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RELIABLE A POSTERIORI ERROR CONTROL
FOR NONCONFORMING FINITE ELEMENT APPROXIMATION

OF STOKES FLOW

W. DÖRFLER AND M. AINSWORTH

Abstract. We derive computable a posteriori error estimates for the lowest
order nonconforming Crouzeix–Raviart element applied to the approximation
of incompressible Stokes flow. The estimator provides an explicit upper bound
that is free of any unknown constants, provided that a reasonable lower bound
for the inf-sup constant of the underlying problem is available. In addition, it
is shown that the estimator provides an equivalent lower bound on the error
up to a generic constant.

1. Introduction

1.1. Setting. The use of solenoidal (i.e., divergence-free) finite elements is attrac-
tive since it allows the decoupling of the velocity from the pressure in incompressible
flow calculations. It is well known that the only conforming solenoidal finite ele-
ments are based on high degree polynomials, and therefore, if one is to avoid high
degree finite elements, then one is obliged to use nonconforming elements. The
lowest order such element is the P

1–P
0 element (for the velocity and pressure com-

ponents, respectively), developed by Crouzeix and Raviart [9]. For an overview of
this and related methods, see [5, Ch. IV.3]. We point out that the analysis of this
element is confined to problems with pure Dirichlet boundary conditions due to its
failure to satisfy a discrete Korn’s inequality, although there is evidence that the
method is of practical use in spite of this apparent failing [23]. Furthermore, the
element is widely used in the numerical simulation of Stokes, Navier–Stokes and
non-Newtonian flow [20, 3, 13, 22, 24, 4].

Adaptive methods for nonconforming elements have been studied for some time
now, and a posteriori error estimates have been obtained that bound the true error
above and below. Early papers treated the case of the linear (and nonlinear) Poisson
problem [1, 14, 12, 19], and estimators for the Stokes problem have been obtained,
for example, in [26, 10, 7]. Maximum norm error estimators were derived in [11].
However, such estimates almost always contain generic (unknown) constants and
as such do not provide actual computable error bounds. Of course, it is possible to
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attempt to evaluate the constants appearing in the error bounds [6] but this kind of
approach generally leads to overly pessimistic estimates. An alternative approach
is to attempt to estimate the error in functional outputs, as in [20].

It was observed in [2] that computable upper bounds can be derived for noncon-
forming elements where such unknown constants are absent. Moreover, the bounds
are found to be not only accurate, but also easy and cheap to compute. We adopt a
similar approach here to derive constant-free (for the upper bound) a posteriori er-
ror estimates for the Crouzeix–Raviart finite element approximation of Stokes flow
provided that a lower bound for the inf-sup constant for the continuous problem is
available.

The argument is presented in full detail for the case of homogeneous Dirichlet
boundary conditions in two space dimensions. We also outline the modifications
needed to generalize to nonhomogeneous data in planar domains and to the exten-
sions to the three dimensional setting.

Notation. Throughout, we use standard notation for the Lebesgue (Lp(G)k) and
Sobolev (Hm(G)k) spaces on some open domain G ⊂ R

d into R
k for d, k ∈ N

and p ∈ [1,∞]. The norm on L2(G)k is denoted by || . ||G. For vector valued
functions v =

[
vi

]
i=1,d

: G → R
d we let ∇v ≡ grad(v) :=

[
∂jvi

]
i,j=1,d

, ∇ ·v ≡
div(v) :=

∑d
i=1 ∂ivi. In particular, for the two dimensional case, d = 2, we define

∇⊥ :=
[
∂2,−∂1

]
so that ∇⊥s =

[
∂2s,−∂1s

]
for scalar functions s : G → R and

∇⊥·v ≡ curl2(v) = ∂2v1−∂1v2. Likewise, for matrix valued functions A : G → R
d,d

we let ∇·A be the vector field
[ ∑d

j=1 ∂jAij

]
i=1,d

.

1.2. The Stokes problem. Let Ω ⊂ R
d, d ∈ {2, 3}, be an open polygonal or

polyhedral domain. For a given source f ∈ L2(Ω)d, we seek a velocity field u : Ω →
R

d and a pressure p : Ω → R satisfying the Stokes equations,

−∆u + ∇p = f in Ω,

∇·u = 0 in Ω,(1.1)
u = 0 on ∂Ω,

subject to the side constraint
∫
Ω

p = 0. Initially, we confine our attention to
homogeneous boundary conditions but this assumption is relaxed in Section 4.

The weak form of the Stokes problem consists of seeking u ∈ V and p ∈ M
satisfying ∫

Ω

{
∇u : ∇v − p∇·v + ∇·u q

}
=

∫
Ω

f · v ∀v ∈ V , ∀q ∈ M,(1.2)

where

V := H1
0 (Ω)d, M := L2

0(Ω) :=
{

q ∈ L2(Ω) :
∫

Ω

q = 0
}

.

If the inf-sup condition

inf
q∈M

sup
v∈V

∫
Ω

∇·v q

||∇v||||q|| ≥ c0 > 0(1.3)

holds for some positive constant c0 depending on the domain Ω and the norm
|| . || ≡ || . ||Ω, then it may be shown (see [5, Ch. II.1] or [16, Ch. IV]) that there
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exists a unique solution of problem (1.2) which depends continuously on the data

||∇u|| + c0 ||p|| ≤ C(Ω, d)||f ||.(1.4)

The mapping

[u, v] 	→
∫

Ω

∇u : ∇v

defines a positive definite bilinear form on the closed subspace X ⊂ V defined by

X :=
{
v ∈ H1

0 (Ω)d : ∇·v = 0
}
.(1.5)

As a matter of fact, this property may be exploited to reformulate the problem
whereby we seek u ∈ X such that∫

Ω

∇u : ∇v =
∫

Ω

f · v ∀v ∈ X.(1.6)

One advantage of reformulating the problem over the space X is that the pressure p
does not appear explicitly and the problem for the velocity field is positive definite;
although on the other hand, it is more difficult to discretise the subspace X.

2. The nonconforming Crouzeix–Raviart element

2.1. Triangulation. Let K be a triangulation of the domain Ω ⊂ R
2. We assume

that Ω =
⋃

K∈K K and that the nonempty intersection of distinct elements is either
a single common edge or vertex of both elements. In addition, the triangles are
supposed to be shape regular in the sense that the usual minimal angle condition
holds uniformly over all sequences of triangulations. Observe that the triangulation
need not necessarily be quasi-uniform, although the assumptions do mean that the
triangulation will be locally quasi-uniform.

