
MATHEMATICS OF COMPUTATION
Volume 74, Number 252, Pages 2017–2026
S 0025-5718(05)01740-0
Article electronically published on March 8, 2005

COMPUTING THE STRUCTURE
OF A FINITE ABELIAN GROUP

JOHANNES BUCHMANN AND ARTHUR SCHMIDT

Abstract. We present an algorithm that computes the structure of a fi-
nite abelian group G from a generating system M . The algorithm executes
O(|M |

√
|G|) group operations and stores O(

√
|G|) group elements.

1. Introduction

Let G be a finite abelian group. Then G can be written as a direct product

(1.1) G = 〈G1〉 × · · · × 〈Gk〉,
where k is a positive integer, Gi is a cyclic subgroup of G, 1 ≤ i ≤ k, and if ni is
the order of Gi, 1 ≤ i ≤ k, then ni divides ni+1 for 1 ≤ i < k. The integers ni are
uniquely determined by G. They are called the invariants of G. Let n be the order
of G. Let

(1.2) ϕ : G → {1, . . . , nc}
for some positive integer c. Suppose that we can compute ϕ(a · b) from ϕ(a) and
ϕ(b) and ϕ(a−1) from ϕ(a) for all a, b ∈ G. Those are the group operations.

The group structure problem is the following: Given a generating system for
G, that is, a sequence (g1, . . . , gl) of group elements such that G = {

∏l
i=1 gei

i :
ei ∈ Z, 1 ≤ i ≤ l}, compute the invariants n1, . . . , nk of G and group elements hi,
i ≤ i ≤ k, such that |〈hi〉| = ni, 1 ≤ i ≤ k and the cyclic subgroups Gi = 〈hi〉
generated by the hi satisfy (1.1).

The fastest algorithm [BJT97] for the group structure problem known so far
executes |M |2k/2|G|1/2+o(1) group operations and stores |G|1/2+o(1) group elements,
where o(1) is a function that goes to zero as |G| goes to infinity . In this paper, we
present a new algorithm that allows us to prove the following theorem.

Theorem 1.1. Computing the structure of the finite abelian group G from the gen-
erating system M requires storing O(

√
|G|) pairs (g, �q) ∈ G × {0, . . . , �

√
|G|�}|M |,

O(|M |
√
|G|) multiplications and inversions in G, O(|M |

√
|G|) table lookups, and

(|M | log |G|)O(1) bit operations.

The new algorithm is no longer exponential in the number of generators. The
algorithm is based on an idea of Terr [Ter00] for computing the order of an element
of G.

Received by the editor April 23, 2003 and, in revised form, August 2, 2004.
2000 Mathematics Subject Classification. Primary 11Y16; Secondary 20C40, 20K02.

c©2005 American Mathematical Society

2017

2018 JOHANNES BUCHMANN AND ARTHUR SCHMIDT

The paper is organized as follows. In section 2 we describe Terr’s algorithm for
computing the order of a group element g ∈ G. In section 3 we present the new
algorithm for computing the structure of G.

2. Computing the order of an element

In this section we present an algorithm for computing the order order(g) of an
element g ∈ G. This algorithm is a special case of an algorithm by Terr [Ter00] and
is based on the following statement.

Lemma 2.1. Let g ∈ G. Then there is e ∈ N and f ∈ {0, . . . , e−1} with ge(e+1)/2 =
gf . If e is chosen minimal with this property, then e(e − 1)/2 < order(g) ≤ e(e +
1)/2, f is uniquely determined, and order(g) = e(e + 1)/2 − f .

Proof. Let e ∈ N such that e(e−1)/2 < order(g) ≤ e(e+1)/2. Since e(e−1)/2+e =
e(e+1)/2, such an e exists. Let f = e(e+1)/2−order(g). Then f ∈ {0, . . . , e−1}.
Also, since ge(e+1)/2−f = gorder(g) = 1, it follows that ge(e+1)/2 = gf . This proves
the existence of e and f .

