC.Q.4

FiGURE 3. Relative positions of the rectangle R. The bold face
line is the boundary of €2.

To estimate the error on a boundary element R, we need to consider different
cases according to the position of R. So, we decompose 2 into four regions (see
Figure [3):

O =|J{ReT:RNOQ =10},
ngU{RET:Rﬁ{x:xl:0}:@andRﬂ{x:x2:0}7§®},
ngU{RET:Rﬁ{x:xl:0}7&@andRﬂ{x:x2:0}:®},
Q4 = R € T such that (0,0) € R.

Theorem 3.1. There exists a constant C' depending only on o and 1 such that if
R €T for allu € H*(R), the following estimates hold.

(i) f RC Qs andu =0 on {z: 25 =0},

xr1 — Rll 8211,
hR71 63)181‘2

L2(R)
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<C {hR,1

(ii) f RC Q3 andu =0 on {z: 1 =0},

L*(R)

0%u

—R a2

xrp — R11 82u

é
hR,l afvlaxg

+ hR,g
L?(R)

L2<R>} '

0
(3.3) ‘ —(u — TIu)
8331 LQ(R)
0%u zo— R 0%u
SCNhr1|0_rgz|| T hre 2h 128 3
Xy L2(R) R,2 T10T2 L2(R)
and
0
(3.4) ’ — (u — Tu)
0 L2(R)
~Ryp 0? 9?
<C< hpa 2 12 Y +hR72 o_ Rig .
hR)Q 6$18.’E2 L2(131) ’ 8I2 Lz(R)

(i) f RCQq andu=0 on{z:x1 =0 or xzs =0},

(3.5) ‘ 2 1)
8:61 L2(R)
92w T T3 > u
< h 0 pr>s h
< C{ R,1 ~R g2 La(f) T R2 {hR,1 + hR,2} 0102 L2(R)
and
(3.6) ’ i(u — Tu)
Oxo L2(R)
92u 1 T2 d*u
<C<lh 0_ s h .
< { R,2 — R 92 L) TR {hR,l * hR,Q} 0x1022 L2(R)

Proof of Part (i). We now use the notation of Figure Bl(b). We have
H’LL|R = ’ll,v3 (Vg))\VS —+ ’I.LV4 (V4))\V4.
From (2I0) we know that ||8%1(u — Uy, )||2(r) is bounded by the right-hand side

of BI)). So, to prove [Bl), it is enough to estimate Ha%l(uv3 —ITu)|| L2(R)-
Since (uy, — Ilu)|r € Q1, we have (see for example [18])

aixl(uvg = Iu) = ((uvy —Tu)(v2) — (uy; — Iu)(v1)) %2"12
(3.7) + (v, — Hu)(vy) = (ty, — u)(vs)) %2:4
Oy, o,

= (1 (2) = 1y (1)) 2+ ( (2) =t (v)) 7
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Taking into account that - 8“ =0 on (x1,0), it is easy to see that

Uyy (V2) — Uyy (V1) = —vl/ / / axlax (1,1) 0y, (z)dtdzy dzo

and then

0%u
[ty (Vo) — tyy (v1)| < Chygy 1 /l /l /z ‘78:1018:52 (xl,t)’ y, (z)dtdzidxs
R,2 R, R,2

<Chi [ ‘
R,2 L2(R)

Using the one dimensional Hardy inequality (23], we have

- Rll 5‘2u
hV3,1 63018332

hV3,1
r1 — Ry

q/}Va (x)

dZQ.
L%(R)

2
(z) | C o [(vi—m vI— 29
/ R0 TS T e 921 \ hea ' h day
(3 8) R,1 T — R11 vy,1'%v3,2 R T v3,1 v3,2
1
S Cig—5—
V3,1 V3,2
and then it follows that
1 - R 0%u
|uV3 (Vg) = Uyg (V1)| < C(hV?nthg,Q); A 1 p)
vs,l xlaq;Q ~
L2(R)
and so
8>\V — Rn 82u
39 (i) = w ) |52 < om |
3 3 al'l LZ(R) 3 hv3’1 al'lal'z LZ(R)

v,
8213 1

On the other hand, with the same argument that we have used to obtain ([2:22)
0*u
R 8:131'8{13]'

in the proof of Theorem we can show that
s¢ Z
L*(R)
which together with ([B.7)) and (B3] concludes the proof of (BI]).
Now, to prove ([B2), using Lemma once again, we have to estimate

||8%2(uv3 — Iu)||2(r). Using again the expression for the derivative of a Q; func-
tion, we have