Let N be a set indexing the element vertices, the subset N indexes vertices on
the interior of the domain, while N ∂ indexes vertices on the domain boundary. The
centroid and area of an element K ∈ K are denoted by xK and |K|, respectively.
The piecewise constant function defined by h(x) := hK for x ∈ K, where hK :=
diam(K), is used to define the mesh-size h of K. The vector nK denotes the
unit exterior normal on the boundary ∂K and tK := n⊥

K denotes the unit tangent
vector, obtained by a 90◦ rotation of nK in an anti-clockwise sense. We denote
the set of all element edges by E , the set of interior edges by E , and the set of
boundary edges by E∂ . The midpoint and diameter of an edge γ are denoted by
xγ and hγ , respectively. Each edge γ ∈ E is oriented by assigning a unit normal
vector nγ along with a corresponding unit tangent vector tγ := n⊥

γ . In the case of
an exterior edge γ ∈ E∂ the vector nγ is always taken to be the exterior normal on
∂Ω. Observe that these definitions mean that nK;γ = ±nγ and tK;γ = ±tγ , and
that the positive sign is always taken in the case of a boundary edge γ ⊂ ∂Ω.

It is useful to introduce broken spaces relative to a triangulation K. For exam-
ple, the space H1(K) :=

⊗
K∈K H1(K) consists of functions whose restriction to

individual elements are locally H1-smooth, but which are in general discontinuous
across element interfaces. Likewise, P

l(K) denotes the space of piecewise polyno-
mials of degree at most l ∈ N with respect to the triangulation K. The subspace
P

l(K)∩H1(Ω) consisting of continuous piecewise polynomials is denoted by P
l
c
(K).
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Although functions in broken spaces are not differentiable at element boundaries,
it is possible to define an elementwise gradient ∇h as follows:

∇hw(x) := ∇w(x), x ∈ int(K), ∀K ∈ K.

On an interior edge γ = ∂K ∩ ∂K ′, the jump in the trace of w ∈ H1(K) across the
edge is denoted by [w]γ := wK;γ − wK′;γ , where the elements are ordered so that
the edge normal nγ points from K ′ into K. Equally well, for a sufficiently smooth
function w, [∂tw]γ and [∂nw]γ denote jumps in traces of derivatives of w across an
interior edge, where ∂t := tγ ·∇ and ∂n := nγ ·∇ denote the normal and tangential
derivatives.

2.2. The finite element space. The finite element discretisation of problem (1.2)
is defined in terms of a pair of subspaces V h ⊂ V and Mh ⊂ M , consisting of
piecewise polynomials relative to the triangulation K of the domain Ω. In order for
the discrete problem∫

Ω

{
∇huh : ∇hvh − ph∇h ·vh + ∇h ·uh qh

}
=

∫
Ω

f · vh

∀vh ∈ V h ∀qh ∈ Mh

(2.1)

to be uniquely solvable, it is necessary for the pair V h, Mh to be properly balanced
so that a discrete version of the inf-sup condition (1.3) is satisfied [5, p. 78]. Not
all combinations give rise to a stable approximation. For instance, the lowest order
combination V h ⊂ P

1
c
(K)2 and Mh ⊂ P

0(K) does not satisfy an inf-sup condition
[5, p. 208].

Given a stable combination, the direct approach leads to a saddle point problem
coupling the unknowns in the discrete velocity and pressure. Alternatively, by
analogy with the approach involving the divergence-free subspace X described in
Section 1, one can obtain a symmetric positive definite system involving only the
discrete velocity, through the introduction of the subspace Xh ⊂ V h consisting
of discretely divergence-free functions. At first sight, such an approach has much
to commend it. Unfortunately, it has been found [15] that the only nontrivial
divergence-free conforming polynomials are of high order. Nevertheless, if one is
prepared to relax the requirement for a conforming approximation of the velocity
field and instead use a nonconforming scheme (details later), then it is even possible
to use the lowest order approximation whereby V h ⊂ P

1(K)2 and Mh ⊂ P
0(K).

The extra freedom in the velocity means that this combination is stable in the
sense that a discrete inf-sup condition is now satisfied, despite the fact that this
fails to hold for the corresponding conforming combination. More importantly, it is
possible to construct the subspace Xh ⊂ V h consisting of piecewise divergence-free
functions explicitly.

Let θγ ∈ P
1(K) be the first order scalar, nonconforming function uniquely defined

by the conditions θγ(xγ) = δγγ′ for γ, γ′ ∈ E . These functions are nonconforming
in the sense that they fail to belong to the space H1(Ω) since their traces are
discontinuous across element interfaces. Nevertheless, such functions are continuous
at edge midpoints and therefore satisfy a weakened conformity condition whereby
the average values of the traces are continuous at element interfaces:

∫
γ

vh;K =∫
γ

vh;K′ on γ = K ∩ K ′. The finite element spaces for the approximation of the
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Stokes problem are then defined by

V h := span
{

τ γ , νγ : γ ∈ E
}
, Mh :=

{
q ∈ P

0(K) :
∫

Ω

q = 0
}
,(2.2)

where τ γ := θγtγ and νγ := θγnγ . Evidently, the space V h is nonconforming in
the sense described above. The stability and convergence of this method are studied
in the original paper of Crouzeix and Raviart [9].

Let Xh denote the subspace consisting of piecewise divergence-free functions,

Xh := span
{
vh ∈ V h : ∇h ·vh = 0

}
.(2.3)

Owing to the lack of conformity, Xh is not a subspace of X given by (1.5). A basis
for Xh can be defined explicitly as follows. For n ∈ N , let

ρn :=
∑

γ∈E : xn∈γ

σn;γ

hγ
νγ ,(2.4)

where σn;γ ∈ {±1} is chosen so that the vectors σn;γnγ defined on element edges
trace a path around the node xn in an anti-clockwise sense. The subspace Xh ⊂ V h

is then given by

Xh = span
{
τ γ , ρn : γ ∈ E , n ∈ N

}
.

In order to see this, first note that every vh ∈ Xh satisfies 0 =
∮

∂K
vh · nK =∫

K
∇ ·vh, by (2.3), and hence, since vh is linear, it follows that ∇ ·vh = 0 on K.

As intimated earlier, the availability of an explicit representation for the subspace
Xh means that it is possible to decouple the computation of the discrete velocity
from the pressure field. The discrete velocity field uh ∈ Xh is uniquely determined
by the condition ∫

Ω

∇huh : ∇hvh =
∫

Ω

f · vh ∀vh ∈ Xh.(2.5)

Once the discrete velocity is in hand, the corresponding pressure ph can be com-
puted, without having to solve a linear system, using a marching procedure over
the triangulation as described in [17].

2.3. A projection operator. Let v ∈ V be given. Then the conditions

Πhv(xγ) := −
∫

γ

v ∀γ ∈ E

define a unique function Πhv ∈ V h. This rule defines a nonconforming projection
operator Πh : V → V h. Moreover, the operator has the property Πh : X → Xh.
To see this, first observe that the above conditions imply that

∫
γ
Πhv · nK =∫

γ
v · nK for all γ ∈ E . Therefore, if v ∈ X, then∮

∂K

Πhv · nK =
∮

∂K

v · nK =
∫

K

∇·v = 0,

and hence Πhv ∈ Xh. Finally, the projection Πh satisfies the following local
interpolation estimate (see, e.g., [2]):

||v − Πhv||K + hK ||∇(v − Πhv)||K ≤ C hK ||∇v||K ∀K ∈ K ∀v ∈ V .(2.6)
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2.4. Enhanced approximation space. For later purposes we will embed V h ×
Mh into a pair of enhanced (higher order) conforming spaces V ∗

h ⊂ V and M∗
h ⊂ M .