We prove the minimality of e. Let e′ ∈ N, f ′ ∈ {0, . . . , e′ − 1} such that
ge′(e′+1)/2−f ′

= 1. Then e′(e′+1)/2 ≥ e′(e′+1)/2−f ′ ≥ order(g) = e(e+1)/2−f >
e(e−1)/2. Since e and e′ are integers, this implies e′(e′−1)/2 ≥ e(e−1)/2. Hence,
e′ ≥ e. �

For e = 1, 2, . . . Terr’s algorithm computes the set

(2.1) babySet = {(gf , f) : 0 ≤ f < e}
and checks whether there exists a pair of the form (ge(e+1)/2, f) in babySet for some
f . By Lemma 2.1 this will eventually happen. If this happens for the first time,
then we have order(g) = e(e + 1)/2 − f . In the algorithm we use

babyElement = ge, giantElement = ge(e+1)/2.

Here is the algorithm.

Algorithm 1. order (g)

Input: A group element g.
Output: The order n of g.

babySet ← {(1, 0)}.
e ← 1
babyElement ← g
giantElement ← g
loop

if babySet contains a pair (giantElement, f) then return n = e(e + 1)/2 − f
insert (babyElement, e) in babySet
babyElement ← g · babyElement
giantElement ← giantElement · babyElement
e ← e + 1

We analyze Terr’s algorithm.

COMPUTING THE STRUCTURE OF A FINITE ABELIAN GROUP 2019

Theorem 2.2. Let g ∈ G and let n = order(g). Given g, algorithm order(g)
terminates and returns n. Algorithm order(g) executes at most

√
2n + 1/2 itera-

tions, 2
√

2n− 1 multiplications in G and
√

2n + 1/2 table lookups. Also, algorithm
order(g) stores at most

√
2n + 1/2 elements of G.

Proof. It follows from Lemma 2.1 that order terminates and upon termination we
have e(e − 1)/2 < n ≤ e(e + 1)/2. Since e and n are integers we have (e − 1/2)2 =
e(e−1)+1/4 < 2n, which implies e <

√
2n+1/2. In the first e−1 iterations of the

while loop, 2 multiplications are executed. In the last iteration no multiplication
is performed. Also, table babySet is accessed twice in each iteration, once to test
whether (giantElement, f) ∈ babySet, and once to store the pair (babyElement, e)
in babySet. Since the number of iterations is at most

√
2n + 1/2, this implies the

assertion. �

3. Computing the structure

Let
M = (g1, . . . , gl)

be a generating system for G. For �q = (q1, . . . , ql) ∈ Z
l we write

M�q =
l∏

j=1

g
qj

j .

A relation for M is a vector �q ∈ Z
l such that M�q = 1. The set L(M) of all

relations for M is a lattice in Z
l. Since that lattice is the kernel of the surjective

homomorphism

(3.1) Z
l −→ G, �q �→ M�q,

its dimension is l. Also, if U = (�u1, . . . , �um) ∈ Z
l,m, then we write

MU = (M�u1 , . . . , M�um).

Our algorithm is based on the following lemma.

Lemma 3.1. Let B = (�b1, . . . ,�bl) ∈ Z
(l,l) be a basis of the relation lattice L(M).

Let D ∈ Z
(l,l) be the Smith normal form of B. Let D = diag(n1, . . . , nk, 1, . . . , 1)

with sk > 1. Let U ′D = BV with U ′, V ∈ GL(l, Z). Let U ∈ Z
(l,l) with U ≡ U ′

(mod |G|). Let MU = (h1, . . . , hk, hk+1, . . . , hl). Then the following are true.
(1) The order of G is | detB|.
(2) The invariants of G are n1, . . . , nk.
(3) The order of hi is ni, 1 ≤ i ≤ k, and

(3.2) G = 〈h1〉 × · · · × 〈hk〉.

Proof. 1. The determinant of B is the index of the kernel of the map (3.1) in Z
l.

That index is the order of G.
2. and 3. We claim that MU is a generating system for G. Clearly, we have

(MU)�v ∈ G for any �v ∈ Z
l. Conversely, let g ∈ G. Then there is �v ∈ Z

l with
g = M�v. Since gcd(detU, |G|) = 1, it follows that there is Ũ ∈ Z

(l,l) such that
UŨ ≡ Il (mod |G|) where Il is the l × l-identity matrix. Set �̃v = Ũ�v. Then

(MU)�̃v = (MU)Ũ�v = MUŨ�v = M�v = g.

This proves our claim.