(3.10)

| (g (V4) = Uy (v4))] H o

By (s — ) = —tiny (v1) o+ (U (v4) — U, (v4))

= — Uy, (V1) 92 + (Uyy (Va) — Uy, (v2))

(s (91) = 10, (92)) 2 = 0 (32)

vy Ma,
o+ (= I~ (v2)

Uy, (Vl)

Defining now
0= (91, O) = (V}L - Vé - (hV4,1 - hv;;,l)yl, O)



1694 R. G. DURAN AND A. L. LOMBARDI

and 5
U
Fy(t) = 8—1‘2(‘,3 — hV3 . y+9t),
we have
=11 = (3= ) [ |5 = by 59) = g (va = b 39)| (0)d
= (Vy Vo 63:2 V3 vy © Y 63:2 V4 vy 0 Y y)ay
— (3= ¥d) [ (B,0) = By
1
—-i-v) [ [ Fodway,
0
but )
s O7u B )
Fy(t) = 78.’1,‘16,%2 (Vg hv3 Ly + 9t)91
and so

1 2
0%y
I—1II=—(vi—v3) /0 / TG0, (V2 e 1y 08)019(y)dydt
1
= —(v?— v%)/ I(t)dt.
0
We will estimate I(t). Since supp ¥ C B(0,1), we have
(1) < Ch / U sy 00| ()
= vs,1 97,075 3 vs Y y)ay.

Now, setting z = v3 — hy, : y + 6¢, taking into account that Chy, 1 < (1 —1t)hy, 1 +
thy,1(0 <t <1), and defining

b(2) = ((1 —t)vi +tvi — 2z vi— ZQ)
(1= t)hyg +the1’ heo )7
we obtain )
1 0%u
I <
101 < 03 [ |55 )| o)

and since ¢ = 0 on OR, we can use Lemma 2] to obtain

1 10 0%u
() <C — o
hus2 107 Il L2 (i) 0103 || 25
1 9] 0 0%u
L U 1 P e H‘Sﬁa 92 || o 7
v3,2 21 L2(R) Z2 L2(R) T10T2 L2(R)
1
3 2
<C(@>2 R& )
hR,2 0x10x2 L2(R)
Therefore,
I —II| < C(hpihgs)? 5,0
= R, 1R 2 RaIlal‘g L2(R)’
SO
Ay 2
(3.11) H(I—H)b < Chpy ||5 =2 .
) L2(R) 0x10x2 L2(R)
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we observe that,

Now, to estimate the first term of formula BI0), uy, (v1) o

dac ’
since u(z1,0) = 0, one can check that
(3.12

T2 82 a
ot == [ [ Pttt s [ (51 2oy 2
=: A+ B.

We will estimate A and B. Since v = 0, we have

r1 — R t |0%u
A < Cha, » // z — Ry
t=0 V31 V32

- 2<x1, 0] ()
] [ [ st

Therefore, using the Schwarz 1nequahty and (B8], we obtain

LTS

- Rn

a 2(‘7;17 )‘¢V3( ) V37 dtdl‘ld.’L'Q

A < CLV“)% Ou
— 1 — b)
(huy1)? I 7023 [| 125y
and then
Oy 0?
(3.13) A H— < Chyys ||0_ s .
93 |2 (p) 05 || Loy

In order to estimate B, we note that, since g—;(xl, 0) =0,

B= / @) / [f—;mwvs(x)dxzdxl

:/ —ﬂUl/ ——— (@1, t) Yy, (x)dtdradr;.

t=0 ax28$1

secn. [ [ |
l}%,z ZR,1 lé,2

— Rn 82u
hV3,1 8.%181’2

Then,

m (l'l, t) ‘ wvs (l’)dtdl’ld%Q

S C(hV3,1hV3,2)%

L2(R)

where we have used the Schwarz inequality and the same argument used to obtain
B9). Consequently we obtain

OAv,
3332

- Rn 5211,
]’LV371 (91‘13332

<Ch
L*(R)

v3,1

B H

L2(R)
which together with [B.12) and BI3) implies

v,
8952

Uy (V1)

L*(R)

9%y
—,R95.2
ox3

— Rll 62’11,

< h ]
=0 hv371 0x1019

. %_ }IV3,1
L2(R)

V3,2

L2(R)
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Clearly an analogous estimate follows for ||uy, (v2) %Z"; |l z2(R), and then, in view of
(BI0) and (BII]) we conclude the proof of inequality (3.2]). O

The proof of part (ii) is, of course, analogous to that of part (i).