Roughly speaking, the enhanced velocity space V ∗
h consists of continuous piecewise

quadratic functions augmented by so-called cubic “bubble” functions associated
with the element interiors, while the enhanced pressure space M∗

h consists of con-
tinuous piecewise linear functions. The precise details are as follows.

Given an edge γ ∈ E , let θ∗γ denote the conforming piecewise quadratic function
defined uniquely by the conditions −

∫
γ′ θ∗γ = δγγ′ and θ∗γ(xn) = 0 for all n ∈ N .

Analogously to Section 2.2 we define

τ ∗
γ := θ∗γ tγ , ν∗

γ := θ∗γ nγ , ρ∗
n :=

∑
γ∈E : xn∈γ

σn;γ

hγ
ν∗

γ .

For each node n ∈ N , let φ∗
n be the conforming piecewise quadratic function

uniquely defined by the conditions φ∗
n(xm) := δnm and

∫
γ

φ∗
n = 0 for all γ ∈ E .

Finally, let β∗
K be the piecewise cubic function supported on element K, whose

value at the centroid xK is unity.
The enhanced spaces are defined by

V ∗
h := span

{
τ ∗

γ , ν∗
γ , φ∗

nêm, β∗
K êm : γ ∈ E , n ∈ N , m ∈ {1, 2}, K ∈ K

}
,(2.7)

M∗
h :=

{
qh ∈ P

1
c
(K) :

∫
Ω

qh = 0
}

,(2.8)

where ê1 and ê2 denote the unit basis vectors for the Euclidean space R
2. As

before, the associated subspace X∗
h ⊂ V ∗

h, defined by

X∗
h :=

{
vh ∈ V ∗

h :
∫

Ω

∇·vh qh = 0 ∀qh ∈ M∗
h

}
,(2.9)

has an important role to play. The resulting finite element space X∗
h may be

regarded as an enriched Taylor–Hood space [5, Ch. 6.3].

3. A posteriori error estimates for homogeneous boundary data

For simplicity, we begin by considering the case of homogeneous boundary con-
ditions and defer the treatment of the general case until later.

3.1. Error representation. Let e := u−uh ∈ X +Xh and ep := p−ph ∈ L2
0(Ω)

denote the error in the velocity and the pressure, respectively. Thanks to (1.2) and
(2.1), these quantities satisfy∫

Ω

{
∇he : ∇v − ep∇·v

}
=

∫
Ω

{
f · v − ∇huh : ∇v + ph∇·v

}
∀v ∈ V .(3.1)

Lemma 1. Let Πh : V → V h be the nonconforming projection operator defined in
Section 2.3. Then,∫

Ω

{
∇he : ∇v − ep∇·v

}
=

∫
Ω

f · (v − Πhv) ∀v ∈ V .
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Proof. With the aid of (3.1) and (2.1),∫
Ω

{
∇he : ∇v − ep∇·v

}
=

∫
Ω

{
f · v − ∇uh : ∇v + ph∇·v

}
=

∫
Ω

{
f · (v − Πhv) − ∇uh : ∇(v − Πhv) + ph∇·(v − Πhv)

}
=

∫
Ω

f · (v − Πhv) −
∑
K∈K

∮
∂K

(
n · ∇uh − phn

)
· (v − Πhv) ∀v ∈ V ,

and then observe that the second term vanishes by definition of Πh since both
n · ∇uh and phn are constant on each edge γ ⊂ ∂K. �

3.2. Decomposition of the error. Following an idea of [12], we decompose the
gradient of the error in the velocity in the form

∇he = ∇e0 + a,(3.2)

where e0 ∈ X is uniquely defined by∫
Ω

∇e0 : ∇v =
∫

Ω

∇he : ∇v ∀v ∈ X.(3.3)

The remainder a ∈ L2(Ω)2,2 satisfies∫
Ω

a : ∇v = 0 ∀v ∈ X,(3.4)

and as a consequence (3.2) defines an orthogonal splitting of the error

||∇he||2 = ||∇e0||2 + ||a||2.(3.5)

Moreover, a belongs to the closed subspace Y of L2(Ω)2,2 defined by

Y :=
{
w ∈ L2(Ω)2,2 :

∫
Ω

w : ∇v = 0 ∀v ∈ X
}
.

Members of the subspace Y share the following useful property.

Lemma 2. For each w ∈ Y there exists a function ω ∈ L2
0(Ω) such that∫

Ω

w : ∇v =
∫

Ω

ω∇·v ∀v ∈ V ,(3.6)

i.e., ∇·w = ∇ω, and which satisfies the estimate

||ω|| ≤ 1
c0

||w||,(3.7)

where c0 is the constant appearing in the inf-sup condition (1.3).

Proof. Integration by parts reveals that every w ∈ Y ∩ H1(Ω)2,2 satisfies

−
∫

Ω

(∇·w) · v = 0 ∀v ∈ X.

Hence, by [16, Ch. III.1], there exists ω ∈ H1(Ω) ∩ L2
0(Ω) such that ∇ ·w = ∇ω.

Equation (3.6) then follows by integration by parts. The validity of the inf-sup
condition means that we may pick v ∈ H1

0 (Ω)2 such that ∇·v = ω and

||ω||
2

=
∫

Ω

ω∇·v =
∫

Ω

w : ∇v ≤ ||w||||∇v|| ≤ 1
c0
||w||||ω||,

which completes the proof of the assertion. �
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Remark. More precisely, w ∈ Y is of the form w = ωId + ∇⊥s [10] since, by
(3.6), we have ∇·(w−ωId) = 0 and, therefore, w−ωId must be of the form ∇⊥s
for some s ∈ H1(Ω)2.

3.3. Upper a posteriori error bound. We are now in a position to describe the
a posteriori error estimator and to prove that it gives computable upper bounds for
the error. Let fK denote a constant approximation of f on K (such as the mean
value of f over K). The estimator ηc for the conforming part e0 of the error is
defined by

ηc :=
( ∑

K∈K
η2
c;K

)1/2

with η2
c;K :=

1
12

|K|
∣∣fK

∣∣2 ∑
γ∈E : γ⊂∂K

∣∣xγ − xK

∣∣2,(3.8)

where, it will be recalled, xK and xγ denote the centroid of the element and an
edge γ, respectively. The estimator ηnc for the remainder a is defined by

ηnc := ||∇h(u∗ − uh)|| +
1
c0

||∇·u∗||,(3.9)

where u∗ is any function in H1
0 (Ω)2 and c0 is the lower bound in the inf-sup condi-

tion (1.3). The estimator for the total error e is obtained by summing the estimators

η := ηc + ηnc.(3.10)

The presence of the constant c0 from the inf-sup condition in the expression for ηnc

could be removed if one were prepared to construct a divergence-free post-processed
approximation u∗. However, this is hardly a viable or practical proposition, and the
presence of c0 is essentially unavoidable. Fortunately, bounds for c0 are available
and can be obtained from [8, 25].