2020 JOHANNES BUCHMANN AND ARTHUR SCHMIDT

Next, we show that the columns of D form a basis for the relation lattice of
MU . Since (MU)D = MUD = MU ′D = MBV , it follows that the columns of D are
relations for MU . Let �v be a relation for MU . Then 1 = (MU)�vMU ′�v. It follows
that U ′�v is a relation for M . Since BV is a basis for L(M), there is �x ∈ Z

l with
U ′�v = BV �x = U ′D�x. Hence, �v = D�x. This proves that D is a basis of L(MU).
It follows that the ith diagonal element di of D is the order of hi, 1 ≤ i ≤ l.
In particular, we have hk+1 = . . . = hl = 1. This implies that (h1, . . . , hk) is a
generating system for G.

Since D is a basis of L(MU), it follows that if (h1, . . . , hk)�e = 1 for some �e ∈ Z
k,

then ei ≡ 0 (mod ni) where ei is the ith entry in �e, 1 ≤ i ≤ k. This proves (3.2).
Since D is the Smith normal form of B, it follows that n1, . . . , nk are the invariants
of G. �

By this lemma, the structure of G can be computed as follows. We determine
a basis B of the relation lattice L(M). We use standard techniques (e.g. [HM91])
to compute the Smith normal form D and a matrix U ∈ Z

(l,l) with the properties
from Lemma 3.1. Then the invariants and the representation of G as a product of
cyclic groups whose orders are the invariants can be computed as described in the
lemma.

We describe the computation of the basis B = (�b1, . . . ,�bl) of the relation lattice
L(M). We write

�bj = (b1,j , . . . , bl,j).
The matrix B will be in Hermite normal form, that is, bi,j = 0 for 0 ≤ j < i ≤ l
and 0 < bi,j < bj,j , 1 ≤ i < j ≤ l.

Let j ∈ Z, 1 ≤ j ≤ k and suppose that we have computed the basis vectors
�b1, . . . ,�bj−1. We describe the computation of �bj . The idea is as follows. Let

�ei = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
l−i

) ∈ Z
l, 1 ≤ i ≤ l.

The subgroup H generated by the g1, . . . , gj−1 is

(3.3) H = {
j−1∏
i=1

gxi
i : 0 ≤ xi < bi,i, 1 ≤ i < j}.

Note that H depends on j. But for simplicity, we omit the index j. The entry bj,j

is the order of the coset gjH in the factor group G/H. So we can use the order
algorithm from the previous section to calculate that entry. We have to look for
the smallest e such that

(3.4) g
e(e+1)/2
j = gf

j h

for some f ∈ {0, . . . , e−1} and some h ∈ H. As in algorithm order, we could store
the values on the right-hand side and try to find an e that satisfies (3.4). However,
H can be as large as the whole group G. This is too large to obtain the complexity
that we want. Therefore, we split H into two parts. We use a decomposition

(3.5) {1, . . . , j − 1} = I1 ∪ {m} ∪ I2,

where the three sets on the right-hand side are pairwise disjoint. Let

(3.6) H1 = {(M−�v, �v) : �v =
∑
i∈I1

xiei, 0 ≤ xi < bi,i, i ∈ I1}

COMPUTING THE STRUCTURE OF A FINITE ABELIAN GROUP 2021

and

(3.7) H2 = {(M�v, �v) : �v =
∑
i∈I2

xiei, 0 ≤ xi < bi,i, i ∈ I2}.

The decomposition in (3.5) is chosen such that

(3.8) |Hi| ≤
√
|H|, i = 1, 2.

We set

(3.9) s =
⌈√

|H|/|H1|
⌉

and

(3.10) t =
⌈√

|H|/|H2|
⌉

.

Now we have the following result.

Lemma 3.2. Any h ∈ H can be written as h = h−1
1 gqs+r

m h2, where hi is the first
entry of a pair in Hi, i = 1, 2 and we have 0 ≤ q < t and 0 ≤ r < s.

Proof. By (3.3) and (3.5) we can write

h = h−1
1 gn

mh2,

where hi is the first entry of a pair in Hi, i = 1, 2 and n ∈ {0, . . . , bm,m − 1}.
Write n = qs + r with 0 ≤ r < s. Then qs < bm,m. Hence q < bm,m/s ≤
bm,m|H1|/

√
|H| = |H|/(|H2|

√
|H|) ≤ t. �

Now we modify (3.4). To find �bj we look for the smallest e such that

(3.11) g
e(e+1)/2
j h2g

qs
m = gf

j h1g
−r
m ,

where (hi, �vi) ∈ Hi for some �vi, i = 1, 2, 0 ≤ r < s, 0 ≤ q < t, and 0 ≤ f < e. Then

(3.12) �bj = �v1 + �v2 + (qs + r)�em + (e(e + 1)/2 − f)�ej .