Proof of part (iii). We will use the notation of Figure B(d). Then
u|p = uy, (v4)Av,
In this case the error can be split as
(u— HU)‘R = (u — Uy,) + (uy, — Hu)
and it is enough to bound u,, — Iu, which is piecewise Q;. Then we have

(= Tl) = ((uy, — Tu)(73) — (a, — TT)(v3)
1

8I1
(3.19) (e, T0)(42) — (1, — T (1)) 52
= —Uy, (VB) % + (uv4 (V2) — Uy, (Vl)) 88);]12 .

First we estimate |uy,(ve) — uy,(v1)|. Using that %(xlﬂ 0) =0, we have
(1) e, (12) = [ (Plavva) = Plav), (a)do

S m<m4>

_V1 / = 032515562 (x1,t) Yy, (z)dtdz.

It follows that

|uv4(v2) UV4(V1)| < Ch\l4 1/ / /
191
<
| )

and an argument similar to that used to obtain (39 gives
z1  O%u

hV4,1 0x10x L2(R) .

_u
8I181}2

(w1, )’ y, (z)dtdrdx,

hvl
)] . (2) 2L iy ditdacs,
&w@“”WA@m idides

[ty (V2) =ty (V)] < Clhyg1h2)

Therefore,

x1  O%u

(3.15) |ty (V2) — ty, (

< Chy — .
4,2 hv4’1 8x18x2 LQ(R)

Now we consider the other term in (B.I4]). We have to estimate |uy,(v3)|. Using
that u(0,z2) = 0 and v3 = (0, v3), we obtain
. 82 ou
wie) == [ [ St (a)d + [ 63 =225 @i (o)
t=0 L2
=:A+B
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and we have to estimate A and B. We have

o1 i) 82 hv 2
Al < hy — v L2 dtd
4 < //h8< 2) () "2
8211, hv 2
<Chv41/ / / t ﬂfg 8.’1’,‘% (t,ZQ) wu(x) ,’1,‘42 dtd.’ﬂgdxl.

But again, by an argument similar to that used in the proof of ([33]), we obtain

\A|<C( o) H Ou .
(hyy2)? [ 7027 || 2
Therefore,
2
(3.16) |52 somaliaZy]
O L2(R) Oy L2(R)

On the other hand, using now that 597“2(0, x9) =0, we have

B = [0} - )5 (@), (o)

/ / 2 " _Ou (t, 22)1y, (x)dtdrodx
2) o Prr0m, TRV 20T

and then

2
|B| < Chy, » / / / s ﬂ(t,uwm(x)%dtdmdm.
R,1 R 2

hv4’2 8x18x2

Hence
ze  O%u

< Ch —_—
hu)g 8x18x2

(3.17)

V4,2

8951

Now, inequality ([B5]) follows from (BEZI), BI9), BI6) and BIT).
Since (B.6]) is analogous to ([B.5]), the proof is concluded. O

Bl H O\,

L2(R L2(R) .

4. APPLICATION TO A REACTION-DIFFUSION PROBLEM

As an example of application of our results we consider in this section the singular
perturbation model problem

—?Au+u=f in (0,2) x(0,2),

(4.1) w=0 on 9{(0,2) x (0,2)}.

Compatibility conditions are assumed in order to have the regularity results
proved in [I5] and [16]. As we will show, appropriate graded anisotropic meshes
can be defined in order to obtain almost optimal order error estimates in the energy
norm valid uniformly in the parameter €. These estimates follow from our results
of Sections 2] and B

The meshes that we construct are very different from the Shishkin type meshes
that have been used in other papers for this problem (see for example [ [16]). In
particular, our almost optimal error estimate in the energy norm is obtained with
meshes independent of e.
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Given a partition 75 of (0,2) x (0,2) into rectangles, we call uj the Qp finite
element approximation of the solution of problem (&I). Since wy, is the orthogonal
projection in the scalar product associated with the energy norm

1
2

olle = {21012 0.22) + 0132020 }
we know that, for any v, in the finite element space,

[ = unlle < flu—oval.