In order to describe the upper bound property of the estimator, it is convenient
to introduce the data oscillation on K defined by

osc
K

(f)2 =
∑
K∈K

osc
K

(f)2 :=
∑
K∈K

|K| ||f − fK ||2K .

Theorem 1 (Upper a posteriori bound). Let η denote the estimator defined in
(3.8)–(3.10). Then, for any choice u∗ ∈ H1

0 (Ω)2,

||∇he|| ≤ η + C osc
K

(f),

where C is a positive constant that depends only on the shape regularity of the mesh.

Proof. Thanks to the orthogonal splitting (3.5) of the error (3.2), it suffices to
estimate the two contributions separately.

(i) Upper bound for ‖∇e0‖. By the definition of e0, (3.3) and Lemma 1, we
observe that for all v ∈ X,∫

Ω

∇e0 : ∇v =
∫

Ω

∇he : ∇v =
∫

Ω

f · (v − Πhv) =
∑
K∈K

∫
K

f · (v − Πhv)

=
∑
K∈K

{∫
K

fK · (v − Πhv) +
∫

K

(f − fK) · (v − Πhv)
}

=
∑
K∈K

{∫
K

σK : ∇v +
∫

K

(f − fK) · (v − Πhv)
}
,
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where σK is given by

σK(x) := −1
2

fK ⊗(x − xK).

To verify the last step, first note that∫
K

σK : ∇v =
∮

∂K

σKnK · v −
∫

K

(∇·σK) · v.

Simple computations reveal that ∇·σK = −1/2 fK∇·(x− xK) = −fK on K and
that σKnK = −1/2 fKnK · (x − xK) = −|K|/(3hγ) fK on γ ⊂ ∂K. Hence,∮

∂K

σKnK · v = −
∑

γ⊂∂K

fK · 1
hγ

∫
γ

v
1
3
|K| = −

∫
K

fK · Πhv,

and the claim follows. Consequently, using the interpolation estimate (2.6), we
obtain

||∇e0|| ≤
( ∑

K∈K
||σK ||2K

)1/2

+ C
( ∑

K∈K
h2

K ||f − fK ||2K
)1/2

= η
c

+ C osc
K

(f),

where the last equality follows from an explicit calculation of ||σK ||2K .
(ii) Upper bound for ‖a‖. To estimate a take any w ∈ Y and choose an arbitrary

element u∗ ∈ H1
0 (Ω)2. Then, using (3.4) and Lemma 2, we obtain∫

Ω

a : w =
∫

Ω

∇h(e − e0) : w =
∫

Ω

∇h(−uh) : w

=
∫

Ω

{
∇h(u∗ − uh) : w − ∇u∗ : w

}
=

∫
Ω

{
∇h(u∗ − uh) : w − ∇·u∗ ω

}
.

The estimate now follows using the bound for ω from Lemma 2. �

3.4. Choice of u∗. The quality of the estimator η defined in (3.10) will depend on
making a good choice for u∗. One possibility is to construct u∗ by post-processing
the finite element approximation uh. With this in mind, we begin by defining a
mapping P h : Xh → V ∗

h onto the enhanced space V ∗
h defined in Section 2.4. First,

the values of the (discontinuous) function vh are averaged at each node n ∈ N as
follows:

S(vh)n :=

⎧⎨
⎩

∑
K∈K : xn∈K

ωn;Kvh;K(xn), for xn ∈ Ω,

0, for xn ∈ ∂Ω,
(3.11)

where {ωn;K} is any set of nonnegative weights satisfying
∑

K∈K : xn∈K ωn;K = 1.
Secondly, each vh ∈ Xh may be uniquely written in the form vh =

∑
γ∈E vγτ γ +∑

n∈N vnρn, and a mapping P h : Xh → V ∗
h can be defined, therefore, by

P hvh :=
∑
γ∈E

vγτ ∗
γ +

∑
n∈N

{
vnρ∗

n + S(vh)nφ∗
n

}
.(3.12)

By construction, it holds that
∫

γ
P hvh · n =

∫
γ

vh · n = 0 for all γ ∈ E , and it is
easily verified that, for every vh ∈ Xh,∫

Ω

∇·(P hvh) qh = 0 ∀qh ∈ Mh.(3.13)
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The post-processing scheme embodied in P h forms the basis for a family of
post-processing schemes of the form

Qhvh := P hvh +
∑
K∈K

cKβ∗
K ,(3.14)

corresponding to various choices of the local vectors cK ∈ R
2 for K ∈ K.

The simplest choice cK = 0 gives an operator Q0
h which coincides with the basic

post-processing scheme, i.e., Q0
h = P h. Alternatively, the freedom in the choice of

coefficients of the bubble functions β∗
K may be exploited to give a post-processed

approximation QDDF
h vh belonging to the subspace X∗

h of “discretely divergence-
free” functions (2.9) by taking cK ∈ R

2 as suggested in [17]:

cDDF
K =

1∫
K

β∗
K

(∮
∂K

(x − xK) P hvh · n −
∫

K

P hvh

)
.(3.15)

Note that this choice preserves the property
∫

γ
Qhuh ·n =

∫
γ

P huh ·n =
∫

γ
uh ·n

for all γ ∈ E . The construction of the discretely divergence-free post-processing
scheme QDDF

h is motivated by the desire to implicitly control the influence of the
term in (3.9) involving the inf-sup constant c0. A more direct approach is to choose
the constants cK to minimize this term. This can be achieved by choosing∫

K

∇β∗
K ⊗∇β∗

K cMIN
K = −

∫
K

∇·(P huh)∇β∗
K ,

and the associated “minimal-divergence” post-processing scheme is denoted by
QMIN

h . Finally, in view of the fact that one obtains an upper bound regardless of
the choice of cK , we consider the post-processing scheme whereby the coefficients
cK are chosen to minimize the upper bound:(

||∇β∗
K ||2KId +

1
c2
0

∫
K

∇β∗
K ⊗∇β∗

K

)
cOPT

K

= −
∫

K

(
∇P huh +

1
c2
0

∇·(P huh)Id
)
∇β∗

K ,

and we denote the associated post-processing operator by QOPT
h .

3.5. Lower a posteriori error bound. Each of the post-processing schemes de-
fined in the previous section gives Qhuh ∈ H1

0 (Ω)2 and, therefore, we may select
u∗ = Qhuh in Theorem 1 to obtain upper bounds on the error. We shall show
that each of these upper bounds also provides an efficient bound provided that the
triangulation satisfies the additional condition whereby each element K ∈ K should
have at most one edge on the exterior boundary ∂Ω. Obviously, this assumption is
not a serious practical limitation since it may be satisfied by performing a suitable
refinement of any triangles that do not meet this requirement.