To look for a match of the form (3.11) we use two sets. The first one is

babySet = {(gf
j h,�v − f�ej) : (h,�v) ∈ auxiliaryBabySet, 0 ≤ f < e},

where

auxiliaryBabySet = {(h1g
−r
m , �v + r�em) : (h1, �v) ∈ H1, 0 ≤ r < s}.

In the set babySet we store the elements from the right side of (3.11). The second
set is

giantSet = {(h2g
qs
m , �v + qs�em) : (h2, �v) ∈ H2, 0 ≤ q < t}.

As in the order algorithm we use

babyElement = ge
j , giantElement = g

e(e+1)/2
j .

In iteration e we multiply giantElement with each element of giantSet and check
whether the product is in babySet. If so, we have the match that we have looked
for and can compute �bj . If there is no such match, we increment e, update babySet,
babyElement and giantElement and repeat the procedure. If �bj has been deter-
mined and j = l, then the algorithm terminates. If �bj has been determined and
j < l, then a new decomposition (3.5) is determined and the sets I1, I2, H1, H2,
auxiliaryBabySet, and giantSet are updated. If bj,j = 1, then the decomposition (3.5)
and the sets I1, I2, H1, H2, auxiliaryBabySet remain unchanged. The treatment of
the other cases can be seen in the algorithm.

2022 JOHANNES BUCHMANN AND ARTHUR SCHMIDT

Algorithm 2. HNFRelationBasis (M)

Input: A system M = (g1, . . . , gl) of group elements
Output: The HNF-Basis B = (�b1, . . . ,�bl) of L(M)

Hi ← {
(
1, (0, . . . , 0)

)
}, i = 1, 2

Ii ← ∅, i = 1, 2
s ← 0, t ← 0, m ← 0
auxiliaryBabySet ← H1; giantSet ← H2

for j = 1, . . . , l do
e ← 1
babySet ← auxiliaryBabySet, babyElement ← gj , giantElement ← gj

loop
for all (g,�v) ∈ giantSet do

if babySet contains a pair (g · giantElement, �w) then
�bj ← �v + �w + (e(e + 1)/2)�ej

break
babySet ← babySet ∪ {(g · babyElement, �v − e�ej) : (g,�v) ∈ auxiliaryBabySet}
e ← e + 1; babyElement ← babyElement · gj ;
giantElement ← giantElement · babyElement

if j < l and bj,j > 1 then

if bj,j

∏
i∈I1

bi,i ≤
√∏j

i=1 bi,i then
H1 ← H1 ∪ {(g−x

j g,�v + x�ej) : (g,�v) ∈ H1, 0 ≤ x < bj,j}
I1 ← I1 ∪ {j}

else
if m > 0 then

H2 ← H2 ∪ {(gx
mg,�v + x�em) : (g,�v) ∈ H2, 0 ≤ x < bm,m}

I2 ← I2 ∪ {m}
m ← j

s ←
⌈√∏j

i=1 bi,i/
∏

i∈I1
bi,i

⌉
t ←

⌈√∏j
i=1 bi,i/

∏
i∈I2

bi,i

⌉
auxiliaryBabySet ← {(h1g

−r
m , �v + r�em) : (h1, �v) ∈ H1, 0 ≤ r < s}

giantSet ← {(h2g
qs
m , �v + qs�em) : (h2, �v) ∈ H2, 0 ≤ q < t}

return (�b1, . . . ,�bk)

In the analysis of the structure algorithm we need the following lemma.
Lemma 3.3. (1) Let k ∈ N and a1, . . . , ak ∈ R≥1. Then∑k

j=1 aj ≤
∏k

j=1 aj + (k − 1).
(2) Let k ∈ N and a1, . . . , ak ∈ R≥2. Then∑k

j=1

∏j
i=1

√
aj ≤ (2 +

√
2)

∏k
j=1

√
aj.

Proof. 1. For any x, y ∈ R≥1 we have

x + y − xy − 1 = (x − 1)︸ ︷︷ ︸
≥0

(1 − y)︸ ︷︷ ︸
≤0

≤ 0.