In particular, if IT is the average interpolation operator associated with the partition
T}, introduced in Section 2] we have

(4.2) lu—unlle < llu—Tull.

Therefore, we will construct the meshes in order to have a good estimate for the
right-hand side of (£.2).

We will obtain our estimates in = (0,1) x (0,1). Clearly, analogous argu-
ments can be applied for the rest of the domain. The constant C' will always be
independent of €.

In order to bound the part of the error which contains the first derivatives, we
will make use of the estimates obtained in the previous sections together with the
fact that the solution of ([@Il) satisfies some weighted a priori estimates which are
valid uniformly in the parameter e. We state these a priori estimates in the next
two lemmas but postpone the proofs until the end of the section.

Lemma 4.1. There exists a constant C' such that if o > %, then

(4.3) = Ou <C and 3% <C.
01| £2((0,3)x (0,3)) 972 || 22((0,3)%(0,3))
Lemma 4.2. There exists a constant C' such that if o > %, then
8?2 o2
(44)  ella0= <c, ellzg S <c,
021 || 12((0,3)(0,3)) 923 l22((0,3)x(0,3))
(4.5)
) 52
€ x?iu <C and € xgiu <C.
02102 | 12((0,8)x (0,3)) 0102 | 12((0,8)x (0,3))

To estimate the error in the L? norm, we will use a priori estimates in the
following norms. For v : R — R, where R is the rectangle R = [l; x l5, define
(4.6)

lollooxs.r i=[l[o@1, gy

and [oicee.n = oG a2)lgy |,
2

Then we have the following lemma, which also will be proved at the end of the
section.

’Loo(ll)

Lemma 4.3. There exists a constant C such that

<C and

1x00,(0,3)%(0,3)

<C.

Hafl Haxg

cox1,(0, )><(O,2)



ERROR ESTIMATES ON ANISOTROPIC Q; ELEMENTS 1699

Let us now define the graded meshes. Given a parameter h > 0 and « € (0,1),
we introduce the partition {&}X ) of the interval [0,1] given by & = 0, & =
hﬁ7 Cix1 =& +heF fori =1,...,N — 2, where N is such that {51 < 1 and
Env_1+ hEK_; > 1, and En = 1. We assume that the last interval ({y—_1,1) is not
too small in comparison with the previous one (§y_2,&nx—1) (if this is not the case,
we just eliminate the node &x_1).

We define the partitions 7}, o such that they are symmetric with respect to the
lines 1 = 1 and 2o = 1 and in the subdomain Q = (0,1) x (0,1) they are given by

{RCQ:R=(§-1,8&) x (§-1,&;) for 1 <i,j < N}.

Observe that the family of meshes 7}, , satisfies our local regularity condition
(ZJ) with o = 2%; that is, if S,T € 7}, o are neighboring elements, then

hr,i

< 2%,
hs.;

For these meshes we have the following error estimates. We set Q = |J{R: R C
2} where we are using the notation of the previous sections.

Theorem 4.4. If u € H%(Q) and u = 0 on {x : 21 = 0 or x5 = 0}, then there
exists a constant C' such that

0 0
l[u = TTul| 20 SCh{’l"?aTu +"Iga7u }
128 2| 12
(4.7) L2() L2(Q)
+Ch2—12a H% +H% ,
8952 ooxl,ﬂ (91171 lxoo,f?
O(u —11 5?2 52

(ag) |20t <Ch | |av% + @0 + 29) =2 ,

81‘1 L2(Q) 8%1 LQ(Q) 8.%181’2 L2(Q)
and

o(u —11 0? 0?

(4.9) Ofu — Iu) < Ch | ||(z§ + xg‘)iu + ‘ xg‘—z .

a$2 L2(Q) 83:18952 LQ(Q) 6952 LQ(Q)
Proof. We will estimate the error on each element according to its position. So, we
decompose the domain €2 into four parts, Q;, i = 1,...,4, defined as

Ql = [51551\7]27 QQ = [51751\7] X [0,51],

Q5 = [0, &1] x [61, 6], Q4 = [0, &%,
and we set Q; = J{R: RC Q;},i=1,...,4.