Theorem 2 (Lower a posteriori bound). Suppose that each element K ∈ K has at
most one edge on the exterior boundary. If the estimator ηnc is defined by taking
u∗ = Qhuh, where Qh is any of the operators defined in Section 3.4, then

c η ≤ ||∇he|| + osc
K

(f),

where c is a positive constant that depends only on the shape regularity of the mesh.
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Proof. The orthogonality of the splitting (3.2) means that it suffices to prove lower
bounds for ‖∇e0‖ and ‖a‖ individually.

(i) Lower bound for ||∇e0||. Let f denote the piecewise constant function whose
value on K is given by fK , and let σ be defined as in the proof of Theorem 1.
Then, for all v ∈ X, we have∫

Ω

∇e0 : ∇v =
∫

Ω

σ : ∇v +
∫

Ω

(
f − f

)
·
(
v − Πhv

)
.

Let K ′, K ′′ ∈ K be distinct elements sharing the common edge γ = K ′ ∩ K ′′, and
denote Ωγ := K ′ ∪ K ′′. Let s ∈ C2

0 (Ωγ) be compactly supported in Ωγ , and set
v := ∇⊥s. Then, with the aid of (2.6), we obtain

1
||∇v||

∣∣∣∫
Ωγ

σ : ∇v
∣∣∣ ≤ ||∇e0||Ωγ

+ C osc
Ωγ

(f).(3.16)

Moreover, from the definition of σ,∫
Ω

σ : ∇v =
∑

K∈{K′,K′′}

∫
K

fK ·
(
v − Πhv

)

=
∑

K∈{K′,K′′}

{
− |K|

3hγ
fK ·

∫
γ

∇⊥s + fK · tK

∫
γ

s
}
.

Observe that tK′ + tK′′ = 0 on γ, and so, for the sake of definiteness, we fix
tK′ = tγ . Furthermore,∫

γ

∇⊥s =
∫

γ

(nγ · ∇⊥s) nγ +
∫

γ

(tγ · ∇⊥s) tγ =
∫

γ

∂ns tγ ,

where the first integral vanishes since s vanishes at the endpoints of γ. Hence,
setting λ0 ≡ λ0(s) := −

∫
γ

s and λ1 ≡ λ1(s) :=
∫

γ
∂ns, we obtain

1
hγ

∫
Ωγ

σ : ∇v = −1
3

( |K ′|
h2

γ

fK′ +
|K ′′|
h2

γ

fK′′

)
· tγ λ1 +

(
fK′ − fK′′

)
· tγ λ0.

(3.17)

Observe that the right hand side is invariant under a rescaling of the domain and
so without loss of generality we may assume that hγ = 1. The main idea is,
through appropriate choices of s, to show that (3.17) gives rise to a pair of linearly
independent equations in which the tangential components of fK′ and fK′′ are
regarded as unknowns. The choices of s are constructed as follows. First, let �
be the largest value such that B�(xγ) ⊂ Ωγ . Let s be a nonnegative function
with support supp(s) = B�/2(xγ) and such that s is radially symmetric about the
midpoint xγ , normalized so that max(s) = 1. Let δ satisfy 0 ≤ δ < �/2 and
consider the functions sδ := s( . − δnγ) obtained by shifting the support of s. The
mapping δ 	→ λ0(sδ) is then a positive, symmetric and strictly decreasing function
and δ 	→ λ1(sδ) is a nonconstant skew-symmetric function. Taking first δ = 0 and
then δ = δ0 for some fixed value δ0 ∈ (0, �/2), we find that (3.17) gives a pair
of linearly independent equations for the tangential components of fK′ and fK′′ .
Consequently, there is a constant C, depending only on the shape of Ωγ , such that

|fK′ · tγ | ≤
C

hγ

∣∣∣∫
Ωγ

σ : ∇v
∣∣∣,(3.18)
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where we have exploited the fact that ||∇v||Ωγ
is independent of δ. In fact, by a

scaling argument, we deduce that there is a positive constant C, again independent
of δ, such that ||∇v||Ωγ

≤ C/hγ . Hence, with (3.16) and (3.18) we get

|K ′|1/2 ||fK′ · tγ ||K′ ≤ C h2
γ |fK′ · tγ | ≤ C

(
||∇e0||Ωγ

+ osc
Ωγ

(f)
)
.

Since each element is assumed to have at most one edge on the exterior boundary,
we can apply the same reasoning to another edge γ = γ′ contained in ∂K ′. Fur-
ther, since the set {tγ , tγ′} is linearly independent, we are able to estimate both
components of fK′ and thereby arrive at the bound

|K ′|1/2 ||fK′ ||K′ ≤ C
(
||∇e0||Ωγ∪Ωγ′ + osc

Ωγ∪Ωγ′
(f)

)
.

Summation over all elements K ∈ K then yields

c η ≤ ||∇e0|| + osc
K

(f),

since ηc;K ≤ C|fK | ||x − xK ||K ≤ C|fK | |K| ≤ C|K|1/2||fK ||K .
(ii) Lower bound for ||a||. The proof consists of two steps. In the first step

we show that ||a|| bounds a sum of jumps Jt (defined below) in the tangential
derivatives of uh. Then, in the second step we show that these jumps bound the
error estimator above.

(ii.1) ||a|| bounds Jt. Let K ′ and K ′′ be distinct elements sharing a common edge
γ = K ′∩K ′′ and let s := θ∗γzγ , where θ∗γ is defined as in Section 2.4 and zγ ∈ R

2 is
a constant to be specified later. The function ∇⊥s is divergence-free and therefore
∇⊥s ∈ Y . Then, arguing as in the proof of Theorem 1(ii), we deduce that∫

Ω

a : ∇⊥s = −
∫

K′∪K′′
∇huh : ∇⊥s = −

∑
K∈{K′,K′′}

∮
∂K

(tK · ∇uh) · s

= −
∫

γ

[∂tuh]γ · s.