COMPUTING THE STRUCTURE OF A FINITE ABELIAN GROUP 2023

Hence

(3.13) x + y ≤ xy + 1.

Now, we prove the first statement of the lemma by induction.
For k = 1, the assertion is true.
Assume that the statement is true for k − 1. Then we have

k∑
j=1

aj =
k−1∑
j=1

aj + ak ≤
k−1∏
j=1

aj

︸ ︷︷ ︸
≥1

+ak + (k − 2) ≤
k∏

j=1

aj + (k − 1).

2. Let B =
∏k

j=1

√
aj . Then

k∑
j=1

(
j∏

i=1

√
ai

)
= B

k∑
j=1

⎛
⎝ k∏

i=j+1

1
√

ai

⎞
⎠ ≤ B

k∑
j=1

⎛
⎝ k∏

i=j+1

1√
2

⎞
⎠

= B

k∑
j=1

(
1√
2

)k−j

= B

k−1∑
j=0

(
1√
2

)j

= B
1 − (1/

√
2)k

1 − 1/
√

2

= B(2 +
√

2 − 2 +
√

2
√

2
k

) ≤ (2 +
√

2)
k∏

j=1

√
aj . �

We now present the main result of this paper. By l(M) we denote the number
of diagonal entries in the HNF-basis of L(M) that are greater than 1.

Theorem 3.4. Algorithm HNFRelationBasis computes the HNF-basis of the lat-
tice of relations on M and executes

• l = |M | inversions,
• at most (48 + 8l − 6l(M))

√
|G| + 2l(M) log

√
|G| multiplications in G,

• at most 4(2 +
√

2 + l − l(M))
√
|G| table lookups.

The algorithm uses

• two tables of at most
√
|G|,

• two tables of at most 2
√
|G|,

• one table of at most 4
√
|G|

pairs (g, �q) ∈ G × {0, . . . , �
√
|G|�}|M |.

Proof. We first estimate the sizes of the sets H1, H2, babySet, auxiliaryBabySet, and
giantSet. Then we estimate the number of group operations and table lookups.

Consider the computation of �bj . Let e(j) be the final value for e in the compu-
tation of �bj . By Lemma 2.2 we have

e(j) <
√

2bj,j + 1/2 ≤ 2
√

bj,j .

First, HNFRelationBasis computes the order of the coset gjH in the factor group
G/H and the vector �bj . Then, it updates the sets H1, H2, auxiliaryBabySet, and
giantSet for the next loop.

2024 JOHANNES BUCHMANN AND ARTHUR SCHMIDT

We analyze the first step. By (3.8) we have

(3.14) |Hi| ≤
√
|H| =

√√√√ j∏
i=1

bi,i ≤
√
|G|, i = 1, 2.

It follows from (3.9) and (3.10) that

(3.15) |auxiliaryBabySet| = s|H1| ≤ 2
√
|G| and |giantSet| = t|H2| ≤ 2

√
|G|.

The set babySet is constructed from the set auxiliaryBabySet from the (j − 1)th
iteration. Therefore we have

|babySet| ≤ e(j)|auxiliaryBabySet|

≤ 4
√

bj,j

√√√√j−1∏
i=1

bj,j ≤ 4
√
|G|.

We estimate the number of table lookups. We consider the cases e(j) = 1 and
e(j) > 1. In the first case, we have bj,j = 1. In the second case we have bj,j ≥ 2.
By Lemma 3.3 we have at most

l∑
j=1

e(j)|giantSet| ≤
l∑

j=1

2e(j)

√√√√j−1∏
i=1

bi,i ≤
l∑

j=1

4
j∏

i=1

√
bi,i

≤ 4
l∑

j=1,e(j)>1

j∏
i=1

√
bi,i + 4

l∑
j=1,e(j)=1

j∏
i=1

√
bi,i

≤ 4(2 +
√

2)
l∏

j=1,e(j)>1

√
bi,i + 4(l − l(M))

l∏
j=1

√
bi,i

≤ 4(2 +
√

2 + l − l(M))
√
|G|

table lookups.
We estimate the number of multiplications. The number of multiplications nec-

essary to multiply all first elements of giantSet by giantElement is

M1 ≤
l∑

j=1

e(j)|giantSet|

≤ 4(2 +
√

2 + l − l(M))
√
|G|.