In order to prove (41), we split the error as follows:
4

(4.10) lu— Hu||2Lz(Q) = Z lu — Hu||2L2(Qi) =: 51+ Sy + S5 + 54

i=1
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First we estimate S;. If RN {z : 21 =0or zy = 0} = 0, we have that, for each
S CR, hg1 < hat and hgo < had for all (x1,22) € S, and then Theorem 2.4 gives

2 2
|u — ul|32z < C R A3 /% dx + h? /% dx
L2(R) = R,1 5|0z R2 |[. 924
<CZ{h /‘a“ dx + h3, 86“ d:c}
2 u 2
< 2 20 | 2 20 |
_CZ h/xl o dx +h /xQ o dx
scs o s

5‘x1

81’2

2
:C{h2[x%a dm+h2[x§“
R R

Now, suppose that R C Q;, RN{x: x5 =0} # § and RN{z : ;1 = 0} = §. Then
Ris = 0 and, if S C R, we have hsi < hx¢ for (z1,22) € S and hgo < ChT=.

Therefore, using Theorem [2.4], we obtain

ou |?
2 2 20
o= Tulagry < Ol [ 85 (@) |
Ju
2 22« 2
<Cz~{hs’1/s’a—m‘ d +Oh ‘/S$2a
ScR
2

<CZ{h2/ dx+C’h2/x§a

s

|2
dx
1
SCR
ou

o
2 2
:C’{hz/éxfo‘ dx+h2/éa:§a 92, da:}.

Now, if 0 € R, that is, RN {z : 21 = 0} # @ and RN {z : x5 = 0} # 0, then
Ri1 = R = 0 and hri < Chﬁ,hR,g < Cht=. Then, from Theorem 2.4] we

o
81}2

2

dx

dz + Ch, , /R 5% (x)

(9901

have
2
—H 22 < 2 / 2~a - / 20¢
w—ul[72(5) < Chig, R(SR () s dx + Ch, 5% —8:52
ou |?
< Oh2—2a/ 2 d Ch2 2(1/ 2c d
= R,1 é% —ax r + R:cg —ax2 T
2 2 ? 2 20 | OU 2
<Cqh Y| de+h “l—| dry.
<C /Rxl 9o, x4+ /RxQ 9y x

A similar estimate can be obtained for ||u — Iu| z2(r)y when RN{z:x1 =0} #0
and RN {z : z5 = 0} = (). Therefore, we have

2
ou |2
< h2 2a d 2/
S <C Z { /Rxl 0z, x+h Rfc2 92g dx
(4.11) Rct ) )

ou
<Ch2/x — d:ﬁ+0h2/x2a— dz.

QO 1 8x1 Ie) 2 8x2
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Now, we estimate Sp. From Theorem 2.4 we know that ||ITul|z2ry < C||“||L2(R)
for all R € 7j o and therefore

(4.12) So= Y llu=TulZemy <C Y llullfs gz < Cllulfa,)

RCQ2 RCQ2
So, we have to estimate ||ul| 2 (q,). We have Qs =1lg o1 X lg, o with |lg 1| < C and
g, 2l < Chm= . Using that u(z1,0) =0, we have

ullZa s, = / |

lay 1 Vg, o

2 Ou 2
—(x1,t)dt p dxodz,
log 1 Vi, o 0 Ozy

(4.13) 2
<c / (@) du
sz ,2 Ll(lfz2,2) Lm(lﬁz,l)
2
<ChT= Ou
8x2 (X)Xl,flz
and so, it follows from ([@I2) and ([EI3) that
(4.14) S, < chi'a || 2%
8'/1:2 (X)Xl,QZ
Analogously we can prove that
0
(4.15) Sy < Cha || 2L ,
8.%1 lXOO,Qg
(4.16) Sy < ChTe H and Sy < ChTe H
922 || so 1,02, 921 || 1 x 00,24

and inserting inequalities (L11]), (£14), (£15) and (£.I6) in (£I0), we obtain (L7

(note that QCcQyand Qy C Qg)

Let us now prove ([{8). Inequality [£9) follows in a similar way. Again we use
the decomposition of € into the four subsets Q;,7 = 1,...,4, defined above. Then
we have

2 2

i

1

(4.17) ' ai(ufﬂu) (u — Iu) =51+ 8+ 855+ 5,

1

8:131

i=
and we have to estimate S;, i =1,...,4.
For S7, Theorem gives

L2(Q) L2(Q;)

2

0
S) = E — (u —Iu)
fice, 1971 L2(R)
&%u 0%u 2
< 2 2a 2a
P> {hm [ o@)| 55w pes [ @) |G d:c}

Z Ig.