Choose zγ := −[∂tuh]γ . Then

J2
t;γ := hγ

∫
γ

∣∣[∂tuh]γ
∣∣2 = hγ

∫
γ

θ∗γ
∣∣[∂tuh]γ

∣∣2 = −hγ

∫
K′∪K′′

a : ∇⊥(θ∗γ [∂tuh]γ)

≤ ||a||K′∪K′′ ||∇⊥θ∗γ || Jt;γ ,

and by summing over γ ∈ E we obtain

Jt :=
(∑

γ∈E
J2

t;γ

)1/2

≤ C ||a||,

where C is a positive constant independent of any mesh-size.
(ii.2) Jt bounds ηnc. To this end take any K ∈ K and let AK := {γ′ ∈ E : γ′ ⊂

ΩK} be the set of all edges in ΩK :=
⋃
{K ′ ∈ K : K ∩ K ′ = ∅}. We now wish to

bound

qK :=
||∇(u∗ − uh)||2K∑

γ∈AK
J2

t;γ

from above. To finish, observe that ηnc ≤ C||∇h(u∗ −uh)||. The form of u∗ means
that the denominator depends on an at least as large a set of coefficients of uh

as the numerator. Since qK is the quotient of two homogeneous quadratic forms,
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it suffices to show that if the denominator vanishes, then so does the numerator.
Thanks to a scaling argument, we may eliminate the mesh-size and consider a
patch ΩK of elements of unit diameter. Suppose now that Jt;γ = 0 holds for all
γ ∈ AK . If xn is any vertex of K and γ = K ∩ K ′, then by continuity in xγ we
have |uh;K(xn) − uh;K′(xn)| ≤

∫
γ

∣∣[∂tuh]
∣∣ = 0. Because all edges emanating from

xn are in AK , we conclude that uh is continuous at xn. Since it is linear, it is
thus continuous in ΩK and u∗ = uh on ∂K. Thus uh;K = P huh�K and therefore
u∗ = uh +dKβ∗

K on K. If we show that dK = 0 holds, we have that qK is bounded
by an hK-independent constant, and we arrive at the bound ||∇h(u∗ −uh)|| ≤ CJt

after summation over K. By definition dK vanishes in the case where u∗ is defined
using Q0

h. In the case of QDDF
h , the fact that both u∗ and uh are solenoidal implies

that dK again vanishes. Likewise, since QMIN
h is chosen to minimize the difference

in the divergences of u∗ and uh, we conclude that dK vanishes in this case also,
and a similar argument applies in the case of QOPT

h . �

We conclude this section by stating the a posteriori estimate for the combined
error in velocity and pressure.

Corollary 1 (A posteriori error estimate for the pressure). If the previous con-
ditions and assumptions hold, then the error in the pressure is bounded above as
follows:

c0 ||ep|| ≤ 2η + C osc
K

(f).

Therefore, the total error ||∇he|| + c0 ||ep|| is equivalent to our error estimate up to
data oscillation terms.

Proof. First, applying Theorem 2, we at once derive

c η ≤ ||∇he|| + osc
K

(f) ≤ ||∇he|| + c0 ||ep|| + osc
K

(f).

It remains to give the upper a posteriori bound for ||ep||. To this end, notice that
thanks to the inf-sup condition (1.3),

c0 ||ep|| ≤ sup
v∈V \{0}

{
1

||∇v||

∫
Ω

ep∇·v
}

.

From the error representation formula in Lemma 1 we obtain

1
||∇v||

∫
Ω

ep∇·v =
1

||∇v||

∫
Ω

{
∇he : ∇v + f · (v − Πhv)

}
≤ ||∇he|| +

( ∑
K∈K

||σK ||2K
)1/2

+ C osc
K

(f) ≤ 2η + C osc
K

(f),

where we used arguments as in the proof of Theorem 1(i). Hence

||∇he|| + c0 ||ep|| ≤ 3η + C osc
K

(f)

as claimed. �
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4. Extension to nonhomogeneous boundary data

Consider the case of nonhomogeneous boundary conditions in which problem
(1.1) is modified by requiring u = u∂ on ∂Ω for some u∂ ∈ H1(∂Ω)2 satisfying∮

∂Ω
u∂ · n = 0. The latter condition is necessary for the problem to be well-posed.

Further details concerning existence theory in this situation may be found in [16,
Ch. IV]. Here, we will restrict ourselves to outlining the modifications necessary
to extend our previous results, Theorem 1 and Theorem 2, to cover this situation.
The nonhomogeneous boundary conditions are applied to the discrete problem by
requiring that ∫

γ

uh =
∫

γ

u∂ ∀γ ∈ E∂ .

Note that applying the boundary conditions in this fashion guarantees that
∮

∂Ω
uh ·

n = 0. The enhanced approximation Qhuh from Section 2 is modified to satisfy
the condition Qhuh(xn) := u∂(xn) for all xn ∈ ∂Ω. In particular, there holds∫

γ
Qhuh · n =

∫
γ

uh · n =
∫

γ
u∂ · n for all γ ∈ E∂ . For given data u∂ ∈ H1(∂Ω)2,

the theoretical bounds will involve the quantity

osc
E∂

(∂tu
∂)2 =

∑
γ∈E∂

osc
γ

(∂tu
∂)2 :=

∑
γ∈E∂

hγ ||∂tu
∂ − (∂tu∂)γ ||2γ ,

where ( . )γ denotes the mean value integral over γ.

Theorem 3 (A posteriori bounds in case of nonhomogeneous boundary condi-
tions). Suppose that the estimator ηnc is obtained by choosing u∗ := Qhuh. Then,
Theorem 1 is modified to

||∇he|| ≤ η + C
(
osc
K

(f) + osc
E∂

(∂tu
∂)

)
,

while Theorem 2 is modified to

c η ≤ ||∇he|| + osc
K

(f) + osc
E∂

(∂tu
∂).

The constants c, C depend only on the shape regularity of the mesh.

Proof. We outline the necessary modifications to the proofs given earlier in the case
of homogeneous data. The splitting of the error remains as stated in (3.2), but the
arguments in the proofs of Theorems 1 and 2 have to be modified when we come to
bound ||a||. To extend our previous results to nonhomogeneous data, it is useful to
introduce a function v∗ ∈ H1(Ω)2 with exact boundary values u∂ . On an interior
element K ∈ K, we simply take v∗ := u∗. A more elaborate argument is needed
for a triangle K with an exterior edge γ. First, define ξ∂

K := 0 on ∂K \ γ and
ξ∂

K := u∂ −u∗ on γ. By construction
∮

∂K
ξ∂

K ·n =
∫

γ
(u∂ −u∗) ·n = 0. Hence, an

elementwise Stokes problem on K with boundary data given by ξ∂
K has a solution

that we denote by ξK and which satisfies the bound ||∇ξK ||K ≤ C oscγ(∂tu
∂)

(obtained using arguments similar to those of [2, Lemma 8]). On each such element
K we define v∗ := u∗ + ξK . In summary, the function v∗ ∈ H1(Ω)2 satisfies
v∗ = u∂ on ∂Ω.
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(i) Upper bound for ||a||. These previous definitions mean that step (ii) in the
proof of Theorem 1 has to be modified as∫

Ω

a : w =
∫

Ω

∇h(e − e0) : w =
∫

Ω

∇h(u − uh) : w

=
∫

Ω

{
∇h(v∗ − uh) : w + ∇(u − v∗) : w

}
=

∫
Ω

{
∇h(v∗ − uh) : w − ∇·u∗ ω

}
=

∫
Ω

{
∇h(u∗ − uh) : w − ∇·u∗ ω

}
+

∑
K∈K

∫
K

∇ξK : w,

since ∇·ξK = 0. It only remains to estimate the final term:∑
K∈K

∫
K

∇ξK : w ≤
( ∑

K∈K
||∇ξK ||2K

)1/2

||w|| ≤ C osc
E∂

(∂tu
∂) ||w||.