The number of multiplications to update babySet is

M2 ≤
l∑

j=1

e(j)|auxiliaryBabySet|

≤ 4(2 +
√

2 + l − l(M))
√
|G|.

COMPUTING THE STRUCTURE OF A FINITE ABELIAN GROUP 2025

The number of multiplications necessary to update babyElement and giantElement
is

M3 ≤
l∑

j=1

(2e(j) − 2) ≤ 2
l∑

j=1

e(j) − 2l

= 2
l∑

j=1,e(j)>1

e(j) + 2
l∑

j=1,e(j)=1

e(j) − 2l

≤ 2
l∑

j=1,e(j)>1

(
√

2bj,j + 1/2) + 2(l − l(M)) − 2l

≤ 2
√

2
l∑

j=1,e(j)>1

√
bj,j + l(M) − 2l(M)

≤ 2
√

2
l∏

j=1,e(j)>1

√
bj,j + 2

√
2(l(M) − 1) − l(M) (Lemma 3.3)

≤ 2
√

2|G| + 2l(M).

Now we analyze the number of multiplications necessary to update H1, H2,
auxiliaryBabySet, and giantSet. No multiplications are executed if �bj,j = 1. In
each loop with �bj,j > 1 either |H1| multiplications are necessary to update H1 or
|H2| multiplications are necessary to update H2. Next, |auxiliaryBabySet|+|giantSet|
multiplications are used to update auxiliaryBabySet and babySet, and finally at most
2�log

√
|G|� multiplications are performed to compute gs

m during the computation
of TG. By (3.14), (3.15) and Lemma 3.3, the total number of multiplications
required for those updates is

M4 ≤
l∑

j=1

(5

√√√√ j∏
i=1

bi,i + 2�log
√
|G|�)

≤ 5(2 +
√

2)
√
|G| + 2l(M) log

√
|G|.

So the number of multiplications is

M ≤ M1 + M2 + M3 + M4

≤ (48 + 8l − 6l(M))
√
|G| + 2l(M) log

√
|G|.

Finally the algorithm executes l inversion. �

Theorem 1.1 can be deduced from Theorem 3.4. The number of group operations
and table lookups is estimated in Theorem 3.4. We estimate the number of bit op-
erations. When the algorithm updates the sets auxiliaryBabySet, babySet, giantSet,
H1, and H2 it executes |M |

√
|G|(log |G|)O(1) bit operations. By [HM91] the mod-

ular computation of the Smith normal forms is possible in time (|M | log |G|)O(1)

since that algorithm has polynomial running time, the entries of the HNF-basis are
in {0, . . . , |G|} , and the dimension of that matrix is |M | × |M |.

2026 JOHANNES BUCHMANN AND ARTHUR SCHMIDT

References

[BJT97] J. Buchmann, M.J. Jacobson, Jr., and E. Teske, On some computational problems in
finite abelian groups, Mathematics of Computation 66 (1997), 1663–1687. MR1432126
(98a:11185)

[HM91] J.L. Hafner and K.S. McCurley, Asymptotically fast triangularization of matrices over
rings, SIAM Journal on Computing 20 (1991), 1068–1083. MR1135749 (93d:15021)

[Ter00] David C. Terr, A modification of Shanks’ baby-step giant-step algorithm, Math. Comp.
69 (2000), no. 230, 767–773. MR1653994 (2000i:20039)

Technische Universität Darmstadt, Theoretische Informatik, Hochschulstr. 10,

64289 Darmstadt, Germany

E-mail address: buchmann@cdc.informatik.tu-darmstadt.de

Technische Universität Darmstadt, Theoretische Informatik, Hochschulstr. 10,

64289 Darmstadt, Germany

E-mail address: aschmidt@cdc.informatik.tu-darmstadt.de

http://www.ams.org/mathscinet-getitem?mr=1432126
http://www.ams.org/mathscinet-getitem?mr=1432126
http://www.ams.org/mathscinet-getitem?mr=1135749
http://www.ams.org/mathscinet-getitem?mr=1135749
http://www.ams.org/mathscinet-getitem?mr=1653994
http://www.ams.org/mathscinet-getitem?mr=1653994

	1. Introduction
	2. Computing the order of an element
	3. Computing the structure
	References