RC
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Now, ifﬁ’ﬂ{x:xl =0 or z2 = 0} = ), we have
92u2 2
Il < C h2 — dz
el = Z{ b ] o
TCR
but, for T C €1, we have that

(4.18) hT,l < Chxclx , hT’g < Chl‘g V(l‘l, IQ) eT,
and therefore,

2

dx} .

2
|IR| SC{hZﬁx%a dx—|—h2/ z3*
R R

On the other hand, if RN {z : 29 = 0} # 0 and RN {z : ; = 0} = 0, there are
some elements 7' C R that do not verify condition (@I8)). For such an element T'

0%u

d h2 _—
T T2 T 8x18x2

2

2
Oy

0%u
8:518952

1
we have hro < hT-= while the condition on hy; in (£If) remains valid. So we
obtain

Ip| <C § h2/ g2 | U 2dx+h2_2a/ w2o| P [*y,
Rl= = st 022 T2 )72 | 0x,0xy
Pu |?
< E 2 — 2 .
C {h /T d:l:—l—h /T:c2 901023 dx}

Now, if (0,0) € R, we have hyy < ChTs and hpy < ChT< for all T C R and
0%u

d h2 2&/ 2a
v T 2 333182112

therefore,
2
dx}
2
dx + h? / z2” dx} .
T

|IR|<CZ h2 2a/ 104
T
If RN{z:21 =0} #0 and RN {z: 2o = 0} = 0, we can estimate I analogously

TCR
and so we obtain
2 2
dx+h2/~x§a dx}.
Q

9%y |?
z?

0%u
8.11‘1(9.%2

9%u|?
0z?

0%u
8I16$2

0%u
ox?

<Cy {hQ/ z3e
T

(4.19) Sy gc{fﬂ / x>
Q

TCR
Let us now estimate So. From Theorem BI(i) we have

(4.20)
2 5\ 2@ 2
u r1 — R11 82u
Sy < h%, / 52 —| dx+h? / ‘ dz
2 Rgz 8 2 R2 R hR71 (91‘18]32
=: Z IR.
REQs

Now, if R C Qy is such that RN {z : z; = 0} = () then we have

2
Izl < C thm/’g d:u+Zh /
TCR T x

2

8x18x2
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but, in this case, for T' C R,
hT72 < C]’LTJ < Chﬂi‘lx Vo = ($1,1‘2) eT
and therefore,

2 2
(4.21) TR gc{fﬁ/xfa dx+h2/x%a dx}.
R R

On the other hand, if R C Qs is such that RN {z:21 =0} #0, Ri1 = 0 and so, it
follows from ([20]) that (note that hRQ < hp1)

Irl<CS > h?{f“/xfo‘ dx+ Z hy;- 20/ 3
TCR T r
but in this case, for T C R, hry < C’hm and then
2
0°u 0%u

4.22 I <h2/ 5= d h2/ Rl
(4.22) el < Rxl ox? v Rxl 0x10x2
Therefore, inserting inequalities (£21]) and ([@22) in (£20) we obtain

2 9 2
dx+h2/ zie Ou dx}.
Q2

(91‘18]32
Let us now estimate S3. Using Theorem B.IJ(ii) we have
0u

~ 2a
0%y o — R
< 200 _ 2 2 12
S3<C Y {h% /5 5o dx+hR,2/R< P 921075

REQs !

=: Z Ig.

ReQ3
If R C Q3 is such that RN {z : 2o = 0} = 0, then for T C R,
hT,l < Chﬁ, hT)g < Chx? V(.’L‘l,l‘g) S T,

2

2
Ty

0%u

8.1‘1 8%‘2

2

&%u
8x18x2

0z3

2
dx.

2

2u

(4.23) Sy, <C {hQ[ ri® 0
Qo

2
Ox?

2
dx

and so
9%u|? ?u |?
I < h2 204/ 200 | d h2 / 2" | d
[r| < C Z { 0z3 S 7 |0x102 *
(4.24) )
< E h2/ 1% == da:—l—hZ/xgo‘ O dz p .
B T 8 T 8x18x2
c

If RN {z : 29 = 0} # 0, then Ris = 0 and so ([E24) can be obtained also for this
case using similar arguments. Therefore, we have

2

dx} .