(ii) Lower bound for ||a||. We only have to reconsider part (ii.2) of the proof to
Theorem 2. We will split u∗ −uh = (u∗ − ũ∗) + (ũ∗ −uh), where ũ∗ is as u∗, but
with ũ∗(xn) := S(uh)n also for xn ∈ N ∂ in contrast to u∗(xn) = u∂(xn). The
term ||∇(ũ∗ − uh)|| is treated as in part (ii) before, so that it remains to bound
||∇(u∗ − ũ∗)||.

First consider an element K ∈ K with a boundary edge γ and boundary vertices
xn, xm. The following argument is based on the observation

||∇(u∗ − ũ∗)||K ≤ C max
l∈{n,m}

|(uh;K − u∂)(xl)|.

Using the discrete boundary conditions yields (uh;K − u∂)(xn) = hγ/2 ∂tuh;K +
−
∫

γ
u∂ − u∂(xn), and with arguments as in the proof of Theorem 2(i.1) with s :=

θ∗γzγ ,∫
K

a : ∇⊥s =
(∫

γ

θ∗γ∂tu
∂ − hγ∂tuh

)
· zγ

=
(
−2(uh;K − u∂)(xn) +

∫
γ

θ∗γ∂tu
∂ + 2 −

∫
γ

u∂ − 2u∂(xn)
)
· zγ

or

2(uh;K − u∂)(xn) · zγ

= −
∫

K

a : ∇⊥s +
(∫

γ

θ∗γ
(
∂tu

∂ − (∂tu∂)γ

)
+ 2 −

∫
γ

u∂ −
(
u∂(xn) + u∂(xm)

))
· zγ .

The last two terms can be written in the form
∫

γ
χγ

(
∂tu

∂−(∂tu∂)γ

)
with |χγ | = 1/2

(see [2, Lemma 9]) so we conclude, choosing zγ = [1; 0] and [0; 1], that

|(uh;K − u∂)(xn)| ≤ C
(
||a||K + hγ ||∂tu

∂ − (∂tu∂)γ ||γ
)
≤ C

(
||a||K + osc

γ
(∂tu

∂)
)
.

The remainder of the argument then proceeds as in the case of homogeneous
data. �
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5. Three dimensional case

To emphasize the similarities with the previous considerations, we adopt a nota-
tion analogous to the two dimensional case. We assume Ω is decomposed into a set
K of tetrahedra satisfying the usual assumptions. Further, let E be the set of all
faces of tetrahedra in K and let N be an index set for the edges. Faces and edges
are assumed to be oriented in the following way: with each face γ ∈ E , a normal
vector nγ is assigned (which coincides with the exterior normal if γ ⊂ ∂Ω) and
each edge has a fixed direction, e.g., pointing to the vertex with the larger index in
the set of vertices V := {xj}j . For γ ∈ E , let θγ be the linear nonconforming basis
function satisfying θγ(xγ′) = δγγ′ , where xγ′ is the centroid of γ′. On the face γ
we construct an orthonormal basis {tγ,1, tγ,2} satisfying (tγ,1 × tγ,2) · nγ = 1. By
analogy with the two dimensional case, we define basis functions τ γ,l := θγtγ,l and
νγ := θγnγ . The spaces V h and Mh are defined as in (2.2), and the degrees of
freedom for V h are identified with the functionals −

∫
γ

vh.
The construction of the subspace Xh involves choosing an appropriate subset

NX of N and defining ρn as in (2.4) for n ∈ NX [18]. Signs are chosen such that
the face normals ρn(xγ) trace a path around the edge n in the anti-clockwise sense
with respect to the chosen orientation of this edge. The definition of Πh remains
as described in Section 2.3, and in particular, functions in X will be automatically
mapped into Xh.

We will now sketch the differences to the two dimensional case needed to ex-
tend the a posteriori error bounds in Theorems 1 and 2 under the assumption of
homogeneous boundary data.

Modifications to the proof of Theorem 1. Definition 3.10(i) has to be replaced by

η2
c;K :=

|K|
36

∣∣fK

∣∣2 ∑
γ∈E : γ⊂∂K

∣∣xγ − xK

∣∣2
for the conforming error, since we will obtain σK := −1/3 fK ⊗(x − xK) for K ∈
K in the proof of Theorem 1(i), with the same technique as before (note that
(x − xK) · nK = 3/4 |K|/|γ| ∀x ∈ γ ⊂ ∂K). Part (ii) works exactly the same way.

A choice of u∗. Before proving the lower bound, we have to be more specific about
the choice of u∗. One possibility is to choose V ∗

h to be P
1
c
(K)3 enriched by face

bubbles in normal directions [21, p. 122]. For this let θ∗γ be the cubic face bubble for
γ ∈ E with −

∫
γ

θ∗γ = 1. For each vertex xj let φj its piecewise linear basis function
and let S(vh)j be the weighted mean for vh ∈ V h as in (3.11). We then define
P h : V h → V ∗

h by P hvh :=
∑

j∈V S(vh)jφj +
∑

γ∈E T (vh)γθ∗γnγ , where T ( . )γ is
chosen such that

∫
γ

P hvh · nγ =
∫

γ
vh · nγ . Thus we obtain that for vh ∈ Xh,

(3.13) holds for piecewise constant qh and, therefore, M∗
h = Mh = P

0(K). Our
choice here is u∗ := P huh.

Modifications to the proof of Theorem 2(i). Taking v := ∇× rl, where rl := s tγ,l

for some s ∈ C2
0 (Ωγ) and l ∈ {1, 2}, we achieve ∇·v = 0. Now we obtain, for some

cγ > 0,∫
Ω

σ : ∇v =
∑

K∈{K′,K′′}

{
−cγfK ·

∫
γ

∇s × tγ,l + fK · (nγ × tγ,l)
∫

γ

s
}
.
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Using {l, l′} = {1, 2} and cyclic permutation, we see that∫
γ

∇s × tγ,l =
∫

γ

(∇s × tγ,l) · tγ,l′ tγ,l′ ∼
∫

γ

∂ns tγ,l′

and fK ·(nγ ×tγ,l) ∼ fK ·tγ,l′ . Hence, we end up in the same situation as in (3.17)
and, with the same choice of s as before, one obtains an estimate for the tangential
part of fK on γ and, using a second face of K, an estimate for the whole vector.

Modifications to the proof of Theorem 2(ii.1). For l ∈ {1, 2} let vi := zitγ,l′θ
∗
γ for

some z ∈ R
3, i ∈ {1, 2, 3}, l′ such that {l, l′} = {1, 2}. Define w(x) to be the

matrix with ith row ∇× vi(x). Then ∇·w = 0 so that w ∈ Y , and one obtains∫
Ω

a : w = −
∫

Ω

3∑
i=1

∇huh,i · ∇× vi = −
3∑

i=1

[∇uh,i]γ · (nγ × tγ,l′)zihγ

∼ −[∂tγ,l
uh]γ · zhγ .