9%u|? 8%u
4.25 Sy < C hz/ z3e dx—l—h2/ 2
( ) 3 = { Q3 1 Q3 2 al'lafﬂz

ox?
Finally, to estimate Sy, note that €2, contains only one element R. Now, using

1
Theorem B.INiii) and the fact that for this element hr 1 = hro = h1-=, we obtain

o 0?u o O%u o 0%u |
18:51 L 9101, 2 01014 L2(R) ’

2 2

(4.26) Sy < Ch? {’

+’x

+‘x

L2(R) L2(R)
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Collecting the inequalities (£19), @23]), (£25) and [@26), we obtain ([£J]), con-

cluding the proof. O

As a consequence of Theorem 4] and the a priori estimates for the solution of
problem (]) we obtain the following error estimates for the finite element approx-
imations obtained using the family of meshes 7}, . To simplify notation, we omit
the subscript « in the approximate solution.

Corollary 4.5. Let u be the solution of [@Il) and let uyp be its Q1 finite element
approzimation obtained using the mesh Ty, o with % <a<1. IfN is the number
of nodes of T, «, then there exists a constant C' independent of € and N such that

1 1
1—a+/N
Proof. From (£2), Lemmas 1] and €3] and Theorem 4] (and its extension

to the rest of (0,2) x (0,2)) it follows that if  is small enough (h < 3 is sufficient)
and o > %, then

(4.27) lu—wuplle <C log N.

lu — uplle < Ch.

So we have to estimate h in terms of N. If we denote by M the number of nodes
in each direction in the subdomain 2, we have N ~ M? and we will estimate M.
Let f(§) =&+ h&®. Then, & =0, & = hizs and iv1=f(&),i=1,...,M;—1,
where My¢(= M) is the first number ¢ such that § > 1. Since a < 1, we have that

f(&) > &+ hg=:g(8), vE € (0,1).

Now, consider the sequence {nl}i\igo given by n1 = &, and 141 = g(n;),i =
2,...,M,, where M, is defined analogously to M. Then, it is easy to see that
My < M, and therefore, it is enough to estimate My. But, My = [m] where m solves

(1+h)m=1¢ = 1. Since & = hﬁ, for 0 < h <1, we obtain

1 1 1 1 1 1
4.28 ——log—<m-1<C———1log —.
(4.28) T—an Sn=""""="1"an ®h
Now, from inequalities (28] we easily arrive at
1 1
<O~ -
h < Cl o log M

for all h small enough. O

Lemmas £.T] and 3] are straightforward consequences of the estimates

ak z —x
(4.29) ’8—1;:(51517x2) < C{l—FE_ke_?l +€_ke_271}’
1
ak z —x
(430) ’3 Z(LCl,ZIJQ) < C{l +6_ke_72 —|—5—ke—2 2 }
L3

provided that 0 < k < 4 and (z1,22) € [0,2] x [0,2], which are proved in [I6].

As an example we prove the first inequality in ([@3H). Observe that, for r = 0,1, 2,

‘C)T—“(xl,xg) =0 when 29 = 0 or 20 = 2 for s = 1 and when 27 = 0 or 21 = 2 for

™
g
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i = 2. Then we have

2u ou  u
(4.31) — d dry = 1 ———dxad
3 / / 33:133:2 Tz = / / 1 33:1 021023 T2t
/2 72 8u82 ,/Qi xm@ &dx dx
—Jo i Oz, Ox2 om0 Jo 071 U oz, ) 022! 2
3.0, [* Ou 3 0%u 3
:_(_)2 2 8x1( 2>W(_’$2)d$2
a1 Ou %u 0%u *u
/ / % 18 o 2d.’1}1d.’1}2+/ / 1 o 28 deldmg
= I+II+1II.
Now, since
ou ,3
2 <
8$1(27x2) _07
0%u 3
— (= <C(l4e2
T3] < e,
ou 11—z
P —(z1,22)| < C(l+e e =) (0<x1 <3/2),
82U 2 _Z1
o > (21,22)| S C(1+e e =) (0< 2 <3/2),
1
82
p Z(xl,xg) <C(l+e7?),
)
we easily obtain
(4.32) 1] <C(+e7?),
(4.33) [II| < CO(e72+4g2273),
(4.34) [I1T] < C(e72+&%73).

Now, using inequalities (£32]), (£.33) and [@.34) in [@31]), we conclude the proof.
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