Choosing z = [∂tγ,l
uh]γ yields the required bound.

Modifications in the proof of Theorem 2(ii.2). The essential steps are to show that
P huh�K depends on coefficients of uh on ΩK and that vanishing jumps Jt;γ for
γ ∈ AK imply u∗ = uh on K. The first property is immediate. For the second we
show that, as before, uh is continuous on ΩK and thus equals u∗ at all vertices.
Since ∇·uh = 0 we see that T (uh)γ = 0 for all γ ⊂ ∂K and, therefore, u∗ = uh on
K.

6. Numerical examples

We show numerical results for two examples. The first one has a polynomial
velocity field of third order on Ω := (0, 1)2 with nonhomogeneous data f and u∂ .
Velocity, stream function, and pressure, respectively, are given by

ue(x1, x2) = [x1(1 − x1)(1 − 2x2),−x2(1 − x2)(1 − 2x1)],

Ψe(x1, x2) = x1x2(1 − x1)(1 − x2),

pe(x1, x2) = 2(x2 − x1).

The second example (see, e.g., [26]) has a singular solution (ue ∈ H2(Ω)2) on the
L-shaped domain Ω := (−1, 1)2 \ (0, 1) × (−1, 0) with f = 0, explicitly given by

ue(r, φ) = rα
[
(α + 1) sin(φ)ψ(φ) + cos(φ)ψ′(φ),

− (α + 1) cos(φ)ψ(φ) + sin(φ)ψ′(φ)
]
,

Ψe(r, φ) = rα+1ψ(φ),

pe(r, φ) =
1

α − 1
rα−1

(
(α + 1)2ψ′(φ) + ψ′′′(φ)

)
in polar coordinates [r, φ] ∈ (0,∞) × (0, 3π/2), where

ψ(φ) =
1

α + 1
sin((α + 1)φ) cos(αω) − cos((α + 1)φ),

+
1

α − 1
sin((α − 1)φ) cos(αω) + cos((α − 1)φ),

α =
856399
1572864

≈ 0.54, ω = 3π/2.
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Table 1. Results for Example 1 on the uniform grid with N =
3969 (left) and for Example 2 on the uniform grid with N = 5985
(right) for the different choices of Qh.

Qh η η(u) η(d)

Q0
h 1.73−1 5.11−2 3.49−2

QDDF
h 2.02−1 9.66−2 2.84−2

QMIN
h 1.55−1 6.31−2 2.31−2

QOPT
h 1.55−1 5.77−2 2.51−2

Qh η η(u) η(d)

Q0
h 3.37−1 1.05−1 6.98−2

QDDF
h 3.69−1 1.81−1 5.63−2

QMIN
h 2.77−1 1.24−1 4.60−2

QOPT
h 2.77−1 1.18−1 4.79−2

In the experiments we calculate the “exact” (using a quadrature formula for P
2) and

the estimated error in the energy norm ||∇ . || (using a quadrature formula for P
3) for

the velocity on a sequence of uniformly and adaptively refined grids, respectively.
For each marked triangle two newest node bisection steps [27] were performed. As
a local error indicator for the adaptive algorithm we used (cf. Section 3.3)

η2
K := η2

c;K + ||∇(u∗ − uh)||2K +
1
c2
0

||∇·u∗||2K ,

and triangles are marked using the maximum strategy (mark K if ηK ≥ ηmax/2).
The global error estimate is, according to (3.10), given by

η := ηc + ηnc.

Values for the constant c0 = 0.4 for Ω = (0, 1)2 and c0 = 0.3 for the L-shaped
domain have been obtained from [25, pp. 253–254]. All errors will be presented as
relative errors. For convenience, the following abbreviations will be used: E :=
||∇(ue − uh)||/||∇ue||, η := η/||∇ue||, η(u) := ||∇(u∗ − uh)||/||∇ue||, η(d) :=
||∇·u∗||/||∇ue||.

Table 1 compares the bounds obtained using the four different types of post-
processing scheme used to define u∗ in the case of a uniform grid. Observe that
the estimators involving QOPT

h and QMIN
h perform comparably and represent a

significant improvement over the estimators based on Q0
h and QDDF

h in this example.
Figure 1 shows the convergence history for both examples on a sequence of uni-

formly and adaptively refined grids; Tables 2 and 3, the corresponding data. In
the first example, which is H2-regular, the slope of the lines is about −1/2, con-
firming the expected relations E ∼ N−1/2 and η ∼ N−1/2, respectively. However,
the exact error is overestimated by a factor of about 3.5. In the second example
the slope of the data in the uniform case is about −1/4, which is consistent with
the expected rate of −α/2. The adaptive algorithm improves upon this by that
the error decreases with N−1/2 as in the H2-regular case. This confirms that the
adaptive algorithm is quasi-optimal, although, once again, there is overestimation
by a factor of about 3 in the uniform case and approximately 3.9 in the adaptive
case.

The cost of using QOPT
h is about 10% more than that for Q0

h. Pressure errors
are of the size of the velocity errors, and the overestimation of η with respect to
||∇(ue − uh)|| + c0||pe − ph|| is about a factor of 3.
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Figure 1. Exact (◦) and estimated error (�) on uniform grids
(dashed) and adaptive grids (solid) for the first example (top) and
the second example (bottom).
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Table 2. Data for the uniform (left) and adaptive (right) results
in Figure 1 (Example 1) using u∗ = QOPT

h uh.

N E η η/E
9 6.24−1 1.44 2.31

49 3.47−1 1.01 2.91
225 1.80−1 5.81−1 3.23
961 9.15−2 3.05−1 3.33

3969 4.60−2 1.55−1 3.37

N E η η/E
9 6.24−1 1.44 2.31

47 3.74−1 1.08 2.89
173 2.16−1 7.04−1 3.26
329 1.69−1 5.71−1 3.38
991 9.69−2 3.43−1 3.54

1287 8.60−2 2.99−1 3.48
4537 4.63−2 1.64−1 3.54

Table 3. Data for the uniform (left) and adaptive (right) results
in Figure 1 (Example 2) using u∗ = QOPT

h uh.

N E η η/E
15 3.04−1 6.04−1 1.99
77 2.40−1 6.13−1 2.55

345 1.82−1 5.12−1 2.81
1457 1.31−1 3.86−1 2.95
5985 9.24−2 2.77−1 3.00

N E η η/E
15 3.04−1 6.04−1 1.99
37 2.44−1 5.78−1 2.37

105 1.98−1 5.62−1 2.84
177 1.68−1 5.16−1 3.07
319 1.38−1 4.60−1 3.33
585 1.11−1 3.89−1 3.50
911 9.19−2 3.33−1 3.62

1455 7.45−2 2.79−1 3.75
2343 5.98−2 2.27−1 3.80
3369 5.02−2 1.95−1 3.88
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